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ABSTRACT 

Meta-analysis of genetic association studies increases sample size and the power for mapping complex traits. 
Existing methods are mostly developed for datasets without missing values. In practice, genotype imputation is 
not always effective, e.g. when targeted genotyping/sequencing assays are used or when the un-typed genetic 
variant is rare. Therefore, contributed summary statistics often contain missing values. Naïve extensions of 
existing methods either replace missing summary statistics with 0 or discard studies with missing data. These 
approaches can bias genetic effect estimates and lead to seriously inflated type-I or II errors in conditional 
analysis, which is a critical tool for identifying independently associated variants.  

To address this challenge and complement imputation methods, we developed a method to combine summary 
statistics across participating studies and consistently estimate joint effects, even when the contributed 
summary statistics contain large amount of missing values. Based on this estimator, we propose a score 
statistic we call PCBS (partial correlation based score statistic) for conditional analysis of single-variant and 
gene-level associations. Through extensive analysis of simulated and real data, we showed that the new 
method produces well-calibrated type-I errors and is substantially more powerful than existing approaches. We 
applied the proposed approach to analyze the CHRNA5-CHRNB4-CHRNA3 locus in a large-scale meta-
analysis for cigarettes-per-day. Using the new method, we identified three novel variants, independent of 
known association signals, which were otherwise missed by alternative methods. Together, the phenotypic 
variance explained by these variants is .46%, improving that of previously reported associations by 17%. 
These findings illustrate the extent of locus allelic heterogeneity and can help pinpoint causal variants.  
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AUTHOR SUMMARY 

It is of great interest to estimate the joint and conditional effects of multiple correlated variants from large scale 
meta-analysis, in order to fine map causal variants and understand the genetic architecture for complex traits. 
The contributed summary statistics from participating studies in a meta-analysis often contain missing values, 
as the imputation methods are not often effective, especially when the underlying genetic variant is rare or the 
participating studies use targeted genotyping array that is not suitable for imputation. Existing meta-analysis 
methods do not properly handle missing data, and can incorrectly estimate correlations between score 
statistics. As a result, they can produce highly biased estimates of joint effects and highly inflated type-I errors 
for conditional analysis, which will in turn result in overestimated phenotypic variance explained and incorrect 
identification of causal variants. We systematically evaluated this bias and proposed a novel partial correlation 
based score statistic. The new statistic has valid type-I errors for conditional analysis and much higher power 
than the existing methods, even when the contributed summary statistics in the meta-analysis contain a large 
fraction of missing values. We expect this method to be highly useful in the sequencing age for complex trait 
genetics.  
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INTRODUCTION 

Meta-analysis has become a critical tool for genetic association studies in human genetics. Meta-analysis 
increases sample sizes, empowers association studies, and has led to many exciting discoveries in the past 
decade [1-5]. Many of these genetic discoveries have informed new biology, provided novel clinical insights [6, 
7], and led to novel therapeutic drug targets [8, 9]. Conditional meta-analysis has been a key component for 
these studies, which is useful to distinguish novel association signals from shadows of known association 
signals and to pinpoint causal variants.  

Existing methods for conditional meta-analysis were proposed based upon the assumptions that summary 
association statistics from all variant sites are measured and shared in meta-analysis. Yet, in practice, 
summary association statistics from contributing studies often contain missing values, possibly due to the use 
of different genotyping arrays, sequencing capture assays, or quality control filters applied by each 
participating cohort. While genotype imputation is an effective approach to fill in missing genotype data for 
participating cohorts, many scenarios may preclude accurate genotype imputation. For example, a targeted 
genotyping array/sequencing assay (e.g. exome array) may not provide sufficient genome-wide coverage for 
imputation. In addition, it is challenging to impute low frequency variants even with the highest quality 
reference panels, and imputed genotypes of low quality are often filtered out. It is therefore important to 
properly perform meta-analysis in the presence of missing values from contributed summary statistics.  

When contributed summary statistics from participating studies contain missing values, a simple strategy for 
marginal (or unconditional) analysis is to replace missing summary statistics with zero (REPLACE0), which is 
their expected value under the null hypothesis [2, 3].  This method yields valid type I errors for marginal 
association analysis, and is more powerful than strategies that discard studies with missing data (DISCARD). 
Taking this simple approach for conditional analysis, however, is problematic. The genetic variants at 
conditioned sites likely have non-zero effects. Replacing missing summary data with zero will bias the genetic 
effect estimates at conditioned variant sites, and can lead to highly inflated type I errors for conditional analysis 
(see RESULTS). On the other hand, discarding studies with missing summary statistics at conditioned variant 
sites will give valid type I errors, but at the cost of reduced power. No satisfactory solution has been described 
for conditional analysis when summary statistics from contributing studies have missing values.  

To overcome the limitations of existing methods, we developed an improved conditional meta-analysis method 
that borrows strength across multiple participating studies and consistently estimates the partial variance-
covariance matrices between genotypes and phenotypes. The new method is a partial correlation based score 
statistic (PCBS), which yields correct type I errors in the presence of missing data and is much more powerful 
than aforementioned simple modifications of existing methods. Interestingly, when missingness only occurs at 
the variant sites that we condition on, the new method PCBS has comparable power to the analysis of the 
complete dataset with no missing data.  

We applied PCBS (together with existing methods) to a large meta-analysis on cigarettes per day (CPD). 
Applying the new method, we identified three new independently associated variants at the known CPD locus, 
CHRNA5-CHRNB4-CHRNA3, independent from previously reported GWAS signals. Together, these variants 
explained .46% of the trait variance, which improved the phenotype variance explained by previously reported 
GWAS hits (0.34%) by 17%. The “chip” heritability for CPD was estimated to be 5.4% [10], so the newly 
identified associations explained around 10% of the “chip” heritability.  

To maximize the impact of the proposed method, we implemented it in our widely used software tools 
RAREMETAL[11] and R package rareMETALS and made them publically available. 
(https://genome.sph.umich.edu/wiki/Rare_Variant_Analysis_and_Meta-Analysis). We expect these methods to 
play an important role in sequence-based genetic studies and lead to important genetic discoveries in large 
datasets.   

MATERIALS AND METHODS 

In this section, we first review the standard meta-analysis methods for single variant and gene-level 
association tests when analyzing datasets without missing summary statistics from contributing studies. We 
then illustrate the limitations of the methods for conditional analysis and describe the new method PCBS for 
valid and powerful conditional analysis in the presence of missing summary statistics from contributing studies. 

Overview of Meta-analysis Methods 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/222695doi: bioRxiv preprint 

https://doi.org/10.1101/222695


We denote the genotype for individual � at variant site � in study � as ����, which can take values of 0,1 or 2, 

representing the number of the minor (or alternative) alleles in the locus. When the genotypes are imputed or 
generated from low pass sequencing studies, genotype dosage can be used in association analysis. In this 
case, ���� will be the expected number of minor (or alternative) allele counts. We denote the non-genotype 

covariates as ��� , which includes a vector of 1’s to incorporate the intercept in the model. Single variant 
association can be analyzed in a regression model: �� � ������� 	 ���
� 	 �� . The score statistic for single 

variant association takes the form:  

��� � �

���
∑ �������� � ������            (1) 

where ���� � ���
�� , 
��  is the covariate effect, and ��  is the standard deviation for the phenotype residuals 

estimated under the null. We denote the vector of score statistics in the region as �� � ���� , … , ����. The 

variance-covariance matrix between scores statistics is equal to  

�� � 1/��	 ���

 �� � ��

������
��������

����          (2) 

For the illustration of the method, we focused on the analysis of continuous outcomes, yet the meta-analysis 
and conditional meta-analysis methods work for both continuous outcomes and binary outcomes.   

The meta-analysis score statistics and their covariance matrices are calculated using the Mantel-Haenszel 
method, i.e. � � ∑ ���  and � � ∑ ��� . The meta-analysis statistics can be used to estimate the joint effects for 

variants 1,…,J, i.e.  ! � ���.   

We denote the score statistics at candidate and conditioned variant sites as � � ��� , ���� with variance 

covariance matrix � � " �� ����

���� ���
# 

The conditional score statistic can be calculated by 

��|�� � �� � �������
����           (3) 

It is easy to verify the variance of the conditional score statistics is equal to  

��|�� � ��� � �������
��������	           (4) 

The single variant and gene-level tests in conditional analysis can be calculated based upon the conditional 
score statistics ��|��  and the covariance matrix ��|��. Details are provided in Text S1.  

Naïve Methods In the Presence of Missing Summary Statistics  

When the contributed summary association statistics from participating studies contain missing values, the 

REPLACE0 method replaces missing summary statistics with zero. We denote the resulting statistics as �� 

and ��. To mathematically describe this method, we define an indicator variable $��, which takes value 1 if the 

summary statistics at site � in study � is measured and 0 if missing. The meta-analysis score statistic is 
calculated by  

��
� � ∑ �������:������  and %����

� � ∑ %���������:������������   

We proved in S1 Text that replacing missing summary association statistics with zero will bias the genetic 

effect estimate, i.e. &����
� � ' ���

�   �� . As a consequence, under the null hypothesis that the candidate variant 

is not associated with the phenotype, the expectation of the conditional score statistics is not equal to 0, i.e. 

&���|��� � ���� �� � ����
� ����

� ���&����
� � ' 0. The type I error for conditional analysis can be highly inflated.  

An alternative approach we call DISCARD, is to remove studies with missing summary statistics and only use 
studies with complete data. The meta-analysis score statistics under this analysis strategy are given by:  

��
�� � ∑ �������:�����,��� , %����

�� � ∑ %���������:�����,���  
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An obvious limitation of the DISCARD method is that it may result in the removal of a large number of studies 
and a significant loss of power.  

Partial Correlation Based Score Statistics (PCBS) 

Reviewing formulae (3) and (4), note that the conditional score statistics and their variances only depend on 
the partial variance-covariance matrix between the phenotypes and the genotypes after the adjustment of 
covariates. The key idea underlying our approach is to derive a consistent estimator for the partial covariances 
in the presence of missing summary statistics and to use it for unbiased conditional analysis.  

In statistics, to calculate the partial covariance between random variables ��� and �� adjusting for variable ��, 

we first regress out covariate �� from both ��� and ��, and then calculate the covariance between the residuals. 

Specifically, 

*������|�� �
1
+� ���


 ��� � ��
�� 

For a given study, it is easy to check that the partial covariances are scaled score statistics, i.e.  

*������|�� �
1
+� ��� 

*���������|�� �
1
+� %����� 

Therefore, in meta-analysis, we propose to estimate the partial covariance between genotype ���, phenotype �� 
after adjusting the covariate effect �� using all available summary statistics:  

*���|�,� �
∑ �������:������

∑ +�����:������
 

*���|�,���� �
∑ %���������:����

�����
���

∑ +�$���$�������:������������
 

 

For notational convenience, we define the matrices of partial covariance as ,-� |! � �*���,�����,…,� and ,-��|! �
�*���|�,�������,����,…,�. Under the fixed effect meta-analysis, we have &������� �   for all �. We showed in S1 

Text that &�,-��|!�� ,� |!� �  . Therefore, the partial covariance matrix can be consistently estimated even in the 

presence of missing summary statistics.  
  
We define partial correlation based score statistics as  

�.�|�� � ,-� |! � ,-���|!,-����|!� ,-�� |! 

The covariances for �.�|��  are equal to 

�.�|�� � /01�,-� |!� 	 ,-���|!,-����|!� /01�,-�� |!�,-����|!� ,-���|! � ,-���|!,-����|!� /01�,-�� |!, ,-� |!�
� /01�,-� |!, ,-�� |!�,-����|!� ,-���|! 

It is easy to verify that the conditional analysis using the estimator �.�|�� is equivalent to the standard score 

statistics when no missing data are present. In the presence of missing data, the partial correlation based 

statistic �.�|��  remains consistent. The conditional association analysis can be performed by replacing the 

standard score statistic with a partial correlation based score statistic. Details for calculating single variant and 
gene-level conditional association statistics can be found in S1 Text.  
 
Simulation Study  
We conducted extensive simulations to evaluate the performance of PCBS as well as the two alternative 
approaches REPLACE0 and DISCARD. We simulated genetic data following a coalescent model that we 
previously used for evaluating rare variant association analysis methods[2]. The model captures an ancient 
population bottleneck and recent explosive population growth. Model parameters were tuned such that the site 
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frequency spectrum and the fraction of the singletons of the simulated data match that of the real sequence 
data from the exome sequencing projects.  
 
Phenotype data from each cohort were simulated according the linear model: 

�� � �� 	2�����
�

���

	2���# 
�
�

���

	 3� 

which assumes that the rare variants have additive effects on the phenotype. The genetic effects for candidate 
variants follow a mixture normal distribution, which accommodates the possibility that a genetic variant can be 

causal (with probability 4) or non-causal (with probability 1 � 4): ��~�1 � 4� 6 7�0� 	 4 6 +�0, 8$	�. The genetic 

effects for the conditioned variants follow:  
�~+�0, 8%	�.  
To evaluate the influence of missing data, we randomly chose a certain fraction of the sites from each study 
and masked them as missing. We then applied the new method PCBS, along with DISCARD and REPLACE0 
to the data to compare performance. We evaluated the type I errors and power for each approach under a 
variety of scenarios with different genetic effect sizes, fractions of causal variants in the gene region, and the 
fraction of missing data.  

Analysis of Real Data 

To evaluate the effectiveness of methods in real datasets, we applied our methods to a meta-analysis of seven 
cohorts with a cigarettes-per-day (CPD) phenotype. Participating studies were the Minnesota Center for Twin 
and Family Research (MCTFR)[12-14], SardiNIA[15], METabolic Syndrome In Men (METSIM)[16], Genes for 
Good[17], COPDGene with samples of European ancestry[18], Center for Antisocial Drug Dependence 
(CADD)[19] , and UK Biobank. Summary association statistics from the seven cohorts were generated using 
RVTESTS[20], and meta-analysis performed using RAREMETAL with the PCBS statistics and other competing 
approaches. Detailed descriptions of the cohorts are available in S1 Text section 4, including the methods for 
association analyses and the adjusted covariates. 

To ensure the validity of our association analysis results, we conducted extensive quality control for the 
imputed genotype data. We filtered out variant sites with the imputation quality metric 9	 : .7, and sites that 
showed large differences in allele frequencies from the imputation reference panel. Imputation dosages were 
used in the association analysis.  

We applied iterative single variant conditional analysis to identify independent associated variants in each 
locus. We started by conditioning on the most significant variant from marginal association analysis. After each 
round of the association analysis, if the top variant remained statistically significant, we added the top variant to 
the set of conditioned variants, and performed an additional round of association testing. We applied three 
methods to analyze the data, including the partial correlation based score statistic, the method that replaces 
missing summary statistics with 0 and the method that discards studies with missing data. In order to examine 
if the low frequency variants in aggregate can be explained by the identified independently associated variants, 
we also performed gene-level association analysis for rare variants with MAF<5%, conditional on the identified 
independently associated variants. 

 

RESULTS 

Evaluation of Type I Error and Power of PCBS Statistics 

We evaluated the type I errors for the three conditional analysis methods PCBS, REPLACE0, and DISCARD. 
Scenarios were considered for different combinations of the fractions of missing data, the genetic effects of the 
variants in the candidate gene, and the genetic effects of the conditioned variants.  

First, we noted that the naïve approach REPLACE0, which replaces missing summary statistics with zero, may 
induce seriously inflated type I errors, under realistic patterns of linkage disequilibrium based upon our 
coalescent simulation. For example, when the genetic effect of the variants that we conditioned on is .05, and 
50% of summary association statistics from each study were masked as missing, the type I error is 0.0025, 
which is 5 times the size of the significance threshold = � 0.0005 (Table 1). The type I error can be even more 
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inflated when rate of missingness is high or when the effect sizes of the conditioned variants are large. For 
example, when the effect of the variant that we conditioned on is .1, and 50% of the summary association 
statistics from each study are masked as missing, the type I error for the naïve approach is 0.023, which is >40 
times the significance thresholds. Similar inflations in the type I errors were observed for gene-level tests. The 
inflation in the type I errors increases with the effects of the conditioned variants and the fraction of missing 
data. When the conditioned variant has effect .1 and the rate of missingness is 50%, the type I errors for 
simple burden, SKAT and VT are .038/.040/0.032 which are up to 80-fold inflated (Table 2).   

Second, we found that the DISCARD method of discarding the studies with missing data produces valid type I 
errors, but can lead to considerable loss of power. For example, when the known variant has effect .1, the 
causal variant at the candidate gene has effect .2, and 30% of the contributed summary statistics in each study 
contain missing values, the power for DISCARD is 41%, much lower than the power for PCBS (65%). When 50% 
of the variant sites contain missing data, discarding studies with missing data results in even lower power (24%) 
compared to PCBS (64%). For gene-level association tests, discarding studies with missing summary statistics 
can lead to similar power loss, regardless of the rare variant association tests performed (Table 2).  

Third, we noted that the power for conditional analysis is affected by where the missing data lies. The missing 
summary statistics from candidate variant sites reduce the power of single variant association tests. Yet, the 
PCBS statistics remained to be the most powerful.  

Interestingly, gene-level association tests are affected by two types of missing data with opposite 
consequences: Missing values at causal variant sites reduce power but missing values at non-causal variant 
sites tend to reduce noise and thus improve power. The net power loss was small across all scenarios.  For 
instance, when a causal variant in the candidate gene has effects sampled from +�0,0.2	�, the conditioned 
variant has effect .1, and 30% of the contributed summary statistics in each study have missing values, the 
power for burden/SKAT/VT tests are 58%/58%/56%, which are only slightly reduced compared to the power of 
analyzing the complete datasets (60%/61%/60%). On the other hand, the method that discards studies with 

missing data had much reduced power (0.011/0.011/8.8×10-3).  

Using PCBS (partial correlation based score statistic), the power for conditional analysis is primarily influenced 
by the sample size at the candidate variant site. An important observation is that when missing data only 
occurs at variant sites that we conditioned on, the conditional analysis using PCBS statistics of incomplete 
datasets attains similar power as analysis of the complete dataset (Table 3). The power loss is minimal even 
when a large number of studies contain missing summary statistics at conditioned variant sites. For example, 
in the scenario with known effects .1 and candidate variant effect .2, when score statistics at conditioned 
variant sites are missing from 50% of the studies, the power for PCBS statistics is 0.64 and the power for the 
analysis of the complete data is 0.66. Similar power comparisons were also observed for gene-level tests 
(Table 4). 

We also examined if the genetic effect heterogeneity between studies would affect the performance of PCBS 
statistics (S1 Table, S2 Table). We sampled the conditional variant effect from a normal distribution, allowing 
the effect to vary between studies. When there was a large amount of heterogeneity in the genetic effect of the 
conditioned variant, the type I error remained well controlled. The power for conditional analysis appeared 
lower relative to the scenario where the conditioned variant had fixed effects across all studies. For example, 
when the candidate variant effect was 0.2, the conditioned variant effects in each cohort were sampled from 
N(0.1,0.252), and the rate of missingness was 50%, the power for the conditional analysis using PCBS was 
58%, slightly lower than the power when analyzing the complete dataset (67%). Yet the power for the PCBS 
statistic was still substantially higher than the method that discard studies with missing data (24%).  

Comparison of the Accuracy of the Genetic Effect Estimates  

Finally, we evaluated the accuracy of the estimate of conditional genetic effects (S3 Table). We evaluated the 
bias and mean squared error for the three analysis strategies. The PCBS method produced unbiased 
estimates of conditional effects. The bias of the estimator was comparable to the method that removes studies 
with missing data. The PCBS method more effectively used the summary statistics across studies, and hence 
produced smaller mean squared error. The method that replaces missing summary statistics with zero gave 
highly biased estimates of conditional effect. For example, when the genetic effect of the conditioned variant 
was .5, and the candidate variant effect was 0.1, the bias can be as large as 0.11.  
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Analysis of real data  

We performed a meta-analysis of CPD phenotype in eight cohorts. The locus CHRNA5-CHRNB4-CHRNA3 
was previously identified as associated with CPD[21]. After careful quality control, 13,960 variants and 13 
genes were available for analysis within the 1 million base pair window of the strongest association 
(15:77806023-79806023). Using the method of Li and Ji [22] that accounts for the linkage disequilibrium of 
tested variants,  we calculated that there are the equivalent of 2452 independent tests. A significance threshold 

of = � �.�'

	('	
� 2 6 10�' was used to identity independently associated variants.   

It is important to note that even with high quality imputation panels, there is still considerable missing data in 
the imputed datasets. Within the locus of interest, 75.5% of the variants are missing from at least one 
participating studies post imputation, due to the use of different imputation panels for the UK Biobank versus 
the remaining studies, as well as post-imputation filtering on imputation qualities.  

Using sequential forward selection with the new PCBS method, we identified three independently associated 
variants (rs8034191, rs3825845, rs3825930) with p-values < 2 6 10�', the threshold for Bonferroni correction 
of testing 2,452 independently associated variants (Table 5). Three variants were reported to be genome-wide 
significant in the locus, including rs1051730, rs55958997, rs28675338. Yet, the variant rs28675338 overlaps 
an in-del, and thus was not included in the Haplotype Reference Consortium panel [23]. Our newly identified 
variants differed from previously reported top signals in the CHRNA5-CHRNB4-CHRNA3 locus [24]. We further 
examined whether our top independently associated signals explained previously reported hits, by performing 
association analysis of previously reported variants, conditional on our top 3 independently associated variants. 
We noted that all of the previously reported association signals are no longer significant (p>0.05) (S4 Table). 
On the other hand, by performing conditional analysis in the opposite direction (conditional on rs1051730, 
rs55958997), two of our newly identified independent association (rs3825845, rs3825930) remain statistically 
significant, conditional on previously reported GWAS hits. We estimated the genetic variance explained by the 
identified independently associated variants. For the three newly identified association signals, they together 
explain 0.46% of the phenotypic variation. On the other hand, the known association signals (as well as their 
proxy in the dataset) together only explain 0.34% of the phenotypic variance. Independently associated 
variants detected using our new method substantially improve the phenotypic variance explained.  

As a comparison, we also performed sequential forward selection using the two alternative approaches. Using 
the DISCARD method, no additional association signals are identified beyond the top association signal. Using 
REPLACE0, only two independently associated variants were identified, i.e. rs8034191, rs3825845. Both 
REPLACE0 and DISCARD failed to identify rs3825930. Concordant with our simulation study, the result of 
PCBS statistics differ from REPLACE0 and DISCARD, where a large number of missing values are present in 
the contributed summary association statistics (S5 Table). 

Finally, we asked if rare variants within the CHRNA5-CHRNB4-CHRNA3 locus are independently associated 
with the CPD phenotype (S6 Table). Thirteen genes were analyzed using simple burden, SKAT and VT tests 
under a MAF threshold of 0.05. None of the resulting p-values were less than 0.05/13.   

DISCUSSION 

We proposed a simple yet effective meta-analysis method to estimate joint and conditional effects of rare 
variants in the presence of missing summary statistics from contributing studies. The method leads to the 
optimal use of shared summary association statistics. It has well controlled type I error and much higher power 
than alternative approaches even when a large number of contributing studies contain missing summary 
statistics.  

A tempting alternative to using partial correlation based score statistics is to impute missing summary 
association statistics before meta-analysis. Recently, Gaussian imputation methods[25-27] were developed to 
directly impute summary association statistics without resorting to individual-level data. However, Gaussian 
imputation shares similar issues with hidden Markov model based methods (e.g. it cannot impute well for 
studies that use targeted genotyping or sequencing assays). Imputing low frequency variants is also 
challenging. As such, it is often recommended to discard imputed summary statistics for low frequency variants. 
Our proposed method (PCBS) can nicely complement imputation-based methods when accurate imputation is 
infeasible. It is also important to note that our method is not a replacement of imputation methods. Imputation 
methods, if feasible, increase effective sample sizes for imputed variants, and increase power. Our method, on 
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the other hand, does not increase the effective sample size for tested variants. In practice, imputation method 
should first be applied in each participating cohort. Our method should be applied at the meta-analysis stage 
for valid and powerful conditional meta-analysis, especially when contributed summary statistics from 
participating cohorts contain missing values.  

Missing data will continue to be a persistent issue in the next generation of large-scale genetic studies. Major 
biobanks have started to develop their own genotyping arrays and imputation reference panels to incorporate 
customized content. Combining these newly genotyped studies with existing datasets will result in missing 
summary statistics. Our method will continue to be useful when analyzing these newly generated datasets. 

Another major application of the proposed method is in the meta-analysis of sequence data. Given the use of 
targeted sequencing assays and variability in batch processing and quality control across studies, it would be 
difficult to impute missing genotype data or missing summary statistics. One of the challenges in sequence-
based meta-analysis is to properly represent monomorphic sites, as the polymorphic variant sites are not 
known a priori. Neither un-called variant sites (e.g. due to insufficient coverage or failed quality control) nor 
monomorphic sites contribute to the single variant meta-analysis statistic. Yet they should be treated differently 
in joint and conditional meta-analysis. Summary statistics from monomorphic variants should be replaced by 
zero. On the other hand, summary statistics from un-called variants should be treated as missing data, and the 
conditional association analysis can be performed using our partial correlation based score statistics.  

While not the focus of this article, the proposed method is also helpful for downstream analyses that make use 
of the joint effects of multiple variants, e.g. estimating the phenotypic variance explained by independently 
associated variants. The validity of these analyses critically rely on the proper estimates of joint effects, which 
are usually obtained from single variant association statistics and the LD information from a reference panel. 
When summary statistics from contributing studies contain missing data, the correlations between resulting 
marginal meta-analysis association statistics may not be properly approximated by the R2 estimated from a 
reference panel. In this case, PCBS can be used to obtain valid joint effect estimates, which can potentially 
lead to better calibrated phenotypic variance explained.   

Our paper focused on exact conditional analysis, which relies on the exact covariance matrices of score 
statistics shared across studies. We did not consider approximate conditional analysis that makes use of LD 
matrices from reference panels to approximate the covariance between score statistics[28]. It was shown that 
approximate conditional analysis can be less accurate than the exact methods for rare variant association 
studies [29]. In the presence of missing summary statistics from contributing studies, the approximate 
conditional analysis method may often incorrectly estimate covariance matrices between score statistics.  For 
example, consider a simple example of meta-analysis of two studies of equal size N. For a genetic variant that 
is only measured in study 1 and a genetic variant that is only measured in study 2, the resulting meta-analysis 
score statistics from the two sites are uncorrelated. The approximate conditional analysis may incorrectly 
estimate the correlation by the LD (or a scaled version of LD) between the two variant sites, which can result in 
invalid association analysis results. When summary statistics from contributing studies are available, we can 
approximate the score statistics and covariance matrix using the genetic effect estimates, their standard 
deviation as well as the LD information from a reference panel[29]. Our proposed methods can thus be 
adapted in approximate conditional analysis to obtain valid results in the presence of missing values from 
contributed summary statistics.  

Taken together, our partial correlation based score statistic is a simple yet effective method for estimating joint 
and conditional effects from meta-analysis. With its efficient implementations in RVTESTS and RAREMETAL, 
these methods will have broad application in current array-based meta-analysis, as well as the upcoming 
haplotype reference consortium imputation-based meta-analysis and sequence-based meta-analysis. Correct 
inference on the joint and conditional effects using these methods will pave the way for a more accurate 
characterization and a more complete understanding of the genetic architecture for complex traits.  
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Supporting Information Legends 

S1 Text.  

S1 Table: Power and Type I Errors of Meta-analysis of Single Variant Tests in the Presence of Missing 
Data and Genetic Effect Heterogeneity. We evaluated the impact of large genetic effect heterogeneity on the 
power and type I errors for the PCBS statistics. The effects of the conditioned variants in each cohort are 

sampled from the distribution +�@$� , 0.25	�. All other simulation settings are the same as in Table 1. 

S2 Table: Power and Type I Errors of Meta-analysis of Gene-level Tests in the Presence of Missing Data 
and Genetic Effect Heterogeneity. We evaluated the impact of large genetic effect heterogeneity on the 
power and type I errors for the PCBS statistics. The genetic effects for the conditioned variants in each cohort 

are sampled from the distribution +�@$� , 0.25	�. All other simulation settings are the same as in Table 2.  

S3 Table: Accuracy of Estimates of Conditional Effects. We compared the accuracy of the estimated 
genetic effects of candidate variants conditioning on 3 randomly chosen variants with effect 0.1. The absolute 
bias and the mean squared error for the candidate variant conditional effect estimate are displayed for different 
combinations of the candidate genetic variant effects and the fraction of missing data at conditioned variant site.   

S4 Table: Two Way Conditional analysis of Independently Associated Variants and Previously 
Reported GWAS Hits.  
 

S5 Table: Results of Sequential Forward Selection Using the Method that Replaces Missing Data with 0 
(Panel A), and the Method that Discards Studies with Missing Data (Panel B) 
 
S6 Table: Gene-level Conditional Analysis Results. We analyzed gene-level association test conditional on 
the three independently associated variants (i.e. rs8034191, rs3825845 and rs3825930), which were identified 
using sequential forward selection. Three gene level association tests were performed, including simple burden 
tests, SKAT and VT. No significant gene-level associations were identified (p<0.05/13) 
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Tables 

Table 1: Power and Type I Errors of Meta-analysis of Single Variant Tests in the Presence of Missing 
Data. Datasets were simulated according to the genetic and phenotype model described in METHODS. Meta-
analysis was performed to combine 10 cohorts with 2000 individuals each. For each replicate, summary 
association statistics were generated, and a certain fraction of the generated summary statistics were masked 
as missing. Scenarios with different combinations of known variant effect, candidate variant effects and 
fractions of missingness were considered. Three analysis strategies were considered: 1) PCBS - partial 
correlation based statistics; 2) DISCARD - only analyze studies with complete summary statistics 3) 
REPLACE0 - replace missing summary statistics with zero. Type I errors and power were evaluated using 1 
million replicates under the significance threshold of = � 0.0005.   

 

Conditioned 

Variant 

Effect 

Candidate 

Variant 

Effect 

(��) 

Fraction 
of 

Missing 
Data 

Type I Error/Power 

PCBS DISCARD REPLACE0* Analyze the Full 

Dataset  

[Gold Standard] 

Type I Error 

0.05 0 0.1 3.2� 10
�� 3.7� 10

�� 6.1� 10
�� 3.7� 10

�� 

0.05 0 0.3 4.0� 10
�� 4.5� 10

�� 1.3� 10
�	 3.7� 10

�� 

0.05 0 0.5 4.5� 10
�� 1.8� 10

�� 2.5� 10
�	 3.7� 10

�� 

0.1 0 0.1 3.2� 10
�� 3.7� 10

�� 1.2� 10
�	 3.7� 10

�� 

0.1 0 0.3 4.5� 10
�� 4.5� 10

�� 9.0� 10
�	 3.7� 10

�� 

0.1 0 0.5 6.0� 10
�� 2.6� 10

�� 0.023 3.7� 10
�� 

Power 

0.05 0.1 0.1 0.042 0.035 - 0.064 

0.05 0.1 0.3 0.022 0.019 - 0.064 

0.05 0.1 0.5 0.012 6.9� 10
�	 - 0.064 

0.1 0.1 0.1 0.046 0.042 - 0.064 

0.1 0.1 0.3 0.022 0.019 - 0.064 

0.1 0.1 0.5 0.013 6.9� 10
�	 - 0.064 

0.05 0.2 0.1 0.53 0.51 - 0.67 

0.05 0.2 0.3 0.35 0.24 - 0.67 

0.05 0.2 0.5 0.19 0.071 - 0.67 

0.1 0.2 0.1 0.53 0.50 - 0.67 

0.1 0.2 0.3 0.35 0.24 - 0.67 

0.1 0.2 0.5 0.19 0.071 - 0.67 

 

*: For the method that replaces missing summary statistics with 0, the type I error can be severely inflated. So 
power was not evaluated.  
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Table 2: Power and Type I Errors of Meta-analysis of Gene-level Tests in the Presence of Missing Data and Genetic Effect Heterogeneity. 
Datasets were simulated according to the genetic and phenotype model described in METHODS. Within the gene region, 20% of the variant sites 
are deemed causal. Meta-analysis was performed to combine 10 cohorts with 2000 individuals each. For each replicate, summary association 
statistics were generated, and a certain fraction of the generated summary statistics were masked as missing. Scenarios with different combinations 
of known variant effect, candidate variant effects and fractions of missingness were considered. 1) PCBS - partial correlation based statistics; 2) 
DISCARD - only analyze studies with complete summary statistics 3) REPLACE0 - replace missing summary statistics with zero. To evaluate the 
power loss due to missing data, we also analyze the full dataset as a gold standard. Type I errors and power were evaluated for three rare variant 
tests (simple burden, SKAT and VT) using 1 million replicates under the significance threshold of � � 0.0005.   

 

Conditioned 

Variant 

Effect 

Candidate 

Variant 

Effect 

(��) 

Fraction 

of 

Missing 

Data 

Type I Error/Power for Burden/SKAT/VT (α=0.0005) 

 
PCBS DISCARD REPLACE0* Analyze the Full Dataset  

[Gold Standard] 

Type I Error 

0.05 0 0.1 4.5� 10
��/3.1� 10

��/3.8� 10
�� 5.2� 10

��/5.2� 10
��/5.9� 10

�� 4.1� 10
��/4.1� 10

��/5.9� 10
�� 4.8� 10

��/4.1� 10
��/4.5� 10

�� 

0.05 0 0.3 4.7� 10
��/4.4� 10

��/3.4� 10
�� 2.9� 10

��/4.2� 10
��/3.6� 10

�� 1.4� 10
��/1.4� 10

��/1.5� 10
�� 4.7� 10

��/4.4� 10
��/6.0� 10

�� 

0.05 0 0.5 6.4� 10
��/4.0� 10

��/3.4� 10
�� 4.9� 10

��/5.2� 10
��/4.8� 10

�� 4.2� 10
��/3.8� 10

��/3.5� 10
�� 4.7� 10

��/5.0� 10
��/4.4� 10

�� 

0.1 0 0.1 3.3� 10
��/2.6� 10

��/4.9� 10
�� 5.9� 10

��/6.2� 10
��/4.6� 10

�� 1.1� 10
��/1.1� 10

��/1.2� 10
�� 5.3� 10

��/5.9� 10
��/5.3� 10

�� 

0.1 0 0.3 6.0� 10
��/4.7� 10

��/4.1� 10
�� 1.6� 10

��/1.3� 10
��/1.3� 10

�� 0.011/0.011/9.1� 10
�� 4.7� 10

��/5.4� 10
��/4.1� 10

�� 

0.1 0 0.5 6.3� 10
��/6.7� 10

��/6.3� 10
�� 3.5� 10

��/3.5� 10
��/3.5� 10

�� 0.038/0.040/0.032 5.8� 10
��/5.9� 10

��/4.9� 10
�� 

Power 

0.05 0.1 0.1 0.21/0.21/0.19 0.043/0.044/0.040 - 0.22/0.23/0.21 

0.05 0.1 0.3 0.19/0.19/0.17 1.3� 10
��/1.3� 10

��/1.2� 10
�� - 0.22/0.23/0.21 

0.05 0.1 0.5 0.17/0.16/0.14 6.9� 10
��/5.2� 10

��/5.6� 10
�� - 0.22/0.23/0.21 

0.1 0.1 0.1 0.22/0.22/0.20 0.048/0.048/0.043 - 0.22/0.23/0.21 

0.1 0.1 0.3 0.20/0.20/0.18 1.1� 10
��/1.2� 10

��/1.1� 10
�� - 0.22/0.23/0.21 

0.1 0.1 0.5 0.17/0.16/0.14 6.8� 10
��/5.9� 10

��/6.8� 10
�� - 0.22/0.23/0.21 

0.05 0.2 0.1 0.59/0.60/0.58 0.28/0.28/0.27 - 0.60/0.61/0.59 

0.05 0.2 0.3 0.57/0.57/0.55 0.011/0.011/0.010 - 0.60/0.61/0.59 

0.05 0.2 0.5 0.54/0.53/0.52 4.9� 10
��/5.9� 10

��/6.4� 10
�� - 0.60/0.61/0.59 

0.1 0.2 0.1 0.59/0.60/0.58 0.28/0.28/0.27 - 0.60/0.61/0.59 

0.1 0.2 0.3 0.58/0.58/0.56 0.011/0.011/8.8� 10
�� - 0.60/0.61/0.59 

0.1 0.2 0.5 0.54/0.53/0.52 4.5� 10
��/5.5� 10

��/6.5� 10
�� - 0.60/0.61/0.59 

 

*: For the method that replaces missing summary statistics with 0, the type I error is inflated. So power was not evaluated.   
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Table 3: The power and type I errors for single variant conditional meta-analysis strategies in the presence of 
missing data. The simulation setup is the same as in Table 1, except that the missing summary statistics are 
only present at the conditioned variant sites.  

 

Conditioned 
Variant 
Effect 

Candidate 
Variant 
Effect 

(��) 

Fraction of 
Missing 
Data at 

Conditioned 
Variant 
Sites 

Type I Error/Power 

PCBS DISCARD REPLACE0
* 

Analyze the 
Full Dataset  

[Gold 
Standard] 

Type I Error 

0.05 0 0.1 4.3� 10
�� 3.4� 10

�� 5.0� 10
�� 3.6� 10

�� 

0.05 0 0.3 3.2� 10
�� 3.3� 10

�� 1.9� 10
�� 3.3� 10

�� 

0.05 0 0.5 5.1� 10
�� 3.8� 10

�� 6.5� 10
�� 3.6� 10

�� 

0.1 0 0.1 4.7� 10
�� 3.8� 10

�� 1.3� 10
�� 4.0� 10

�� 

0.1 0 0.3 4.0� 10
�� 2.9� 10

�� 0.014 3.9� 10
�� 

0.1 0 0.5 5.7� 10
�� 3.6� 10

�� 0.057 3.7� 10
�� 

Power 

0.05 0.1 0.1 0.064 0.046 - 0.064 

0.05 0.1 0.3 0.063 0.039 - 0.065 

0.05 0.1 0.5 0.061 0.020 - 0.065 

0.1 0.1 0.1 0.063 0.044 - 0.063 

0.1 0.1 0.3 0.064 0.033 - 0.063 

0.1 0.1 0.5 0.063 0.019 - 0.063 

0.05 0.2 0.1 0.66 0.51 - 0.66 

0.05 0.2 0.3 0.66 0.42 - 0.66 

0.05 0.2 0.5 0.64 0.24 - 0.66 

0.1 0.2 0.1 0.66 0.51 - 0.65 

0.1 0.2 0.3 0.65 0.41 - 0.66 

0.1 0.2 0.5 0.64 0.24 - 0.66 

 

*: For the method that replaces missing summary statistics with 0, the type I error is inflated. So power was not 
evaluated. 
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Table 4: Type I Error and Power for Gene-level Association Tests in the Presence of Missing Data. We evaluated the power for burden, SKAT and 
VT test in the presence of missing data. The simulation setup is the same as Table 2, except that missing summary statistics are only present in the 
conditioned variant site.  

*: For the method that replaces missing summary statistics with 0, the type I error is inflated. So power was not evaluated.  

Conditioned 

Variant 

Effect 

Candidate 

Variant 

Effect 

(��) 

Fraction of 

Missing 

Data at 

Conditione

d Variant 

Sites  

Type I Error/Power for Burden/SKAT/VT (α=0.0005) 

PCBS DISCARD REPLACE0* Analyze the Full Dataset  

[Gold Standard] 

Type I Error 

0.05 0 0.1 5.6� 10
��/5.1� 10

��/5.4� 10
�� 5.6� 10

��/5.3� 10
��/4.6� 10

�� 3.3� 10
��/3.3� 10

��/6.6� 10
�� 5.3� 10

��/5.4� 10
��/5.6� 10

�� 

0.05 0 0.3 5.6� 10
��/4.7� 10

��/5.6� 10
�� 5.2� 10

��/5.1� 10
��/4.7� 10

�� 5.8� 10
��/5.9� 10

��/5.9� 10
�� 4.2� 10

��/5.4� 10
��/5.1� 10

�� 

0.05 0 0.5 5.1� 10
��/4.6� 10

��/4.7� 10
�� 5.1� 10

��/5.2� 10
��/4.6� 10

�� 9.6� 10
��/9.6� 10

��/9.8� 10
�� 4.9� 10

��/5.2� 10
��/5.7� 10

�� 

0.1 0 0.1 4.8� 10
��/4.8� 10

��/5.3� 10
�� 4.8� 10

��/4.8� 10
��/4.5� 10

�� 1.8� 10
��/1.8� 10

��/1.2� 10
��

 7.1� 10
��/7.1� 10

��/5.3� 10
�� 

0.1 0 0.3 4.7� 10
��/4.4� 10

��/4.7� 10
��

 4.7� 10
��/4.7� 10

��/5.1� 10
��

 0.013/0.013/0.012 1.7� 10
��/1.7� 10

��/1.7� 10
��

 

0.1 0 0.5 4.9� 10
��/4.9� 10

��/5.6� 10
��

 4.9� 10
��/4.9� 10

��/4.6� 10
��

 0.049/0.049/0.043 4.9� 10
��/4.9� 10

��/8.2� 10
��

 

Power 

0.05 0.1 0.1 0.21/0.21/0.20 0.19/0.20/0.18 - 0.22/0.22/0.21 

0.05 0.1 0.3 0.22/0.22/0.20 0.15/0.15/0.14 - 0.22/0.23/0.21 

0.05 0.1 0.5 0.22/0.22/0.20 0.090/0.091/0.084 - 0.23/0.23/0.21 

0.05 0.2 0.1 0.59/0.60/0.58 0.57/0.57/0.56 - 0.60/0.61/0.59 

0.05 0.2 0.3 0.58/0.59/0.57 0.49/0.50/0.48 - 0.59/0.60/0.59 

0.05 0.2 0.5 0.58/0.58/0.57 0.39/0.40/0.38 - 0.59/0.60/0.58 

0.1 0.1 0.1 0.22/0.22/0.20 0.20/0.21/0.19 - 0.23/0.23/0.21 

0.1 0.1 0.3 0.23/0.23/0.21 0.15/0.16/0.14 - 0.24/0.24/0.22 

0.1 0.1 0.5 0.22/0.21/0.20 0.090/0.089/0.081 - 0.23/0.23/0.21 

0.1 0.2 0.1 0.60/0.60/0.59 0.58/0.59/0.57 - 0.60/0.61/0.60 

0.1 0.2 0.3 0.57/0.58/0.56 0.49/0.49/0.48 - 0.58/0.59/0.58 

0.1 0.2 0.5 0.59/0.59/0.57 0.41/0.41/0.39 - 0.60/0.60/0.59 
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Table 5: Sequential conditional analysis for the CHRNA5-CHRNB4-CHRNA3 locus. We iteratively performed 
conditional analysis, conditioning on the top variants from earlier rounds. Top 5 association signals at each 
iteration are shown. The sequential conditional analysis stops when the top association signal is no longer 
significant under the Bonferroni correction threshold � � 2 � 10

��.  

 

POS REF ALT AF PVALUE BETA SE N ANNO GENE 

Marginal Association Analysis 

rs8034191 T C 0.35 1.0� 10
��� 0.090 6.9� 10

�� 48387 Intron AGPHD1 

rs72738786 G T 0.35 1.2� 10
��� 0.089 6.8� 10

�� 48387 Intron AGPHD1 

rs55781567 C G 0.35 1.6� 10
��� 0.089 6.8� 10

�� 48387 Utr5 CHRNA5 

rs72740955 C T 0.35 2.2� 10
��� 0.089 6.9� 10

�� 48387 Intergenic Intergenic 

rs11852372 A C 0.35 2.6� 10
��� 0.089 6.8� 10

�� 48387 Intron AGPHD1 

Conditional on rs8034191 

rs3825845 C T 0.21 1.2� 10
��� -0.055 8.5� 10

�� 48387 Intron CHRNA3 

rs6495309 C T 0.21 1.2� 10
��� -0.055 8.6� 10

�� 48387 Intergenic Intergenic 

rs13329271 A C 0.21 1.8� 10
��� -0.055 8.6� 10

�� 48387 Intergenic Intergenic 

rs11637630 G A 0.78 2.0� 10
��� 0.054 8.5� 10

�� 48387 Intron CHRNA3 

rs28534575 T G 0.22 2.0� 10
��� -0.054 8.5� 10

�� 48387 Intron CHRNB4 

Conditional on rs8034191 and rs3825845 

rs3825930 C T 0.0015 1.8� 10
�� 1.1 0.25 7505 Intron CTSH 

rs9920822 C G 0.80 5.0� 10
�� 0.034 8.3� 10

�� 48387 Intergenic Intergenic 

rs7170528 C A 0.26 9.8� 10
�� -0.029 7.5� 10

�� 48387 Intergenic Intergenic 

rs2037348 G A 0.79 1.3� 10
�� 0.030 8.0� 10

�� 48387 Intergenic Intergenic 

rs2002403 G A 0.017 1.4� 10
�� -0.10 0.026 48387 Intergenic Intergenic 

Conditional on rs8034191, rs3825845 and rs3825930 

rs7170528 C A 0.26 1.2� 10
�� -0.029 7.5� 10

�� 48387 Intergenic Intergenic 

rs6495295 T C 0.26 1.6� 10
�� -0.028 7.5� 10

�� 48387 Intergenic Intergenic 

rs12914703 T A 0.26 2.2� 10
�� -0.028 7.5� 10

�� 48387 Intergenic Intergenic 

rs12913908 G A 0.26 2.2� 10
�� -0.028 7.5� 10

�� 48387 Intergenic Intergenic 

rs3743074 G A 0.62 2.5� 10
�� 0.042 0.012 48387 

Normal 

Splice Site 
CHRNA3 
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