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Abstract. Each factor semigroup of a free restriction (ample) semi-
group over a congruence contained in the least cancellative congruence
is proved to be embeddable into a W -product of a semilattice by a
monoid. Consequently, it is established that each restriction semigroup
has a proper (ample) cover embeddable into such a W -product.

1. Introduction

A restriction semigroup is a semigroup equipped with two additional
unary operations which satisfy certain identities. For example, each inverse
semigroup induces a restriction semigroup. Therefore restriction semigroups
are considered non-regular generalizations of inverse semigroups. One-sided
versions of restriction semigroups, where only one additional unary operation
is considered, have been studied from various points of view, and under dif-
ferent names, since the 1960’s. Restriction semigroups were formerly called
weakly E-ample semigroups, and an important subclass is that of ample
semigroups. For a historical overview, and for detailed introduction in the
basic properties of these structures, the reader is referred to [2] and [4].

From the universal algebraic point of view, a restriction semigroup is an
algebra of type (2, 1, 1). Among others, the defining identities imply that
both unary operations assign an idempotent to any element, and the ranges
of the two unary operations coincide. This common range is the set of
projections. The class of restriction semigroups forms a variety, and so it
has free objects on any non-empty set X. A transparent model for the free
restriction semigroup on X is given in [2] as a subsemigroup in the free
inverse semigroup on X. Moreover, the free restriction semigroup on X is
proved to be embeddable in a semidirect-like product of a semilattice by the
free monoid X∗ where X∗ acts on the semilattice both on the left and on
the right.

In this paper we present a similar embedding theorem for a more general
family of restriction semigroups, called sometimes quasi-free ([2]), where
another semidirect-like product is used whose definition requires a single
action. The family of restriction semigroups we consider consists of the fac-
tor semigroups of the free restriction semigroups over congruences contained
in the least cancellative congruence. The construction called a W -product
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which is involved in our main result was introduced in [1], and played a
central role also in [3]. As a consequence, we deduce that each restriction
semigroup can be obtained as a (projection separating) homomorphic image
of a restriction subsemigroup in a W -product of a semilattice by a monoid.
Since a W -product of a semilattice by a group is just the usual semidirect
product of them, this generalizes a well-known fact of the structure theory
of inverse semigroups. Another construction of each restriction semigroup
from a W -product of a semilattice by a monoid is proved in [6] where the
operators of ‘taking a restriction subsemigroup’ and ‘taking a homomorphic
image’ are applied in the reverse order.

In Section 3, we present a model of the free restriction semigroup on
X as a restriction subsemigroup in a W -product of a semilattice by the
free monoid X∗. In Section 4, we characterize the congruences of a free
restriction semigroup contained in the least cancellative congruence, and
apply this to show that any factor semigroup over such a congruence is
embeddable in a W -product of a semilattice by a monoid. Finally, we deduce
the result mentioned above that constructs every restriction semigroup from
such a W -product.

2. Preliminaries

In this section the basic notions and facts on restriction semigroups are
provided. For more details, the reader is referred to [4]. Furthermore, we
recall the definition of the W -product construction and its most important
properties. Finally, we present the model of the free restriction semigroup
on a set X given in [2].

A left restriction semigroup is defined to be an algebra of type (2, 1),
more precisely, an algebra S = (S; ·,+) where (S; ·) is a semigroup and + is
a unary operation such that the following identities are satisfied:

(2.1) x+x = x, x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x.

A right restriction semigroup is defined dually, that is, it is an algebra S =
(S; ·, ∗) satisfying the duals of the identities (2.1). If S = (S; ·,+, ∗) is an
algebra of type (2, 1, 1) where S = (S; ·,+) is a left restriction semigroup,
S = (S; ·, ∗) is a right restriction semigroup and the identities

(2.2) (x+)
∗

= x+, (x∗)+ = x∗

hold then it is called a restriction semigroup. By definition, it is obvious that
the class of restriction semigroups forms a variety of algebras of type (2, 1, 1).
The notions of a subalgebra, homomorphism, congruence and factor algebra
are understood in this type. In order to emphasize this, we use the ex-
pressions (2, 1, 1)-subsemigroup, (2, 1, 1)-morphism, (2, 1, 1)-congruence and
(2, 1, 1)-factor semigroup, respectively.

If a restriction semigroup S has an identity element 1 with respect to the
multiplication then it is straightforward to see by (2.1) that

(2.3) 1+ = 1∗ = 1.

Such a restriction semigroup is called a restriction monoid. A restriction
monoid can be considered an algebra of type (2, 1, 1, 0) where the nullary
operation picks out the identity element.
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The class of restriction semigroups is fairly big. For example, each inverse
semigroup Sinv = (S; ·,−1) determines a restriction semigroup S = (S; ·,+, ∗)
where the unary operations are defined in the following manner:

a+ = aa−1 and a∗ = a−1a for every a ∈ S.
By the Wagner–Preston theorem, such a restriction semigroup is, up to
(2, 1, 1)-isomorphism, a (2, 1, 1)-subsemigroup of (I(X); ·,+, ∗) for some set
X, where I(X) is the set of all partial bijections on X, and

α+ = 1domα and α∗ = 1imα for every α ∈ I(X).

On the other hand, each monoid M becomes a restriction semigroup by
defining a+ = a∗ = 1 for any a ∈M . It is easy to see that these restriction
semigroups are just those with both unary operations being constant. Such
a restriction semigroup will be called unary trivial, and, since it is necessarily
a monoid, we also call it a unary trivial restriction monoid. In the literature,
unary trivial restriction semigroups (monoids) are sometimes called reduced
restriction semigroups (monoids). Notice that the congruences, homomor-
phisms, etc. of monoids and the (2, 1, 1)-congruences, (2, 1, 1)-morphisms of
the unary trivial monoids corresponding to them are the same. Therefore
we often consider unary trivial semigroups just as monoids, and vice versa.

Let S be any restriction semigroup. By (2.2), we have {x+ : x ∈ S} =
{x∗ : x ∈ S}. This set is called the set of projecions of S, and is denoted
by PS . It is easy to see that PS is a (2, 1, 1)-subsemilattice in S, and both
unary operations are identical on it. In particular PS consists of idempotent
elements of S only. Notice that a restriction semigroup S is unary trivial if
and only if PS is a singleton, and, if this is the case then the unique element
of PS is the identity element of S. If S, T are restriction semigroups, and
φ : S → T is a (2, 1, 1)-morphism then φ is said to be projection separating
if eφ = fφ implies e = f for every e, f ∈ PS .

We consider a relation on S, denoted by σ, which is defined, for any
a, b ∈ S, by the rule

aσb if and only if ea = eb for some e ∈ PS .
Notice that if there exists e ∈ PS with ea = eb then there exists also f ∈ PS
with af = bf , and conversely. Therefore the relation defined dually to σ
coincides with σ. The relation σ is the least congruence on S = (S; ·) where
PS is in a congruence class, which we denote by PSσ. Consequently, σ is the
least (2, 1, 1)-congruence ρ on S = (S; ·,+, ∗) such that the (2, 1, 1)-factor
semigroup S/ρ is unary trivial. Therefore we call σ the least unary trivial
(2, 1, 1)-congruence on S. The unary trivial restriction monoid S/σ is often
considered just as a monoid S/σ = (S/σ; ·, PSσ) with identity element PSσ.

A left ample semigroup is defined to be a left restriction semigroup S
where, for any a, b ∈ S, we have

a+ = b+ if and only if xa = ya⇐⇒ xb = yb for all x, y ∈ S1.

A right ample semigroup is defined dually, and by an ample semigroup we
mean a restriction semigroup that is both left and right ample. On a (left)
ample semigroup, the relation σ is the least (right) cancellative congruence.
Ample semigroups form a sub-quasivariety in the variety of restriction semi-
groups.
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A restriction semigroup S is said to be proper if the following condition
and its dual are fulfilled:

a+ = b+ and a σ b imply a = b for every a, b ∈ S.
If S, T are restriction semigroups and T is proper then T is said to be

a proper cover of S if there exists a projection separating and surjective
(2, 1, 1)-morphism from T onto S.

It is worth mentioning that if a restriction semigroup S is obtained from
an inverse semigroup Sinv = (S; ·,−1) as above then σ is the least group
congruence on Sinv, and S is proper if and only if Sinv is E-unitary.

The construction of W (T, Y ) with Y being a semilattice and T a right
cancellative monoid was introduced in [1] as a construction of a left ample
semigroup. In [3], it was generalized for any unipotent monoid T , and it
was noticed that there is a natural unary operation ∗ on W (T, Y ), so that
it becomes a so-called weakly ample semigroup. A weakly ample semigroup
is a restriction semigroup in which every idempotent is a projection. The
arguments in [3] are easily seen to apply for any monoid T , and W (T, Y )
becomes a restriction semigroup (cf. [6]).

Let T be a monoid and Y a semilattice. We say that T acts on Y on
the right [left] if a monoid homomorphism is given from T into the endo-

morphism monoid EndY of Y [into the dual EnddY of the endomorphism
monoid of Y ]. For brevity, at [ta] is used to denote the image of the element
a ∈ Y under the endomorphism assigned to the element t ∈ T . This is
equivalent to requiring that the equalities

(2.4) (ab)t = atbt, (at)u = atu, a1 = a

are valid for every a, b ∈ Y and t, u ∈ T . Suppose that T acts on the right on
Y by injective endomorphisms such that the range of each endomorphism
corresponding to an element of T forms an order ideal in Y . Equivalently,
suppose that, additionally to (2.4), we have

(2.5) at = bt implies a = b,

and

(2.6) a ≤ bt implies a = ct for some c ∈ Y
for every a, b ∈ Y and t ∈ T . Consider the set

W (T, Y ) = {(t, at) ∈ T × Y : a ∈ Y, t ∈ T},
and define a multiplication and two unary operations on it by the following
rules: for any (t, at), (u, bu) ∈W (T, Y ), put

(t, at)(u, bu) = (tu, atu · bu),

(t, at)+ = (1, a),(2.7)

(t, at)∗ = (1, at).

It is straightforward to see that W (T, Y ) is a subsemigroup in the reverse
semidirect product T n Y . We call W (T, Y ) a W -product of Y by T . This
construction has the following basic properties.

Result 2.1. Let Y be a semilattice and T a monoid acting on Y on the
right, so that conditions (2.5),(2.6) are fulfilled.
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(1) W (T, Y ) = (W (T, Y ); ·,+, ∗) is a restriction semigroup, its set of
projections is PW (T,Y ) = {(1, a) : a ∈ Y }, which is isomorphic to Y .

(2) The first projection π : W (T, Y )→ T is a surjective homomorphism
whose kernel is σ. Consequently, W (T, Y )/σ is isomorphic to T .

(3) W (T, Y ) is proper.
(4) W (T, Y ) is a monoid if and only if Y has an identity.

Given a class V of algebras of type (2, 1, 1), a non-empty set X, a member
F ∈ V and a mapping f : X → F , we say that (F, f), or, briefly, F is a free
object in V on X if it possesses the following universal property: for any
V ∈ V and any mapping v : X → V , there is a unique (2, 1, 1)-morphism
φ : F → V such that fφ = v. One can prove that F is, up to (2, 1, 1)-
isomorphism, unique, provided it exists. It is well known that if V is a variety
then there exists a free object in V on any non-empty set. In particular, this
ensures that there exists a free restriction semigroup on any non-empty set,
and, up to (2, 1, 1)-isomorphism, it is uniquely determined. A model of the
free restriction semigroup on X is given in [2] as a full subsemigroup in the
free inverse semigroup on X (cf. [5]). We recall it in the rest of this section.

For any set X, consider the free monoid X∗ and the free group FG(X)
on X. The elements of X∗ are said to be words in X. The multiplication
in X∗ is juxtaposition. The identity element of X∗ is the empty word which
we denote by 1.

The elements of FG(X) are supposed to be the reduced words in X∪X−1.
For any word w ∈ (X ∪X−1)∗, the reduced form of w is denoted by red(w).
Thus the product of any elements u, v in FG(X) is red(uv). Obviously,
X∗ is a subsemigroup in FG(X) but FG(X) is not a sub(semi)group in
(X ∪X−1)∗.

Now we briefly recall a model for free inverse semigroups ([5]). The prefix
order ≤p is a partial order defined on FG(X) by u ≤p v if u is a prefix of
v, that is, v = uw(= red(uw)) for some w ∈ FG(X). If A is a non-empty

subset in FG(X) then [A]↓ denotes the order ideal of (FG(X);≤p) generated

by A. In particular, [u]↓ is the set of all prefixes of the word u(∈ FG(X))

including 1 and u. Therefore each order ideal∗ but [1]↓ = {1} has at least
two elements.

Denote by Y• the set of all finite order ideals of (FG(X); ≤p ), and put
Y = Y• \ {{1}}. For any v ∈ FG(X) and any subset S ⊆ FG(X), define

(2.8) vS = {red(vs) : s ∈ S},

and put X = FG(X)Y. Consider the set

P (FG(X),X ,Y) = {(A, u) ∈ Y × FG(X) : u ∈ A},
and equip it with the following multiplication:

(2.9) (A, u)(B, v) = (A ∪ uB, uv).

Then P (FG(X),X ,Y) is an inverse semigroup, and, together with the in-
jective mapping

X → P (FG(X),X ,Y), x 7→ ({1, x}, x),

∗The empty set is not considered an order ideal.
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it is a free inverse semigroup on X. Observe that P (FG(X),X ,Y) is just the
P -semigroup corresponding to the McAlister triple (FG(X),X ,Y), where
X = (X ;⊇), and FG(X) acts on it, by the rule (2.8), on the left by order
automorphisms.

It is well known that the Cayley graph ΓFG(X) of FG(X), as an X-
generated group, is a tree, and FG(X) acts on ΓFG(X) on the left by
translations, that is, by putting v(u, x) = (vu, x) for any v ∈ FG(X) and
any edge (u, x). Recall that there is a natural bijection β1 from Y onto the set
of all finite connected subgraphs of ΓFG(X) containing the vertex 1 and at
least one edge. Namely, A ∈ Y is the set of vertices of Aβ1. Consequently,
there is a natural bijection β from X onto the set of all finite connected
subgraphs of ΓFG(X) containing at least one edge where S ∈ X is the set
of vertices of Sβ. In particular, we easily see that, for any S ∈ X , we have
S ∈ Y if and only if 1 ∈ S. It is obvious that this bijection respects the left
action of FG(X), that is, we have (vS)β = v(Sβ) for every v ∈ FG(X) and
S ∈ X .

In some cases, this observation makes the constructions involving Y or X
more transparent. For example, it easily follows from the fact that ΓFG(X)
is a tree that, for any two finite connected subgraphs ∆ and Θ, there is a
least finite connected subgraph containing ∆ and Θ. Denoting it ∆ ∨Θ, it
can be obtained as follows: if u is a vertex in ∆, v is a vertex in Θ, and Π
is the (finite connected) subgraph spanned by the unique reduced path in
ΓFG(X) from u to v, then ∆ ∨ Θ = ∆ ∪ Π ∪ Θ. In particular, if ∆ and Θ
have a common vertex, then we have ∆ ∨ Θ = ∆ ∪ Θ. It is clear from this
description of the operation ∨ that the left action of FG(X) on ΓFG(X)
respects ∨, that is, v(∆ ∨Θ) = v∆ ∨ vΘ for any v ∈ FG(X) and any finite
connected subgraphs ∆,Θ. These observations, translated into the language
of order ideals of (FG(X); ≤p ), can be formulated as follows:

Result 2.2. Let R,S be arbitrary elements in (X ;⊇).

(1) The elements R and S have a least upper bound R ∨ S in (X ;⊇),
and we have

R ∨ S = r
(
r−1
R ∪

[
r−1s

]↓ ∪ r−1
S
)

for every r ∈ R and s ∈ S.
(2) In particular, R∨S = R∪S provided R,S ∈ X such that R∩S 6= ∅.
(3) We have v(R ∨ S) = vR ∨ vS for every v ∈ FG(X).
(4) Consequently, X = (X ;∨) is a semilattice acted upon on the left by

FG(X) by automorphisms. Moreover, Y forms a subsemilattice in
it, and the operations ∨ and ∪ coincide on Y.

Notice that statement (2) allows us to replace “∪” by “∨” in (2.9).

Remark 2.3. In the argument above, we can replace the semilattice Y by
the semilattice monoid Y• and X by X • = FG(X)Y•. Then P (FG(X),X •,Y•)
turns out to be the free inverse monoid on X. In particular, the relations
mentioned remain valid for X • and for the set of all finite connected sub-
graphs of ΓFG(X) (with or without an edge), and Result 2.2 holds for
(X •;⊇) and (X •;∨).
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It was proved in [2] that the inverse image of the free monoid X∗, as a
subsemigroup in FG(X), under the second projection of P (FG(X),X •,Y•)
onto FG(X) is the free restriction monoid (see Remark 2.5 below). Here we
present the semigroup analogue of this result.

For any non-empty set X, consider the set

FRS(X) = {(A, u) ∈ Y × FG(X) : u ∈ X∗ ∩A},
and define a multiplication by (2.9), and unary operations by

(A, u)+ = (A, 1) and (A, u)∗ = (u
−1
A, 1).

Result 2.4. (1) FRS(X) is a proper restriction semigroup, and it is
ample.

(2) The second projection of FRS(X) is a (2, 1, 1)-morphism which in-
duces the congruence σ.

(3) The set of projections of FRS(X) is

PFRS(X) = {(A, 1) : A ∈ Y}
which is isomorphic to Y.

(4) The restriction semigroup FRS(X) together with the injective map-
ping

X → FRS(X), x 7→ ({1, x}, x)

is a free restriction semigroup on X.

Remark 2.5. Define FRM(X) by replacing Y by Y• and X by X • in the
definition of FRS(X). The analogue of Result 2.4 is valid and establishes
that FRM(X) is the free restriction monoid on X which is ample.

By investigating the properties of a free restriction semigroup, the follow-
ing important fact is deduced in [2] as an application of Result 2.4.

Result 2.6. Each restriction semigroup has a proper (ample) cover which is
(2, 1, 1)-isomorphic to a (2, 1, 1)-factor semigroup of a free restriction semi-
group over a (2, 1, 1)-congruence contained in the least unary trivial (2, 1, 1)-
congruence (equivalently, in the least cancellative congruence).

A restriction semigroup being (2, 1, 1)-isomorphic to a (2, 1, 1)-factor semi-
group of a free restriction semigroup over a (2, 1, 1)-congruence contained
in the least unary trivial (2, 1, 1)-congruence (equivalently, in the least can-
cellative congruence) is termed in [2] quasi-free.

3. Free restriction semigroups and W -products

In this section we establish that each free restriction semigroup is (2, 1, 1)-
embeddable in a W -product of a semilattice by a monoid.

Let X be any non-empty set, and consider the free restriction semigroup
FRS(X) on X. The left action of the group FG(X) on the semilattice X
(see Result 2.2(3),(4)) naturally defines a right action of FG(X) on X by
the rule

Su = u−1
S (u ∈ FG(X), S ∈ X ).

Its restriction to X∗ is clearly a right action of the monoid X∗ on the semi-
lattice X . Moreover, since FG(X) acts by automorphisms, the same holds
for X∗.
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Define the following subset in X :

Q = YX∗
.

Obviously, we have

Q = {Q ∈ X : Q ∩ (X∗)−1 6= ∅}
where T−1 is used to denote the subset {t−1 : t ∈ T} in FG(X) for any
T ⊆ X∗. It is straightforward that QX∗ ⊆ Q, and, by the last equation,
that Q is closed under forming supersets. Hence we obtain the following
statement by Result 2.2(4).

Lemma 3.1. The subset Q forms a subsemilattice in X = (X ;∨), and the
monoid X∗ acts on it on the right by injective endomorphisms.

Now we establish another important property of the right action of X∗

on Q.

Lemma 3.2. For each t ∈ X∗, we have

Qt = {Q ∈ X : Q ∩ (X∗t)−1 6= ∅},
and so it is a dual order ideal in (Q;⊇).

Proof. In order to check the equality, first observe that if P ∈ Q then
there exists s ∈ X∗ with s−1 ∈ P whence we see that st ∈ X∗ and (st)−1 =

t−1s−1 ∈ t−1
P = P t. Conversely, if S ∈ X with S ∩ (X∗t)−1 6= ∅, say,

(st)−1 ∈ S with s ∈ X∗ then s−1 = t(st)−1 ∈ tS, and so P = tS ∈ Q
and S = t−1(tS) = t−1

P = P t ∈ Qt. The second statement is immediately
implied by this equality, since its right hand side is obviously closed under
forming supersets. �

Lemmas 3.1 and 3.2 imply that the W -product W (X∗,Q) is defined.
Observe that

(3.1) W (X∗,Q) = {(t, Q) ∈ X∗ ×Q : Q ∩ (X∗t)−1 6= ∅}.
Now we formulate the main result of this section.

Theorem 3.3. The free restriction semigroup FRS(X) is (2, 1, 1)-embed-
dable in the W -product W (X∗,Q).

Proof. We show that the mapping

ι : FRS(X)→W (X∗,Q), (A, t) 7→ (t, At)

is a (2, 1, 1)-embedding. First note that ι is well defined by (3.1), and it is
injective by Lemma 3.1. Now we check that ι is a (2, 1, 1)-morphism. We
have

((A, t)(B, u))ι = (A ∪ tB, tu)ι = (tu, (A ∪ tB)tu)

and
(A, t)ι(B, u)ι = (t, At)(u,Bu) = (tu,Atu ∨Bu).

They are, indeed, equal since t ∈ A by the definition of FRS(X), and so
the following holds in X by the definition of the right action and by Result
2.2:

(A ∪ tB)tu = (tu)−1
(A ∪ tB) = (tu)−1

(A ∨ tB)

= (tu)−1
A ∨ (tu)−1tB = (tu)−1

A ∨ u−1
B = Atu ∨Bu.
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Moreover, we have ((A, t)+) ι = (A, 1)ι = (1, A) = (t, At)+ = ((A, t)ι)+ and

((A, t)∗) ι = (t
−1
A, 1)ι = (1, t

−1
A) = (1, At) = (t, At)∗ = ((A, t)ι)∗. �

An immediate consequence of this theorem is that FRS(X)ι is a (2, 1, 1)-
subsemigroup in W (X∗,Q). This implies the following statement.

Consider the subset

FWRS(X) = {(t, At) ∈W (X∗,Q) : 1, t ∈ A}
= {(t, At) ∈ X∗ × Y : A ∈ Y}
= {(t, B) ∈ X∗ × Y : t−1 ∈ B}

in W (X∗,Q).

Corollary 3.4. The subset FWRS(X) forms a (2, 1, 1)-subsemigroup in
W (X∗,Q). Furthermore, FWRS(X) together with the injective mapping

X → FWRS(X), x 7→ (x, {1, x−1})
is a free restriction semigroup on X.

Remark 3.5. (1) Defining Q• to be Y•X∗
, we obtain a subsemilat-

tice in X • = (X •;∨). A slight modification of the above argument
shows (cf. Theorem 3.3) that W (X∗,Q•) is defined, and FRM(X)
is (2, 1, 1)-embeddable in W (X∗,Q•). Furthermore, this embedding
provides (cf. Corollary 3.4) a model of the free restriction monoid
on X, denoted by FWRM(X), which is a (2, 1, 1)-subsemigroup in
W (X∗,Q•).

(2) Although P (FG(X),X •,Y•) is just P (FG(X),X ,Y) with an identity
element adjoined and, similarly, FRM(X) is just FRS(X) with
an identity element adjoined, this is definitely not the case with
W (X∗,Q•) and W (X∗,Q). Namely, W (X∗,Q•) is not a monoid
(cf. Result 2.1(4)).

4. Proper covers and W -products

In this section we show that each restriction semigroup has a proper cover
(actually, a proper ample cover) which is embeddable in a W -product of a
semilattice by a monoid. This is obtained by proving that each (2, 1, 1)-
factor semigroup of FWRS(X) over a (2, 1, 1)-congruence contained in σ is
(2, 1, 1)-embeddable in a W -product of a semilattice by a monoid (cf. Result
2.6 and Corollary 3.4).

Let ρ be a (2, 1, 1)-congruence on FWRS(X) with ρ ⊆ σ. Then, for any
(t, At), (u,Bu) ∈ FWRS(X),

(t, At) ρ (u,Bu) implies t = u.

The restriction of ρ to the semilattice of projections PFWRS(X) = {(1, A) :
A ∈ Y} is a congruence. By Result 2.4(3), the semilattice PFWRS(X) is
isomorphic to Y, therefore the relation

κρ = {(A,B) ∈ Y × Y : (1, A) ρ (1, B)}
is a congruence on Y. It relates to ρ as follows.

Lemma 4.1. For any (t, At), (u,Bu) ∈ FWRS(X), the following conditions
are equivalent:
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(1) (t, At) ρ (u,Bu),
(2) t = u and AκρB,
(3) t = u and At κρB

t.

Proof. Since ρ ⊆ σ, property (1) implies t = u. Moreover, ρ is a (2, 1, 1)-
congruence, therefore (1) implies (1, A) = (t, At)+ ρ (t, Bt)+ = (1, B) and
(1, At) = (t, At)∗ ρ (t, Bt)∗ = (1, Bt). Thus (1) implies (2) and (3).

Before considering the reverse implications, notice that A ∈ Y and t ∈ A,

and so [t]↓ ⊆ A is implied. Since [t]↓ ∈ Y, we have
(
t, [t]↓

t) ∈ FWRS(X),
and so

(1, A)
(
t, [t]↓

t)
= (t, At) =

(
t, [t]↓

t)
(1, At).

Consequently, either we have AκρB or At κρB
t, that is, either we have

(1, A) ρ (1, B) or (1, At) ρ (1, Bt), we obtain that (t, At) ρ (t, Bt) = (u,Bu).
This shows that each of (2) and (3) implies (1). �

The (2, 1, 1)-congruences of FWRS(X) contained in σ can be character-
ized in the following manner.

Proposition 4.2. Let κ be a congruence on Y such that the following con-
dition is fulfilled:

(P) for every A,B ∈ Y and t ∈ X∗ ∩ A ∩ B, we have AκB if and only
if At κBt.

Then the relation ρ defined by the rule

(t, At) ρ (u,Bu) if and only if t = u and AκB

is a (2, 1, 1)-congruence on FWRS(X) contained in σ. Conversely, each
(2, 1, 1)-congruence on FWRS(X) contained in σ can be obtained in this
way.

Proof. The last statement immediately follows from Lemma 4.1 if we recall
that, for some A ∈ Y and t ∈ X∗, we have (t, At) ∈ FWRS(X) if and only
if t ∈ A.

Assume that κ is a congruence on Y such that condition (P) is satisfied,
and consider the relation ρ on FWRS(X) defined by κ as in the state-
ment. Obviously, ρ ⊆ σ. We check that ρ is a (2, 1, 1)-congruence. Let
(t, At) ρ (u,Bu) in FWRS(X). Then we have t = u and AκB, and the latter
relation implies At κBt by (P). Hence (t, At)+ = (1, A) ρ (1, B) = (t, Bt)+

and (t, At)∗ = (1, At) ρ (1, Bt) = (t, Bt)∗ are straightforward, and so ρ
is compatible with both unary operations. Moreover, for any (v, Cv) ∈
FWRS(X), we have

(v, Cv)(t, At) =
(
vt,

(
v(Cv ∪A)

)vt)
, (v, Cv)(t, Bt) =

(
vt,

(
v(Cv ∪B)

)vt)
and

(t, At)(v, Cv) =
(
tv,

(
t(At ∪ C)

)tv)
, (t, Bt)(v, Cv) =

(
tv,

(
t(Bt ∪ C)

)tv)
.

Here A,B,Cv, At, Bt, C ∈ Y, and since κ is a congruence on Y, we deduce
that

(4.1) Cv ∪A κ Cv ∪B and At ∪ C κ Bt ∪ C.
The sets in the first pair contain 1, v−1 and those in the second one contain
1, t−1 because 1 ∈ A,B,C. Thus v(Cv ∪A), v(Cv ∪B), t(At ∪ C), t(Bt ∪ C) ∈
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Y, we have v ∈ v(Cv ∪A) ∩ v(Cv ∪B), t ∈ t(At ∪ C) ∩ t(Bt ∪ C), and the
relations in (4.1) can be written in the form(

v(Cv ∪A)
)v
κ
(
v(Cv ∪B)

)v
and

(
t(At ∪ C)

)t
κ
(
t(Bt ∪ C)

)t
,

respectively. By applying property (P) in the reverse direction, hence we
obtain that v(Cv ∪A)κ v(Cv ∪B) and t(At ∪ C)κ t(Bt ∪ C). This implies
(v, Cv)(t, At) ρ (v, Cv)(t, Bt) and (t, At)(v, Cv) ρ (t, Bt)(v, Cv) by definition.
Thus ρ is compatible also with the multiplication. �

Let κ be any congruence on Y such that condition (P) is satisfied. We
extend κ from Y to Q. First we define a relation ν0 as follows: for any
P,Q ∈ Q ⊆ X , let P ν0Q if there exists t ∈ X∗ such that tP , tQ ∈ Y and
tP κ tQ in Y. It is obvious by definition that the relation ν0 is reflexive and
symmetric. Now we show further properties of ν0.

Lemma 4.3. The relation ν0 is left and right compatible on (Q;∨).

Proof. Since the operation ∨ is commutative, it suffices to verify right
compatibility. Let P,Q,R ∈ Q such that P ν0Q, that is, there exists t ∈ X∗
such that tP , tQ ∈ Y with tP κ tQ. We intend to show that P ∨ Rν0Q ∨ R.
By definition, we have u ∈ X∗ with u−1 ∈ R. By Result 2.2(1), we see that

P ∨ R = t−1(tP ∪ [
tu−1

]↓ ∪ tR
)

and Q ∨ R = t−1(tQ ∪ [
tu−1

]↓ ∪ tR
)
. Hence

t(P ∨R) = tP ∪
[
tu−1

]↓ ∪ tR and t(Q ∨R) = tQ∪
[
tu−1

]↓ ∪ tR, where tP κ tQ

in Y and
[
tu−1

]↓ ∪ tR ∈ Y. This implies t(P ∨R)κ t(Q ∨R) since κ is a
congruence on Y, and so P ∨Rν0Q∨R follows by the definition of ν0. �

Lemma 4.4. For every P,Q ∈ Q and v ∈ X∗, we have P ν0Q if and only
if P v ν0Q

v.

Proof. Let v ∈ X∗ and P,Q ∈ Q. Assume first that P ν0Q, that is, there
exists u ∈ X∗ such that uP , uQ ∈ Y with uP κ uQ. Then we obviously have
uv(P v) = u

(
v(P v)

)
= uP κ uQ = u

(
v(Qv)

)
= uv(Qv), which implies P v ν0Q

v.
Conversely, suppose that P v ν0Q

v. Then there exists u ∈ X∗ such that
u(P v), u(Qv) ∈ Y with u(P v)κ u(Qv). In particular, this implies that 1 ∈
u(P v) ∩ u(Qv) whence vu−1 ∈ P ∩Q follows. Now we distinguish two cases
according to whether u = zv for some z ∈ X∗ or not.

Assume that u = zv for some z ∈ X∗. Then zP = uv−1
P = u(P v) ∈ Y

and, similarly, zQ = u(Qv) ∈ Y. Therefore, by assumption, we have zP κ zQ,
and so P ν0Q is implied by definition.

Turning to the opposite case, assume that u 6= zv for any z ∈ X∗. This
means that u = u1r and v = v1r for some r, u1 ∈ X∗ and v1 ∈ X∗ \ {1}
where red(u1v

−1
1 ) = u1v

−1
1 . Since P,Q ∈ Q, we have s, t ∈ X∗ such that

s−1 ∈ P and t−1 ∈ Q. Therefore we deduce that

(4.2) u(sv)−1 ∈ u(P v) and u(tv)−1 ∈ u(Qv).

Since u(P v) ∈ Y, the first relation implies that
[
u(sv)−1

]↓ ⊆ u(P v). More-

over, we have red(u(sv)−1) = red(uv−1s−1) = red(u1v
−1
1 s−1) = u1v

−1
1 s−1

by the choice of u1 and v1. This implies that u1, u1v
−1
1 ∈ u(P v), and a similar

argument shows that we also have u1, u1v
−1
1 ∈ u(Qv). Therefore we can ap-

ply property (P) for the κ-related elements u(P v), u(Qv) ∈ Y and for the word
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u1, and we obtain that P v1 = r(P v) =
(
u(P v)

)u1 κ (u(Qv))u1 = r(Qv) = Qv1 .

Recalling that u1v
−1
1 ∈ u(P v), we see that v−1

1 ∈
(
u(P v)

)u1 = P v1 and, simi-

larly, that v−1
1 ∈ Qv1 . Hence 1 ∈ P,Q follows. On the other hand, we have

seen that P v1 , Qv1 ∈ Y, and so v1 ∈ P,Q is also implied. Thus P,Q ∈ Y
such that P v1 κQv1 in Y. Therefore we deduce by property (P) that P κQ
which implies P ν0Q. �

Lemma 4.5. If A,B ∈ Y such that Aν0B then AκB.

Proof. Let A,B ∈ Y such that Aν0B. By definition, there exists u ∈ X∗
such that uA, uB ∈ Y and uAκ uB. Here A,B ∈ Y implies u ∈ uA, uB.
Therefore property (P) implies A = (uA)u κ (uB)u = B. �

Now let us consider the equivalence relation on Q generated by ν0, and
denote it by ν. Since ν0 is reflexive and symmetric, ν is the transitive closure
of ν0. Thus, for every P,Q ∈ Q, we have P ν Q if and only if there exists a
sequence Ri (i = 0, 1, . . . , k) of elements of Q such that

P = R0 ν0R1 ν0R2 ν0 . . . ν0Rk = Q.

The following lemma extends the properties of ν0 verified so far to ν.

Lemma 4.6. The relation ν is a congruence on the semilattice Q = (Q;∨)
such that, for every P,Q ∈ Q and v ∈ X∗, we have P ν Q if and only if
P v ν Qv.

Proof. Lemma 4.3 immediately implies that ν is left and right compatible
on (Q;∨), and since ν is an equivalence relation, we obtain that it is a
congruence on the semilattice Q. It is also straightforward by the ‘only if’
part of Lemma 4.4 that if P ν Q in Q and v ∈ X∗ then P v ν Qv follows.

Now suppose that P,Q ∈ Q and v ∈ X∗ such that P v ν Qv. Then there
exists a sequence Ri (i = 0, 1, . . . , k) of elements of Q such that

P v = R0 ν0R1 ν0R2 ν0 . . . ν0Rk = Qv.

Applying Lemma 4.3, we infer from these relations that

P v = P v ∨R0 ν0 P
v ∨R1 ν0 P

v ∨R2 ν0 . . . ν0 P
v ∨Rk = P v ∨Qv = (P ∨Q)v.

Since Qv is a dual order ideal by Lemma 3.2, there exists Si ∈ Q with
Svi = P v ∨Ri for each i (i = 0, 1, . . . , k). Thus we have

P v = Sv0 ν0 S
v
1 ν0 S

v
2 ν0 . . . ν0 S

v
k = (P ∨Q)v,

whence, by Lemma 4.4, we deduce that

P = S0 ν0 S1 ν0 S2 ν0 . . . ν0 Sk = P ∨Q.

This shows that P ν P ∨ Q. By symmetry, we also have Qν P ∨ Q, and so
the relation P ν Q is verified. �

Another property of ν which is crucial for the main result of this section
is that its restirction to Y is κ.

Lemma 4.7. For any A,B ∈ Y(⊆ Q), the relation Aν B implies AκB.



PROPER COVERS AND W -PRODUCTS 13

Proof. Assume that A,B ∈ Y such that Aν B. Then there exists a se-
quence Ri (i = 0, 1, . . . , k) of elements of Q such that

A = R0 ν0R1 ν0R2 ν0 . . . ν0Rk = B.

By Lemma 4.3, this implies

(4.3) A = A ∨R0 ν0A ∨R1 ν0A ∨R2 ν0 . . . ν0A ∨Rk = A ∨B.

Here A ∈ Y, that is, 1 ∈ A, whence we see that A ∨ Ri ∈ Y for every
i (i = 0, 1, . . . , k). Applying Lemma 4.5 for (4.3), we obtain that

A = A ∨R0 κA ∨R1 κA ∨R2 κ . . . κA ∨Rk = A ∨B,

whence AκA ∨ B follows. By symmetry, we also have B κA ∨ B which
implies AκB. �

By Lemma 4.6, we can consider the factor semilattice Q/ν, and denote
the partial order on it by ≥; that is, we write Pν ≥ Qν if Pν ∨ Qν = Pν.
Also by Lemma 4.6, the right action of X∗ on Q induces a right action of
X∗ on Q/ν defined by the rule (Qν)v = (Qv)ν (Q ∈ Q, v ∈ X∗). Moreover,
the endomorphism of Q/ν corresponding to v is injective for every v ∈ X∗.
In order to be able to define W (X∗,Q/ν), we need the following property.

Lemma 4.8. For any t ∈ X∗, the set (Q/ν)t forms a dual order ideal in
Q/ν.

Proof. Let P,Q ∈ Q and t ∈ X∗ such that Pν ≥ (Qν)t in Q/ν. We intend
to verify that Pν ∈ (Q/ν)t. The inequality assumed is equivalent to the
equality Pν ∨ (Qν)t = Pν, and so, by definition, to the relation P ∨Qt ν P .
Since Qt is a dual order ideal in Q by Lemma 3.2, we obtain that P∨Qt = St

for some S ∈ Q. Hence Pν = (P ∨Qt)ν = (St)ν = (Sν)t ∈ (Q/ν)t. �

Thus we have established that W (X∗,Q/ν) is defined since all the con-
ditions required for this definition are satisfied. Furthermore, the map-
ping W (X∗,Q) → W (X∗,Q/ν), (t, Qt) 7→

(
t, (Qν)t

)
is clearly a (2, 1, 1)-

morphism. Restricting it to FWRS(X), we obtain the (2, 1, 1)-morphism
φ : FWRS(X) → W (X∗,Q/ν) defined by (t, At)φ =

(
t, (Aν)t

)
. Lemma

4.7 implies that, for any (t, At), (u,Bu) ∈ FWRS(X), we have (t, At)φ =
(u,Bu)φ if and only if t = u and AκB. For, if (t, At)φ = (u,Bu)φ then
t = u and (Aν)t = (Bν)u follows by definition. Hence Aν = Bν is de-
duced, since t = u and the endomorphism of Q/ν corresponding to t is
injective. Here A,B ∈ Y, therefore Lemma 4.7 ensures AκB. Thus the
congruence induced by φ is the (2, 1, 1)-congruence ρ corresponding to κ, see
Proposition 4.2. This implies that the restriction semigroup FWRS(X)/ρ is
(2, 1, 1)-embeddable in W (X∗,Q/ν). By applying Proposition 4.2, we can
summarize the result proved so far as follows.

Proposition 4.9. Suppose that ρ is a (2, 1, 1)-congruence on FWRS(X)
contained in σ. Denote by κ the congruence on Y corresponding to ρ by
Proposition 4.2, and consider the congruence ν on the semilattice Q gener-
ated by the relation

{(P,Q) ∈ Q×Q : tP , tQ ∈ Y with tP κ tQ for some t ∈ X∗}.
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Then the right action of X∗ on Q induces a right action of X∗ on the factor
semilattice Q/ν by putting (Qν)v = (Qv)ν for every Q ∈ Q, v ∈ X∗, such
that W (X∗,Q/ν) is defined, and the mapping

FWRS(X)/ρ→W (X∗,Q/ν), (t, At)ρ 7→
(
t, (Aν)t

)
is a (2, 1, 1)-embedding.

This is, actually, the main result of this section which can be formulated,
in a less technical way, as follows.

Theorem 4.10. Each (2, 1, 1)-factor semigroup of a free restriction semi-
group over a (2, 1, 1)-congruence contained in the least unary trivial (2, 1, 1)-
congruence (equivalently, in the least cancellative congruence) is (2, 1, 1)-
embeddable in a W -product of a semilattice by a monoid.

By Result 2.6, we deduce the statement we aimed to prove in the paper.

Theorem 4.11. Each restriction semigroup has a proper (ample) cover
which is (2, 1, 1)-embeddable into a W -product of a semilattice by a monoid.

Remark 4.12. The analogue of Proposition 4.9 where FWRS(X) is re-
placed by FWRM(X) and Q by Q• also holds.

Note that the main result of [6] proves that each restriction semigroup
is (2, 1, 1)-embeddable into a so-called almost left factorizable restriction
semigroup. A restriction semigroup is almost left factorizable if and only
if it has a proper cover isomorphic to a W -product of a semilattice by a
monoid. Thus the main result of [6] is, in some sense, dual to Theorem 4.11.
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