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PROPER EFFICIENT POINTS FOR MAXIMIZATIONS
WITH RESPECT TO CONES*

J. BORWEINf

Abstract. Proper efficient points (Pareto maxima) are defined in tangent cone terms and are

characterized by the existence of equivalent real-valued maximization problems.

1. Introduction. Suppose that X and Y are (locally) convex (topological
vector) spaces over R and that S c y is a nontrivial closed convex cone which
induces a partial ordering -<s. The vector maximization problem for f mapping X
into Y and A c X,

max f(x) subject to x A (VMP),

is the problem of finding all efficient points A" is said to be efficient (Pareto
optimal) if x A and

f(x) >-_ f(2), f(x) #f(2) implies that 2A.

Geffrion [ 1] has studied this problem in finite dimensions with the coordinate
ordering and has suggested a restriction to "proper" efficient points which allows
for a reasonable characterization. Kuhn and Tucker [4] have also used the term
but their notion requires differentiability and appears too broad for satisfactory
analysis (see below).

This paper proposes a general notion of properness which is defined in terms
of tangent cones as developed by Varaiya [8], Guignard [2], Zlobec [9] and others
and which coincides with Geffrion’s definition in the central case.

2. Preliminaries. Throughout the paper all spaces are assumed Hausdorff
and convex and "-<" is the partial order induced by S.

DEFINITION 1. Suppose C X and $ C. The tangent cone to C at is
defined to be the set of limits of the form h lim t, (x $) with {t,, } a sequence of
nonnegative real numbers and {x} C a sequence with limit :. It is denoted
T(C,).

When X is metrizable, T(C, ) is closed. It is always a nonempty cone
containing 0, but need not be closed in general spaces unless defined in terms of
bets which leads to other embarrassments. The closed convex hull of T(C, ) is
called the pseudo-tangent cone and is denoted by P(C, ). Various properties of
pseudo-tangent cones can be fourld in [2], [8], [9] and a forthcoming paper of the
author.

DEFINITION 2. A point Y will be said to be a proper efficientpointo[ (VMP) if it
is efficient and

(1) T(f(A)- S, f(,)) CI S O.
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58 J. BORWEIN

DEFINITION 3. When f(x)=(fl(X),"’,fp(x)) maps R k into Rp, Gettrion
defines to be properly efficient with respect to the coordinate ordering if it is
efficient and if there is some real M> 0, such that for each one has

(2) /(x)-()
f(Y)-f/(x)

<=M

holding for some/" with ](x) <]($), whenever x A and ](x) >]().
It is a simple matter to verify that in this later framework, (1) is a weaker

requirement on (VMP) than (2) and, in fact, that when f is continuous (1) implies
the local efficiency of with respect to the coordinate ordering.

PROPOSITION 1. Suppose is Geffrion proper efficient for f over A. Then
satisfies

T(f(A)-gn+ f()) fq R+ 0

Proof. Suppose k # 0 R+ f’l T(f(A R+, [()). Without loss of generality
one may assume that k > 1, ki -> 0, 2,..., n. Let

t ([(x, r+, f($)) - k,
+where r,+ e R + tn > 0 and[(x,) r -[() with x,, A. By choosing a subsequence

one can assume that

is constant for all n (and nonempty since is Pareto efficient). SetM> 0. Then for
n _--> no,

Then for all L one has

and for n => no,

fi(x)-](f -t-a/2M.

0 <j(f) -1(xn) --< t-/2M,

fl(Xn) --fl (X) >
fi()--j(Xn) tl/2M M’

which contradicts Geffrion’s definition.
DEFINITION 4. Suppose X’ is the topological dual of X. The dual coneK+ ofa

convex cone K X is defined by

K+ {x’ X’lx’(x) >- O, Vx K},

while the dual cone (K’)+ of a convex cone K’ X’ is defined by

(K’)+ {x Xlx’(x) >= O, Vx K’}.

It follows from these definitions that (i) K+ is weakly* closed; (ii) (K+)+=/;
(iii) (/1 fq/2)/ cl (K+K-) (with closure in the weak* topology). K+ is well-
defined even if K is not a convex cone. In this case (K/)/ is the closed convex hull
of K (denoted [K]).D
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MAXIMIZATIONS WITH RESPECT TO CONES 59

These facts all hold in convex spaces. Proofs can be found for normed spaces
in [7].

3. Geometric motivation. The main aim of Definition 2 is to provide a notion
of properness which can be applied when the cone S is not the orthant ordering in
R and is not even polyhedral. Consider (VMP)"

max ll,x) max z max z.
xeA z.f(A) zef(A)--S=E

This last equivalence is introduced so that, in the case that f is concave with
respect to $ and A is convex, the optimization in the image space is still a concave
problem. Definition 2 says that is proper when, with =f(), one has

T(E, . 1"3 S O.

In general, then, the concept of properness is an attempt to remove those
efficient points which can be approached in directions which point into S. In the
case that $ Rn+, this can be done by considering the components separately; in
more general orderings a more technical notion of direction must be introduced.
This is done herein with tangent cones. Consider the following examples.

Example 1. Let X=R3, S {X [X (X I, X2, X3) X30 X4i-X@X23}. Let
A -{xlllxll -< x} and let f= 1. The efficient points for (VMP) are {xl Ilxll- x, x
s}. Since E A-S is convex, T(E, f()) is the smallest closed convex cone
containing E with vertex at f()= . It is easily seen that for those x with Ilxll- 1,

2 (or x3 2, x 12 +x 1/2), this cone has a boundary ray inxS and x+x=x3
common with $; while for any other efficient x this cannot happen. In this case the
efficient improper points form the relative boundary of the efficient points on A.

Example 2. Let X R 2, S {xlx2 >-O, xl =>x2}. Let A
{(Xl, X2)lX -" X27 < 1, X 20, X220} and letf= I. The efficient points are those x on
the arc in A for which Xl

2 +x 1. Again T(f(A)-S, f(x)) is the smallest closed
convex cone containing A S at f(x). This only intersects S[{0} when x f(x) lies
at the upper endpoint of the arc. There is, therefore, only one improper point
(0, 1).

Example 3. Consider X, S, f as in the previous example, and let A1
A (’l {(x 1, XE)lXl --< 1/2 or x2 0}. The efficient points are now

{(1, O)}U{(Xl, Xz)lXl <-1/2, x/ x@-- 1}U{(1/2, x2)lx2 >=O, x2 <-_1/2}.
The problem is no longer convex, and T(A S, f(x)) is easily calculated. Only

(1/2, 0) and (0, 1) are improper.
We see that properness gives us a criterion for excluding some efficient points

(those which can be "approached from within S") for which, as will be shown,
equivalent real maximizations fail to exist.

4. Some cone separation theorems. It is necessary to establish two abstract
separation theorems for convex cones before proving general multiplier theorems
for (VMP).

PROPOSITION 2. Suppose N, Sare closed convex cones in Xand thatN f’) S O.
Suppose that the dual cone S/ has nonernpty interior in some topology " which givesD
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60 J. BORWEIN

+ + N+Xas the dual ofX’. Then there is some s (S/) with -s and

(3) s (s) > 0 Us e S/{0}.
+ +)0In fact this last condition is equivalent to s (S

Proof. Using property (iii) under Definition 4 one sees that

{0}+ x’= (N tO S)+ -cl (N+ + S+),
since - is a topology of the dual pair (X’, X). Let s’ (S+). There is then some net

+ + + + + S+ + +-s, n,, +s with n, e N s e and n +s tending (z) to -s’. Since -s’ is a
r-interior point for -S/, it follows that for a > a0,

/ /

-s n +s e-(S/ o

Thus n =-(s’,, +s+) e-(S/)-S/ c-(S/). It follows that n and satisfies
(3). Conversely, if s

/ exists satisfying (3) and (S/) #, then

S{xls+(x)<-o}=o,

and one can apply the previous argument to the two sets S and {xls/(x)<-O} to
+ N+derive that some n {x ls+(x <-_ O}+ is also in (-S+). But N+= Clx<=oAS +

/ /and, since 0 (S/), n As A < 0, which implies that s
In particular, the theorem holds for any cone S in R" which is pointed

(S f)-S 0), since this means S/ c R has nonempty interior. In the case that
(S/) cannot be guaranteed nonempty, one can still prove the existence of s

/

satisfying (3) if one requires that S have a compact base B.
PROPOSITION 3. Suppose N, S are closed convex cones in Xsuch thatN f3 S

O. Suppose that S f’I-S =0 and that S is locally compact (has a compact
neighborhood base in the relative topology on S). Then one can find s/-N

/

satisfying (3).
Proof. The local compactness condition on S guarantees by [3, (2.4)] that one

can find a compact convex subset B of S, such that 0 B, with S (.J_>o AB.
It follows that B and N can be strictly separated [5] and that there is some

+ Xs e with

s+6-N+ and s+(x)>O VxeB.

It follows immediately that s+(s) > 0 Us S/{0}. [-1

Remark. It is easy to see that in a locally convex space a pointed cone S is
locally compact exactly when it has a compact generating base. That is: S-
C]a__>0 AB where B is compact, convex and 0 B.

5. Equivalences. One can now derive the basic characterization of proper
efficient points.

THEOREM 1. Suppose that is optimal for
max s+f(x) subject to x A (P(s/))

and that s
/

satisfies (3). Then is a proper efficient point.
Proof. Suppose h T(f(A)-S, ()). Then

h,, t. (f(x,, s,, f()) - hD
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MAXIMIZATIONS WITH RESPECT TO CONES 61

with tn >-0, f(xn)-s, -f(), x cA, sn S. For each n,s+f(x)<-s+f() since is
optimal for (P(s/)) and so

lim t(s+(f(xn)-s)-s+f($))<--_0.
It follows that s+(h) <- 0 Vh (f(A)-S, f()). Were h to belong to S/{0}, one
would have s/(h)>0 since (3) holds. This is impossible and ’(f(a)-S,f())fq
S=0.

It is clear that if -x were not efficient and X A with/(xl) -->s f(:), that the
definition of s

/ would imply that s /f(xl) > s+f() which contradicts the optimality
of for (e(x/)).

THEOREM 2. Suppose thatf is concave with respect to S and thatA is convex.
Suppose X and S satisfy the hypotheses of Proposition 2 or 3. Then is properly
efficientfor VMP) ifand only if$ is optimalfor (e(s+)) forsome s+ satisfying (3).

Proof. Sufficiency was proved in Theorem 1. Suppose now that : is properly
efficient. Since f is concave and A is convex, f(A) S {z If(x) _-> z, x e A} is
convex. An elementary proposition in [3] shows that in this case,

(4) f(A)- S-f(2) c T(f(A)- S, f(X)) N

and that N is convex. Because : is assumed proper, Nf’)S 0. Since either
+ + N+.Proposition 2 or 3 holds, s satisfying (3) exists with -s In particular, since

(4) holds,
s+(f(x)- s -f()) <- 0 Vx e A, s e S.

Setting s 0 shows that is optimal for (P(s+)) with s"-(s) > 0 Vs S/{0}. El
In finite dimensions with coordinate ordering, this equivalence is exactly the

same as Geffrion’s. Thus for coordinate concave programs, Definitions 2 and 3
coincide. It is worth noting that the use of the set T(f(A) S, f(:)) rather than the
smaller T(f(A), f()) is motivated by the need for (4) to hold. If one desires the
equivalence of Theorem 2 only for problems with f(A) convex (which includes A
convex, f linear) one need only require that

(5) T(f(A ), f(X)) (q S O.

Example. fl(x) (-x 2, x, x) is an example of a coordinate concave function
satisfying (1) or (2) on R" at 0; fa(x) (-x 2, x, 0) does not. This can be seen either
directly from Definition 2 or from the respective presence and absence of positive
multipliers when one applies Theorem 2.

If the hypotheses of Theorem 2 hold and the convex feasible set A is, in fact,
{xlg(x) >--B O, x C} for some function g mappingX into Z, concave with respect
to B, and some convex C, one has the following "Lagrange" multiplier theorem.

THEOREM 3. Suppose B is a convex cone with interior and that g(xo) B.
Suppose is a proper efficient pointfor (VMP) with A {xlg(x) >-_ O, x C}. Then
there is some continuous linear mapping T of Z into Y such that T(B) S and
Tg() 0 with properly efficient ]’or the unconstrained concave problem

maxf(x) + Tg(x) subject to x C (UCP).

Proof. Apply Theorem 2 to produce s
/
satisfying (3) with

s+f(X)=maxs+f(x) subjecttog(x)->0, xC.D
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62 j. BORWEIN

The standard Lagrange multiplier theorem ([9]) guarantees that u+B+

exists with u/g(Y)= 0 and

(6) s+f(Y)>-s+f(x)+ u+g(x) Vx C.

Choose s S with s+(s)= 1. Let To: Z--> Y be defined by To(z)= u+(z)s. Then
To(B) c S, To is continuous, linear and Tog(Y) 0. Equation (6) can be rewritten
as

s+(f(x) + Tog(x))<-_ s+(f(Y)+ T0g(Y)), x 6 C,

from which it follows, using Theorem 2 again, that Y is a proper efficient point for
(UCP) with T= To. U

6. Differential conditions. Consider now the Pareto maximization problem

maxf(x) subject to g(x) B, x C (P),

where f: X--> Y, g: X--> Y are Fr6chet differentiable functions between normed
spaces and Cc X, B c Z are arbitrary sets.

DEFINITION 5. The generalized constraint condition on g is said to hold at Y if
there is some closed convex cone G such that G OK T(A, Y), where K
{h Ig’()(h) P(B, g())}.

(This is necessarily slightly stronger than Zlobec’s condition [9] in which
P(A, Y) replaces T(A, Y).) As before, A denotes g-l(B) f’l C.

DEFINITION 6 [4]. Suppose K and G satisfy the constraint condition. H(G) is
said to hold when

(a) K/ + G/
is closed,

(b) H= {u+. g’()lu+ P+(B, g(Y))} is closed, (in the weak* topology).
H(G) is satisfied in particular when K, G, B are polyhedrally convex in finite
dimensions. The author in his thesis has given fairly general conditions for H(G)
to hold.

THEOREM 4. Suppose Y is a (local) proper efficient point for (P) and that G
satisfies the generalized constraint qualification with H(G) holding. Suppose either

+ S+(S+) Q5 or that S is pointed and has a compact base. There is some s with
+s+(s) > 0 if s S/{0}, and some u P+(B, g(Y)) such that

+.

Proof. By hypothesis, S f-) T(f(A)- $, f(Y)) 0. It is an elementary property
of tangent cones that.

(7) f’(Y)(T(A, Y)) T(f(A), f(Y)).

Combining these two containments with K f’IG T(A,Y), one sees that
el (f’(Y)(K fq G)) f’l S O.

(This last containment is essentially Kuhn and Tucker’s notion of properness
if one takes S R"+). All the hypotheses of Proposition 2 or 3 are met with

+N=cI(f’(Y)(Kf’)G)). There is some s satisfying (3) with s+f’(Y)(h)<-OXth
K f) G. This means

(8) s+f’(Y) -(K f3 G)+ -(K+ + G+)D
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MAXIMIZATIONS WITH RESPECT TO CONES 63

(using H(G) and property (iii) of Definition 4). A straightforward separation
argument shows that/- K/. This combined with H(G) and (8) yields

(9) s+f($)+u+g’($)-G+,
where s+(s) > 0 if s S/{0} and u+

In the standard finite-dimensional programming problem, C, B are coordi-
nate cones and the Kuhn-Tucker constraint condition implies that K
T(A, ). This means that Theorem 4 includes the Pareto maximization of any such
program with respect to any pointed cone in R". Thus one sees that Gettrion’s first
order necessary condition is subsumed by Theorem 4.

As in the case of real-valued objective functions, weak sufficiency conditions
can be described for (P) using the theory developed by Guignard [2].

In another direction if one does not require H(G) to hold, one still has

s +[’(x) +
which is much like Zlobec’s asymptotic results in [9].

7. Coladusion. The paper provides a tangent cone definition of proper
efficiency which coincides with Gettrion’s for concave programs and coordinate
orderings and which enables one to develop the theory in a much more general
framework. It seems possible that some requirement of properness could be
fruitfully imposed on various other notions of maximization allowing one to
characterize various classes of extreme points in tangent cone terms. Using
compact derivatives [10] one can extend the results to arbitrary convex spaces.
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