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PROPER GROUP ACTIONS AND SYMPLECTIC
STRATIFIED SPACES

L. Bates and E. Lerman

Let (M,ω) be a Hamiltonian G-space with a momentum
map F : M → g∗. It is well-known that if α is a regular value
of F and G acts freely and properly on the level set F−1(G ·α),
then the reduced space Mα := F−1(G · α)/G is a symplectic
manifold. We show that if the regularity assumptions are
dropped the space Mα is a union of symplectic manifolds,
and that the symplectic manifolds fit together in a nice way.
In other words the reduced space is a symplectic stratified
space. This extends results known for the Hamiltonian action
of compact groups.

Introduction.

Reduction of the number of degrees of freedom of a symplectic Hamiltonian
system has a long history. The modern formulation of reduction is due to
Meyer [Me] and to Marsden and Weinstein [MW]. We recall their result.
One starts with a symplectic manifold (M,ω), a Hamiltonian action of a Lie
group G and a corresponding equivariant momentum map F : M → g∗. Let
O be a coadjoint orbit of G. If the momentum map is transversal to the orbit,
then the preimage F−1(O) of the orbit is a submanifold of M and the action
of the Lie group G on the preimage is locally free. Assume that this action
is actually free and that the orbit map F−1(O)→ F−1(O)/G is a fibration.
The reduction theorem says that the orbit space MO := F−1(O)/G is a
symplectic manifold. The restriction of a smooth G invariant function h
on M to the preimage of the orbit descends to a smooth function hO on
the reduced space MO. Moreother, the Hamiltonian flow of h on F−1(O)
descends to the Hamiltonian flow of hO on the reduced space.

It turns out that often the action is only locally free, so at best the reduced
spaces are symplectic orbifolds. This already suggests that the category
of symplectic manifolds is too restrictive for Hamiltonian dynamics. More
generally one would like to get rid of the transversality hypothesis in the
reduction procedure. One reason for this desire is that the more symmetry
the point of a system has the more singular the momentum map is at this
point. Of course, the symmetric points are not generic, but they are very
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important in understanding of the dynamics of the system. Another reason is
that one would like to understand the change in the topology of the reduced
space as one crosses the critical values of the momentum map.

For a number of years the reduction at singular values of the momentum
map has been problematic. In 1981 Arms, Marsden and Moncrief [AMM]
showed that under some assumptions the set F−1(0)/G is a union of sym-
plectic manifolds and that the flow of invariant Hamiltonians on the level set
F−1(0) of the momentum map descends to the flow of the reduced Hamilto-
nians on these symplectic manifolds. Otto showed that a similar result holds
for arbitrary coadjoint orbits, i.e., that F−1(O)/G is a union of symplectic
orbifolds [O]. Yet these observations didn’t gain use and are not well known.
Many reduction schemes have been proposed since then. A number of them
are compared in [AGJ].

Our approach to reduction is the one proposed in [SL] and [LMS]. Namely,
for a point α in the dual of Lie algebra of G, the reduced space at α is the
topological space Mα = MG·α := F−1(G · α)/G, where G · α is the coadjoint
orbit through α. In general this topological space can be quite horrible, as
we shall see shortly. One of the main points of the paper is that we only need
to make two assumptions — that the action is proper and that the coadjoint
orbits of our group are locally closed — to guarantee that the reduced spaces
are manageable. By ‘manageable’ we mean that Hamilton’s equations hold
and the geometry of the reduced space is reflected in the dynamics.

We will also show that in analogy with symplectic orbifolds (which are
modeled on a symplectic vector space modulo a finite group) our reduced
spaces are modeled on symplectic vector spaces reduced at zero with respect
to a linear action of a compact group. This extends the results of [SL] and
[CS] which proved the above assertions for the case of the compact symmetry
group. One motivation for the extension is to push the methods of [SL] as
far as they would go. Another motivation for this extension comes from field
theory, where the symmetry groups are not compact. Yet some field theories
such as Yang-Mills in bounded domains do not satisfy the assumptions of
the Arms-Marsden-Moncrief theory (for which field theory appears to be a
primary motivation), but the gauge group still acts properly, and a large
portion of the finite dimensional results can still be established [SSB].

We now briefly describe the organization of the paper.
1. We start by defining an algebra of “smooth functions” on the reduced

space with a natural Poisson bracket. The bracket allows us to define
Hamiltonian flows of smooth functions on the reduced space. If the
smooth functions on the reduced space separate points the flows are
unique.

2. The Hamiltonian flows of smooth functions preserve the decomposition
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of the reduced space induced by the orbit type decomposition of the
original manifold.

3. Local normal form computations show that
(a) the orbit type decomposition of the reduced space is a decompo-

sition into symplectic manifolds;
(b) the embeddings of these manifolds (the symplectic pieces) into the

reduced space are Poisson maps;
(c) the group generated by the Hamiltonian flows of functions on the

reduced space acts transitively on the connected components of
the symplectic pieces;

(d) consequently, the Poisson algebra of smooth functions on the re-
duced space carries all the information about the decomposition
of the reduced space into symplectic pieces.

4. The last fact allows us to define isomorphisms of reduced spaces in
terms of the corresponding isomorphisms of Poisson algebras of func-
tions. We can also define local isomorphisms.

5. Local normal form computations show that a reduced space is locally
isomorphic to a symplectic vector space reduced at zero with respect
to a linear action of a compact group. This symplectic vector space
is the maximal symplectic subspace of the slice to the corresponding
orbit in the original manifold.

6. It follows that the decomposition of the reduced space by orbit type is
a stratification and that the local structure of a stratification can be
read off from the slice representation.

7. We use the local normal form computation to show that the strata of
the reduced space can individually be obtained by Marsden-Weinstein-
Meyer reduction. This provides us with a way to reconstruct the orig-
inal dynamics from the dynamics on the reduced space.

8. We conclude by showing how one can use symplectic cross-sections to
factor out the coadjoint orbit directions.

1. Dynamics on the reduced space.

Consider a symplectic manifold M with a Hamiltonian action of a Lie group
G and let F : M → g∗ be a corresponding equivariant momentum map. Fix
a coadjoint orbit O of G. We define the corresponding reduced space MO to
be the topological quotient of the subset F−1(O) of M by the action of the
group G,

MO := F−1(O)/G.
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We have not made enough assumptions to guarantee that the set F−1(O) is
a manifold or that the quotient space MO is nice.

Example 1. Consider an irrational flow on a torus R×T→ T2 generated
by a vector ξ in the Lie algebra of T2. The flow lifts to a Hamiltonian action
on the cotangent bundle of the two torus. The reduced space at zero M0 is
homeomorphic to T/R × Rξ◦ where Rξ◦ is the annihilator in the dual of
the Lie algebra of the torus of the line through ξ. The reduced space is not
Hausdorff.

We note for future reference that the space of functions on the cotangent
bundle of the two torus that are invariant under the flow is isomorphic to
the space of functions on R2 and that the Poisson bracket of two invariant
functions is zero.

Our first step in defining the dynamics on the reduced space (in this we
are following [ACG]) is to define a Poisson algebra of “smooth functions”
on the reduced space. Since the restriction of a smooth invariant function on
the manifold M to the set F−1(O) descends to a continuous function on the
quotient F−1(O)/G = MO, we define the smooth functions on the reduced
space to be these restriction,

C∞(MO) := C∞ (M)G
∣∣
F−1(O)

:= C∞(M)G/I.

Here C∞(M)G is the algebra of smoothG-invariant functions on the manifold
M, and I = I(F−1(O)) is the ideal of invariant functions that vanish on the
set F−1(O).

To show that the algebra of smooth functions C∞(MO) is a Poisson al-
gebra, we need to check that I is not only an ideal under multiplication of
functions but also an ideal with respect to the Poisson bracket (recall that
the G invariant functions form a Poisson subalgebra of C∞(M)). The fact
that I is a Poisson ideal follows from Lemma 2 below.

Lemma 2. Let M be a symplectic (or, more generally, a Poisson) manifold,
and A be a Poisson subalgebra of C∞(M). Suppose that the Hamiltonian
flows of functions in A preserve a subset X of the manifold M. Then the
ideal

I(X) := {f ∈ A : f |X = 0}
of functions in A that vanish on X is a Poisson ideal of A.

Proof. Let f be in A, x be a point in X and h be in the ideal I(X). Let
γ(t) be the integral curve of the Hamiltonian vector field of f with γ(0) = x.
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Then γ(t) is in X and so h(γ(t)) = 0 for all t. Differentiation with respect
to t yields

0 =
d

dt

∣∣∣∣
0

h(γ(t)) = {f, h}(x).

Thus {f, h}|X = 0, i.e., {f, h} is in the ideal I(X).

The Hamiltonian flows of invariant functions on M preserve the fibers of
the momentum map F (Noether’s theorem). Therefore, by Lemma 2 with
A = C∞(M)G and X = F−1(O) we have that I(F−1(O)) is a Poisson ideal.
This proves that the smooth functions C∞(MO) on the reduced space form
a Poisson algebra.
Remark. More generally, we can define a sheaf of Poisson algebras on
the reduced space, a kind of structure sheaf. An open set U in the reduced
space MO is the quotient of the intersection of the level set F−1(O) with a
G invariant open set Ũ . We define the Poisson algebra C∞(U) by

C∞(U) := C∞
(
Ũ
)G∣∣∣∣

F−1(O)

.

Remark. Recall that if the action of the group G on the manifold M is
proper, then for a subgroup H of G the set of points M(H) of orbit type H,
i.e., the set of points with orbits isomorphic to G/H, is a submanifold of M
(the definition of proper actions and some of their properties are listed later).
Since the Hamiltonian flow of a G invariant function on M is G equivariant,
the manifolds M(H), H < G, are preserved by the flows of invariant functions.
Therefore for a subgroup H of G the ideal of invariant functions vanishing
on the intersection F−1(O) ∩M (H) is a Poisson ideal in the algebra of the
invariant functions and consequently defines a Poisson ideal in the algebra
of smooth functions C∞(MO) on the reduced space.

The Poisson bracket on the reduced space should allow us to write down
equations of motion for any f ∈ C∞(MO). But first we need to define what
we mean by a smooth curve in a reduced space.
Definition 3. A smooth curve γ in a reduced space MO is a continuous map
γ : I →MO, I an interval, such that for any smooth function h ∈ C∞(MO)
the function h(γ(t)) is a smooth function on the interval I.

A smooth flow {φs} on MO is defined similarly. It is a one-parameter
group of homeomorphisms φs : MO → MO such that for each h ∈ C∞(MO)
and each s, we have h◦φs ∈ C∞(MO), and for each point m ∈MO the curve
s 7→ φs(m) is a smooth curve.

We are now in a position to define a Hamiltonian flow of a smooth function
on a reduced space.
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Definition 4. A Hamiltonian flow of a smooth function f on a reduced
space MO is a smooth flow {φs} such that for any point m in MO and any
smooth function h in C∞(MO) we have

d

ds
h(φs(m)) = {f, h}(φs(m))(1)

where { , } is the Poisson bracket on C∞(MO).

This definition raises a problem. Since the reduced space MO is not neces-
sarily locally Euclidean, Equation (1) is not in general a system of ordinary
differential equations in a coordinate-free notation. Therefore the existence
and uniqueness of solutions of (1) needs to be addressed.

The existence is easy. The key fact that the Hamiltonian flow of a G
invariant function f on the original symplectic manifold M is G equivariant.
Since the flow also preserves the level sets F−1(O) of the momentum map F,
it descends to a flow on the reduced space MO. It is now a formal exercise
to check that this flow is smooth, and that it is a Hamiltonian flow of the
corresponding function f ∈ C∞(MO) in the sense of the above definition (cf.
p. 389 in [SL]).

The uniqueness is not to be expected without additional assumptions
about the topology of the reduced space. Indeed, on a non-Hausdorff mani-
fold an integral curve of a vector field is not necessarily unique. One would
expect non-uniqueness on any non-Hausdorff space. The example of the ir-
rational flow on the cotangent bundle of the two torus considered above is
quite instructive in this case. Recall that the reduced space at zero in the
example is homeomorphic to the product (T2/R)×R. It is easy to see that
the smooth functions on this reduced space are simply the functions that are
constant on the first factor and smooth (in the usual sense) on the second
factor. It follows that any continuous flow on the product that fixes the
points of the second factor is smooth. Since the induced Poisson bracket
is zero, any flow that fixes the points of the second factor is a Hamiltonian
flow of any smooth function. Thus a different set of ideas is needed to make
sense of non-Hausdorff reduced spaces.

Lemma 5. If the smooth functions on the reduced space separate points,
then Hamiltonian flows are unique.

Proof. Again we follow [SL], p. 389. Suppose that φt and ψt are two Hamil-
tonian flows on a reduced space MO generated by a function f ∈ C∞(MO).
Then, by the chain rule, φ−t is a flow of −f. Since smooth functions sepa-
rate points, it is enough to show that for any function h ∈ C∞(MO) and any
point m in the reduced space,

h(ψt(φ−t(m))) = h(m).
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However

d

dt
h(ψt(φ−t(m))) = {h, f}(ψt(φ−t(m))) + {h, −f}(ψt(φ−t(m))) = 0.

At this point we make an assumption that will guarantee that functions
on the reduced space will separate points, namely that the action of the
symmetry group G on the original manifold M is proper, that is to say the
map

G×M →M ×M, (g, m) 7→ (g ·m, m)

is a proper map. Equivalently, an action of G on M is proper if given two
convergent sequences {mn} and {gn · mn} in M there exists a convergent
subsequence {gnk} in G.

Digression: Properties of proper group actions.
We now list the properties of proper group actions that we will need in the

course of the paper. The proofs of some properties are easy or are readily
available. Other properties appear to be folklore and we will supply the
proofs in the appendix.
1. The isotropy group Gm of any point m in M is compact; all orbits of G
in M are closed and embedded submanifolds.
2. The orbit space M/G is Hausdorff.
3. At every point m ∈ M there exists a slice for the action of G. That is
to say there is a ball B about 0 in the fiber TmM/Tm(G ·m) of the normal
bundle to the orbit through m with B invariant under the action of Gm and
an embedding φ : B →M with φ(0) = m such that the set G · φ(B) is open
in M and the induced map

G×Gm B →M, [g, b] 7→ g · φ(b)

is a diffeomorphism onto the image G · φ(B). Here [g, b] denotes the class of
(g, b) ∈ G×B in the associated fiber bundle G×GmB and Gm is the isotropy
group of m. The Gm invariant manifold φ(B) is a slice for the action of G
at m.
4. There exists a G invariant partition of unity subordinate to any G invari-
ant open cover. (We assume that the manifold M is paracompact.)
5. There exists on M a G invariant positive definite metric.
6. Smooth G invariant functions separate the orbits of G.
7. If ω is a G invariant symplectic form on M there exists a G invariant
almost complex structure J adapted to ω. That is to say, the bundle map J is
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symplectic, ω(J ·, J ·) = ω(·, ·), and the symmetric form ω(·, J ·) is a positive
definite metric. A proof is provided in the appendix.

8. For any (compact) subgroup H of G the sets

M(H) = {m ∈M : Gm, the isotropy group of m, is conjugate to H},
MH = {m ∈M : Gm is H},

and

MH = {m ∈M : Gm contains H} = the set of points fixed by H

are submanifolds of M (this follows from the existence of slices, cf. fact 3).
The manifold M(H) is called the manifold of points of orbit type (H). Note
also that the closure of MH is contained in MH but need not equal all of
MH .

9. An equivariant version of the relative Darboux theorem holds:

Theorem 6 (Relative Darboux). Let X be a submanifold of a manifold
Y. Let ω0 and ω1 be two symplectic forms on Y such that ω0(x) = ω1(x)
for each x ∈ X. Then there exist neighborhoods U0 and U1 of X and a
diffeomorphism ψ : U0 −→ U1 such that the pull back of ω1 by ψ is ω0 and ψ
is the identity on X.

If a Lie group G acts properly on Y, preserves X, ω0 and ω1, then we
can arrange that the neighborhoods U0 and U1 are G-invariant and that the
diffeomorphism ψ is G-equivariant.

A proof is given in the appendix.

10. It follows from fact 9 that if M is symplectic then the manifolds MH and
MH are symplectic as well. The manifold M(H) is usually not symplectic.

2. Geometry of the reduced space.

The main goal of this section is to establish the following theorem.

Theorem 7. Let G be a Lie group acting properly and in a Hamiltonian way
on a symplectic manifold (M,ω) with a corresponding equivariant momentum
map F : M → g∗ and let O be a locally closed coadjoint orbit of G. Then:
(1) The reduced space MO := F−1(O)/G is a locally finite union of sym-

plectic manifolds. We will call these manifolds symplectic pieces.
(2) The Hamiltonian flows of smooth functions preserve the decomposition

of the reduced space MO into symplectic pieces.
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(3) The embedding of a symplectic piece into the reduced space MO is a
Poisson map.

Observe that the condition of a coadjoint orbit being locally closed is
automatic for reductive groups and for their semidirect products with vector
spaces. There is an example of a solvable group due to Mautner ([P], p. 512)
with non-locally closed coadjoint orbits so the condition we are imposing is
not vacuous. Note also that the condition of the coadjoint orbit being locally
closed is precisely the condition that is necessary in order for the shifting
trick to make sense. Since we want to read off the structure of the reduced
space from the corresponding slice representation on the original manifold
we will not use the shifting trick.

Theorem 7 has an important corollary.

Corollary 8. Suppose MO and NO′ are two reduced spaces and φ : MO →
NO′ a homeomorphism. If the induced pull-back map φ∗C∞(NO)→ C∞(MO)
is a Poisson isomorphism then φ maps symplectic pieces to symplectic pieces.

Proof. On a connected symplectic manifold the group generated by the time
one Hamiltonian flows of smooth functions acts transitively. It follows from
this and from assertion (2) of the theorem that connected components of
the symplectic pieces of a reduced space MO are equivalence classes of the
relation: x is equivalent to y if and only if there are smooth functions
f1, . . . , fn ∈ C∞(MO) such that a composition of their time one flows maps
x to y. Thus the decomposition of a reduced space into symplectic mani-
folds is encoded in the Poisson algebra C∞(MO) of smooth functions on the
reduced space.

The corollary also allows us to define local isomorphisms of reduced spaces.
We will see in Theorem 15 that all reduced spaces (under the two hypotheses
above) are locally isomorphic to a symplectic vector space reduced at zero
with respect to a linear action of a compact group. This in turn permits us
to define abstract “symplectic stratified spaces.”

Here is the strategy of the proof of Theorem 7. We will define the terms
and provide complete statements shortly. Fix a point x in the preimage
F−1(O) of the coadjoint orbit. Since the symplectic form ω on M is G
invariant the G orbit of x is a submanifold of constant rank. It follows by
the constant rank embedding theorem of Marle [Ma2], [Ma1] (see Theorem
9 below) that a G invariant neighborhood of the orbit G ·x is symplectically
determined by the restriction of the symplectic form to the orbit and by the
symplectic normal bundle of the embedding G · x ↪→M. (A non-equivariant
version of the constant rank embedding theorem can also be found in [AG]
on p. 26.) So if we can find a constant rank embedding of the orbit into
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some “simple” Hamiltonian G manifold Y, a neighborhood of the orbit in Y
is going to be symplectically isomorphic to a neighborhood of the orbit in
M. The manifold Y is a kind of “Darboux coordinates” that take the action
of G into account. We will then carry out our computations of the reduced
space in Y.

Digression: Constant rank embeddings.
Let X be a submanifold of a symplectic manifold (P, τ). For a point x in

X the symplectic perpendicular to the tangent space of X at x with respect
to the form τ is the subspace

TxX
τ := {v ∈ TxP : τ(x)(v, w) = 0 for all w ∈ TxX}.

Together these subspaces define a subbundle TXτ of the restriction TXP of
the tangent bundle of P to X. Under the isomorphism

TXP → T ∗XP (x, v) 7→ (x, τ(x)(v, ·))

the bundle TXτ is identified with the annihilator TX◦ of TX in T ∗XP. Since
TX◦ = (TXP/TX)∗, the symplectic perpendicular TXτ is isomorphic, as an
abstract real vector bundle, to the normal bundle of X in P. In general the
form τ(x) may be degenerate on TxXτ . In fact, the quotient TxXτ/(TxXτ ∩
TxX) is isomorphic to a maximal symplectic subspace of (TxXτ , τ(x)). If the
dimension of this quotient is constant, i.e., if the distribution TX ∩ TXτ is
a vector bundle, we say that the embedding X ↪→ (P, τ) is of constant rank.
In this case the quotient bundle

N(X) := TXτ/TXτ ∩ TX

is a symplectic vector bundle, the symplectic normal bundle of the embedding
X ↪→ (P, τ). Note that TX ∩ TXτ is simply the kernel of the restriction of
τ to X and that as abstract vector bundles

TXP ' N(X)⊕ (TXτ ∩ TX)⊕ TX.

So together the pull back τ |X and the symplectic normal bundle N(X) con-
tain more information than the abstract normal bundle of X in P. In fact
the two pieces of data — τ |X and N(X) — uniquely describe the symplectic
form τ in a whole neighborhood of X. The precise statement is this.

Theorem 9 (Uniqueness of constant rank embeddings). Let (P, τ)
and (P ′, τ ′) be two symplectic manifolds. Suppose i : X → (P, τ) and i′ :
X → (P ′, τ ′) are two constant rank embeddings with isomorphic symplectic
normal bundles such that i∗τ = (i′)∗τ ′. Then there exist neighborhoods U of
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i(X) in P and U ′ of i′(X) in P ′ and a diffeomorphism φ : U → U ′ such that
φ ◦ i = i′ and φ∗τ ′ = τ.

Furthermore, if G is a Lie group that acts properly on X, P and P ′,
preserves the forms τ and τ ′ and if the embeddings i and i′ are G equivariant,
then U and U ′ can be chosen to be G invariant and φ to be G equivariant.

The proof of the theorem is given later in the appendix. Since any two
equivariant momentum maps differ by a constant vector, we also have the
following corollary (we keep the notation of Theorem 9).

Corollary 10. Suppose in addition that the actions of G on (P, τ) and
(P ′, τ ′) are Hamiltonian with momentum maps F : P → g∗ and F ′ : P ′ → g∗.
If F ◦ i = F ′ ◦ i′ then F ′ ◦ φ = F.

This ends our digression and we now continue with the proof of Theorem
7. Recall that we have a Hamiltonian G space (M,ωM) with momentum
map F : M → g∗, that x is a point in M, α = F (x) and O = G · α is the
coadjoint orbit through α. We want to model a neighborhood of the orbit
G · x in M in order to understand the structure of the quotient F−1(O)/G
near the orbit G · x.

We have observed that G ·x is a constant rank submanifold of M. We will
now constract a symplectic manifold (Y, ωY ) with a Hamiltonian G action,
an equivariant momentum map FY and an embedding i : G · x ↪→ Y such
that i∗ωY = ωM |G·x, the symplectic normal bundle of i is the same as that of
G·x ↪→M and FY (x) = α. The constant rank embedding theorem, Theorem
9, would then guarantee that there are neighborhoods U of G · x in M, UY
of G · x in Y and a G equivariant diffeomorphism φ : UY → U such that
φ∗ωM = ωY and φ∗F = FY .

Proposition 11. Let F : M → g∗ be a momentum map for a Hamiltonian
action of a Lie group G on a symplectic manifold (M,ωM). Then for any
point x ∈ M the restriction of the ambient symplectic form ωM to the orbit
G ·x equals the pullback by the momentum map F of the symplectic form on
the coadjoint orbit through F (x) :

ωM |G·x = F ∗ωG·F (x)|G·x

where ωG·F (x) is the Kirillov-Kostant-Souriau (KKS) symplectic form on the
coadjoint orbit of F (x) in g∗.

Proof. Let α = F (x). For a vector ξ ∈ g let ξM denote the corresponding
vector field on M induced by the action of G and ξg∗ the corresponding
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vector field on g∗ induced by the coadjoint action. By the definition of the
momentum map, we have for any ξ, η ∈ g

ωM(x)(ξM(x), ηM(x)) = 〈ξ, dFx(ηM(x))〉.

By the equivariance of F, we have dFx(ηM(x)) = ηg∗(F (x)) = ηg∗(α). Finally,

〈ξ, ηg∗(α)〉 = 〈(−adη)ξ, α〉 = 〈[ξ, η], α〉 = ωG·α(ξg∗(α), ηg∗(α))

and we are done.

Remark. The proposition allows us to take a more uniform view of
regular reduction and, in particular, to make sense of the shifting trick.
Suppose a momentum map F : M → g∗ is transversal to a locally closed
orbit G · α ⊂ g∗ and that the action of G on the preimage F−1(G · α) is
free. Then by the proposition the form (ω − F ∗ωG·α)|F−1(G·α) is basic and
descends to a symplectic form on the quotient. This form on the quotient is
the Marsden-Weinstein-Meyer reduced form.

Corollary 12. The symplectic perpendicular Tx(G · x)ωM to the tangent
space at x of the orbit through x intersects the tangent space in the Gα

directions:
Tx(G · x)ωM ∩ Tx(G · x) = Tx(Gα · x).

Here Gα is the isotropy group of α = F (x), the image of x under the mo-
mentum map F.

Corollary 12 says that the subspace (gα)M(x) := {ξM(x) : ξ ∈ gα =
Lie(Gα)} is the null space of the form ωM(x)|Tx(G·x). Note that since F is
equivariant, the isotropy group Gx of x is contained in Gα.

Choose a Gx invariant splitting

g = gα ⊕ s(2)

(we use the fact that Gx is compact). Then ωM(x)|sM (x) is nondegenerate.
So sM(x) is a symplectic subspace of (TxM,ωM(x)) isomorphic to the tan-
gent space of the coadjoint orbit through F (x). (Note that ωM(x)|sM (x) '
ωG·α(α), α = F (x).) Also the symplectic perpendicular Tx(G · x)ω contains
(gα)M(x). Pick a Gx invariant splitting Tx(G · x)ω = (gα)M(x)⊕ V. Then V
is a symplectic subspace in (TxM,ωM(x)). Note that V is isomorphic to the
quotient Tx(G · x)ω/(Tx(G · x)ω ∩ Tx(G · x)), which is a typical fiber of the
symplectic normal bundle of the orbit G · x in M . Let ωV = ωM(x)|V .

Since V and sM(x) are both symplectic and Gx invariant, the symplec-
tic perpendicular (V ⊕ sM(x))ω is also symplectic and Gx invariant. The
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symplectic perpendicular contains (gα)M(x), which is null in it. Hence, by
dimension count, this space is Lagrangian in the symplectic perpendicular.
We conclude that (TxM,ωM(x)) splits as a direct sum of three symplectic
subspaces:

(TxM,ωM(x)) = (V, ωV )⊕ (sM(x), ωG·α(α))⊕ ((gα)M(x)⊕ (gα)(x)∗),

and the splitting is Gx invariant. The symplectic form on the last summand
is the canonical form on the product of a vector space with its dual.

The tangent space at x to the total space Y of the associated bundle
π : G ×Gx ((gα/gx)∗ ⊕ V ) → G · x (we think of the orbit G · x as being
embedding in the bundle as the zero section) is

TxY ' Tx(G · x)⊕ (gα/gx)
∗ ⊕ V ' (s/gx)⊕ (gα/gx)⊕ (gα/gx)

∗ ⊕ V ' TxM.

We now constract a closed G invariant two form τ on the total space Y of
the associated bundle such that

(Tx(G×Gx [(gα/gx)
∗ ⊕ V ]), τ(x)) = (TxM,ω(x)).

The form τ is going to be the sum of three terms. We construct the first term
τ1 by first pulling back by the momentum map F the KKS symplectic form
ωG·α on the coadjoint orbit through α = F (x). We then pull it back by the
bundle projection map π : Y → G · x, so τ1 = π∗(F |G·x)∗ωG·α. At the point
x the form τ1 is a nondegenerate two form on the subspace s/gx ' sM(x).

To construct the second and the third terms observe that the diagram

Y = G×Gx (gα/gx)∗ ⊕ V −−−→ G×Gx Vy y
G×Gx (gα/gx)∗ −−−→ G · x

commutes. So we can think of Y as a vector bundle over G ×Gx V with
typical fiber (gα/gx)∗ or as a vector bundle over G×G·x (gα/gx)∗ with typical
fiber V. Therefore a form on the total space of G×Gx V or of G×G·x (gα/gx)∗

may be thought of as a form on the manifold Y.
To construct the second term τ2 we embed G×Gx (gα/gx)∗ into the cotan-

gent bundle of the orbit G ·x. The Gx equivariant splitting g = s⊕gα chosen
above gives rise to a Gx equivariant projection

g→ gα,

which induces an embedding

j : (gα/gx)
∗ ↪→ (g/gx)

∗
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and thereby an embedding j of the associated vector bundles

j : G×Gx (gα/gx)
∗ → G×Gx (g/gx)

∗ ' T ∗(G · x).

The pull-back by j of the canonical symplectic form ωT∗(G·x) on the cotan-
gent bundle of the orbit G · x is a closed two form on G×Gx (gα/gx)∗, hence
it gives rise to a closed two form τ2 on Y.

The construction of the third term τ3 is an example of minimal coupling of
Sternberg [GS2]. We first refine the splitting g = s⊕ gα to a Gx equivariant
splitting

g = gx ⊕m⊕ s

(with gα = gx ⊕ m). Let A0 : g → gx be the corresponding Gx equivariant
projection. It defines a left G invariant gx-valued one form A on G. The
form A is a connection one form for the principal Gx bundle G→ G · x. Let
FV : V → g∗x denote the momentum map arising from the linear symplectic
action of Gx on (V, ωV ). Consider the following two form on G× V :

τ̃3 = d〈A,FV 〉+ ωV .

The form is Gx invariant. It is not hard to check that it is basic for the
projection G × V → G ×Gx V. Denote the corresponding closed two form
on G ×Gx V and hence on Y by τ3. Note that the value of τ3 at x on V ⊂
TxY = TxM is the form ωV and the restriction of τ3(x) to the other two
summand is zero. (This is because FV is a homogeneous quadratic map on
V, so FV (0) = 0 and dFV (0) = 0. Consequently at a point (g, 0) ∈ G× V we
have d〈A,FV 〉(g, 0) = 〈dA, FV 〉(g, 0) + 〈A ∧ dFV 〉(g, 0) = 0 + 0 = 0.)

We conclude that (τ1 + τ2 + τ3)(x) = ω(x). Let τ be the sum τ1 + τ2 + τ3.
By construction τ is a closed G invariant two form on the total space of
Y = G×Gx ((gα/gx)∗⊕ V ) which is non-degenerate at the points of the zero
section G · x. Thus τ is non-degenerate in some (G invariant) neighborhood
Y0 of the zero section. Note that by construction we have τ |G·α = F ∗ωG·x =
ω|G·x and the symplectic normal bundle of the embedding G · x ↪→ (Y0, τ) is
G×Gx V which is the symplectic normal bundle of the embeddding G · x ↪→
(M,ω). The constant rank embedding theorem says that if we shrink the
neighborhood Y0 a bit more, we will have a G equivariant map ψ : Y0 →M
which is a diffeomorphism onto its image and has the properties that ψ|G·x
is the identity map and ψ∗ω = τ. That is to say, a neighborhood of the
zero section G · x in the associated bundle (G ×Gx [(gα/gx)∗ ⊕ V ], τ) is the
promised “Darboux coordinate patch adapted to the action of the Lie group
G.”

Our next step is compute a momentum map FY for the action of G on
(Y, τ). The requirement that FY (x) = F (x) = α would then ensure that
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FY = F ◦ ψ, where F : M → g∗ is the original momentum map. This would
finally allow us to get on with computing the reduced space F−1(G · α)/G.

A momentum map is traditionally defined for actions that preserve nonde-
generate two forms. One can extend this definition to actions that preserve
arbitrary two forms as long as the contractions of the vector fields induced
by the action with the form are exact. For example, consider the form
τ1 = π∗(F |G·x)∗ωG·α on the manifold Y, where π : Y → G · x is the vector
bundle projection. For any ξ ∈ g we have

ξY y τ1 = d〈ξ, π∗(F |G·x)〉.

Hence F1 = π∗(F |G·x) is a momentum map for the action of G on (Y, τ1).
Note that F1([g, λ, v]) = g · α where [g, α, v] is the class of (g, λ, v) ∈ G ×
(gα/gx)∗ × V in the associated bundle Y.

Similarly since the lifted action of G on the cotangent bundle T ∗(G ·x) =
G×Gx g◦x (g◦x is the annihilator of gx in g∗) is Hamiltonian with momentum
map sending the class [g, λ] of (g, λ) ∈ G × g◦x to g · λ, the map F2 : G ×Gx
[(gα/gx)∗⊕V ]→ g∗ sending the class [g, λ, v] to g · j(λ) is a momentum map
for the action of G on (Y, τ2). Recall that j : (gα/gx)∗ → (g/gx)∗ is defined
by the choice of the splitting g = gα ⊕ s made earlier.

Let us also compute a momentum map for the action of G on (Y, τ3).
Note first that the action of G on G×V given by g · (a, v) preserves the form
τ̃3 = d〈A,FV 〉 + ωV . So for ξ ∈ g the induced vector field ξG×V = ξG is a
right invariant vector field on G and

0 = (ξGy d+ dξGy)〈A,FV 〉 = ξGy d〈A,FV 〉+ d〈A(ξG), FV 〉.

Since ξG is right invariant and A is left invariant, A(ξG)(g) = A0(Ad(g−1)ξ).
It follows that a momentum map for the action of G on (G× V, τ̃3) is given
by (g, v) 7→ g · i(FV (v)) where i : g∗x → g∗ is the transpose of the projection
g → gx. Therefore F3 : (Y, τ3) → g∗, a momentum map for the action of G
on (Y, τ3), is given by

F3([g, λ, v]) = g · i(FV (v)).

The upshot of these computations is that FY = F1+F2+F3 is a momentum
map for the action of G on (Y, τ = τ1 + τ2 + τ3), that is to say

FY ([g, λ, v]) = g · (α+ j(λ) + i(FV (v)))

where i : g∗x ↪→ g∗ and j : (gα/gx)∗ ↪→ g◦x are induced by an Gx equivariant
splitting

g = gα ⊕ s = gx ⊕m⊕ s.
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The proposition below is a key computation.

Proposition 13. Assume that the coadjoint orbit through α = F (x) is
locally closed. Then for a small enough neighborhood Y0 of the orbit G · x in
the model space Y, the intersection of the set F−1

Y (G·α) with the neighborhood
Y0 is of the form

F−1
Y (G · α) ∩ Y0 = {[g, λ, v] ∈ Y0 : λ = 0 and FV (v) = 0}.

Proof. We write

FY : G×Gx ((gα/gx)
∗ × V )→ g∗, [g, λ, v] 7→ g · (α+ i(λ) + i(FV (v)))

as a composition of two maps:

b : G×Gx ((gα/gx)
∗ × V )→ G×Gx g∗α, [g, λ, v] 7→ [g, λ+ iα(FV (v))]

and
E : G×Gx g∗α → g∗, [g, ν] 7→ g · (α+ k(ν)).

Here iα : g∗x ↪→ g∗α is the Gx equivariant embedding defined by the Gx

equivariant splitting gα = gx ⊕ m chosen earlier, (gα/gx)∗ is identified with
the annihilator of gx in g∗α and k : g∗α ↪→ g∗ is the Gx equivariant embedding
corresponding to the splitting g = gα⊕ s. At the points of the form [g, 0] the
map E is a submersion. By assumption the coadjoint orbit G·α is embedded.
Therefore the preimage E−1(G ·α) is an embedded submanifold of G×Gx g∗α
of codimension dim gα. It follows that the zero section of G ×Gx g∗α is a
collection of connected components of the preimage of the orbit. Since the
preimage is embedded, there is a neighborhood U of the zero section such
that E−1(G · α) ∩ U is the zero section. Let Y0 = b−1(U). Then

F−1
Y (G · α) ∩ Y0 = b−1(U ∩ E−1(G · α)) = Y0 ∩ b−1 (zero section).

Clearly, b−1 (zero section)= {[g, 0, v] : FV (v) = 0} and we are done.

Corollary 14. For any subgroup H < G and any α ∈ g∗ with the orbit G ·α
locally closed, the set F−1(G · α) ∩M(H) is a submanifold of M of constant
rank, the quotient (Mα)(H) := (F−1(G·α)∩M(H))/G is a symplectic manifold
and the inclusion (Mα)(H) ↪→Mα := F−1(G · α)/G is a Poisson map.

Proof. Let x be a point in the intersection F−1(G ·α)∩M(H). It is no loss of
generality to assume that the isotropy group Gx of x is H. Recall that there
exists a G invariant neighborhood U of the orbit G · x in M, a G invariant
neighborhood Y0 of the zero section in Y = G ×Gx ((gα/gx)∗ × V ) and a G
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equivariant diffeomorphism ψ : Y0 → U such that ψ∗ω = τ |Y0 where τ is the
closed two form on Y constructed earlier. It follows that ψ descends to a
homeomorphism ψα : (Y0)α → Uα. Here (Y0)α := (F−1

Y (G · α) ∩ Y0)/G and
Uα := (U ∩F−1(G ·α))/G are the reduced spaces. Moreover by construction
the pull-back map ψ∗α : C∞((Y0)α)→ C∞(Uα) is an isomorphism of Poisson
algebras, where C∞(Uα) := C∞(U)G|F−1(G·α) etc. Therefore it is enough to
prove the statements of the corollary for the action of G on (Y0, τ).

It is convenient to ignore the distinction between the total space Y and
the neighborhood Y0 of the zero section in Y. We note for future reference
that the embedding of the symplectic slice V into the model space Y given
by v 7→ [e, 0, v], where e is the identity element of G, is symplectic, i.e.,
τ |V = ωV . It is not hard to see that

Y(H) = G×H [(gα/h)∗ × V ]H

where [(gα/h)∗ × V ]H denotes the subspace of H fixed vectors (remember
that Gx = H). It follows that F−1

Y (G · α) ∩ Y(H) = G×H V H ' G/H × V H .
Since τ |G/H×V H = ω|G·x + ωV |V H and V H is a symplectic subspace of V, we
conclude that F−1

Y (G · α) ∩ Y(H) is a submanifold of (Y, τ) of constant rank
and that the quotient (F−1

Y (G · α) ∩ Y(H))/G is diffeomorphic to V H .
Therefore F−1(G · α) ∩M(H) is a submanifold of (M,ω) of constant rank

and the quotient (F−1(G ·α)∩M(H))/G is a manifold. We also see that the
form (ω−F ∗ωG·α)|F−1(G·α)∩M(H) is basic and descends to a form on the base
locally isomorphic to ωV |V H . Thus (Mα)(H) is a symplectic manifold.

Finally observe that if a function f on Y is G invariant then its restriction
to F−1

Y (G ·α)∩Y(H) = G/H×V H is completely determined by its restriction
to V H . It follows that the map (Mα)(H) ↪→Mα is Poisson.

To finish the proof of Theorem 7 we need to show that the decomposition
of the reduced space MG·α = Mα into symplectic pieces is locally finite and
that the Hamiltonian flows of smooth function on the reduced space preserve
the decomposition. The local finiteness of the decomposition of the reduced
space follows from the local finiteness of the decomposition of the original
manifold M into orbit types which in turn follows from the existence of slices
for proper group actions. The fact that the Hamiltonian flows preserve the
symplectic pieces of the reduced space is a consequence of the fact that
Hamiltonian flows of G invariant functions on M are G equivariant and
hence preserve the orbit types. This concludes the proof.

We now refine Theorem 7 in two different ways. The first refinement is a
theorem that describes more precisely how the symplectic pieces fit together.
The second one is a theorem that shows that the symplectic pieces can also
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be obtained by regular reduction, thus providing a way to reconstruct the
reduced dynamics.

Theorem 15. Let G be a Lie group acting properly and in a Hamiltonian
fashion on a symplectic manifold (M,ω) with a corresponding equivariant
momentum map F : M → g∗. Let x be a point in the manifold M and
α = F (x). Assume that the coadjoint orbit G·α is locally closed. Then locally
the reduced space Mα = F−1(G ·α)/G is isomorphic to a neighborhood of the
image of the origin in the space obtained by reduction at 0 of the symplectic
slice V := Tx(G ·x)ω/(Tx(G ·x)ω ∩Tx(G ·x)) through the point x with respect
to the isotropy group Gx of x.

Proof. As before it enough to prove the theorem at the point x for the model
space (Y, τ), where Y = G×Gx ((gα/gx)∗× V ). Of course, as was mentioned
previously, the form τ is only nondegenerate on some neighborhood of the
zero section G·x, so the Poisson bracket is only defined in that neighborhood.
It would be a notational nightmare to keep track of the neighborhood so we
will again pretend that τ is nondegenerate everywhere on Y.

Recall that the embedding of the symplectic slice V into the model space
Y given by v 7→ [e, 0, v], where e is the identity element of G, is symplectic,
i.e., τ |V = ωV . We now prove that the restriction C∞(Y )→ C∞(V ) induces
an isomorphism of Poisson algebras C∞(Yα) → C∞(V0) where C∞(Yα) :=
C∞(Y )G|F−1

Y
(G·α) and C∞(V0) := C∞(V )Gx |F−1

V
(0) are the algebras of smooth

functions on the corresponding reduced spaces. It is easy to see that re-
striction to V defines a surjective map C∞(Y )G → C∞(V )Gx , f 7→ f |V .
Indeed, any G invariant function on G ×Gx ((gα/gx)∗ × V ) restricts to an
Gx invariant function on (gα/gx)∗ × V hence to a Gx invariant function
on V. Conversely, any Gx invariant function on V extends trivially to a
G × Gx invariant function on G × (gα/gx)∗ × V, so the restriction map
C∞(Y )G → C∞(V )Gx is surjective. In fact the same argument shows that the
map C∞(G×Gx ({0}×V ))G → C∞(V )Gx is bijective. Since F−1

Y (G ·α)∩V =
F−1
V (0), it follows that the map

C∞(Y )G
∣∣
F−1
Y

(G·α)
→ C∞(V )Gx

∣∣
F−1
V

(0)

induced by restriction to V is bijective as well. The bijection is a Poisson
map because τ |V = ωV .

Theorem 15 shows that the decomposition of a reduced space into sym-
plectic pieces is well behaved. The reason for this good behavior is that
the decomposition of a vector space reduced at zero with respect to a linear
action of a compact group forms a Whitney regular stratification. We now
present the details.
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We recall the discussion in [SL]. Let (V, ωV ) be a symplectic vector space,
K a compact Lie group and K → Sp(V, ωV ) a symplectic representation of
K. As was mentioned earlier the K momentum map FV : V → k∗ that
sends zero to zero is a quadratic polynomial. The reduced space at zero
V0 = F−1

V (0)/K can be described as a semi-algebraic set. To this end con-
sider the algebra R[V ]K of K invariant polynomials on V. It is well known
that the algebra is finitely generated. A deep result due to G. Schwarz [Sch]
asserts that the algebra of invariant functions C∞(V )K is also finitely gen-
erated in the following sense. Let p1, . . . , pn be a minimal set of generators
of the algebra of invariant polynomials and let p : V → Rn be given by
p(v) = (p1(v), . . . , pn(v)). Schwarz’s theorem asserts that the smooth invari-
ant functions on V are the compositions of smooth functions on Rn with the
invariant map p, i.e.,

C∞(V )K = p∗C∞(Rn).

Since K invariant functions separate orbits the induced map p : V/K → Rn

is injective. In fact it is a proper embedding (see for example [B]) and the
image p(V/K) = p(V ) is, by the Tarski-Seidenberg theorem, a semi-algebraic
subset of Rn.

It is also easy to see that the map p embeds the reduced space V0 as
a semi-algebraic subset. Indeed, let ‖ · ‖ be a norm on the dual of the
Lie algebra k∗ defined by a K invariant inner product. Then ‖FV ‖2 is an
invariant polynomial on V. So there is a polynomial f on Rn such that
‖FV ‖2 = f ◦p. Since (‖FV ‖2)−1(0) = F−1

V (0) we have p(V0) = {f = 0}∩p(V ).
Thus p(V0) is a semi-algebraic set. Note that in complete analogy with
Schwarz’s theorem the embedding map p : V0 → Rn induces a surjective
map p∗ : C∞(Rn) → C∞(V0), where as before C∞(V0) denotes the algebra
of smooth functions on the reduced space, C∞(V0) = C∞(V )K |F−1

V
(0).

It was shown in [SL] that p embeds symplectic pieces of the reduced space
V0 into smooth submanifolds of Rn. This defines a decomposition of the semi-
algebraic set p(V0) into smooth manifolds. It was also shown (loc. cit.) that
this decomposition of p(V0) satisfies the Whitney regularity condition.

Thus Theorem 15 asserts that the decomposition of reduced spaces into
symplectic pieces defined by orbit type is a stratification (in a technical
sense) and that the stratification is locally Whitney regular. This excludes
more pathological singular spaces such as a cone over the integers (not locally
finite) or the set

X = {(x, y) ∈ R2 : x = 0, −1 ≤ y ≤ 1} ∪
{

(x, y) ∈ R2 : x > 0, y = sin
1
x

}
,

which is connected but not path connected.
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The next theorem is useful in reconstructing the original dynamics from
the dynamics in the reduced space.

Theorem 16. Let G be a Lie group acting properly and in a Hamilto-
nian way on a symplectic manifold (M,ω) with a corresponding equivariant
momentum amp F : M → g∗. Let x be a point in the manifold M, H the
isotropy group of x and α = F (x).

The manifold
MH := {m ∈M : Gm = H}

is a symplectic submanifold of M. The normalizer N of H in G preserves
MH and the quotient group L = N/H acts freely. This action of L on MH is
Hamiltonian and the reduced space (MH)α0 , for an appropriate vector α0 ∈ I∗

is isomorphic to the symplectic piece (Mα)(H) = (F−1(G · α) ∩ M(H))/G
provided the orbit G · α is locally closed.

Remark. Note that the action of L on MH is free by construction, so
the manifold (MH)α0 is obtained by regular Marsden-Weinstein-Meyer re-
duction.

Before a proof of Theorem 16 it would be useful to identify I∗, the dual of
Lie algebra of the group L, with a subspace of g∗. This is done in the following
lemma. Note that we do not assume that the group H is connected.

Lemma 17. Suppose H is a compact subgroup of a Lie group G and N(H)
is its normalizer in G. Then the dual of the Lie algebra of the group L =
N(H)/H is naturally isomorphic to the subspace (h◦)H of H-fixed vectors in
the annihilator of h = Lie(H) in g∗ = Lie(G)∗, i.e.,

I∗ ' (h◦)H .

Proof. Note first that for any representation V of the compact Lie group H,
the dual (V H)∗ of the subspace of H-fixed vectors is isomorphic to (V ∗)H ,
the space of vectors in the dual representation fixed by H. Moreover, the
natural projection V ∗ → (V H)∗, the transpose of the inclusion V H ↪→ V,
furnishes an isomorphism (V ∗)H → (V H)∗.

The group L, as a manifold, is isomorphic to the submanifold of H-
fixed points in the homogeneous space G/H. Therefore the Lie algebra
of L is isomorphic, as a vector space, to the space of H-fixed vectors in
the tangent space TeH(G/H) to the identity coset. The cotangent space
T ∗eH(G/H) is naturally isomorphic to (g/h)∗ ' h◦. The natural projec-
tion T ∗eH(G/H) → T ∗eH(N(H)/H) identifies (h◦)H ' (T ∗eH(G/H))H with
T ∗eH(N(H)/H) ' I∗.
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Proof of Theorem 16. We show that the action of L on (MH , ω|MH
) is

Hamiltonian. It is no loss of generality to assume that the manifold MH is
connected.

Recall that x is a point in MH and α is its image under the G momentum
map F. We claim that the image of MH under F lies in the affine plane
(h◦)H + α. Indeed, since MH is pointwise fixed by H and F is equivariant,
the image F (MH) is also pointwise fixed by H. Also, for any vector ξ ∈ h,
any point y ∈MH and any tangent vector v ∈ TyMH we have

〈ξ, dFy(v)〉 = ω(y)(ξM(y), v) = 0

since ξM(y) = 0 for all y ∈ MH . Thus dFy(TyMH) ⊂ h◦ for all y ∈ MH and
so F (MH) ⊂ h◦ + α since F (x) = α.

We conclude that the map FL := π ◦ (F |MH
) is a momentum map for the

action of L on (MH , ω|MH
). Here π : (h◦)H+α→ I∗ is the natural projection.

Since H is closed in G, its normalizer N is also closed in G, so the
action of N on MH (and hence of L) is proper. Therefore the reduced
space (MH)α0 := F−1

L (L · α0)/L is a symplectic manifold. As was men-
tioned before, Proposition 11 allows us the following description of the re-
duced symplectic structure on (MH)α0 . The form ωMH

:= ω|MH
is not basic

when restricted to the principal L bundle F−1
L (L · α0), but the difference

(ωMH
− F ∗LωL·α0)|F−1

L
(L·α0) is basic and descends to the reduced symplectic

form on (MH)α0 (here ωL·α0 is the symplectic form on the coadjoint orbit
L · α0 ⊂ I∗).

We are now ready to prove the main claim of the theorem: that the
manifold (Mα)(H) := (F−1(G · α)∩M(H))/G is symplectically diffeomorphic
to (MH)α0 . Note first that F−1

L (L · α0) = F−1(N · α) ∩MH . So to establish
the diffeomorphism, it is enough to show that

(
F−1(N · α) ∩MH

)
/N ' (F−1(G · α) ∩M(H)

)
/G.

We computed the right hand side locally in the proof of Corollary 14. We
now compute the left hand side locally using the same model (Y0, τ). (As
before we will ignore the distinction between the neighborhood Y0 and the
whole space Y.) We will see that locally the reduced space (MH)α0 is modeled
by the vector space (V H , ωV |V H ). This will prove the theorem.

The manifold YH of points in Y with isotropy group H is equal to N ×H
[(gα/h)∗ × V ]H . An argument similar to the proof of Proposition 13 (the
factoring of the map FY through two maps) shows that

Y0 ∩ F−1
Y (N · α) = Y0 ∩

(
N ×H F−1

V (0)
)
.



222 L. BATES AND E. LERMAN

It follows that

(Y0)H ∩ F−1
Y (N · α) = N ×H V H ' L× V H .

Therefore, locally,

(MH)α0 '
(
V H , ωV |V H

)
and we are done.

Actions of compact Lie groups: Coadjoint directions don’t matter.
The proofs of Theorem 7, 15 and 16 were based on Marle’s constant rank

embedding theortem [Ma2], [Ma1]. However for compact symmetry groups
we can also use a local normal form theorem due to Guillemin and Sternberg
[GS1]. This normal form is based on the idea of symplectic cross-sections.
It allows us to restrict our attention to the smallest symplectic submanifold
containing a given fiber of the momentum map. This reduces the number
of the degrees of freedom and the dimension of the symmetry group. As a
result, for compact groups we only need to deal with reduction at zero values
of the momentum maps which is described in [SL].

The symplectic cross-section theorem can be stated as follows.

Theorem 18 ([GS2, Theorem 26.7]). Let (M,ω) be a Hamiltonian G space
with momentum map F : M → g∗. Suppose S is a submanifold of g∗ passing
through a point α ∈ g∗ satisfying TαS ⊕ TαG · α = g∗ and suppose that S is
Gα invariant. Then for a small enough Gα invariant neighborhood B of α
in S the preimage F−1(B) is a symplectic submanifold of M and the action
of Gα on F−1(B) is Hamiltonian with momentum map being the restriction
of F followed by the projection onto TαS ' g∗α, the dual of the Lie algebra of
the isotropy group of α.

Remark. Theorem 18 above does not assume that the group G is compact.
The main assumption of the theorem is that the tangent space to the orbit
at α has a Gα invariant complement in g∗. Clearly this is true for any point α
if the group G is compact. If G is a real simple group and α is a semi-simple
element (under the identification of g∗ with g), then again the tangent space
to the orbit at α has a Gα invariant complement. If α is nilpotent then no
such splitting exists.
Remark. Guillemin and Sternberg call the submanifold R = F−1(B) a
symplectic cross-section. It has the property that for m ∈ F−1(α) the Gα

orbit is isotropic in the cross-section. Also the cross-section is the smallest
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symplectic submanifold of M containing the fiber F−1(α). Thus if the α
fiber is a manifold then it is coisotropic in the cross-section. Therefore the
Marsden-Weinstein-Meyer reduction away from zero can be thought of as
a coisotropic reduction, but in a smaller manifold and for a smaller group.
(Compare this with the shifting trick that enlarges the manifold and keeps
the group the same.)
Remark. If the manifold S is chosen carefully then the open neighborhood
B of α in S can be quite large. For example if α lies in the interior of a Weyl
chamber we can choose S to be corresponding Cartan subalgebra and B to
be all of the interior of the Weyl chamber. Proving this fact will take us too
far afield and we refer the reader to [GLS] for details.

Now suppose we have a G-invariant Hamiltonian h on the manifold M,
and let R be a symplectic cross-section through a point x in M. Then Ξh,
the Hamiltonian vector field of h, preserves R. To see this observe that R is
a union of fibers of the momentum map, and the flow of Ξh preserves the
fibers. This means that (R, h|R) is a Gα-invariant subsystem of the original
system (here as before α = F (x) and Gα is the isotropy group of α). This
is a precise way to say that we have “factored out” the coadjoint orbit G ·α
directions.

In general, pushing the cross-section R by the action of the group G yields
an open submanifold isomorphic to the symplectic fiber bundle

R −→ G×Gα R −→ G · α.
Therefore we may think of the open submanifold as being fibered by lower
dimensional invariant Hamiltonian systems which are all isomorphic by G-
invariance of the total system. For instance, this point of view allows us to
conclude that the subsystem (R, h|R) has a stable Gα-relative equilibrium
if and only if the full system has a stable G-relative equilibrium. In other
words, the coadjoint orbit directions are irrelevant as far as the relative
equilibria are concerned or any other G-invariant features of the motion.

Example. Consider a particle in three space moving under the influence of a
central force. Factoring out the coadjoint orbit directions amounts to fixing a
direction of angular momentum. For a fixed direction of angular momentum
the motion lies in a two plane. Therefore we can decompose phase space,
T ∗R3, as a family of cotangent bundles of two-planes parametrized by a
two-sphere plus the set of points of zero angular momentum.

Appendix.

The goal of this section is to provide the reader with a number of proofs
that are well known to experts but don’t seem to be readily available in
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the literature. We start with the existence of invariant almost complex
structures adapted to a given symplectic form (fact 7 of our digression on
proper actions).

Proposition 19 (Existence of invariant almost complex structures adapted
to an invariant form). Let G be a Lie group acting properly on a manifold P,
and preserving a symplectic form τ. Then there exists a G invariant almost
complex structure J adapted to τ, i.e., τ(J ·, J ·) = (·, ·) and τ(·, J ·) is a
Riemannian metric.

Proof. Recall a proof of existence of a complex structure tamed by a sym-
plectic form in the setting of vector spaces. Let V be a vector space and τ
a skew-symmetric nondegenerate bilinear form. Choose a positive definite
metric g. We have two isomorphisms:

τ# : V → V ∗, v 7→ τ(v, ·)

and

g# : V → V ∗, v 7→ g(v, ·).

Let A = (g#)−1 ◦ τ#. Then for any v, w ∈ V we have

g(Av,w) = 〈g#Av,w〉 = 〈τ#v, w〉
= τ(v, w) = −τ(w, v) = −g(Aw, v) = −g(v,Aw),

i.e., A = −A∗ where the adjoint is taken relative to the metric g. Therefore
−A2 = AA∗ is diagonalizable and all eigenvalues are positive. Let P be the
positive square root of −A2. For example we can define P by

P =
1

2π
√−1

∫
γ

(−A2 − z)−1
√
z dz,

where
√
z is defined via the branch cut along the negative real axis and γ is

a contour containing the spectrum of −A2. It follows that P commutes with
A and that (

AP−1
)2 = A2P−2 = A2(−A2) = −1.

The map J = AP−1 is the desired complex structure.
Note that the same argument works if we consider a symplectic vector

bundle (E → X, τ). We choose a Riemannian metric g on E and consider
a vector bundle map A = (g#)−1 ◦ τ#. We define P : E → E by essentially
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the same formula. For x ∈ X the map Px : Ex → Ex on the fiber above x is
given by

Px =
1

2π
√−1

∫
γx

(−A2
x − z)−1

√
z dz.

Note that since the spectrum of Ax varies with the base point x and since we
don’t assume the base is compact, we have to let the contour γx vary with
x as well to make sure that the spectrum of −A2

x lies inside γx. The map P
so defined is a smooth vector bundle map that commutes with A and we set
the complex structure J to be AP−1.

Note finally that if a group G acts on the vector bundle E in a way
that preserves the form τ and that covers a proper action on the base, we
can choose our metric g to be G invariant. Then, by construction, the
corresponding complex structure J on E is G invariant as well.

The next theorem that we prove is an equivariant version of the relative
Darboux theorem (fact 9 of our digression on proper actions).

Theorem 6 (Relative Darboux). Let X be a submanifold of a manifold
Y. Let ω0 and ω1 be given symplectic forms on Y such that ω0(x) = ω1(x)
for each x ∈ X. Then there exist neighborhoods U0 and U1 of X and a
diffeomorphism ψ : U0 −→ U1 such that the pull back of ω1 by ψ is ω0 and ψ
is the identity on X. If a Lie group G acts properly on Y , preserves X, ω0 and
ω1, then we can arrange that the neighborhoods U0 and U1 are G-invariant
and that the diffeomorphism ψ is G-equivariant.

Proof. First suppose that we can find a one form ζ on a tubular neighborhood
of X such that

1. ω1 − ω0 = dζ.

2. ζ vanishes identically on X.

3. ζ is G-invariant.

Since at the points of X, the form ωt := tω0 + (1− t)ω1 is equal to ω0, it is
nondegenerate at the points ofX for 0 ≤ t ≤ 1. Therefore ωt is nondegenerate
for all t ∈ [0, 1] in neighborhood of X. On this neighborhood the equation

ξtyωt = ζ(3)

defines a time dependent vector field ξt. The vector field is G-invariant and
vanishes identically on X. The definition of the vector field ξt is rigged in
such a way as to ensure that its time t flow ϕt satisfies

d

dt
ϕ∗tωt = ω0.(4)
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Indeed, if (3) holds then, since ω̇t = ω0−ω1 = −ζ and since dωt = 0 we have
d(ξtydωt) + ξtydωt = −ω̇t, so

ϕ∗t (Lξtωt + ω̇t) = 0,

which implies Equation (4). The time one map ϕ = ϕ1 of the flow of ξt is
defined on some open neighborhood W of X because it is defined on some
open ball about each point of X. Therefore the flow is defined on the union
U0 of G-translates of W, that is, U0 = ∪g∈Gg · W. Let U1 be the image of U0

under the time one map ψ. Then ψ : U0 −→ U1 is the desired map.
It remains to prove the existence of the G-invariant one form ζ which

vanishes on X and satisfies ω1−ω0 = dζ. Since G acts properly, the isotropy
subgroup of a point x in X is compact. Moreover, G acts by vector bundle
maps on the normal bundle of X in Y. Without loss of generality, we may
replace Y by the normal bundle of X in Y. This is because the exponential
map associated to a G-invariant Riemannian metric intertwines the induced
action of G on a neighborhood of the zero section in the normal bundle
with the G action in a neighborhood of the submanifold in Y. Thus we may
assume that we have two symplectic forms ω0 and ω1 on a vector bundle
over X and that ω1−ω0 is the zero form on the zero section. The homotopy
ϕt defined by radial contraction in the fiber, namely

φt(y) = (1− t)y

satisfies φ0 = identity, φ1(Y ) = zero section, φt fixes the zero section, and
φt is G -equivariant because G acts by vector bundle maps. Now

−(ω1 − ω0) = φ∗1(ω1 − ω0)− (ω1 − ω0)

=
∫ 1

0

d

dt
φ∗t (ω1 − ω0) dt

=
∫ 1

0

φ∗t (Lξt(ω1 − ω0)) dt

=
∫ 1

0

φ∗t (d(ξty(ω1 − ω0))) dt

= d

∫ 1

0

φ∗t (ξty(ω1 − ω0)) dt.

Therefore set

ζ(y) = −
∫ 1

0

φ∗t (ξt(y)y(ω1 − ω0)(y)) dt.
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Since φt is G-equivariant and ξt, ω1 and ω0 are G-invariant, we conclude that
ζ is G-invariant and since ω1 − ω0 vanishes on the zero section, so does ζ.
This concludes the proof of the Darboux theorem.

It remains to prove Theorem 9 on the uniqueness of constant rank em-
beddings.

Theorem 9 (Uniqueness of constant rank embeddings). Let (P, τ)
and (P ′, τ ′) be two symplectic manifolds. Suppose i : X → (P, τ) and i′ :
X → (P ′, τ ′) are two constant rank embeddings with isomorphic symplectic
normal bundles such that i∗τ = (i′)∗τ ′. Then there exist neighborhoods U of
i(X) in P and U ′ of i′(X) in P ′ and a diffeomorphism φ : U → U ′ such that
φ ◦ i = i′ and φ∗τ ′ = τ.

Furthermore, if G is a Lie group that acts properly on X, P and P ′,
preserves the forms τ and τ ′ and if the embeddings i and i′ are G equivariant,
then U and U ′ can be chosen to be G invariant and φ to be G equivariant.

Proof. The relative Darboux theorem says that a neighborhood of a subman-
ifold X in a symplectic manifold (P, τ) is symplectically determined by the
symplectic vector bundle TXP.

Now suppose i : X ↪→ (P, τ) is a constant rank embedding. Then ν =
TXτ ∩TX, the null distribution of the pull-back i∗τ, is a vector bundle. We
have also two symplectic vector bundles: the symplectic normal bundle of
the embedding N = TXτ/ν and the bundle E = TX/ν. We claim that, as a
symplectic vector bundle, the bundle TXP is isomorphic to the direct sum
E ⊕N ⊕ (ν ⊕ ν∗) where the symplectic form ων⊕ν∗ on ν ⊕ ν∗ is given by

ων⊕ν∗(l, v) = l(v)

(here l ∈ ν∗x and v ∈ νx). The claim would establish the theorem. Indeed, if
i′ : X → (P ′, τ ′) is another embedding with (i′)∗τ ′ = i∗τ and N ′ = N then,
according to the claim, TXP ′ ' TXP as symplectic vector bundles and the
result follows from the Darboux theorem.

To prove the claim choose an almost complex structure J adapted to τ,
i.e., choose J such that τ(J ·, J ·) = τ(·, ·) and g(·, ·) = τ(·, J ·) is a positive
definite metric. Then for any v ∈ TX and any w ∈ Jν (with the same base
point) we have

g(v, w) = g(v, J(−Jw)) = τ(v,−Jw) = 0

since Jw ∈ ν = TXτ . So the bundle Jν lies in the metric perpendicular TXg

of TX and therefore Jν ∩ TX = 0. It follows that the map φ : Jν → ν∗
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defined as the composition of τ# : Jν → T ∗XP and of the natural projection
T ∗XP → ν∗ is an isomorphism. Also for any v ∈ Jν and any w ∈ ν we have

τ(v, w) = 〈τ#v, w〉 = 〈φ(v), w〉.

Therefore φ × id : Jν ⊕ ν → ν∗ ⊕ ν is a isomorphism of symplectic vector
bundles.

The natural map νg∩TX → TX/ν = E is also a symplectic isomorphism.
We conclude that TX ⊕Jν is a symplectic subbundle of TXP isomorphic to
E⊕ (ν∗⊕ ν). Finally observe that the symplectic perpendicular TXτ of TX
satisfies TXτ = (TX ⊕ Jν)τ ⊕ ν. It follows that

TXP ' E ⊕N ⊕ (ν ⊕ ν∗)(5)

as symplectic vector bundles.
Note that if there is a group G acting properly on our data, we can make

the isomorphism (5) above G equivariant by choosing a G equivariant almost
complex structure.

References

[ACG] J.M. Arms, R. Cushman and M. Gotay, A universal reduction procedure for Hamil-
tonian group actions, in The geometry of Hamiltonian systems, proceedings of a
workshop held June 5-16, 1989, T. Ratiu, ed., New York, Springer-Verlag, 1991.

[AGJ] J.M. Arms, M. Gotay and G. Jennings, Geometric and algebraic reduction for sin-
gular momentum maps, Adv. in Math., 79 (1990), 43-103.

[AMM] J.M. Arms, J.E. Marsden and V. Moncrief, Symmetry and bifurcations of momen-
tum mappings, Comm. Math. Phys., 78 (1981), 455-478.

[AG] V.I. Arnold and A.B. Givental, Symplectic geometry, in Dynamical systems IV, V.I.
Arnold and S.P. Novikov, eds., Berlin, New York, Springer-Verlag, 1990.

[B] E. Bierstone, The structure of orbit spaces and the singularities of equivariant map-
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