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0. Introduction.

2

H. Poincaré showed for the first time that the ball in € and

the bidisc are not biholomorphically equivalent. Later R. Remmert
and K. Stein [11], G.M. Henkin [ 8 ] and A.T. Huckleberry [ 9 ]
generalized this result more and more by considering larger classes
of domains and also proper holomorphic mappings. In all their
results the existence of local complex analytic foliations of parts
of the boundary for one domain and some strict pseudoconvexity

of the other boundary play an essential role.

On the other hand, there are well-known examples of proper holo-
-morphic mappings f with non-empty branching locus from certain
bounded, C:O-smooth pseudoconvex domains 01 onto strictly
pseudoconvex domains 02. But it has been conjectured that any
proper holomorphic mapping f: Qq'*QZ is necessarily unbranched
if Q4 is strictly pseudoconvex and 02 is weakly speudoconvex

and Coousmooth.

For both Qq, -end Q5 being strictly pseudoconvex the conjecture
has first been fully verified by S. Pinguk [10] buildiﬁg on work
of H. Alexander [ 1 ](seé also D. Burns and St. Shnider [ 5 | and
W. Rudin [12]). If Q, and 0, as in the conjecture are in
addition known to be complete Reinhardt domains, St. Bell [3]
has confirmed the claim. In the case of real-analytic boundaries

the result is contained in Bell T 4 ].
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In this paper we prove now

Theorem 1. Let 01,02CII®H be domains with ¢~ -boundaries

and Q4 strictly pseudoconvex. Then any proper holomorphic
mapping f 10,705 is unbranched and, therefore, extends to a
Coc—covering e Q,~0,. In particular, f extends to an un-
branched Coo—covering F :ﬁq'*ﬁg (bécause of T 77) and 05 is

also strictly pseudoconvex,

In. section 1 we explain the notations and the relevant results

of St. Bell T 2 ] which are basic for our proof. In section 2

we find a generic branching point z, of £ on bﬂq where the
branching locus of; f hits bQ, at zb as a transverse mani-
fold, and we show that f extends in a ¢ way to b0, near Z e
For section 3 we use this to show that the branching locus has

to be empty. In section 4 we mention some moré general results

than the theorem above that can be derived with the same methods.

This work was done while the first author was a guest of the
Institute of Mathematics of the University of Oslo. He would

like to express his thanks for the hospitality of this institution.

1. Notations and tools.

For a2 C  -smooth domain QC@® we denote by A%(Q) the algebra
of functions in Cco(ﬁ) holomorphic on Q and we always will
write u for the Jacqbian determinant of the given mapping f.
The following statement is a special case of theorem 2 (and it's
proof) of St. Bell [ 2] and will be the basic tool in our proof

of the theorem:
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Proposition. In the situation of the theorem the function

ue(hef) €A%(Q,) if hea®(n,). In particular, ueA™ (7).

2. Cco—extensionat generic branching points on bQ,l.

We assume that the branching locus X:={z¢ Q4 u(z) =0} of the

mapping f is non-empty.

2.1. At first, we want to find sufficiently generic points

on bQ,‘ where, in particular, X hits b, transversally.

~

Along each connected component of the regular locus of X the
function u has a well-defined constant order of vanishing.
Let X’I be one such component on which this order is minimal,

say k. The set X: =}-i,l n Q, 1is an irreducibel branch of X.
There is a multiindex a, |al = k-1, such that the function

) 3% 0
vi==—=¢ A (Q,)
3z% 1

vanishes along some non-empty relatively open set U,]CX,l with

order 1 and we can find an index 8, 1<B<n such that
=)
52-(p) £ 0O
B
for some 7pe€U,. Notice that v)f( = 0, We put

S: = XNba.

Because of the maximum principle applied to X there is a q€5
with
d
'g-g—(Q) #£ 0 ‘ &)
B ,
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and we can extend Vv to a Cgo-function Vv on an open neighbor-
hood U of g such that 8% vanishes to infinite order along

b, NU. Because of (1) the set
Y: = {z€U:%(z) = 0}

is a smooth €~ -submanifold of U, if U was chosen small anough.
Notice that XNUCY. Furthermore, after shrinking U again, we
can write Y as a graph over its tangent space TqY at q,

which is complex, in the follwing way:

After a linear coordinate change we may assume that

, n n-"1
TY = (6= (bq,eee,ty) = (8t €06 =0} = €7,

Let m: Gn—'TqY, m((t',t,)) = t', be the projection and U':=m(U).

Then there is a C~ -function g : U' =€ which is holomorphic
on m(YN Q,I) and whose differential &g vanishes to infinite

order along w(YN bQ,l) such that
Y = {(z',g(z")) : 2" €U'}.

Let now p be a strictly plurisubharmonic defining function

of Q, defined in a neighborhood of ﬁ,, and put’

\

o(z'): = p((2z',g(z'))) for z'€U'.

Then,after shrinking U again, 0 becomes a strictly plurisub-

3 . '
harmonic function on U .

We call 8': = n(SNU) such that o s =o.
Claim: do|S' £ 0. (2)
Suppose dol|S' = 0. The Taylorexpansion of ¢ around gq': = m(q)

in real coordinates z' = x'+1iy' after a suitable linear change
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of coordinates has the form

o = % (x5+0.y%)+higher order terms
j="1 J J°d

with cmj>—’]° Therefore, the set
‘ 30 ‘
— 1 . ' -—
2_{2.———3"(z)-0}

is a real hypersurface in U'  which can be supposed to divide U’
into exactly two connected components. We choose a component
intersecting mw(XNU) and call it £ . Notice that XNUcCYNQ,
is a closed subvariety and w|Y is proper. Therefore, m(XNTU)

is a closed subvariety of m(YN Q,') of full dimension. The

boundary of w(XNU) in U' is 8 and S'cy¥. Hence
m(XNU)2Z~ . This shows that o|Z~ < 0 such that the Hopf-lemma

applied to ¢ at q' gives
do(q') # 0

contradicting the assumption do|S' = 0.
As a consequence of (2) we can now move q on S such that Y
intersects b0, at q transversally. This implies in particular

because of the choice of v that

- XNTU = YN 0, (shrink U if necessary) (%)

2.2. Next we want to show that the mapping f can be extended
in a CQo way to bQ,l near q. Because of the proposition of
Bell from section 1 applied to the coordinate functions

Wy EAOO(Qz) it is enough for this purpose to prove that the func-
tions uofJ. GAOO(Q,]) can be dividedr near q@ by u without

destroying the differentiability.
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For this we choose suitable coordinates near q in the following

way: we may assume that

=
3-;’—1(q) £ 0

such that
* ~
Zq = v(z)
Z; = zj-zj(q), J = 2500040

is a C™-coordinate change holomorphic on qu\U, It, therefore,
does not destroy the strict pseudoconvexity of qu1U at bﬂq.

We call the new coordinates again 2z and now have

Y =1{z€U:z, =0} ‘ 4)

~s

Let now g(EAao(ﬁq)' with g!% = O be arbitrary and let §
be any Coo—extension of g to U. We want to normalize this

extension along Y in a suitable way by showing

Lemma 1. For any given integer 1>0 the extension g can
always be chosen in such a way that it's Taylor expansion at the
points of Y in z,, 71 has the form

where gj are C*-functions on Y and

Ry = 0(lz 11"

Proof. We choose a Coo-retraction
m:U~Y
with m(UNQA,) = Xnu.

Let § be an arbitrary Cco—extension of g to U and define



.= I g(r) 1zd4r oW

is its Taylor series along Y with
T+
RI‘ = O(Iqu ),

we put inductively:

~ o~ ()

g t =g - % (g °Tr)z zJ .

T+ T isj<r ij 171
3T

- Then the Taylor expans:.on of & along Y has the shape _f

T+
(4) for r+1 and §l+’1 satisfies the requirements of the lemma.

O

A simple consequence of this is

Lemma 2. Let gEAOO(Q,l) be a function with g|X= 0. Then the
function g: = 8/z, extends from Q,]ﬂU to bQ, NU ina ¢%-

way.

Proof. Let o be any multiindex and 1> |a| a positive integer.
Choose an extension § of g according to lemma 1 with this 1.

Then one obviously has near Y for z, £ 0

3% (8/2,)

1-lal
=0z, 177" ).
aza 1

This proves the lemma. ‘ D

We now can easily prove



-8 -

Lemma 3. If qesﬁ has been chosen as in the beginning of this

section, the mapping f extends in a Coo—way to bnq near (.

Proof. 1) Since u vanishes along YNa, to the order k

exactly, lemma 2 gives that
tg (5)

with a holomorphic function U which extends to b01r1U in a
Cco—way and such that

u(g) £ 0. (6)

2) The proposition of Bell from section 1 says

u-fJ.EAOO(Q,‘) £OT § = 1y00.,n.

(5) and (6) therefore imply that

k
1 g

g.: = 2 3

J

extends to bﬂqfﬁU in a Cgo—way° Because of lemma 2 this must

therefore also be true for fj° Ej

3. Elimination of the branching.

In section 2 we worked under the assumption that the branching
locus X of f is non-empty and we found the point q of lemma 3
in &ribﬂq. Hence we will have obtained a contradiction and,

therefore, proved the theorem if we will have shown:

Lemma 4. TLet f 10,7 Uy, UiC:Gn open, be a proper holomorphic
mapping. Suppose, there are relatively open sets MicibUi where

bUi is a Cgo—smooth pseudo-convex hypersurface and let Mq even
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be strictly pseudoconvex. Furthermore, suppose that f extends
in a Ccc~way to UqLJMq and that f(M,I)CIM2° Then f is un-

branched near M, (and M, 1is strictly pseudoconvex at f(Mq)),

Remark. The statement is purely local at points of M,. We,
therefore, will shrink the Ui during the proof suitably without

mentioning it explicitly.

Proof. We will use the transformation formula for a complex
Monge-Ampere-equation in a way which is due to N. Kerzman,
J.J. Kohn 4nd L. Nirenberg. We call p: = £(q)€M,. According
to [ 6] we can choose a (local) Coo—defining function p, of M,
on Ué such that

bot = —(—02)2/5
is (strictly) plurisubharmonic on U,. Define

>
pzl: = p2°f€C (U/IUM,])o

\2/3

Then Yqt = —(—pq ¢2°f is negative and plurisubharmonic

on U1 and

lim wq(z) = 0.
z—*l"I,I

Therefore, by the Hopf lemma there is a constant C>0 such that
w,‘(z)f_—C dist(z.,M,l)°
This means thaf
0,(2) <-0>/2 aist3/2(z,m,) for 2 €U,
such that dpq(z) Z 0 for z€M,. Hence, p, is a defining

function of U, along M,. Because IM,; 1is strictly pseudoconvex

we can find a constant L >0 such that
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is even a strongly plurisubharmonic defining function of Uq
along M. Notice that ©, = g,°f with o, = p25L92 being a
defining function of U, along M,. Since 3f vanishes to
infinite order at 11, we have
2 2
03 aet(——)(2) = lu(2)|“aet(——=- “2)(£(2))

32.9z2 QW dW
z; zJ W W 4
for all z€M,. Therefore, u(z) £#0 for all z€M, and M2
is also strictly pseudoconvex at all points in £(M,). OJ

4, Remarks.

1) Our proof shows, in fact, that the following statement holds:

Theorem 2. Let 04,0, < e be pseudoconvex domains with C
smooth boundaries. Suppose 0, satisfies condition R (in the
sense of Bell [ 2]) for the Bergman projection operator on Q.
Let £ :Q,'-*Q2 be a proper holomorphic mapping. Then f does
not have any branchiﬁg points near the strictly pseudoconvex

boundary points of Qq,

In order to reduce this to what has been done in the proof of
theorem 1 it is enough to show: if there is a strictly pseudo-
convex boundary point p of bQ with pezi, then q as in
section 2 can be chosen arbitrarily close to p. For this, we
define X as an irreducible branch of % on which u vanishes

to minimal order among all branches of X clustering on bQ in

a given neighborhood U of p. We may assume that peii and
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define v and S with respect to X as in section 2. We claim:

There is a q€SNU with
o)
5—(a) # o.
B

Suppose V' = 3v|dz_, vanishes identically on SNU. Notice that

8 .
there is a function fEAOO(Q,‘) with

£(p) = 1 ond |ft'ﬁ\4p}<1,

Therefore, it is easy to find am €¢>0, a zOGXﬂU and

anN e N such that
I(f+e)Nv'|(zo)>’l and l(f+e)Nv’|‘bQ\U<’l

Because vVv'|SNU = O this contradicts the maximum principle
for v' on X. - We now can apply the proof in section 2 to the

situation near g.

2) Theorem 2 shows that in the situation as given there the
branching locus of f hits bQ,' only at weakly pseudoconvex
points. One might, therefore, ask whether this excludes all
branching of f if the set of weakly.pseudoconvex points on bQ,
is small enough. This is, indeed, the case. More precisely we

have

Theorem 5. Let Q,],QZCC@n be pseudoconvex domains with ¢ -
smooth boundaries. Suppose that 04 satisfies condition R and
that the set E of weakly pseudoconvex boundary points of Qq
has Hausdorff-measure

Mop_3(E) = O,

Then any proper holomorphic mapping f: 04 -*02 is unbranched,
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and, therefore, extends to a covering map
f: Qq-'02°

Proof. Because of theorem 2 we only have to show that the bran-
ching locus of f has to hit b0, at a strictly pseudoconvex
point if it is non-empty. For this using the notations of
section 2 we have to observe that a point q€b0, where X
intersects ©bQ, as a transversal ¢ real manifold of real
codimension 2 (in @n) can be found without using strict pseudo-
conveXity of bQ, at q. Namely, to achieve this one replaces
the strict plurisubharmonic defining function p Dby a local
defining function p of Q, near q(Equ as chosen in (1)
such that

P: = ~(-p)2/?
is strictly plurisubharmonic on 0, mnear q, thereby getting a
c®-function ¢ on U' with

U = -(—0)2/5

being plurisubharmonic on W(Yfiﬂq) and o0(z') = 0 for
z' €m(YNbQ,). Now we choose a point zg en(YNQq,) very close
to g' and let B'cU'Am(YNQ,) be the largest ball around z! .
Then there is a point Q' €bB' NS'. Applying Hopf lemma to ¢|B'
at q' gives

ao(q') #0
such that at q: = (§',g(q')) €S

d(plY)(@) # 0.

This shows that Y intersects bQ,i at q transversally. There-

fore, S has to be near q a real manifold of real codimension 3

(in @%) and cannot be contained in E since Agn_g(E)==O° E]
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