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Oo Introductiono 

Ho Poincare showed for the first time that the ball in ~2 and 

the bidisc are not biholomorphically equivalento Later Ro Remmert 

and Ko Stein [11], GoHo Henkin r 8] and AoTo Huckleberry ( 9] 

generalized this result more and more by considering larger classes 

of domains and also proper holomorphic mappingso In all their 

results the existence of local complex analytic foliations of parts 

of the boundary for one Cl.omain and some strict pseudoconvexi ty 

of the other boundary play an essential roleo 

On the other hand, there are well-known examples of proper holo­

morphic mappings f with non-empty branching locus from certain 

bounded, 
::0 

C -smooth pseudoconvex domains o1 onto strictly 

pseudoconvex domains o2 o But it has been conjectured that any 

proper holomorphic mapping f: o1 _. o2 is necessarily unbranched 

if o1 is strictly pseudoconvex and 
X 

is weakly speudoconvex 

and C -'-Smootho 

For both o1 .and o2 being strictly pseudoconvex the conjecture 

has first been fully verified by So Pin9uk [10] building on v.rork 

of Ho Alexander [1 ](see also Do Burns and St. Shnider [ 5 J and 

Wo Rudin [ 12 J) 0 If o.., and 02 as in the conjecture are in 

addition known to be complete Reinhardt domains; Sto Bell [ 3 J 
has confirmed the claimo In the case of real-analytic boundaries 

the result is contained in Bell r L~ ]o 
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In this paper we prove now 

Theorem '1. Let n o1 ,02 cc@ be domains with C ::c-boundaries 

and o1 strictly pseudoconvex. Then any proper holomorphic 

mapping f : o1 ... o2 is unbranched and, therefore, extends to a 
00 " C -covering f : o1 ... r22 • In particular, f extends to an un-

branched C00 -covering f : o1 ... o2 (b,ecause of r 7 ]) and o2 is 

also strictly pseudoconvex. 

Ip_. section 1 we explain the notations and the relevant results 

of St. Bell ( 2 l which are basic for our proof. In section 2 

we find a generic branching point z0 of f on b01 where the 

branching locus of f hits b01 at z as a transverse mani­
o 

fold, and we show that f extends in a C~ way to bo.1 near z0 • 

For section 3 we use this to show that the branching locus has 

to be empty. In section 4 we mention some more general results 

than the theorem above that can be derived with the same methods. 

This work was done while the first author was a guest of the 

Institute of Mathematics of the University of Oslo. He would 

like to express his thanks for the hospitality of this institution. 

1. Notations and tools. 

For a 
00 

C -smooth domain ocu:n we denote by Ax(D) the algebra 

of functions in C00 (0) holomorphic on 0 and we always will 

write u for the Jacobian determinant of the given mapping f. 

The following statement is a special case of theorem 2 (and it's 

proof) of St. Bell [ 2] and will be the basic tool in our proof 

of the theorem: 
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Propositiono In the situation of the theorem the function 

if In particular, 

2o C00-extension at Eleneric branching points on b01 • 

We assume that the branching locus X: = (z E 01 : u(z) = 0} of the 

mapping f is non-empty. 

2.1. At first, we want to find sufficiently generic points 
,.. 

on bo1 where, in particular, X hits bn1 transversally. 

" Along each connected component of the regular locus of X the 

function u has a well-defined constant order of vanishing. 

Let x1 be one such component on which this order is minimal, 

say k. The set X: = x1 n 01 is an irreducibel branch of X. 

There is a multiindex a, lal = k-1, such that the function 

v: 

vanishes along some non-empty relatively open set u1 c x1 with 

order 1 and we can find an index !3' 1 .:: i3 ~ n such that 

ao: (p) I= o 
s 

for some p E u1 • Notice that vii - 0. 

-s: = x n bo. 

We put 

Because of the maximum principle applied to X · there is a q E S 

with 

(1) 
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and we can extend v to a C 00 -function on an open neighbor-

hood U of q such that C5 v vanishes to infinite order along 

bo1 nu. Because of (1) the set 

Y: = {zEU: v(z) = 0} 

is a smooth C00-submanifold of U, if U was chosen small anough. 

" Notice that X n U c Y. Furthermore, after shrinking U again, we 

can write Y as a graph over its tangent space at q, 

which is complex, in the follwing way: 

After a linear coordinate change we may assume that 

Let n: &n_, TqY, n((t' ,tn)) = t', be the projection and U1
: = n(U). 

Then there is a C00-function 
I 

g:U -C!: which is holomorphic 

on n(Y n o1 ) and whose differential og vanishes to infinite 

order along n (Y n b01 ) such that 

y = { ( z I 'g( z I ) ) : z I E u' L 

Let now p be a strictly plurisubharmonic defining function 

of o1 defined in a neighborhood of o1 and put 

a(z'): = p((z 1 ,g(z 1 ))) 
I 

for z 1 E U • 

Then,after shrinking U again, a becomes a strictly plurisub-

harmonic function on 
I u . 

We call s I : = TT ( s n u) 
I 

such that al S = 0. 

Claim: da\S 1 ~ 0. (2) 

Suppose dalS 1 = 0. The Taylorexpansion of a around q': = n(q) 

in real coordinates z 1 = x 1 +iy' after a suitable linear change 
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of coordinates has the form 

with 

n-1 2 2 
cr = :E (x. +a . . y.) +higher order terms 

j=1 J J J 

a.> -1 o 

J 
Therefore, the set 

ocr L = ( Z I ! ~( Z I ) = 0} 
x1 

I 

is a real hypersurface in u which can be supposed to divide U1 

into exactly two connected componentso We choose a component 

intersecting n(X n U) and call it :E-o Notice that X n U c Y n o1 

is a closed subvariety and nl Y is propero Therefore, n(X n U) 

is a closed subvariety of n(Y n o1 ) of full dimensiono The 

boundary of n(X n U) in U 1 is s I and s I c Lo Hence 

n(X n U) ::> :E- o This shows that cr\ :E- < 0 such that the Hopf-lemma 

applied to cr at q' gives 

dcr (q 1 ) ~ 0 

contradicting the assumption dcrl 8 1 = Oo 

As a consequence of (2) we can now move q on S such that Y 

intersects b01 at q transversallyo This implies in particular 

because of the choice of v that 

"' X n U = Y li 01 (shrink U if necessary) (3) 

2o2o Next we want to show that the mapping f can be extended 

in a 
::::0 c Because of the proposition of 

Bell from section 1 applied to the coordinate functions 

w j E A cc'(o2 ) it is enough for this~ purpose to prove that the func­

tions Uof j E A 00 (01 ) can be divided near q by u without 

destroying the differentiabilityo 
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For this we choose suitable coordinates near q in the following 

way: we may assume that 

""' aa; (q) ~ 0 
1 

such that 
* 

,... 
z'1 = v(z) 

* z.-z.(q), j = 2, ••• ,n zj = J J 

is a Ceo -coordinate change holomorphic on o1 n U. It, therefore, 

does not destroy the strict pseudoconvexity of n"ln U at b0'1. 

We call the new coordinates again z and now have 

y = (z E U : z1 = 0} (4) 

gEA~(o1 ) "' Let now with giX = 0 be arbitrary and let 8 
be any C00-extension of g to u. We want to normalize this 

extension along Y in a suitable way by showing 

,..., 
Lemma 1. For any given integer 1 > 0 the extension g can 

always be chosen in such a way that it's Taylor expansion at the 

points of y in z'1 ' 7'1 has the form 

,..., 1 . 
~ g = z: g. z1 + Rl . 1 1. 

~= 

where g. 
J 

are C00 -functions on Y and 

Proof. We choose a 
CD • C -retract1.on 

TT:U->Y 

-ok 

with n(U n o1 ) = X n U. 

Let g be an arbitrary 
,x;, 

C -extension of g to u and define 
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~g has been defined and r 

~ = l: g~:r:') zi zj +R 
r . .< 1J 1 1 r 1+J_r · 

is its Taylor series along Y with 

R = 0 ( I z I r+ 1 ) 
r 1 ' 

we put inductively: 

(4) 

Then the Taylor expansion of gr+1 along Y has the shape _f 

( 4) for r+1 and g1~1 satisfies the requirements of the lemma. 

0 
A simple consequence of this is 

function 
,.. 
g: = gjz1 extends from 01 n u to b01 n u in a c co-

wayg 

Proofo Let a be any multiindex and 1> !al a positive integerg 

Choose an extension g of g according to lemma 1 with this 1. 

Then one obviously has near Y for z1 ~ 0 

This proves the lemmao 0 

We now can easily prove 
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" Lemma 3. If q EX has been chosen as in the beginning of this 
00 

section, the mapping f extends in a C -way to b01 near 

Proof. 1) Since u vanishes along Y n o1 to the order k 

exactly, lemma 2 gives that 

with a holomorphic function 
00 

C -way and such that 

,.... 
u which extends to 

U:(q) 1= o. 

2) The proposition of Bell from section 1 says 

(5) and (6) therefore imply that 

g.: 
J 

k = z1 f j 

(5) 

in a 

(6) 

extends to b01 n u in a 
::0 

C -way. Because of lemma 2 this must 

therefore also be true for fj. 0 

3. Elimination of the branching. 

In section 2 we worked under the assumption that the branching 
... 

locus X of f is non-empty and we found the point q of lemma 3 -.... 
in X n bo1 • Hence we will have obtained a contradiction and, 

therefore, proved the theorem if we will have shown: 

Lemma LJ-. Let f : u1 .... u2 , Ui c ~n open, be a proper holomorphic 

mapping. 

bU. is a 
J_ 

Suppose, there are relatively open sets M. CbU. 
J_ J_ 

'X) 

C -smooth pseudo-convex hypersurface and let 

where 

even 
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be strictly pseudoconvex .. Furthermore, suppose that f extends 

in a 
X 

C -way to u1 u 1.'11 and that f(M1 ) cM2 .. Then f is un-

branched near 1.'11 (and 1.'12 is strictly pseudoconvex at f(J.'11))a 

Remark.. The statement is purely local at points of 1'11 .. We, 

therefore, will shrink the 

mentioning it explicitly. 

u. 
1 

during the proof suitably without 

Proof.. We will use the transformation formula for a complex 

Mange-Ampere-equation in a way which is due to No Kerzman, 

J .. J.. Kohn -and L D Nirenberg. We call p: = f ( q) E 1'12 .. According 

to [ 6] we can choose a (local) ex-defining function p2 of 1'12 

on u2 such that 

is (strictly) plurisubharmonic on u2 .. Define 

X 
p 1 : = p 2 o f E C ( U 1 U 1.'11 ) " 

Then 2/3 $1: = -(-p1) = w2of is negative and plurisubharmonic 

Therefore, by the Hopf lemma there is a constant C > 0 such that 

This means that 

such that d p1 ( z) f 0 for z E 1.'11 .. Hence, p1 is a defining 

function of u1 along 1'11 .. Because 1'11 is strictly pseudoconvex 

we can find a constant L > 0 such that 
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is even a strongly plurisubhar.monic defining 

along Notice that cp1 = cp2of 

along 1'12 • 

with 

function of u1 
-LP2 

cp2 = p2e being a 

defining function of Since af vanishes to 

infinite order at 1'11 we have 

2 

\u(z)l 2det( 0 cp2 )(f(z)) 
ow. ow. 

J.. J 

for all z E M1 • Therefore, u( z) I 0 for all z E M1 and M2 

is also strictly pseudoconvex at all points in f(l'11 ). [] 

1) Our proof shows, in fact, that the following statement holds: 

Theorem 2. Let n o1 ,o2 oc ~ be pseudoconvex domains with 

smooth boundaries. Suppose o1 satisfies condition R (in the 

sense of Bell [ 2]) for the Bergman projection operator on o1 • 

Let f : 01 ..... o2 be a proper holomorphic mapping. Then f does 

not have any branching points near the strictly pseudoconvex 

boundary points of o1 • 

In order to reduce this to what has been done in the proof of 

theorem 1 it is enou&~ to show: if there is a strictly pseudo-
;.. 

convex boundary point p of bO with p E X, then q as in 

section 2 can be chosen arbitrarily close to p. For this, we 
;.. 

define X as an irreducible branch of X on which u vanishes 
;.. 

to minimal order among all branches of X clustering on bO in 
-a given neighborhood u of p. We may assume that pEX and 



- 11 -

define v and S with respect to X as in section 2. We claim: 

There is a q E S n U with 

oo: (q) I o. 
~ 

Suppose vI = ov I ozs vanishes identically on s n u. Notice that 

there is a function f E A 00 (o1 ) with 

f(p) = 1 and lfl 0 '{p}<1. 

Therefore, it is easy to find an e > 0, a z0 EX n U and 

anN E l'I such that 

Because vI Is n u = 0 this contradicts the maximum principle 

for v' on X. - We now can apply the proof in section 2 to the 

situation near q. 

2) Theorem 2 shows that in the situation as given there the 

branching locus of f hits bo1 only at weakly pseudoconvex 

points. One might, therefore, ask whether this excludes all 

branching of f if the set of weakly pseudoconvex points on bo1 

is small enough. This is, indeed, the case. More precisely we 

have 

Theorem 3. Let n 01 ,02 cc <!:: be pseudo convex domains with 

smooth boundaries. Suppose that o1 satisfies condition R and 

that the set E of weakly pseudoconvex boundary points of o1 

has Hausdorff-measure 

Then any proper holomorphic mapping f : o.1 ..... o2 is unbranched, 
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and, therefore, extends to. a covering map 

Proof. Because of .theorem 2 we only have to show that the bran­

ching locus of f has to hit b01 at a strictly pseudoconvex 

point if it is non-empty. For this using the notations of 

section 2 we have to observe that a point q E b01 where X 

intersects bo1 as a transversal C00 real manifold of real 

codimension 2 (in U!n) can be found without using strict pseudo­

conveXity of b01 at q. Namely, to achieve this one replaces 

the strict plurisubharmonic defining function p by a local 

defining function p of o1 near q E bo1 as chosen in ( 1) 

such that 

2/3 cp: = -(-p) 

is strictly plurisubharmonic on 0'1 near q, thereby getting a 

C co -function on u' with 

being plurisubharmonic on n(Y n 01) and cr(z I) = 0 for 

z I E l'f(Y n b01) 0 Now we choose a point z~ E n(Y n 01) very close 

to q' and let B' cu' n n(Yn 0'1) 

Then there is a point q' EbB I n s I 0 

at <I' gives 

such that at q: = (q' ,g(q')) E S 

be the largest ball around Z~o 

Applying Hopf lemma to $IB' 

This shows that Y intersects bo1 at q transversally. There-

"' fore, S has to be near q a real manifold of real codimension 3 

(in (!}n) and cannot be contained in E since A2n_3(E) = 0. 0 
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