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Abstract Answering all questions—concerning proper holomorphic mappings between
generalized Hartogs triangles—posed by Jarnicki and Plfug (First steps in several com-
plex variables: Reinhardt domains, EMS Textbooks inMathematics, EuropeanMathematical
Society Publishing House, 2008), we characterize the existence of proper holomorphic map-
pings between generalized Hartogs triangles and give their explicit form. In particular, we
completely describe the group of holomorphic automorphisms of such domains and estab-
lish rigidity of proper holomorphic self-mappings on them. Moreover, we also complete the
classification of proper holomorphic mappings in the class of complex ellipsoids which was
initiated by Landucci and continued by Dini and Selvaggi Primicerio.

Keywords Generalized Hartogs triangle · Proper holomorphic mapping · Group of
automorphisms · Complex ellipsoid
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1 Introduction

In the paper, we study proper holomorphic mappings between generalized Hartogs triangles
of equal dimensions (see the definition below) giving a full characterization of the existence of
such mappings, their explicit forms, and a complete description of the group of holomorphic
automorphisms of such domains. Our results answer all questions posed by Jarnicki and
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1056 P. Zapałowski

Pflug in [9], Sections 2.5.2 and 2.5.3, concerning proper holomorphic mappings between
generalized Hartogs triangles and holomorphic automorphisms of such domains.

Let us recall the definition of the above mentioned domains. Let n,m ∈ N. For p =
(p1, . . . , pn) ∈ R

n
>0 and q = (q1, . . . , qm) ∈ R

m
>0 define the generalized Hartogs triangle

as

Fp,q :=
⎧
⎨

⎩
(z, w) ∈ C

n × C
m :

n∑

j=1

|z j |2p j <

m∑

j=1

|w j |2q j < 1

⎫
⎬

⎭
.

Note that Fp,q is a non-smooth pseudoconvex Reinhardt domain, with the origin on the
boundary. Moreover, if n = m = 1, then F1,1 is the standard Hartogs triangle.

Let p ∈ R
n
>0, q ∈ R

m
>0 and p̃ ∈ R

ñ
>0, q̃ ∈ R

m̃
>0. We say that two generalized Hartogs

triangles Fp,q and F p̃,q̃ are equidimensional, if n = ñ and m = m̃.
The problem of characterization of proper holomorphic mappings

Fp,q −→ F p̃,q̃ (1)

and the group Aut(Fp,q) of holomorphic automorphisms of Fp,q has been investigated in
many papers (see, e.g., [12], [5], [6], [2], [3] for the equidimensional case and [4] for the
non-equidimensional one). It was Landucci who considered the mappings (1) in 1989 as
examples of proper holomorphic mappings between non-smooth pseudoconvex Reinhardt
domains, with the origin on the boundary, which do not satisfy a regularity property for the
Bergman projection (the so-called R-condition). In [12], he gave a complete characterization
of the existence and found explicit forms of mappings (1) in the case m = 1, p, p̃ ∈ N

n ,
and q, q̃ ∈ N. Then, in 2001, Chen and Xu (cf. [5]) characterized the existence of mappings
(1) for n > 1, m > 1, p, p̃ ∈ N

n , and q, q̃ ∈ N
m . The next step was made one year later,

when the same authors fully described proper holomorphic self-mappings of Fp,q for n > 1,
m > 1, p ∈ N

n , and q ∈ N
m (cf. [6]). In the same year, Chen in [2] characterized the

existence of mappings (1) in the case n > 1, m > 1, p, p̃ ∈ R
n
>0, and q, q̃ ∈ R

m
>0. Finally,

Chen and Liu in 2003 gave explicit forms of proper holomorphic mappings Fp,q −→ F p̃,q̃
but only for n > 1, m > 1, p, p̃ ∈ N

n , and q, q̃ ∈ N
m (cf. [3]).

Weemphasize that Landucci considered only the casem = 1with exponents being positive
integers, whereas Chen, Xu, and Liu obtained some partial results with positive integer or
arbitrary real positive exponents under general assumption n ≥ 2 and m ≥ 2. Consequently,
their results are far from being conclusive for the general setting.

The main aim of this note is to give a complete characterization of the existence of
mappings (1), where n,m ∈ N, p, p̃ ∈ R

n
>0, q, q̃ ∈ R

m
>0, their explicit form, and the

description of the group Aut(Fp,q) (cf. Theorems 1, 3, and 5) for arbitrary dimensions and
arbitrary positive real exponents. In particular,we obtain a classification theoremon rigidity of
proper holomorphic self-mappings of generalized Hartogs triangles (cf. Corollary 7), which
generalizes Chen’s and Xu’s main result from [6].

It is worth pointing out that in the general case neither Landucci’smethod from [12] (where
the assumption p, p̃ ∈ N

n , q, q̃ ∈ N is essential) nor Chen’s approach from [2] (where the
proof strongly depends on the assumption m ≥ 2) can be used.

The paper is organized as follows. We start with stating the main results. For the conve-
nience of the reader, we split them into three theorems with respect to dimensions of relevant
parts of Fp,q . Next we shall discuss proper holomorphic mappings between complex ellip-
soids Ep (cf. Sect. 3, Theorem 9) which will turn out to be quite useful in the sequel and may
be interesting in its own right. It should be mentioned that Theorem 9 completes the classifi-
cation of proper holomorphic mappings between complex ellipsoids which was initiated by
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Proper holomorphic mappings between generalized Hartogs triangles 1057

Landucci in 1984 (cf. [11]) and continued by Dini and Selvaggi Primicerio in [7]. The bound-
ary behavior of mappings (1) will also be studied (cf. Sect. 4). In the last section, making use
of the description of proper holomorphic mappings between complex ellipsoids (Theorem 9)
and the boundary behavior of proper holomorphic mappings between generalized Hartogs
triangles (Lemma 11), we shall prove our main results.

Here is some notation. Throughout the paper D denotes the unit disk in the complex
plane, additionally by T we shall denote the unit circle, ∂D stands for the boundary of the
bounded domain D ⊂ C

n . Let �n denote the group of the permutations of the set {1, . . . , n}.
For σ ∈ �n, z = (z1, . . . , zn) ∈ C

n denote zσ := (zσ(1), . . . , zσ(n)) and �n(z) := {σ ∈
�n : zσ = z}. We shall also write σ(z) := zσ . For α = (α1, . . . , αn) ∈ R

n
>0 and β =

(β1, . . . , βn) ∈ R
n
>0, we shall write αβ := (α1β1, . . . , αnβn) and 1/β := (1/β1, . . . , 1/βn).

If, moreover, α ∈ N
n , then

�α(z) := zα := (zα11 , . . . , zαnn ), z = (z1, . . . , zn) ∈ C
n .

For λ ∈ C, A ⊂ C
n let λA := {λa : a ∈ A} and A∗ := A \ {0}. Finally, let U(n) denote the

set of unitary mappings C
n −→ C

n .

2 Main results

We start with the generalized Hartogs triangles of the lowest dimension.

Theorem 1 Let n = m = 1, p, q, p̃, q̃ ∈ R>0.

(a) There exists a proper holomorphic mapping Fp,q −→ F p̃,q̃ if and only if there exist
k, l ∈ N such that

lq̃

p̃
− kq

p
∈ Z.

(b) A mapping F : Fp,q −→ F p̃,q̃ is proper and holomorphic if and only if

F(z, w) =
{(

ζ zkwlq̃/ p̃−kq/p, ξwl
)
, if q/p /∈ Q

(
ζ zk

′
wlq̃/ p̃−k′q/p B

(
z p

′
w−q ′)

, ξwl
)

, if q/p ∈ Q,
(z, w) ∈ Fp,q ,

where ζ, ξ ∈ T, k, l ∈ N, k′ ∈ N∪{0} are such that lq̃/ p̃−kq/p ∈ Z, lq̃/ p̃−k′q/p ∈ Z,
p′, q ′ ∈ N are relatively prime with p/q = p′/q ′, and B is a finite Blaschke product
non-vanishing at 0 (if B ≡ 1, then k′ > 0). In particular, there are non-trivial proper
holomorphic self-mappings in Fp,q .

(c) F ∈ Aut(Fp,q) if and only if

F(z, w) =
{

(ζ z, ξw), if q/p /∈ N
(
wq/pφ

(
zw−q/p

)
, ξw

)
, if q/p ∈ N,

(z, w) ∈ Fp,q ,

where ζ, ξ ∈ T and φ ∈ Aut(D).

Remark 2 (a) A counterpart of Theorem 1 for p, q, p̃, q̃ ∈ N was proved (with minor
mistakes) in [12], where it was claimed that a mapping F : Fp,q −→ F p̃,q̃ is proper and
holomorphic if and only if

F(z, w) =
{(

ζ zkwlq̃/ p̃−kq/p, ξwl
)
, if q/p /∈ N, lq̃/ p̃ − kq/p ∈ Z

(
ζwlq̃/ p̃ B

(
zw−q/p

)
, ξwl

)
, if q/p ∈ N, lq̃/ p̃ ∈ N

, (2)
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1058 P. Zapałowski

where ζ, ξ ∈ T, k, l ∈ N, and B is a finite Blaschke product. Nevertheless, the mapping

F2,3 
 (z, w) �−→ (
z3w3B

(
z2w−3) , w3) ∈ F2,5,

where B is non-constant finite Blaschke product non-vanishing at 0, is proper holomor-
phic but not of the form (2). In fact, it follows immediately fromTheorem 1(b) that for any
choice of p, q, p̃, q̃ ∈ N onemay find a proper holomorphic mapping F : Fp,q −→ F p̃,q̃
having, as a factor of the first component, non-constant Blaschke product non-vanishing
at 0.

(b) Theorems 1(a), (b) give a positive answer (modulo Landucci’s mistake) to the question
posed by Jarnicki and Pflug (cf. [9], Remark 2.5.22 (a)).

(c) Theorem 1(c) gives a positive answer to the question posed by Jarnicki and Pflug (cf. [9],
Remark 2.5.15 (b)) in the case n = 1.

Our next result is the following

Theorem 3 Let n ≥ 2, m = 1, p = (p1, . . . , pn), p̃ = ( p̃1, . . . , p̃n) ∈ R
n
>0, q, q̃ ∈ R>0.

(a) There exists a proper holomorphic mapping Fp,q −→ F p̃,q̃ if and only if there exist
σ ∈ �n and r ∈ N such that

pσ

p̃
∈ N

n and
rq̃ − q

p̃ j
∈ Z, j = 1, . . . , n.

(b) A mapping F = (G1, . . . ,Gn, H) : Fp,q −→ F p̃,q̃ is proper and holomorphic if and
only if
{
G j (z, w) = wr q̃/ p̃ j g j

(
z1w−q/p1 , . . . , znw−q/pn

)
, j = 1, . . . , n,

H(z, w) = ξwr ,
(z, w) ∈ Fp,q ,

where g := (g1, . . . , gn) : Ep −→ E p̃ is proper and holomorphic (cf. Theorem 9),
ξ ∈ T, and r ∈ N is such that (r q̃ − q)/ p̃ j ∈ Z, j = 1, . . . , n. Moreover, if there is a j
such that pσ( j) ∈ N, 1/ p̃ j ∈ N and {q, q̃} �⊂ N, then g(0) = 0. In particular, there are
non-trivial proper holomorphic self-mappings in Fp,q .

(c) F = (G1, . . . ,Gn, H) ∈ Aut(Fp,q) if and only if
{
G j (z, w) = wq/p j g j

(
z1w−q/p1 , . . . , znw−q/pn

)
, j = 1, . . . , n,

H(z, w) = ξw,
(z, w) ∈ Fp,q ,

where g := (g1, . . . , gn) ∈ Aut(Ep) (cf. Theorem 9), ξ ∈ T. Moreover, if q /∈ N, then
g(0) = 0.

Remark 4 (a) Theorem 3 (a) gives a positive answer to the question posed by Jarnicki and
Pflug (cf. [9], Remark 2.5.22 (a)) in the case n ≥ 2.

(b) Theorem 3 (c) gives a positive answer to the question posed by Jarnicki and Pflug (cf. [9],
Remark 2.5.15 (b)) in the case n ≥ 2.

(c) It should be mentioned that although the structure of the automorphism group Aut(Fp,q)

does not change when passing from p ∈ N
n , q ∈ N to p ∈ R

n
>0, q > 0, the class of

proper holomorphic mappings Fp,q −→ F p̃,q̃ does. It is a consequence of the fact that
the structure of proper holomorphic mappings Ep −→ E p̃ changes when passing from
p, p̃ ∈ N

n to p, p̃ ∈ R
n
>0 (see Sect. 3).

123



Proper holomorphic mappings between generalized Hartogs triangles 1059

Theorem 5 Let n,m ∈ N, m ≥ 2, p, p̃ ∈ R
n
>0, q, q̃ ∈ R

m
>0.

(a) There exists a proper holomorphic mapping Fp,q −→ F p̃,q̃ if and only if there exist
σ ∈ �n and τ ∈ �m such that

pσ

p̃
∈ N

n and
qτ

q̃
∈ N

m .

(b) A mapping F : Fp,q −→ F p̃,q̃ is proper and holomorphic if and only if

F(z, w) = (g(z), h(w)), (z, w) ∈ Fp,q ,

where mappings g : Ep −→ E p̃ and h : Eq −→ Eq̃ are proper and holomorphic such
that g−1(0) = 0, h−1(0) = 0 (cf. Theorem 9). In particular, if n = 1, then there are non-
trivial proper holomorphic self-mappings in Fp,q ; for n ≥ 2 every proper holomorphic
self-mapping in Fp,q is an automorphism.

(c) F ∈ Aut(Fp,q) if and only if

F(z, w) = (g(z), h(w)), (z, w) ∈ Fp,q ,

where g ∈ Aut(Ep), h ∈ Aut(Eq) with g(0) = 0, h(0) = 0 (cf. Theorem 9).

Remark 6 (a) Theorem 5 (a) was proved by Chen and Xu in [5] (for n,m ≥ 2, p, p̃ ∈ N
n ,

q, q̃ ∈ N
m) and by Chen in [2] (for n,m ≥ 2, p, p̃ ∈ R

n
>0, q, q̃ ∈ R

m
>0).

(b) Theorems 5 (b), (c) were proved by Chen and Xu in [6] for n,m ≥ 2, p = p̃ ∈ N
n ,

q = q̃ ∈ N
m .

(c) Theorem 5 (c) gives an affirmative answer to the question posed by Jarnicki and Pflug
(cf. [9], Remark 2.5.17).

A direct consequence of Theorems 1, 3, and 5 is the following classification of rigid proper
holomorphic self-mappings in generalized Hartogs triangles.

Corollary 7 Let n,m ∈ N, p ∈ R
n
>0, q ∈ R

m
>0. Then any proper holomorphic self-mapping

in Fp,q is an automorphism if and only if n ≥ 2 and m ≥ 2.

Remark 8 Corollary 7generalizes themain result of [6],where it is proved that forn ≥ 2,m ≥
2, p ∈ N

n , and q ∈ N
m any proper holomorphic self-mapping in Fp,q is an automorphism.

For more information on rigidity of proper holomorphic mappings between special kind of
domains in C

n , such as Cartan domains, Hua domains, etc., we refer the reader to [14], [15],
[16], [17], and [18].

3 Complex ellipsoids

In this section we discuss proper holomorphic mappings between complex ellipsoids. We
shall exploit their form in the proofs of main results.

For p = (p1, . . . , pn) ∈ R
n
>0, define the complex ellipsoid

Ep :=
⎧
⎨

⎩
(z1, . . . , zn) ∈ C

n :
n∑

j=1

|z j |2p j < 1

⎫
⎬

⎭
.

Note that E(1,...,1) is the unit Euclidean ball in C
n . Moreover, if p/q ∈ N

n , then �p/q :
Ep −→ Eq is proper and holomorphic.

123



1060 P. Zapałowski

The problem of characterization of proper holomorphic mappings between two given
complex ellipsoids has been investigated in [11] and [7]. The questions for the existence
of such mappings as well as for its form in the case p, q ∈ N

n was completely solved
by Landucci in 1984 (cf. [11]). The case p, q ∈ R

n
>0 was considered seven years later

by Dini and Selvaggi Primicerio in [7], where the authors characterized the existence of
proper holomorphic mappings Ep −→ Eq and found Aut(Ep). They did not give, however,
the explicit form of a proper holomorphic mapping between given two complex ellipsoids.
Nevertheless, from the proof of Theorem 1.1 in [7] we easily derive its form which shall
be of great importance during the investigation of proper holomorphic mappings between
generalized Hartogs triangles.

Theorem 9 Assume that n ≥ 2, p, q ∈ R
n
>0.

(a) (cf. [11], [7]). There exists a proper holomorphic mapping Ep −→ Eq if and only if
there exists σ ∈ �n such that

pσ

q
∈ N

n .

(b) A mapping F : Ep −→ Eq is proper and holomorphic if and only if

F = �pσ /(qr) ◦ φ ◦ �r ◦ σ,

where σ ∈ �n is such that pσ /q ∈ N
n, r ∈ N

n is such that pσ /(qr) ∈ N
n, and

φ ∈ Aut(Epσ /r ). In particular, every proper holomorphic self-mapping in Ep is an
automorphism.

(c) (cf. [11], [7]). If 0 ≤ k ≤ n, p ∈ {1}k × (R>0 \ {1})n−k , z = (z′, zk+1, . . . , zn), then
F = (F1, . . . , Fn) ∈ Aut(Ep) if and only if

Fj (z) =

⎧
⎪⎨

⎪⎩

Hj (z′), if j ≤ k

ζ j zσ( j)

(√
1−‖a′‖2

1−〈z′,a′〉

)1/pσ( j)

, if j > k,
z ∈ Ep,

where ζ j ∈ T, j > k, H = (H1, . . . , Hk) ∈ Aut(Bk), a′ = H−1(0), and σ ∈ �n(p).

Proof of Theorem 9 Parts (a) and (c) were proved in [7]. (b) Let F = (F1, . . . , Fn) : Ep −→
Eq be proper and holomorphic. According to [13], any automorphism H = (H1, . . . , Hn) ∈
Aut(Bn) is of the form

Hj (z) =
√
1 − ‖a‖2

1 − 〈z, a〉
n∑

k=1

h j,k(zk − ak), z = (z1, . . . , zn) ∈ Bn, j = 1, . . . , n,

where a = (a1, . . . , an) ∈ Bn and Q = [h j,k] is an n × n matrix such that

Q̄(In − āta)tQ = In,

where In is the unit n × n matrix, whereas Ā (resp. tA) is the conjugate (resp. transpose) of
an arbitrary matrix A. In particular, Q is unitary if a = 0.

It follows from [7] that there exists σ ∈ �n such that pσ /q ∈ N
n , h j,σ ( j) �= 0, and

Fj (z) =
(√

1 − ‖a‖2
1 − 〈z p, a〉h j,σ ( j)z

pσ( j)

σ ( j)

)1/q j

(3)

whenever 1/q j /∈ N.
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Proper holomorphic mappings between generalized Hartogs triangles 1061

If 1/q j ∈ N, then Fj either is of the form (3), where pσ( j)/q j ∈ N, or

Fj (z) =
(√

1 − ‖a‖2
1 − 〈z p, a〉

n∑

k=1

h j,k(z
pk
k − ak)

)1/q j

where pk ∈ N for any k such that ak �= 0 or there is a j with k �= σ( j) and h j,k �= 0.
Consequently, if we define r = (r1, . . . , rn) as

r j :=
{
pσ( j), if aσ( j) �= 0 or there is k �= σ( j) with h j,k �= 0

pσ( j)/q j , otherwise,

then it is easy to see that r ∈ N
n , pσ /(qr) ∈ N

n , and F is as desired. ��

Remark 10 (a) The counterpart of Theorem9(b) obtained byLanducci in [11] for p, q ∈ N
n

states that a mapping F : Ep −→ Eq is proper and holomorphic if and only if

F = φ ◦ �pσ /q ◦ σ, (4)

where σ ∈ �n is such that pσ /q ∈ N
n and φ ∈ Aut(Eq).

(b) In the general case the formula (4) is no longer true (take, for instance,�(2,2)◦H ◦�(2,2) :
E(2,2) −→ E(1/2,1/2),where H ∈ Aut(B2), H(0) �= 0). In particular, Theorem9(b) gives
a negative answer to the question posed by Jarnicki and Pflug (cf. [9], Remark 2.5.20).

(c) Note that in the case p, q ∈ N
n we have 1/q j ∈ N if and only if q j = 1. Hence the

above definition of r implies that r = pσ /q and, consequently, Theorem 9(b) reduces
to the Landucci’s form (4).

(d) Theorem 9(c) gives a positive answer to the question posed by Jarnicki and Pflug (cf. [9],
Remark 2.5.11).

4 Boundary behavior of proper holomorphic mappings between
generalized Hartogs triangles

Note that the boundary ∂Fp,q of the generalized Hartogs triangle Fp,q may be written as
∂Fp,q = {0} ∪ Kp,q ∪ L p,q ∪ Mp,q , where

Kp,q :=
⎧
⎨

⎩
(z, w) ∈ C

n × C
m : 0 <

n∑

j=1

|z j |2p j =
m∑

j=1

|w j |2q j < 1

⎫
⎬

⎭
,

L p,q :=
⎧
⎨

⎩
(z, w) ∈ C

n × C
m :

n∑

j=1

|z j |2p j <

m∑

j=1

|w j |2q j = 1

⎫
⎬

⎭
,

Mp,q :=
⎧
⎨

⎩
(z, w) ∈ C

n × C
m :

n∑

j=1

|z j |2p j =
m∑

j=1

|w j |2q j = 1

⎫
⎬

⎭
.

Let Fp,q and F p̃,q̃ be two generalized Hartogs triangles and let F : Fp,q −→ F p̃,q̃ be a
proper holomorphic mapping. It is known ([12], [5]) that F extends holomorphically through
any boundary point (z0, w0) ∈ ∂Fp,q\{0}.

The aim of this section is to prove the following crucial fact.
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1062 P. Zapałowski

Lemma 11 Let nm �= 1. If F : Fp,q −→ F p̃,q̃ is proper and holomorphic, then

F(Kp,q) ⊂ K p̃,q̃ ∪ Mp̃,q̃ , F(L p,q) ⊂ L p̃,q̃ ∪ Mp̃,q̃ .

Remark 12 Particular cases of Lemma 11 have already been proved by Landucci (cf. [12],
Proposition 3.2, for p, p̃ ∈ N

n , q, q̃ ∈ N
m , m = 1) and Chen (cf. [2], Lemmas 2.1 and 2.3,

for p, p̃ ∈ R
n
>0, q, q̃ ∈ R

m
>0, m > 1). Therefore, it suffices to prove Lemma 11 for n ≥ 2

and m = 1. The main difficulty in carrying out this construction is that the methods from
[12] (where the assumption p, p̃ ∈ N

n , q, q̃ ∈ N is essential) and [2] (where the assumption
m ≥ 2 is essential) break down. Invariance of two defined parts of boundary of the generalized
Hartogs triangles with respect to the proper holomorphic mappings presents a more delicate
problem and shall be solved with help of the notion of Levi flatness of the boundary.

The following two lemmas will be needed in the proof of Lemma 11.

Lemma 13 If n ≥ 2 and m = 1, then K p,q is not Levi flat at (z, w) ∈ Kp,q , where at least
two coordinates of z are nonzero (i.e., the Levi form of the defining function restricted to the
complex tangent space is not degenerate at (z, w)).

Proof of Lemma 13 Let

r(z, w) :=
n∑

j=1

|z j |2p j − |w|2q , (z, w) ∈ C
n × C.

Note that r is local defining function for the generalized Hartogs triangle Fp,q (in a neigh-
borhood of any boundary point from Kp,q ). It is easily seen that its Levi form equals

Lr((z, w); (X, Y )) =
n∑

j=1

p2j |z j |2(p j−1)|X j |2 − q2|w|2(q−1)|Y |2,

(z, w) ∈ Kp,q , (X, Y ) ∈ C
n × C,

whereas the complex tangent space at (z, w) ∈ Kp,q is given by

TC(z, w) =
⎧
⎨

⎩
(X, Y ) ∈ C

n × C : Y = 1

qw|w|2(q−1)

n∑

j=1

p j z j |z j |2(p j−1)X j

⎫
⎬

⎭

(recall that w �= 0).
Fix (z, w) ∈ Kp,q such that at least two coordinates of z are nonzero. To see that the Levi

form of r restricted to the complex tangent space is not degenerate at (z, w), it suffices to
observe that for any (X, Y ) ∈ TC(z, w)

Lr((z, w); (X, Y )) = 1

|w|2q
∑

1≤ j<k≤n

|z j |2(p j−1)|zk |2(pk−1)
∣
∣p j zk X j − pkz j Xk

∣
∣2 .

��
Lemma 14 Let D ⊂ C

n+1 and V ⊂ C
n be bounded domains, a ∈ V , and let
 : V −→ ∂D

be a holomorphic mapping such that rank
′(a) = n. Assume that D has a local defining
function r of class C2 in a neighborhood of 
(a). Then ∂D is Levi flat at 
(a).

Proof of Lemma 14 Equality r(
(z)) = 0, z = (z1, . . . , zn) ∈ V , implies

n+1∑

j=1

∂r

∂z j
(
(z))

∂
 j

∂zm
(z) = 0, z ∈ V, m = 1, . . . , n, (5)
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Proper holomorphic mappings between generalized Hartogs triangles 1063

i.e.,

Xm(z) :=
(

∂
1

∂zm
(z), . . . ,

∂
n+1

∂zm
(z)

)

∈ TC(
(z)), z ∈ V, m = 1, . . . , n.

Differentiating (5) with respect to zm we get

n+1∑

j,k=1

∂2r

∂z j∂zk
(
(z))

∂
 j

∂zm
(z)

∂
 j

∂zm
(z) = 0, z ∈ V, m = 1, . . . , n.

Last equality for z = a gives

Lr(
(a); Xm(a)) = 0, m = 1, . . . , n. (6)

On the other hand, rank
′(a) = n implies that the vectors Xm(a), m = 1, . . . , n, form the
basis of the complex tangent space TC(
(a)). Consequently, (6) implies thatLr(
(a); X) =
0 for any X ∈ TC(
(a)), i.e., ∂D is Levi flat at 
(a). ��

Proof of Lemma 11 In view of Lemmas 2.1 and 2.3 from [2] it suffices to consider the case
n ≥ 2 and m = 1.

First we show that F(L p,q) ⊂ L p̃,q̃∪Mp̃,q̃ . Suppose the contrary. Then F(L p,q)∩K p̃,q̃ �=
∅ or 0 ∈ F(L p,q).

First assume F(L p,q) ∩ K p̃,q̃ �= ∅. Since L p,q \ Z(JF ) is a dense open set of L p,q

(here Z(JF ) denotes the zero set of the Jacobian JF of a mapping F), the continuity of F
implies that there is a point (z0, w0) ∈ L p,q \ Z(JF ) such that F(z0, w0) ∈ K p̃,q̃ . Without
loss of generality, we may assume that at least two coordinates of G(z0, w0) are nonzero,
where F(z0, w0) = (G(z0, w0), H(z0, w0)) ∈ C

n × C. Consequently, there is an open
neighborhood U ⊂ C

n × C of (z0, w0) such that F |U : U −→ F(U ) is biholomorphic and
F(U∩L p,q) = F(U )∩K p̃,q̃ . Take a neighborhoodV ⊂ C

n of z0 such that (z, w0) ∈ U∩L p,q

for z ∈ V . Then

V 
 z

�−→ F(z, w0) ∈ F(U ) ∩ K p̃,q̃

is a holomorphicmappingwith rank
′(z0) = n. ByLemma14, K p̃,q̃ isLevi flat at F(z0, w0),
which contradicts Lemma 13.

The assumption 0 ∈ F(L p,q) also leads to a contradiction. Indeed, one may repeat the
reasoning from the proof of Lemma 2.1 from [2].

Nowwe shall prove that F(Kp,q) ⊂ K p̃,q̃ ∪Mp̃,q̃ . Suppose the contrary. Then F(Kp,q)∩
L p̃,q̃ �= ∅ or 0 ∈ F(Kp,q).

Suppose F(Kp,q) ∩ L p̃,q̃ �= ∅. Since Kp,q \ Z(JF ) is a dense open set of Kp,q , the
continuity of F implies that there is a point (z0, w0) ∈ Kp,q \ Z(JF ) such that F(z0, w0) ∈
L p̃,q̃ . Without loss of generality we may assume that at least two coordinates of z0 are
nonzero. Consequently, there is an open neighborhood U ⊂ C

n × C of (z0, w0) such that
F |U : U −→ F(U ) is biholomorphic and F(U ∩ Kp,q) = F(U )∩ L p̃,q̃ . It remains to apply
the previous reasoning to the inverse mapping (F |U )−1 : F(U ) −→ U .

Finally, the assumption 0 ∈ F(Kp,q) also leads to a contradiction. Indeed, one may repeat
the reasoning from the proof of Lemma 2.3 from [2]. ��
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1064 P. Zapałowski

5 Proofs of the Theorems 1, 3, and 5

In the proof of Theorem 1we shall use a part of themain result from [8], where complete char-
acterization of non-elementary proper holomorphic mappings between bounded Reinhardt
domains in C

2 is given (cf. [10] for the unbounded case).

Proof of Theorem 1 Observe that (a) and (c) follow immediately from (b).
If F = (G, H) is of the form given in (b), then it is holomorphic and

|G(z, w)| p̃|H(z, w)|−q̃ =
⎧
⎨

⎩

(|z||w|−q/p
)k p̃

, if q/p /∈ Q

(|z||w|−q/p
)k′ p̃

∣
∣
∣B(z p

′
w−q ′

)

∣
∣
∣
p̃
, if q/p ∈ Q,

i.e., F is proper.
On the other hand, let F : Fp,q −→ F p̃,q̃ be an arbitrary mapping which is proper and

holomorphic.
Assume first that F is elementary and algebraic, i.e., it is of the form

F(z, w) =
(
αzawb, βzcwd

)
,

where a, b, c, d ∈ Z are such that ad − bc �= 0 and α, β ∈ C are some constants. Since F is
surjective, we infer that c = 0, d ∈ N, and ξ := β ∈ T. Moreover,

|α| p̃|z|a p̃|w|b p̃−dq̃ < 1, (7)

whence a ∈ N, b p̃ − dq̃ ≥ 0, and ζ := α ∈ T. Let k := a, l := d . One may rewrite (7) as
(|z|p|w|−q)k p̃/p |w|b p̃−lq̃+kq p̃/p < 1.

Taking a sequence (zν, 1/2)ν∈N ⊂ Fp,q with |zν |p2q → 1 as ν → ∞, we infer that
b p̃ − lq̃ + kq p̃/p = 0, i.e.,

b = lq̃

p̃
− kq

p
.

Consequently, F is as in Theorem 1 (b).
Assume now that F is non-elementary. Then it follows from Theorem 0.1 in [8] that F is

of the form

F(z, w) =
(
αzawb B̃

(
z p

′
w−q ′)

, βwl
)

,

where a, b ∈ Z, a ≥ 0, p′, q ′, l ∈ N, p′, q ′ are relatively prime,

q ′

p′ = q

p
,

q̃

p̃
= aq ′ + bp′

lp′ , (8)

α, β ∈ C are some constants, and B̃ is a non-constant finite Blaschke product non-vanishing
at the origin.

From the surjectivity of F , we immediately infer that ζ := α ∈ T and ξ := β ∈ T. If we
put k′ := a, then (8) implies

b = lq̃

p̃
− k′q

p
,

which ends the proof. ��
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Proof of Theorem 3 Firstly, if p, q, p̃, and q̃ satisfy the condition in (a) then the mapping

Fp,q 
 (z1, . . . , zn, w) �−→
(
z
pσ(1)/ p̃1
σ(1) w(r q̃−q)/ p̃1 , . . . , z

pσ(n)/ p̃n
σ(n) w(r q̃−q)/ p̃n , wr

)
∈ F p̃,q̃

is proper and holomorphic.
Secondly, if the mapping F is defined by the formulas given in (b), then, using Theo-

rem 9 (b), it is easy to see that F : Fp,q −→ F p̃,q̃ is proper and holomorphic.
Finally, (c) is a direct consequence of (b) and Theorem 9 (c).
Thus it remains to prove that if F : Fp,q −→ F p̃,q̃ is proper and holomorphic, then

p, q, p̃, and q̃ satisfy conditions in (a) and F is given by formulas stated in (b).
Let

F = (G, H) = (G1, . . . ,Gn, H) : Fp,q −→ F p̃,q̃

be a proper holomorphic mapping. Since F(L p,q) ⊂ L p̃,q̃ ∪Mp̃,q̃ (cf. Lemma 11), it follows
from the proof of Lemma 2.2 in [2] that H does not depend on the variable z. Hence h :=
H(0, ·) is a proper and holomorphic self-mapping of D∗. Consequently, by the Hartogs
theorem, it extends to a proper holomorphic mapping h : D −→ D, i.e., h is a finite Blaschke
product. On the other hand, if h(a) = 0, we immediately get

G(z, a) = 0,
n∑

j=1

|z j |2p j < |a|2q ,

which clearly gives a contradiction, unless a = 0. Hence

H(z, w) = ξwr (9)

for some ξ ∈ T and r ∈ N.
For w, 0 < |w| < 1, let

Ep,q(w) :=
⎧
⎨

⎩
(z1, . . . , zn) ∈ C

n :
n∑

j=1

|z j |2p j < |w|2q
⎫
⎬

⎭
.

Since F(Kp,q) ⊂ K p̃,q̃ ∪ Mp̃,q̃ (cf. Lemma 11), it follows from (9) that G(·, w) :
Ep,q(w) −→ E p̃,r q̃(w) is proper and holomorphic. Hence, if we put

g j (z1, . . . , zn) := w−r q̃/ p̃ j G j
(
z1w

q/p1 , . . . , znw
q/pn , w

)
, j = 1, . . . , n,

we conclude that g = (g1, . . . , gn) : Ep −→ E p̃ is proper and holomorphic. By Theorem 9
(a), there is σ ∈ �n such that pσ / p̃ ∈ N

n . Moreover, it follows from the proof of Theorem
2 in [1] that g does not depend on w. Consequently, we obtain

G j (z1, . . . , zn, w) = wr q̃/ p̃ j g j
(
z1w

−q/p1 , . . . , znw
−q/pn

)
, j = 1, . . . , n.

To complete the proof, it remains to make use of the explicit form of the mapping g [cf. The-
orem 9 (b)]. ��
Proof of Theorem 5 Wewrite z = (z1, . . . , zn) ∈ C

n andw = (w1, . . . , wm) ∈ C
m .Without

loss of generality, we may assume that there is 0 ≤ ν ≤ n with p̃ ∈ {1}ν × (R>0 \ {1})n−ν

and 0 ≤ μ ≤ m with q̃ ∈ {1}μ × (R>0 \ {1})m−μ. Let

F = (G, H) : Fp,q −→ F p̃,q̃ ⊂ C
n × C

m
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1066 P. Zapałowski

be a proper holomorphic mapping. It follows from Lemma 11 that F(L p,q) ⊂ L p̃,q̃ ∪ Mp̃,q̃
and hence, using Lemma 2.2 from [2] (note that the proof remains valid for n = 1), we infer
that H is independent of the variable z. Hence, the mapping h := H(0, ·) : (Eq)∗ −→ (Eq̃)∗
is proper and holomorphic. Consequently, by the Hartogs theorem, it extends to a proper and
holomorphic mapping h : Eq −→ Eq̃ , i.e., [cf. Theorem 9 (b)]

h = �qτ /(q̃t) ◦ ψ ◦ �t ◦ τ

for some τ ∈ �m with qτ /q̃ ∈ N
m , t ∈ N

m with qτ /(q̃t) ∈ N
m , and ψ ∈ Aut(Eqτ /t ) with

ψ(0) = 0. Indeed, if a = (a1, . . . , am) is a zero of h, we immediately get

G(z, a) = 0,
n∑

j=1

|z j |2p j <

m∑

j=1

|a j |2q j ,

which is clearly a contradiction, unless a = 0. Consequently, h(0) = 0.
Without loss of generality, we may assume that there is μ ≤ l ′ ≤ m with 1/q̃ j /∈ N if and

only if j = l ′ + 1, . . . ,m. It follows from the proof of Theorem 9 (b) that there is μ ≤ l ≤ l ′
such that

qτ( j)

t j
=

{
1, if j = 1, . . . , l

q̃ j , if j = l + 1, . . . ,m,

whence

ψ(w) = (U (w1, . . . , wl), ξl+1wl+ω(1), . . . , ξmwl+ω(m−l)),

where U = (U1, . . . ,Ul) ∈ U(l), ξ j ∈ T, j > l, and ω ∈ �m−l(q̃l+1, . . . , q̃m). Finally,

h(w) =
(
U 1/q̃1
1

(
w

qτ(1)
τ (1) , . . . , w

qτ(l)
τ (l)

)
, . . . ,U 1/q̃l

l

(
w

qτ(1)
τ (1) , . . . , w

qτ(l)
τ (l)

)
,

ξl+1w
qτ(l+1)/q̃l+1
τ(l+1) , . . . , ξmw

qτ(m)/q̃m
τ(m)

)
.

In particular, if we write h = (h1, . . . , hm), then

m∑

j=1

|h j (w)|2q̃ j =
m∑

j=1

|w j |2q j , w = (w1, . . . , wm) ∈ Eq . (10)

For w ∈ C
m , 0 < ρw := ∑m

j=1 |w j |2q j < 1 let

Ep,q(w) :=
⎧
⎨

⎩
z ∈ C

n :
n∑

j=1

|z j |2p j <

m∑

j=1

|w j |2q j

⎫
⎬

⎭
.

Since F(Kp,q) ⊂ K p̃,q̃ ∪ Mp̃,q̃ (cf. Lemma 11), it follows from (10) that g := G(·, w) :
Ep,q(w) −→ E p̃,q(w) is proper and holomorphic. Note that g may depend, a priori, on w.

We consider two cases, n = 1 and n ≥ 2, separately.

(i) Case n = 1. Here Ep,q(w) = ρ
1/(2p)
w D. Consequently,

g(z) = ρ1/(2 p̃)
w B

(
zρ−1/(2p)

w

)
, z ∈ ρ1/(2p)

w D, (11)
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where B is a finite Blaschke product. Let

F
0
p,q := Fp,q ∩

(
C × {0}τ(1)−1 × C × {0}m−τ(1)

)
,

F
0
p̃,qτ /t := F p̃,qτ /t ∩ (

C
2 × {0}m−1) .

Let 
 ∈ Aut(F p̃,qτ /t ) be defined by


(z, w) := (
z,U−1(w1, . . . , wl), wl+1, . . . , wm

)

and let

ξ̂1 :=
{

ξ1, if l = 0

1, if l > 0
, q̂1 :=

{
q̃1, if l = 0

1, if l > 0.

Then 
 ◦ (G, ψ ◦ �t ◦ τ) : F
0
p,q −→ F

0
p̃,qτ /t is proper and holomorphic with

(
 ◦ (G, ψ ◦ �t ◦ τ))(z, w) =
(
G(z, w), ξ̂1w

qτ(1)/q̂1
τ(1) , 0, . . . , 0

)
, (z, w) ∈ F

0
p,q . (12)

It follows from Theorem 1 that

(
 ◦ (G, ψ ◦ �t ◦ τ))(z, w) =
(
Ĝ(z, w), ηwr

τ(1), 0, . . . , 0
)

, (z, w) ∈ F
0
p,q , (13)

where

Ĝ(z, w) :=

⎧
⎪⎨

⎪⎩

ζ zkw
r q̂1/ p̃−kqτ(1)/p
τ(1) , if qτ(1)/p /∈ Q

ζ zk
′
w
r q̂1/ p̃−k′qτ(1)/p
τ(1) B̂

(

z p
′
w

−q ′
τ(1)

τ (1)

)

, if qτ(1)/p ∈ Q,

ζ, η ∈ T, k, r, p′, q ′
τ(1) ∈ N, k′ ∈ N ∪ {0} are such that p′, q ′

τ(1) are relatively prime,

qτ(1)/p = q ′
τ(1)/p

′, r q̂1/ p̃−kqτ(1)/p ∈ Z, and B̂ is a finite Blaschke product non-vanishing

at 0 (if B̂ ≡ 1, then k′ > 0). Hence

(
 ◦ (G, ψ ◦ �t ◦ τ))(z, w)

=
(
Ĝ(z, w) + α(z, w),w

qτ(1)
τ (1) , . . . , w

qτ(l)
τ (l) , ξl+1w

qτ(l+1)/q̃l+1
τ(l+1) , . . . , ξmw

qτ(m)/q̃m
τ(m)

)
, (14)

for (z, w) ∈ Fp,q , wτ(1) �= 0, where α is holomorphic on Fp,q with α|F0p,q = 0. Comparing
(12) and (13) we conclude that

η = ξ̂1, r = qτ(1)/q̂1.

Since the mapping on the left side of (14) is holomorphic on Fp,q , the function

Ĝ(z, w) =

⎧
⎪⎨

⎪⎩

ζ zkw
qτ(1)(1/ p̃−k/p)
τ (1) , if qτ(1)/p /∈ Q

ζ zk
′
w

qτ(1)(1/ p̃−k′/p)
τ (1) B̂

(

z p
′
w

−q ′
τ(1)

τ (1)

)

, if qτ(1)/p ∈ Q
(15)

with qτ(1)(1/ p̃−k/p) ∈ Z and qτ(1)(1/ p̃−k′/p) ∈ Z has to be holomorphic onFp,q , as well.
Sincem ≥ 2, it may happenwτ(1) = 0. Consequently, qτ(1)(1/ p̃−k/p) ∈ N∪{0} in the first
case of (15), whereas B̂(t) = tk

′′
for some k′′ ∈ Nwith qτ(1)(1/ p̃−k′/p)−k′′q ′

τ(1) ∈ N∪{0}
in the second case. Thus

Ĝ(z, w) = ζ zkw
qτ(1)(1/ p̃−k/p)
τ (1) ,
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1068 P. Zapałowski

where k ∈ N, qτ(1)(1/ p̃ − k/p) ∈ N ∪ {0} [in the second case of (15) it suffices to take
k := k′ + p′k′′].

Observe that Ĝ + α = G. Fix w ∈ {0}τ(1)−1 × C × {0}m−τ(1) with 0 < ρw < 1. Then
ρw = |wτ(1)|2qτ(1) and Ĝ(·, w) = g on ρ

1/(2p)
w D, i.e.,

ζ zkw
qτ(1)(1/ p̃−k/p)
τ (1) = |wτ(1)|qτ(1)/ p̃ B

(
z|wτ(1)|−qτ(1)/p

)
, z ∈ |wτ(1)|qτ(1)/pD.

Thus B(t) = ζ tk and qτ(1)(1/ p̃ − k/p) = 0, i.e., k = p/ p̃. Hence part (a) in the case n = 1
is proved. To finish part (b) in this case, note that g(z) = ζ z p/ p̃ . Consequently, g does not
depend on w and

G(z, w) = ζ z p/ p̃, (z, w) ∈ Fp,q .

(ii) Case n ≥ 2. Let

f j (z) := ρ
−1/(2 p̃ j )
w g j

(
z1ρ

1/(2p1)
w , . . . , znρ

1/(2pn)
w

)
, j = 1, . . . , n. (16)

Then f := ( f1, . . . , fn) : Ep −→ E p̃ is proper and holomorphic, i.e.,

f = �pσ /( p̃s) ◦ ϕ ◦ �s ◦ σ (17)

for some σ ∈ �n with pσ / p̃ ∈ N
n , s ∈ N

n with pσ /( p̃s) ∈ N
n , and ϕ ∈ Aut(Epσ /s). In

particular, part (a) in the case n ≥ 2 is proved. Without loss of generality, we may assume
that there is ν ≤ k′ ≤ n such that 1/ p̃ j /∈ N if and only if j = k′ + 1, . . . , n. It follows from
the proof of Theorem 9 (b) that there is ν ≤ k ≤ k′ such that

pσ( j)

s j
=

{
1, if j = 1, . . . , k

p̃ j , if j = k + 1, . . . , n,

whence

ϕ(z) =
⎛

⎝T (z′), ζk+1zk+ω(1)

(√
1 − ‖a′‖2

1 − 〈z′, a′〉

)1/ p̃k+ω(1)

,

. . . , ζnzk+ω(n−k)

(√
1 − ‖a′‖2

1 − 〈z′, a′〉

)1/ p̃k+ω(n−k)
⎞

⎠ ,

where T = (T1, . . . , Tk) ∈ Aut(Bk), z′ := (z1, . . . , zk), a′ := T−1(0), ζ j ∈ T, j > k, and
ω ∈ �n−k( p̃k+1, . . . , p̃n). Let

F
0
p,q := Fp,q ∩

(
C
n × {0}τ(1)−1 × C × {0}m−τ(1)

)
,

F
0
p̃,qτ /t := F p̃,qτ /t ∩ (

C
n+1 × {0}m−1) .

Let 
 ∈ Aut(F p̃,qτ /t ) be defined by


(z, w) := (
z,U−1(w1, . . . , wl), wl+1, . . . , wm

)

and let

ξ̂1 :=
{

ξ1, if l = 0

1, if l > 0
, q̂1 :=

{
q̃1, if l = 0

1, if l > 0.
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Proper holomorphic mappings between generalized Hartogs triangles 1069

Then 
 ◦ (G, ψ ◦ �t ◦ τ) : F
0
p,q −→ F

0
p̃,qτ /t is proper and holomorphic with

(
 ◦ (G, ψ ◦ �t ◦ τ))(z, w) =
(
G(z, w), ξ̂1w

qτ(1)/q̂1
τ(1) , 0, . . . , 0

)
, (z, w) ∈ F

0
p,q . (18)

It follows from Theorem 3 (b) that

(
 ◦ (G, ψ ◦ �t ◦ τ))(z, w) =
(
Ĝ(z, w), ηwr

τ(1), 0, . . . , 0
)

, (z, w) ∈ F
0
p,q , (19)

where Ĝ = (Ĝ1, . . . , Ĝn),

Ĝ j (z, w) := w
r q̂1/ p̃ j

τ(1) f̂ j
(
z1w

−qτ(1)/p1
τ(1) , . . . , znw

−qτ(1)/pn
τ(1)

)
, j = 1, . . . , n,

η ∈ T, r ∈ N, and f̂ := ( f̂1, . . . , f̂n) : Ep −→ E p̃ is proper and holomorphic, i.e.,

f̂ = �pσ̂ /( p̃ŝ) ◦ ϕ̂ ◦ �ŝ ◦ σ̂ (20)

for some σ̂ ∈ �n with pσ̂ / p̃ ∈ N
n , ŝ ∈ N

n with pσ̂ /( p̃ŝ) ∈ N
n , and ϕ̂ ∈ Aut(Epσ̂

/ŝ). Again,
it follows from the proof of Theorem 9 (b) that

pσ̂ ( j)

ŝ j
=

{
1, if j = 1, . . . , k

p̃ j , if j = k + 1, . . . , n,

whence

ϕ̂(z) =
⎛

⎝T̂ (z′), ζ̂k+1zk+ω̂(1)

(√
1 − ‖â′‖2

1 − 〈z′, â′〉

)1/ p̃k+ω̂(1)

,

. . . , ζ̂nzk+ω̂(n−k)

(√
1 − ‖â′‖2

1 − 〈z′, â′〉

)1/ p̃k+ω̂(n−k)
⎞

⎠ ,

where T̂ = (T̂1, . . . , T̂k) ∈ Aut(Bk), z′ := (z1, . . . , zk), â′ := T̂−1(0), ζ̂ j ∈ T, j > k, and
ω̂ ∈ �n−k( p̃k+1, . . . , p̃n). From (19) we infer that

(
 ◦ (G, ψ ◦ �t ◦ τ))(z, w)

=
(
Ĝ(z, w) + α(z, w),w

qτ(1)
τ (1) , . . . , w

qτ(l)
τ (l) , ξl+1w

qτ(l+1)/q̃l+1
τ(l+1) , . . . , ξmw

qτ(m)/q̃m
τ(m)

)
, (21)

for (z, w) ∈ Fp,q with wτ(1) �= 0, where α is holomorphic on Fp,q with α|F0p,q = 0.
Comparing (18) and (19) we conclude that

η = ξ̂1, r = qτ(1)/q̂1.

Since the mapping on the left side of (21) is holomorphic on Fp,q , the functions

Ĝ j (z, w) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w
qτ(1)/ p̃ j

τ(1) T̂
1/ p̃ j
j

(
z
pσ̂ (1)

σ̂ (1) w
−qτ(1)
τ (1) , . . . , z

pσ̂ (k)

σ̂ (k) w
−qτ(1)
τ (1)

)
, if j ≤ k

ζ̂ j z
pσ̂ ( j)/ p̃ j

σ̂ ( j)

(√
1−‖â′‖2

1−〈z′,â′〉

)1/ p̃σ̂ ( j)

, if j > k,
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are holomorphic on Fp,q , as well. Since m ≥ 2, it may happen wτ(1) = 0. Consequently,
T̂ ∈ U(k) and

Ĝ j (z, w) =
⎧
⎨

⎩

T̂
1/ p̃ j
j

(
z
pσ̂ (1)

σ̂ (1) , . . . , z
pσ̂ (k)

σ̂ (k)

)
, if j ≤ k

ζ̂ j z
pσ̂ ( j)/ p̃ j

σ̂ ( j) if j > k.

Recall that Ĝ + α = G and fix w ∈ {0}τ(1)−1 × C × {0}m−τ(1) with 0 < ρw < 1. Then
ρw = |wτ(1)|2qτ(1) and it follows from (16) and (17) that

g j (z) =
⎧
⎨

⎩

|wτ(1)|qτ(1)/ p̃ j T
1/ p̃ j
j

(
z
pσ(1)
σ (1) |wτ(1)|−qτ(1) , . . . , z

pσ(k)
σ (k) |wτ(1)|−qτ(1)

)
, if j ≤ k

ζ j z
pσ( j)/ p̃ j

σ( j) , if j > k,

From the equality Ĝ(·, w) = g onEp,q(w) one has ζ j = ζ̂ j , j > k, and, losing no generality,
we conclude that σ = σ̂ , s = ŝ, and T = T̂ . Consequently, g does not depend on w and
g−1(0) = 0.

Part (c) follows directly from (b). ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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