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ABSTRACT

Transient detection and flux measurement via image subtraction stand at the base of time domain
astronomy. Due to the varying seeing conditions, the image subtraction process is non-trivial, and ex-
isting solutions suffer from a variety of problems. Starting from basic statistical principles, we develop
the optimal statistic for transient detection, flux measurement and any image-difference hypothesis
testing. We derive a closed-form statistic that: (i) Is mathematically proven to be the optimal tran-
sient detection statistic in the limit of background-dominated noise; (ii) Is numerically stable; (iii)
For accurately registered, adequately sampled images, does not leave subtraction or deconvolution
artifacts; (iv) Allows automatic transient detection to the theoretical sensitivity limit by providing
credible detection significance; (v) Has uncorrelated white noise; (vi) Is a sufficient statistic for any
further statistical test on the difference image, and in particular, allows to distinguish particle hits and
other image artifacts from real transients; (vii) Is symmetric to the exchange of the new and reference
images; (viii) Is at least an order of magnitude faster to compute than some popular methods; and
(ix) Is straightforward to implement. Furthermore, we present extensions of this method that make
it resilient to registration errors, color-refraction errors, and any noise source that can be modelled.
In addition, we show that the optimal way to prepare a reference image is the proper image coaddi-
tion presented in Zackay & Ofek (2015b). We demonstrate this method on simulated data and real
observations from the Palomar Transient Factory data release 2. We provide an implementation of
this algorithm in MATLAB and Python.

1. INTRODUCTION

Detection of previously-unknown transient sources is
at the base of many fields of astronomy. Examples in-
clude: the searches for supernovae, microlensing events
and light echos. To remove a constant complex back-
ground, it is useful to perform digital image subtraction,
a problem that has proven to be hard to tackle, with
several suggested solutions (e.g., Phillips & Davis 1995;
Alard & Lupton 1998; Bramich 2008; Gal-Yam et al.
2008; Yuan & Akerlof 2008). Probably the most popular
algorithms are by Alard & Lupton (1998) and Bramich
(2008).
Current methods have several problems and limita-

tions. An important difficulty in image subtraction is
that the point spread function (PSF) of images taken
from the ground is varying1. In some cases, the subtrac-
tion is based on a numerically unstable process (decon-
volution) that may generate subtraction artifacts. Com-
bined with ill-defined error propagation2, it is difficult to
decide if a transient candidate is real or rather due to a
subtraction artifact. Finally, there is no proof that any
of the methods we are currently using is optimal. As we
will show in this paper, none of these algorithms is op-
timal. One hint for this is that some of these methods
are not symmetric to exchange of the reference image and
the new image, while the problem is symmetric. Another

bzackay@gmail.com
eran.ofek@weizmann.ac.il
1 Sometimes this is relevant also for space-based observation.
2 There are several reasons why the current methods propagate

the errors incorrectly. One reason is that convolution generates
correlated noise, which is typically ignored. Second is that usually
the errors in the reference image are not projected correctly.

hint is that none of the methods defines the matched fil-
ter that one should use in order to detect transients in
the difference image.
In the Alard & Lupton (1998) and Bramich (2008) class

of solutions, a complex inversion problem needs to be
solved. This inversion problem can be regarded as a reg-
ularization effort (e.g., Becker et al. 2012) on the partial
deconvolution done by Phillips & Davis (1995). Apart
from being computationally slow, this inversion problem
is in itself an effective deconvolution, and the numerical
instability of the deconvolution process cannot be swept
under the rug. These algorithms explore the trade off
between ringing artifacts in the subtraction image, that
are due to the effective division in the Fourier plane, and
residuals from the constant-in-time sky that are due to
a failure of equalizing the PSFs of the reference and the
new images. For example, if the PSF of the new image is
sharper than the PSF of the reference in some axis, then
these methods find no good solutions leading to multiple
image artifacts.
These artifacts, along with residuals caused by regis-

tration errors, appear as false positive signals that hinder
the automatic detection of transients. The current state
of the art solution to this problem is to train a machine-
learning algorithm (e.g., Bloom et al. 2012; Goldstein
et al. 2015; Wright et al. 2015) to filter most of the ar-
tifacts and reduce the number of false positives to the
minimum. However, this solution is partial and human
scanners are required to sift through all remaining can-
didate detections and decide which is real and which is
not (e.g., Gal-Yam et al. 2011; Smith et al. 2011).
This elaborate process can undermine the successful

operation of transient searches in many ways. First,
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employing many human scanners can be cumbersome
and expensive. Current surveys are spending consider-
able manpower on candidate sifting (e.g., PTF). With-
out further dramatic improvement, this use of human
scanners is unscalable, and is unfeasible for future sur-
veys like ZTF (Bellm et al. 2015) and LSST (Ivezic et al.
2008). Second, having humans in the loop introduces a
time delay in the transient detection. This can compro-
mise science cases in which it is of utmost importance
to make rapid follow-up observations of new transients
(e.g., Cenko et al. 2013, Gal-Yam et al. 2014, Cenko
et al. 2015). Moreover, our experience is that at least
some machine learning algorithms throw away real ob-
vious transients. Furthermore, the human scanning step
makes it difficult to estimate the completeness of tran-
sient surveys as human scanners are difficult to properly
simulate. Another problem is that even human scanners
can be unsure if a transient is real or an artifact, and
many surveys adopt the methodology of accepting only
candidates that are persistent in two or more consecu-
tive observations3 (e.g., Gal-Yam et al. 2011, Baltay et
al. 2013). This methodology trades the survey speed with
the increased credibility of the candidates, and causes an
additional time delay in transient detection. Last, hu-
man scanning makes it difficult to detect transients at
the faintest limit, as it is hard for humans to objectively
quantify the false alarm probability.
In this paper, we present a closed-form solution for

image subtraction in general, and transient detection in
particular. Starting with the most basic statistical prin-
ciples, we solve the problem of transient detection un-
der the assumption that both the reference and the new
images have white Gaussian noise (e.g., the background-
noise- or read-noise-dominated limit). We then charac-
terize the statistical behavior of our closed-form transient
detection statistic under the influence of source noise and
astrometric errors. Based on this analysis, we then con-
struct a correction term to the transient detection statis-
tic that prevents false positive detections in the vicinity
of bright objects. Our solution is always numerically
stable, is trivial to implement and analyze, and is sig-
nificantly faster computationally than the popular algo-
rithms (e.g., Alard & Lupton 1998; Bramich 2008). We
extend the transient detection statistic to the situation
of multiple references, and show that the optimal refer-
ence image for image subtraction is the proper coaddi-
tion image given in Zackay & Ofek (2015b). Finally, we
show that the transient detection statistic is the maxi-
mal S/N estimator for transient flux measurement in the
background-dominated noise limit.
We further develop the optimal transient detection

statistic into a difference image statistic that has white
noise. Then, we show that any statistical measure-
ment or decision on the data can be performed opti-
mally and intuitively on this difference image, which
we call the proper image subtraction statistic. This im-
age has many good qualities such as: in the case of no
difference between the reference and the new image, it
has expectancy zero everywhere and uncorrelated addi-
tive Gaussian noise. It has an effective PSF that, by

3 This step is also required for unknown minor planet identifica-
tion.

match filtering4, reproduces the optimal transient detec-
tion statistic. Using this image, it is possible to detect
and filter out particle hits in both the reference image
and the new image, separating these artifacts from real
transients. Another potential use of this image is the
optimal detection of photometric variability and astro-
metric motion of stars, that works in arbitrarily dense
environments.
We demonstrate the efficacy of our algorithm on simu-

lated and real images that are part of the Palomar Tran-
sient Factory (PTF; Law et al. 2009), data release 2.
The outline of the paper is as follows: In §2 we review

the state of the art image subtraction methods, while in
§3 we derive our optimal transient detection and image
subtraction algorithm. In §4 we discuss the properties of
the derived image subtraction statistic. A step by step
summary of the image subtraction process is presented
in §5. In §6 we present tests on simulated and real data,
while in §7 we describe our code which is available on-
line. In §8 we discuss the implementation details and we
conclude in §9.

2. BRIEF OVERVIEW AND ANALYSIS OF EXISTING
METHODS FOR IMAGE SUBTRACTION

Previously suggested solutions for image subtraction
can be divided into two variants. The first, and more
popular variant, can be referred to as regularized par-
tial deconvolution. Solutions we include in this family
are Phillips & Davis (1995); Alard & Lupton (1998) and
Bramich (2008). Gal-Yam et al. (2008) suggested a sec-
ond variant, which we call cross filtering, while Yuan &
Akerlof (2008) advocated for a mix of the two methods.
Denoting the new image by N and its PSF by PN ,

the reference image by R and its PSF by PR, the first
approach attempts to find a convolution kernel k such
that:

N − k ⊗R ∼= 0. (1)

Here ⊗ represents convolution.
The first solution for finding the kernel k was given by

Phillips & Davis (1995). They suggested to perform a
deconvolution solution in Fourier space:

k̂ =
P̂n

P̂r

∼=
N̂

R̂
, (2)

were ̂ represents Fourier transform. However, this so-
lution is numerically unstable as the deconvolution op-
eration can (and many times does) involve division by
small numbers. This problem is apparent from Equa-
tion 2, where the denominator might approach zero as
fast or faster than the numerator. Given that any mea-
surement process contains noise, this division operation
amplifies the noise in Fourier space, which in turn gen-
erates correlated noise in real space. The extreme cases
of this correlated noise are the characteristic ringing and
sinusoidal artifacts that deconvolved images suffer from.
Alard & Lupton (1998) suggested a practical way to

mitigate the numerical instability problem. Represent-
ing k as a set of basis functions, and noting that Equa-
tion 1 is linear, they suggested to solve for k using linear

4 Also called cross-correlation of the images with its PSF. See
e.g., Zackay & Ofek (2015a) for a derivation of the matched filter
solution.
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least squares. Alard & Lupton (1998) suggested to use
a set of basis functions which are linear combinations of
Gaussians multiplied by low degree polynomials. Later
on, Bramich (2008) suggested to solve for the values of a
pixelized kernel. All of the above methods can be viewed
as regularization of the deconvolution method of Phillips
& Davis (1995) – i.e., restricting the solutions for the
kernel k to finite size and to some set of logical solutions.
Even though the numerical stability of these algorithms
is much better than that of Equation 2, they still have
several problems. First, the division by zero problem is
still there and it can become especially pronounced when
the new image has a narrower PSF (including a PSF that
is narrower in any single axis) compared to the reference
image. It is interesting to note that these methods are
not symmetric to the exchange of the new and reference
image, while the problem is symmetric to this exchange.
Second, although these methods are intuitive, they lack
statistical justification, there is no rigorous proof they
cause no information loss, and it is unclear what further
image processing should be applied. For example, do we
need to apply another matched filter to the subtracted
image in order to detect transients? If so, which filter
should we use? Third, using these methods the resulting
pixel noise is correlated and there is no simple analytic
prescription on how to set a detection threshold for tran-
sient search5. Therefore, it is hard to decide if a detected
source is real or an artifact, or to quantify the probability
of it being a false positive. In addition, in the effort of
suppressing the deconvolution artifacts, these solutions
sacrifice the cancellation of the constant-in-time image.
This will cause large and pronounced subtraction arti-
facts, that will prevent identification of transients that
are substantially fainter than their hosting environment.
Finally, using inversion methods for image subtraction
(i.e., linear least squares) makes the subtraction process
slow, compared with e.g., the Fourier space solution of
Phillips & Davis (1995).
The cross filtering solution suggested by Gal-Yam et

al. (2008) is to convolve the new image with the PSF of
the reference image and to convolve the reference image
with the PSF of the new image:

SGY08 = Pr ⊗N − Pn ⊗R . (3)

This solution is always numerically stable, and leaves no
subtraction artifacts. The problem with this solution is,
again, the lack of statistical justification, and that the
matched filter for source detection is not specified.
Yuan & Akerlof (2008) suggested to apply kernels for

both R and N , both chosen from a family of PSFs de-
termined by few parameters, and to drive the solution
towards spatially small kernels by adding the effective
PSF area to the loss function.
It is worthwhile to note that the problem of subtract-

ing two images, and minimizing the resulting difference
image in the least square sense has an infinite number of
solutions (see also Yuan & Akerlof 2008). For example,
the linear equation:

Kr ⊗R−Kn ⊗N ∼= 0, (4)

where Kr and Kn are arbitrary kernels, has an infinite

5 One method to estimate the noise level is using Bootstrap
simulations (e.g., Ofek et al. 2014).

number of solutions. This is because for any Kr, we can
find Kn that satisfies Equation 4 in the least squares
sense. It is clear from this simple analysis that all sub-
traction methods mentioned are focused on making the
PSF of the two images identical, with very little attention
to the maximization of the signal-to-noise ratio (S/N) of
a transient source that appears in one of the images. In a
sense, these methods do not solve the transient detection
problem, but a different problem which is how to make
two images as similar as possible using convolution. In
this paper, we rigorously derive a method that cancels
the constant-in-time image and maximizes the S/N of a
transient source at the same time. We note that there are
several ways to derive this method. Here we will derive it
from first principles via modeling the transient detection
with simple hypothesis testing and using the lemma of
Neyman & Pearson (1933).

3. STATISTICAL DERIVATION

Given the numerous problems with existing image sub-
traction methods, we would like to place the transient
detection problem on firm statistical grounds. In §3.1
we outline the derivation and formulae of our image sub-
traction statistics. Given that the full derivation is te-
dious we defer it to Appendix A. In §3.2 we show that
the best way to build a reference image, for the purpose
of image subtraction, is to use the image coaddition al-
gorithm of Zackay & Ofek (2015b). Our derivation in
§3.1 assumes that the images are background-noise dom-
inated (i.e., the objects we care about have source noise
which is lower than the background noise). This causes
an underestimation of the noise near bright sources. In
§3.3 we present a simple correction to the image sub-
traction formulae that takes care of the source noise and
other errors, like registration noise. In §3.4 we present
an accurate treatment of astrometric shifts, noise and
color-refraction errors. In §3.5 we outline our suggested
method to equalize the flux zero points of the new and
reference images. In §3.6 we provide an algorithm for op-
timal PSF photometry in the subtraction image, while in
§3.7 we describe how this method can be used for cosmic-
ray, bad pixels and reflection-ghost identification.

3.1. Transient source detection using image subtraction

Here we derive, from first principles, an optimal
method for transient source detection, under the assump-
tions that the images are background-noise dominated,
and the noise is Gaussian and independent6.
Let R and N be the background-subtracted reference

image and the background-subtracted new image, respec-
tively. Denote by T the background-subtracted true con-
stant sky image. Denote by Pr and Pn the point spread
functions (PSFs) of the reference image and the new im-
age, respectively. Pr and Pn are normalized to have unit
sum. We assume that Pn, Pr, and the flux-based zero
points7 of the new image (Fn) and reference image (Fr)
are known. We present a method for finding Fn and Fr

in §3.5, and the PSF measurements are discussed in §8.2.

6 In practice the pixels maybe slightly correlated due to charge
repulsion and charge diffusion in a CCD.

7 Following Zackay & Ofek (2015a, 2015b) this factor represents
the product of atmospheric transparency, telescope and detector
transmission and integration time.
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The expression for the reference image is:

R = FrT ⊗ Pr + ǫr, (5)

where ǫr is the additive noise component of the image R.
Given the null hypothesis, H0, that states there are no

new sources in the new image we can write:

N|H0
= FnT ⊗ Pn + ǫn. (6)

Given the alternative hypothesis, H1(q, α), that states
there is a new point source at position q with flux α in
the new image, we can write:

N|H1(q,α) = FnT ⊗ Pn + αFnδ(q)⊗ Pn + ǫn, (7)

where δ(q) denotes a two dimensional image with one
at position q, and zero otherwise. We assume that the
dominant source of noise is the background noise, ǫr and
ǫn both satisfy that all pairs of pixels are uncorrelated –
i.e., that for all pairs of pixels x1, x2 for which x1 6= x2:

Cov (ǫr[x1], ǫr[x2]) = 0 ,Cov (ǫn[x1], ǫn[x2]) = 0, (8)

and that all pixels have spatially uniform variance8:

V (ǫr[x]) = σ2
r , V (ǫn[x]) = σ2

n. (9)

Because both hypotheses are simple9, we can use the
Neyman-Pearson lemma (Neyman & Pearson 1933), that
states that the most powerful10 statistic for deciding be-
tween two simple hypotheses is the likelihood ratio test:

L(q, α) =
P(N,R|H0)

P(N,R|H1(q, α))
, (10)

where P denotes probability. A critical point is that
we do not have any prior information or assumptions
on T . Therefore, we cannot calculate the probabilities
P(N,R|H0) and P(N,R|H1(q, α)) directly. However, we
can calculate their ratio by developing the expression us-
ing the law of conditional probabilities

L(q, α) =
P(N |R,H0)P(R|H0)

P(N |R,H1(q, α))P(R|H1(q, α))
. (11)

Next we can use the fact that H0 and H1 predict the
same likelihood to the reference and cancel out the last
multiplicative terms in the numerator and denominator.
After some algebra, which is detailed in Appendix A,

we can find the optimal statistic for source detection

Ŝ ≡
1̂

α
logL =

FnF
2
r P̂n|P̂r|

2N̂ − FrF
2
nP̂r|P̂n|

2R̂

σ2
rF

2
n |P̂n|2 + σ2

nF
2
r |P̂r|2

, (12)

where the over-line symbol denotes the complex conju-
gate operation. We note that by putting the over-line
sign above the hat sign we mean that the complex con-
jugate operation follows the Fourier transform operation.
This statistic (or score image) is simply the log-likelihood
ratio test between the two hypotheses. This score is cal-
culated simultanously for all values of α, while each pixel

8 As the convolution is a local operation, this assumption can
be relaxed (see discussion in Zackay & Ofek 2015a).

9 A simple hypothesis has no unknown parameters. We are
applying the hypothesis testing to each value of α and q separately.

10 The power of a binary hypothesis test is the probability that
the test correctly rejects the null hypothesis when the alternative
hypothesis is true.

in the score image refers to a different q position. It is
important to note that Equation 12 is a matched filter
image and no further filtering is required. In order to find
transients all we need to do is to identify local maxima
(or minima) in S. The significance of a local maximum,
in units of sigmas, is given by its value divided by the
standard deviation of the image S.
Since Equation 12 is a matched filter image, its pix-

els are correlated, and any hypothesis testing or mea-
surement, other than transient detection and photom-
etry (see §3.6), requires a knowledge of the covariance
between the pixels. An example for such hypothesis test-
ing is cosmic-ray identification via image subtraction, or
searching for variable nebulosity (e.g., light echos). In
order to have an image-subtraction method that is op-
timal for all purposes and easy to use, we need to iden-
tify an image whose pixel noise is uncorrelated, and that
cross-correlating this image with its own PSF returns
Equation 12. In Appendix A we identify such an image
as:

D̂ =
FrP̂rN̂ − FnP̂nR̂√

σ2
nF

2
r |P̂r|2 + σ2

rF
2
n |P̂n|2

. (13)

The PSF of this image, normalized to have unit sum, is
given by:

P̂D =
FrFnP̂rP̂n

FD

√
σ2
nF

2
r |P̂r|2 + σ2

rF
2
n |P̂n|2

, (14)

where FD is the flux-based zero point of the subtraction
image, which is given by:

FD =
FrFn√

σ2
nF

2
r + σ2

rF
2
n

(15)

Indeed, using this difference image D and its PSF we
can verify that the cross-correlation of D with PD re-
turns:

S = FDD ⊗
←−
PD, (16)

where the backward arrow sign denotes coordinate rever-

sal (i.e.,
←−
P (x, y) = P (−x,−y)). Alternatively in Fourier

space

Ŝ = FDD̂P̂D. (17)

It is important to note that, in the background-
dominated noise limit, D is a proper image, and hence
we call it the proper subtraction image. As in Zackay &
Ofek (2015b) we define a proper image to be an image
whose noise is independent and identically11 distributed
(i.i.d). This means thatD can be used for any hypothesis
testing or measurement, without the need for the covari-
ance between the pixels. Furthermore, in Appendix E
we present a proof that D and PD are in fact sufficient
statistics12 for any hypothesis testing or measurement.

11 In practice the noise levels need to be identical only locally
(on scales which are twice the PSF size), as the convolution is a
local operation. In the vicinity of bright stars D is not proper.

12 In statistics, a statistic is sufficient with respect to a sta-
tistical model and its associated unknown parameter if no other
statistic that can be calculated from the same sample provides any
additional information as to the value of the parameter.
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Equation 13 and its PSF (Eq. 14) are adequate for
detection of objects whose original shape was convolved
with the telescope and atmosphere PSF. However, parti-
cle hit events do not share this PSF. In Appendix E we
derive the PSF in the difference image D, of a δ-function
in N or R. The PSF in the difference image D of a
δ-function in N is:

P̂DN
=

FrP̂r

FDn

√
σ2
nF

2
r |P̂r|2 + σ2

rF
2
n |P̂n|2

, (18)

while the PSF in the difference image D of a δ-function
in R is:

P̂DR
=

FnP̂n

FDR

√
σ2
nF

2
r |P̂r|2 + σ2

rF
2
n |P̂n|2

. (19)

These PSFs are also accompanied by the corresponding
zero-points, FDN

, FDR
that can be found in Appendix E.

These equations are useful if one would like to search
for events which are similar to a delta function (e.g., bad

pixels). We note that P̂DN
and P̂DR

in many cases can
be approximated by a delta function.
To summarize, in order to find a transient source in

either the reference or the new image we can calculate
D (Eq. 13) and cross-correlate it with its PSF (Eq. 14).
Alternatively, we can calculate directly the statistic S
(Eq. 12).

3.2. Construction of the reference image

Typically, the reference image is built by coadding mul-
tiple images. Here we will show that the best way to
produce a reference image for subtraction is using the
method described in Zackay & Ofek (2015b).
In the case of multiple reference images we need to

replace Equation 5 with the model for the j-th reference
image:

Rj = FjPj ⊗ T + ǫj . (20)

Here Fj is the flux-based zero point of the j-th reference
image, Pj is the PSF of the j-th reference image, and ǫj
is the noise of the j-th reference image.
As before, the model for N assuming the null hypothe-

sis, H0, is given by Equation 6, while if the first hypoth-
esis, H1, is true then N is given by Equation 7.
As in the previous section, we would like to decide be-

tween two simple hypotheses. Therefore, the optimal test
statistic is the likelihood ratio test (Neyman & Pearson
1933)

L(q, α) =
P(N,R1, . . . , RJ |H0)

P(N,R1, . . . , RJ |H1(q, α))
. (21)

As before, we can use the law of conditional probabili-
ties, and the fact that H0 and H1 predict the same like-
lihood for all references. The full derivation is presented
in Appendix B, and after some algebra we find that the
optimal reference image is given by

R̂ =

∑
j

Fj

σ2

j

P̂jR̂j

√∑
j

F 2

j

σ2

j

|P̂j |2
. (22)

The PSF (normalized to have unit sum) of the reference
image is given by:

P̂R =

√∑
j

F 2

j

σ2

j

|P̂j |2

Fr

, (23)

where Fr is the flux-based zero point of the reference:

Fr =

√√√√∑

j

F 2
j

σ2
j

. (24)

Not surprising, this is identical to the optimal coaddi-
tion method derived in Zackay & Ofek (2015b). We note
that the reason R preserves all the information from the
individual references is because in the computation of
each frequency in R, we add random variables scaled by
their (conjugate) expectation, divided by the variance.
We can identify this operation as the maximal S/N ad-
dition of random variables (see Appendix A of Zackay &
Ofek 2015a). The reader should refer to Zackay & Ofek
(2015b) for analysis and proof of sufficiency of this so
called proper coaddition method.

3.3. Simple, suboptimal correction for source noise,
astrometric noise and color-refraction noise

Equation 12 ignores the source noise, and hence the
noise level is underestimated in the vicinity of bright
stars. The outcome of this will be that bright sources
may be flagged as possible transients or variables. Fur-
thermore, this equation ignores any additional impor-
tant sources of noise like astrometric noise, astrometric
scintillation noise, color-refraction noise, flux scintillation
noise, and position-dependent flat-fielding errors.
A simple correction to this problem, albeit subopti-

mal, is to divide S by a correction factor that takes into
account the local estimated variance of the extra noise.
Derivation of this correction factor is presented in Ap-
pendix C. In the image space, the expression for the cor-
rected S is

Scorr =
S√

V (SN ) + V (SR) + Vast(SN ) + Vast(SR) + ...
.

(25)
Here the terms in the denominator may include any
position-dependent contribution to the variance, that is
not included in the σ2

n and σ2
r factors.

In this example we list two specific contributions from
the source noise and from astrometric noise. The first
two terms in the denominator are the variance from the
source noise in the new and reference images, respec-
tively, while the next two terms are the variance due
to astrometric noise. Other sources of noise like color-
refraction can be added in a similar manner.
Here V (SN ) is the variance of the part of S containing

N given by

V (SN ) = V (ǫn)⊗ (k2n), (26)

and V (SR) is the variance of the part of S containing R
given by

V (SR) = V (ǫr)⊗ (k2r), (27)
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and the Fourier transform of kr is given by

k̂r =
FrF

2
nP̂r|P̂n|

2

σ2
rF

2
n |P̂n|2 + σ2

nF
2
r |P̂r|2

, (28)

while the Fourier transform of kn is

k̂n =
FnF

2
r P̂n|P̂r|

2

σ2
rF

2
n |P̂n|2 + σ2

nF
2
r |P̂r|2

. (29)

The variance of ǫn and ǫr are simply the variance im-
ages. For a single image the variance map, V (ǫn), is
simply the number of electrons in each pixel (including
the background), added with the readout noise squared.
However, in the case of multiple images, the correct way
to construct V (SR) is to calculate kr, V (ǫr), and V (SR)
for each reference image and to sum all the individual
V (SR) values up (see Appendix B). However, in many
cases a reasonable approximation is to calculate kr from
the properly coadded image, and calculate V (ǫr) using a
simple addition of all the images (in units of electrons)
from which the reference was constructed (i.e., the num-
ber of electrons in each pixel including the background)
added with the total readnoise squared.
Next, the astrometric variance terms are given by

Vast(SN ) = σ2
x

(dSN

dx

)2

+ σ2
y

(dSN

dy

)2

, (30)

where σx and σy are the astrometric registration noise

in the x and y axes, respectively, while dSN

dx
and dSN

dy
are

the gradients of SN in the x and y directions. Here the
Fourier transform of SN is given by

ŜN = k̂nN̂ . (31)

In a similar manner

Vast(SR) = σ2
x

(dSR

dx

)2

+ σ2
y

(dSR

dy

)2

. (32)

Here the Fourier transform of SR is given by

ŜR = k̂rR̂. (33)

The origin of these terms is that astrometric noise causes
shifts in individual PSFs. The noise induced by these
shifts is proportional to the difference between neighbor-
ing pixels (i.e., the gradient).
We note that in practice the astrometric registration

noise is the rms of the registration fitting process. This
term include both registration errors and the astromet-
ric scintillation noise. In some cases the quality of the
registration is position dependent. In this case it is pos-
sible to replace the scalars σX and σY by matrices of
the position-dependent noise. In §3.4 we suggest a more
accurate treatment of the astrometric noise component.

3.4. Accurate treatment of astrometric noise and flux
variability

Astrometric errors and shifts are a major problem for
image subtraction. For example, for a bright source with
104 electrons and full-width at half maximum (FWHM)
of 2 pixels, the astrometric error induced by the Poisson
noise will be about a few tens of milli-pixels. This is
equivalent to the typical astrometric scintillation noise

induced by the Earth turbulent atmosphere (see §8.5).
Therefore, even in the case of high quality registration,
we expect that all bright stars will have subtraction resid-
uals due to astrometric scintillation noise.
Fortunately, due to the closed form and numerical sta-

bility of our method, the shape of the subtraction resid-
uals is fully predictable, given the astrometric shift and
the flux difference between the star as it appears in the
reference and as it appears in the new image. Therefore,
we can use this to measure the astrometric shift and flux
variability for each star.
For adequately13 sampled images, this proposed mech-

anism is accurate, and it allows us to measure astrometric
shifts and variability in very crowded fields. The details
of this method will be presented in a future publication,
but here we provide a brief outline: The astrometric shift
and photometric variability kernel is:

P̂S(αn, αr,∆x,∆y) = P̂D (αr − αnŝ) . (34)

Here αn is the flux of the source in N and αr is its flux in
R, and ŝ is the shift operator (including sub-pixel shifts)
in Fourier space. This operator is a function of the shifts
∆x and ∆y. Using Equation 34, we can treat residuals
detected in S more carefully than we did in §3.3. Specif-
ically, we can now perform hypothesis testing to decide
between e.g., H0: changes are consistent with stationary
and non variable source; or H1: the star moved or its
flux changed. This scheme can be applied to any part
of D, for which we identify a significant peak in S (e.g.,
above 3σ). Apart from using this to eliminate false pos-
itives, we can now use this to detect and measure new
kinds of signals. For example, we can use it to search for
moving objects blindly, even in the presence of complex,
constant in time, structure in the background.

3.5. Matching the local zero points, background flux and
astrometric shift

Our solution so far assumed that the values of the flux-
based zero points (Fr and Fn), the background levels,
(Bn and Br), and the relative astrometric shift (∆x and
∆y) are known. Careful analysis of Equation 13 shows
that, in practice, we only care about the flux zero points
ratio

β ≡ Fn/Fr, (35)

the background difference,

γ ≡ Bn −Br, (36)

and the translation (∆x, ∆y).
By substituting Equations 35 and 36 into D (Eq. 13),

and introducing the shift operator we can get the desired
expression we need to minimize in order to find β, γ, ∆x,
and ∆y. This can be done either locally (in small sec-
tions of the image), or globally. For simplicity, and since
we already discussed astrometric shifts in §3.4, here we
neglect translations, but toward the end we will mention
how this can be incorporated.

13 By adequately sampled images we mean that the PSF width
is sampled by at least two pixels. This can be referred to as the
Nyquist sampling of the PSF by the camera.
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In order to find β and γ we need to compare the two

parts of D̂:

D̂n(β) =
P̂rN̂√

σ2
n|P̂r|2 + β2σ2

r |P̂n|2
, (37)

and

D̂r(β) =
P̂nR̂√

σ2
n|P̂r|2 + β2σ2

r |P̂n|2
. (38)

Note that we replaced Fn and Fr by β. All we need

to do is to inverse Fourier transform D̂n and D̂r and to
solve the following non-linear equation for β and γ′ (and
optionally ∆x and ∆y):

Dn(β) = βDr(β) + γ′ (39)

where

γ′ =
γ√

σ2
n + β2σ2

r

. (40)

Note that the solution should be performed in the image
domain. If we are interested in solving also for small

translations, we need to multiply D̂r and γ′ with the shift
operator. If we trust that the images were background
subtracted and aligned correctly, then we can set γ = 0,
∆x = 0, ∆y = 0 and use the same expression to solve
only for the value of β.
Equation 39 is non-linear in β. Therefore iterative so-

lutions are required. For example, in the first iteration
set β = 1 and solve for the new value of β, and use it in
the next iteration to find a new value of β, until conver-
gence14. Furthermore, it is important to note that one
must use robust fitting methods in order to solve Equa-
tion 39. The reason is that there may be bad pixels,
particle hits, astrometric noise, and saturated pixels in
the images. It is also recomended to remove the images-
edge pixels prior to fitting β.

3.6. PSF photometry in the difference image

In this section we present a statistic for measuring the
PSF photometry15 of a source in the difference image.
This measurement statistic is unbiased and has maximal
S/N among all estimators which are linear combinations
of the input images. However, this statistic is optimal
only for the background-dominated-noise limit. A full
derivation of this statistic is presented in Appendix D.
The best linear estimator for the PSF photometry of a

source at position q is

α̃(q) =
S(q)

FS

. (41)

Here FS is the flux normalization of S:

FS =
∑

f

F 2
n |P̂n|

2F 2
r |P̂r|

2

σ2
rF

2
n |P̂n|2 + σ2

nF
2
r |P̂r|2

, (42)

14 We found that usually β converges in 2–3 iterations.
15 PSF photometry refers to (effectively) fitting the source with

a PSF.

where f indicates spatial frequencies. The standard de-
viation of this estimator is

σ
α̃(q)

=

√
V (SN ) + V (SR)

FS

, (43)

where V (SN ) and V (SR) are defined in Equations 26–27.
Note that Equation 41 can be used to measure the PSF
flux of all the transients in the image simultanously.

3.7. Cosmic ray, bad pixel and ghosts identification

The image subtraction statistic D can be used to iden-
tify cosmic rays and bad pixels. A major advantage of
using the proper image subtraction over other image-
differencing techniques is that its pixels noise is uncor-
related and usually it roughly preserves the shape of
sources which are similar to δ-functions. This means
that in most cases one can identify particle hits by apply-
ing edge-detection algorithms (e.g., van Dokkum 2001),
without any modifications, directly on D.
An alternative approach is to use a rough model for

the shapes of particle hits and bad pixels, and to per-
form a composite hypothesis testing. The log-likelihood
of observing D, if an object at position q is a point source
transient (Hps hypothesis) with flux α, is given by

− log(P(D|Hps(q))) =
∑

x

||D − αFD

←−
PD ⊗ δ(q)||2,

(44)

while the log-likelihood of D if the object at position q is
a cosmic ray with flux α and with shape Pcr in N , (Hcr

hypothesis) is

− log(P(D|Hcr(q))) =
∑

x

||D − αPcr ⊗
←−−
PDN

⊗ δ(q)||2.

(45)

Here x is the subset of pixels that contain the source
of interest (e.g., an area with a width twice that of the
PSF around the source). The difference between Equa-
tions 44 and 45 (using appropriate priors, such as the
probability of seeing a transient at a certain magnitude
and the probability of seeing a cosmic ray with this flux)
is a statistic that can be indicative (after setting the ap-
propriate threshold) for deciding whether the detected
transient is a cosmic ray or an astronomical transient.
We note that in this case the flux of the source, and the
intensity and shape of the cosmic ray are free param-
eters of the model. Therefore, this is a classic case of
composite hypothesis testing.
The same approach can be used to identify internal-

reflection ghosts. In this case we need to replace the
shape Pcr with the shape of a reflection ghost. For ex-
ample, an extended kernel (e.g., top hat filter) which is
wider than the stellar PSF.

4. PROPERTIES OF THE NEW IMAGE SUBTRACTION
METHOD

Now that we have an optimal solution for the subtrac-
tion problem, we can analyze its properties and compare
it to other methods, seeking an intuitive understanding.

4.1. Optimality
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Our image subtraction and transient detection formu-
lae were derived using the lemma of Neyman & Pearson
(1933). This ensures that whenever our assumptions are
correct our method is optimal. Our assumptions: the
images are registered, dominated by uncorrelated Gaus-
sian background noise, and that the PSFs, background,
variance and flux-based zero points are known.

4.2. The constant-in-time image T cancels

For perfectly registered images, both the optimal
proper difference image (D) and transient detection
image (S) are free of subtraction residuals from the
constant-in-time image. This is because the constant-
in-time image T algebraically vanishes.
This is not the case in the subtraction methods sug-

gested by Alard & Lupton (1998) and Bramich (2008).
In these methods an optimum for the trade-off between
magnifying the image noise and minimizing the constant-
in-time residuals of T was explored.

4.3. Numerical stability

Inspecting Equations 12, 13 and 14, it is apparent that
if the denominator is approaching zero, then the numera-
tor is approaching zero even faster. Therefore our image
subtraction method is numerically stable for all combi-
nations of PSFs for the new and reference images.
We note that the Alard & Lupton (1998) and Bramich

(2008) methods are numerically unstable in the general
case, as these methods effectively perform deconvolution.
It is true that if the PSF of the reference image is nar-
rower, in all axes, than the PSF of the new image, then
the Alard & Lupton (1998) family of methods are sta-
ble. However, even in this case the solution found by
these methods is sub-optimal (i.e., it does not maximize
the S/N of the transients). We further demonstrate this
point in §6.

4.4. Locality

An important property of our image-subtraction statis-
tic is its locality with respect to the input data. The
formulae for the image subtraction statistic are stated
in Fourier domain for simplicity and clarity. But, even
though operations done in the Fourier domain are global
in nature, when calculating the final kernels that actu-

ally multiply R̂ and N̂ , we see that their representation in
the spatial domain is local, with power vanishing quickly
away from the origin (i.e., the PSFs are approaching zero
at large distance from their origin). This is because these
operations represent convolution with a finite-size kernel.
Therefore, the proper subtraction statistic could be cal-
culated independently for every arbitrarily small image
patch (up to few times the PSF size), allowing the PSF
to vary smoothly across the image. In addition, local ar-
tifacts such as bad pixels, particle hits or saturated stars
will affect only their close vicinity due to the locality of
the kernels used.

4.5. The proper image subtraction D has white noise

In the expression for D̂ (Eq. 13), in the background-
noise dominated limit, the variance of the numerator is
equal to the square of the denominator, i.e:

V [FrP̂rN̂ − FnP̂nR̂] = σ2
rF

2
n |P̂n|

2 + σ2
nF

2
r |P̂r|

2, (46)

which means that all the spatial frequencies of D̂ have
equal variance. Furthermore, since we assume that the
images have white noise, their Fourier transform has
white noise. This means that the spatial frequencies of

D̂, as a linear combination of R̂, N̂ , has un-correlated

noise. Together, both properties mean that D̂ has white
noise, which means that D has also white noise. In other
words, the difference image is a proper image (as defined
in Zackay & Ofek 2015b). This property is violated by
all the other methods for image subtraction.
We note that in the vicinity of bright stars, where the

source noise variance is dominant, the proper subtrac-
tion image D exhibits correlated noise. Our simulations
suggest that if the source variance is at least an order
of magnitude higher than the background variance, than
correlated noise is detectable by eye in the vicinity of
such sources. However, as we stated before, using our
method, the source noise is controllable via variance cor-
rections.

4.6. D and PD are sufficient for any measurement or
decision on the difference between the images

In statistics, a statistic is sufficient with respect to
a statistical model and its associated unknown param-
eters if no other statistic that can be calculated from the
same sample provides any additional information as to
the value of the parameter. In Appendix E we provide
a proof that D and PD are sufficient for any measure-
ment or hypothesis testing on the difference between the
images. The key ingredients for this proof are that any
likelihood calculation for any generative model for the
difference between the images can be computed by using
only these quantities, and the use of the Fisher-Neyman
factorization theorem (Fisher 1922; Neyman 1935). We
note that there are infinite number of sufficient statistics
with respect to the image subtraction problem (see some
examples in Zackay & Ofek 2015b in the context of coad-
dition). Here we prefer the proper subtraction image D
(rather than e.g., S) due to its useful properties.
The sufficiency property has important practical con-

sequences. It means that, in the background-noise dom-
inated limit, D and PD contain all the information one
needs for any further measurement or hypothesis testing
related to the difference between the images. There is no
need for other types of difference images for other appli-
cations. Examples for practical applications include the
identification and removal of particle hits on the detector
(see §3.7); optimal search for proper motion, astrometric
shifts (§3.4) and asteroid streaks.

4.7. Symmetry between the new image and the reference
image

The problem of image subtraction is symmetric to the
exchange of the reference and the new image (up to nega-
tion of the flux of the transient). Therefore, it is not sur-
prising that the optimal image subtraction statistics (D
or S) are symmetric to the exchange of R and N (up to
a minus sign). This property is violated by the solutions
proposed by Phillips & Davis (1995), Alard & Lupton
(1998), and Bramich (2008). We note that the Gal-Yam
et al. (2008) method preserves this symmetry. Interest-
ingly, the Gal-Yam et al. (2008) method is identical to
the numerator of the proper image subtraction statistic
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Figure 1. Pn (left column), Pr (middle column) and the corre-
sponding PD (right column) for three cases. The first row is for
the case of symmetric Gaussian PSFs with sigma-width of 2 and
3 pix for the new and reference, respectively. The second row is
for the case of a-symmetric Gaussian PSFs with sigma-width of 2
by 4 pix and 4 by 2 pix for the new and reference, respectively. In
the third row Pn and Pr are simulated speckle images (using the
tools in Ofek 2014). In the speckle simulations we set Dtel/r0=20,
where Dtel is the telescope diameter and r0 is the Fried length.

(D).

4.8. The limit of noiseless reference image

In the limit of σr → 0 Equation 12 becomes

lim
σr→0

Ŝ =
FnF

2
r P̂n|P̂r|

2N̂ − FrF
2
nP̂r|P̂n|

2R̂

σ2
nF

2
r |P̂r|2

(47)

=
FnP̂n

σ2
n

(
N̂ −

FnP̂n

FrP̂r

R̂
)
. (48)

The term P̂n/P̂r can be identified as the convolution ker-
nel solved for by the methods of Phillips & Davis (1995),
Alard & Lupton (1998) and Bramich (2008). Therefore,
in this limit, S converges to the Alard & Lupton (1998)
family of methods followed by filtering each of the images
with the PSF of the new image.
This simple analysis demonstrates that the Alard &

Lupton (1998) family of methods, if followed by the cor-
rect matched filtering, is a special case of our solution S.
Furthermore, Equation 48 provides the prescription for
the correct matched filter (only) in the limit of σr → 0.

4.9. The PSF of the difference image

The PSF, PD, of the proper subtraction image is a
combination of Pn and Pr. In Figure 1 we present Pn, Pr

and the corresponding PD for three cases, of symmetric
Gaussians, a-symmetric Gaussians, and speckle images.

4.10. Knowledge of the PSFs

An apparent drawback of our method is that one needs
to know the PSFs of the images, while in the Alard
& Lupton (1998) family of methods one simply solves

for the convolution kernel P̂n/P̂r without measuring the
PSFs.
However, one can write the expression for D with

P̂n/P̂r, allowing to incorporate relative knowledge of the

PSFs. This is relevant in rare cases of images that con-
tain no point sources, for example, only galaxies. How-
ever, in order to optimally find transients in the image all
the methods requires the PSFs (see §4.8). In any case,
in most observational situations the PSF is measurable
from point sources in the image and therefore this should
not be considered as a drawback.

4.11. Registration and color-refraction errors

Image subtraction relies on many steps taken prior
to the differencing process. Any noise introduced by
the pre-processing steps will be propagated into the fi-
nal subtraction image. Examples for such problems in-
clude: registration errors, color-refraction systematic er-
rors, and small-scale flat-fielding errors.
Here we suggest two types of treatments for such noise:

(1) It is straightforward to introduce these extra sources
of noise into the variance image of S and use it to calcu-
late Scorr (see §6.1 for examples). This correction is sub-
optimal, but it is resilient to pre-processing errors. (2)
An accurate treatment of the problem is to fit any astro-
metric shift and flux variation for each detected artifact
in the difference image D (see §3.4). Albeit this is com-
putationally expensive, this kind of solution is very com-
mon in astronomy (e.g., DAOPHOT, Stetson 1987; DOPHOT,
Schechter et al. 1993).
In the future, it is possible that the use of these steps

may enable us to remove completely the need for any
post-subtraction transient identification using machine
learning or human classification. We note that successful
implementation of these ideas requires good understand-
ing of all the sources of noise.

4.12. Free parameters

In principle, our method does not have any free param-
eters that the user needs to set. We note that the Alard
& Lupton (1998), Bramich (2008), and Yuan & Akerlof
(2008) methods do have internal degrees of freedom that
the user needs to define and that may influence the fi-
nal outcome. For example, the Bramich (2008) method
may be sensitive to the kernel size, while the Alard &
Lupton (1998) method depends on the basis functions
one chooses to represent the convolution kernel (see e.g.,
Becker et al. 2012 and Bramich et al. 2015).

4.13. Computational complexity

In terms of computational complexity, our subtraction
method is fast, as the most demanding operation in our
image subtraction method is the FFT operation (or al-
ternatively convolution with a small kernel). Tests indi-
cate that our algorithm is at least an order of magnitude
faster than the inversion algorithms by Alard & Lupton
(1998) and Bramich (2008) as they are essentially solv-
ing a linear least square problem with a large number of
equations and tens to hundreds of unknowns.

5. SUMMARY OF ALGORITHM

We recommend to perform the subtraction on small
image patches in order to minimize residual astrometric
shifts, inhomogeneous transparency and background. In
addition, it allows to use position-dependent PSFs. The
image patches should be overlapping by at least two PSF
lengths, in each dimension, in order to avoid edge effects
of the convolution process.



10 Zackay, Ofek and Gal-Yam

A step-by-step outline of our algorithm is as follows:

Input arguments:
N - background subtracted new image (registered to R).
R - background subtracted reference image.
Nb - new image including background in electron units.
Rb - reference image including background in electron
units.
Pn - PSF of new image normalized to have unit sum.
Pr - PSF of reference image normalized to have unit
sum.
σn - std of the background of the new image.
σr - std of the background of the reference image.
rn - read noise of new image in electrons.
rr - read noise of reference image in electrons.
σx - rms (in pixels) of the astrometric registration
solution in the X-axis. This is either a scalar or a
matrix.
σy - rms (in pixels) of the astrometric registration
solution in the Y-axis. This is either a scalar or a
matrix.

Output:
D - The proper difference image.
PD - The PSF of the proper difference image.
Scorr - The matched filter difference image corrected for
source noise and astrometric noise.
PDn

- The PSF of a delta function in N as it appears in
D.
PDr

- The PSF of a delta function in R as it appears inD.

Algorithm:

1. Optionally construct a reference image (R; Eq. 22),
its PSF (Pr; Eq. 23) and flux (Fr; Eq. 24) using the
Zackay & Ofek (2015b) proper coaddition method.

2. Solve Equation 39 for the best-fit value of β and
optionally γ, ∆x, and ∆y (need to use Eqs. 37 and
38). Since this Equation is non-linear in β use it-
erations. Set β = 1 in the first iteration, update
the value of β and continue until convergence. Use
robust fitting16.

3. If applicable calculate γ (Equation 40) and subtract
γ from N .

4. If applicable, shift Pn by ∆x and ∆y.

5. Set Fr = 1 and Fn = β.

6. Calculate D̂ (Eq. 13).

7. Calculate P̂D (Eq. 14).

8. Calculate Ŝ = P̂DD̂.

9. Calculate P̂Dn
(Eqs. 18 and E13).

10. Calculate P̂Dr
(Eqs. 19 and E17).

11. Calculate kr (Eq. 28).

16 Robust fitting is less sensitive to outliers. An example for a
robust fitter is the robustfit.m function in MATLAB.

12. Calculate kn (Eq. 29).

13. Set V (ǫn) = Nb+r2n and calculate V (SN ) (Eq. 26).

14. Set V (ǫr) = Rb + r2r and calculate V (SR) (Eq. 27).
If R is composed of multiple images, it is better
to sum up the V (SRj

) of the individual reference
images (see Appendix C and Eq. C7).

15. Calculate Vast(SN ) (Eqs. 30 and 31).

16. Calculate Vast(SR) (Eqs. 32 and 33).

17. Calculate Scorr (Eq. 25). As a sanity check, the
(robust) std of Scorr should be ≈ 1.

18. Search for local maxima in Scorr - the peak value
corresponds to the significance of the transient in
units of sigmas.

19. As an alternative to steps 15 and 16, we can search
all locations in D that correspond to statistically
significant sources in Scorr (without astrometric
contributions) for moving point sources using PS

(Eq. 34), measure their flux and astrometric vari-
ability and subtract them.

20. Select remaining sources with significance larger
than some threshold, determined from the desired
false alarm probability.

21. Calculate the flux of the transient candidates using
Equations 41, 42, and 43.

6. TESTS

There are several important challenges in testing any
image differencing algorithm. Image subtraction in gen-
eral is affected by many factors. Therefore, it is desirable
to separate between external problems (e.g., non-perfect
registration) and issues related to the subtraction itself
(e.g., numerical stability). Therefore, we are using both
simulations and real data to test our image differencing
algorithm.
It is worthwhile to compare the new algorithm with

existing methods. However, such a comparison is prob-
lematic, as other methods do not specify the matched
filter for source detection. Furthermore, some of these
methods depend on the selection of basis functions and
kernel size. In addition, there are several ways to solve
a system of linear equations (e.g., SVD) and these may
influence the final outcome. Therefore, here our compar-
ison with other methods is limited.
In §6.1 we present tests based on simulated data, while

in §6.2 we discuss real images. The code we use is avail-
able as part of the Astronomy and Astrophysics package
for MATLAB (Ofek 2014), described in §7.

6.1. Simulations

An important feature of our algorithm is its numerical
stability. The best way to test this is on simulations, as
the input is fully controlled.
We simulated images of 512 by 512 pixels size, with

background level of 300 electrons, with Poisson noise. In
each image we simulated 100 stars with integrated flux
taken from a flat distribution between 0 to 105 electrons
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Table 1
Simulated transients in the

new image

X Y Flux
(pix) (pix) (electrons)

100 100 1500
120 120 1600
140 140 1800
160 160 2000
180 180 2200
200 200 2400
220 220 2600
240 240 2800
260 260 3000

Note. — The position
and mean flux of simulated
transient sources in the new
images in Figures 2–4.

and Poisson noise. In addition we added to the new im-
age nine transient sources with position and flux as listed
in Table 1. In the first set of simulated images the PSF
of the sources in the images are symmetric Gaussians
with sigma-width of 2 and 3 pixels, for the reference and
new images, respectively. Figure 2 shows, left to right
(top): new image, the reference image, the proper sub-
traction image (D); (bottom) the matched-filtered image
(S) threshold above 5-σ, the Alard & Lupton (1998) sub-
traction of new minus reference, and the Alard & Lupton
(1998) subtraction of reference minus new. The Alard &
Lupton (1998) subtractions are based on the ISIS soft-
ware (Alard & Lupton 1999). This Figure demonstrates
that while our image subtraction method is symmetric,
the Alard & Lupton (1998) algorithm is not symmetric.
In this case it is working well in one direction, but sub-
traction artifacts are clearly visible (ringing due to decon-
volution) in the other direction. Furthermore, threshold-
ing our matched filter image above 5-σ reveals only the
simulated transients.
Next we simulated images with the same parameters as

in Figure 2, with a-symmetric Gaussian PSF with sigma
width of 2 by 4 pix in the new image and 4 by 2 pix in the
reference image. Figure 3, is the same as Figure 2, but
for these images. Again, the a-symmetry of the Alard &
Lupton (1998) family of methods is seen. Furthermore,
in this case the ringing due to deconvolution is seen in
both the N −R and R−N subtractions.
One of the most important practical features of our

new method is the ability to incorporate other types of
noise into the detection process (e.g., source noise, astro-
metric noise, color-refraction noise). To demonstrate this
we repeated the first simulation (Figure 2), but this time
with normally distributed astrometric noise with stan-
dard deviation of 0.3 pix. Figure 4 shows, left to right
(top): the new image, the reference image, the proper
subtraction image (D); (bottom): the matched-filtered
image (S) thresholded above 5-σ, the source noise cor-
rected and astrometric noise corrected matched-filtered
image (Scorr) thresholded above 5-σ, and the Alard &
Lupton (1998) subtraction of the new minus reference.
In this case, the subtraction contains a large number of
positive-negative residuals, but our Scorr image deals well
with this astrometric noise, and only the simulated tran-
sients are detected.

6.2. Tests on real images

We tested the new method on imaging data available
from the Palomar Transient Factory (PTF17; Law et al.
2009; Rau et al. 2009) data release 2. The image pro-
cessing is described in Laher et al. (2014) while the pho-
tometric calibration is discussed in Ofek et al. (2012).
Table 1 lists the various images on which we tested

our algorithm. Registration, background subtraction and
PSF estimation were performed using the code described
in §7.
Figure 5 presents the image subtraction results of test

1. The top panels left to right are: the new image, the
reference image and the proper difference image D. The
bottom panels left to right are: the matched filter cor-
rected image (Scorr) thresholded at 5-σ, the Alard & Lup-
ton (1998) subtraction of the N − R, and the Alard &
Lupton (1998) subtraction of the R − N . Figure 5 also
demonstrates that the Alard & Lupton (1998) subtrac-
tion is not symmetric to the exchange of R and N , while
our method is. Specifically, the R−N image of the Alard
& Lupton (1998) has strong, and high amplitude, corre-
lated noise.
On first glance, the Alard & Lupton (1998) N −R im-

age looks cosmetically good. However, on closer inspec-
tion we can see that this image has subtraction residuals
with large amplitude. For example, Figure 6 shows a
profile cut, at the location of the red line in Figure 5, in
the proper subtraction image D and the Alard & Lupton
(1998) subtraction (N −R). The images are normalized
such that the standard deviation of the images is one.
This Figure clearly shows that while our algorithm be-
haves very well in the presence of stars, the Alard &
Lupton (1998) subtraction has very large fluctuations.
We note that the fact that the Alard & Lupton (1998)
subtraction image is partially filtered is seen by eye (i.e.,
smoother noise)
Figure 7 is the same as Fig. 5, but for the subtrac-

tion of images of test 2. These images contain the bright
galaxy M51, and SN2011dh (Arcavi et al. 2011). We note
that in D we clearly see residuals due to mis-alignment
of the images. However, these residuals are gone when
we present Scorr that takes the astrometric noise into
account. We further note that the astrometric residu-
als are less pronounced in the Alard & Lupton (1998)
subtraction simply because these images are partially
filtered, and therefore smoother. The transient candi-
date detected in the Scorr image above 5-σ threshold are
SN2011dh, cosmic rays and bad pixels.

7. CODE

We present two sets of codes based on MATLAB and
Python. The MATLAB code contains functions to deal
with all the image processing steps, including the reg-
istration and PSF estimation. The MATLAB code is
available as part of the MATLAB Astronomy and As-
trophysics package18 (Ofek 2014). This code is under
development and we expect that improved versions will
be available in the future. The Python code19 contains
only a simple implementation of our algorithm that re-
quires as input: fully registered images, as well as their

17 http://www.ptf.caltech.edu/iptf
18 http://webhome.weizmann.ac.il/home/eofek/matlab/
19 https://sites.google.com/site/barakzackayhomepage/
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Figure 2. Subtraction of simulated images with symmetric Gaussian PSF with sigma-width of 2 and 3 pixels, for the reference and new
images, respectively. Left to right (top): the new image, the reference image, the proper subtraction image (D); (bottom) the matched-
filtered image (S) with 5-σ threshold, the Alard & Lupton (1998) subtraction of new minus reference, and the Alard & Lupton (1998)
subtraction of reference minus new. The position of the simulated transient sources in the thresholded matched filtered image are marked
by red circles. All the images are presented with inverted grayscale map.

Figure 3. The same as Figure 2, but for the subtraction of simulated images with a-symmetric Gaussian PSF with sigma-width of 2 by
4 pix in the new image and 4 by 2 pix in the reference image.
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Figure 4. Subtraction of simulated images with 0.3 pix (rms) astrometric noise and symmetric Gaussian PSF with sigma-width of 2 and
3 pixels, for the reference and new images, respectively. Left to right (top): the new image, the reference image, the proper subtraction
image (D). Left to right (bottom): the matched-filtered image (S) threshold above 5-σ, the source noise corrected and astrometric noise
corrected matched-filtered image (Scorr) threshold above 5-σ, and the Alard & Lupton (1998) subtraction of the new minus reference. The
position of the simulated transient sources in the thresholded matched filtered image are marked by red circles.

Table 2
List of tests on real images

Test Field/CCD Size N R FWHMN FWHMR

(pix) (arcsec) (arcsec)

1 100031/04 560× 560 2012-12-20.4134 proper 5.4 2.9
2 100031/11 1000× 1000 2011-08-08.1839 2011-04-12.1865 2.5 2.9

Note. — List of tests on real images. “proper” indicates a reference image that was constructed
using proper coaddition (Zackay & Ofek 2015b).
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Figure 5. Image subtraction results for test 1 (Table 2). Left to right (top): the new image, the reference image, the proper subtraction
image D; (bottom) the matched filter corrected difference image (Scorr) filtered at 5-σ, the Alard & Lupton (1998) ISIS subtraction of the
new minus the reference, and the ISIS subtraction of the reference minus the new. All the images are presented with inverted grayscale
map. The Red line (in the new panel) indicates the position of the profile cut we present in Figure 6. In the Scorr > 5 map, CR1–CR5
indicate the position of cosmic rays detected by our algorithm, while the two bright residuals on the right part of the image are due to
saturated stars. The residual at the top left has a significance of 5.7-σ and it is at the interface between two bright stars. The mechanism
that generate this particular residual is discussed in §8.7.
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Figure 6. A profile cut, at the position of the red line in Figure 5,
in the proper subtraction image D (black line) and the Alard &
Lupton (1998) subtraction (N−R; gray line). The images are nor-
malized such that the standard deviation of the images is unity.
This demonstrates that in the presence of bright stars, the fluctu-
ations in our subtraction image are modest, while the residuals in
the Alard & Lupton (1998) subtractions are large. We note that
the D image is not filtered while the Alard & Lupton (1998) sub-
traction is partially filtered. Therefore, the noise properties of D,
relative to the Alard & Lupton (1998) subtraction, are even better
than indicated from this plot.

PSF, background images and variance images.
The main high-level MATLAB functions required for

image subtraction are listed in Table 3 along with their
brief description. Some of these functions are discussed
in Zackay & Ofek (2015a, 2015b). The implementation
details related to some of these utilities are further dis-
cussed in §8.

8. IMPLEMENTATION DETAILS

Given background subtracted images, their variance,
PSF and flux-based zero points ratio, our image sub-
traction method is presented using closed-form formula.
Therefore, the implementation of this method is sim-
ple and rigorous, and does not require special attention.
However, like any other method for image subtraction,
this technique is sensitive to the steps taken prior to the
image subtraction (e.g., registration).
Here we discuss some of the details that can greatly

influence the successful application of any image subtrac-
tion algorithm.

8.1. Background and variance estimation

The background and variance in real wide-field-of-view
astronomical images cannot be treated as constants over
the entire field of view. Therefore, we suggest to es-
timate them locally and interpolate. To estimate the
background and variance one needs to make sure that
the estimators are not biased by stars or galaxies. Fol-
lowing Zackay & Ofek (2015a, 2015b) we suggest to fit a
Gaussian to the histogram of the image pixels in small re-
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Figure 7. The same as Figure 5, but for the test 2 images, containing the bright galaxy M51 and SN2011dh. The detected sources in
Scorr > 5 are SN2011dh, particle hits and bad pixels.

Table 3
High-level functions relevant for coaddition

Name Description

imsub fft.m Optimal subtraction of two images.
The function optionally registers the images, finds the PSF, background,
and variances. The function returns D, S, Scorr, PD,
PDr

and PDn
. Upon user request, Scorr may be corrected

for astrometric noise and color-refraction noise.
psf builder.m Construct a PSF template by re-sampling the pixels around

selected bright/isolated stars.
sim coadd.m Coadd a list of images, using various weighting schemes.

The function also allows for filtering the images prior to the coaddition.
The function can also align the images, calculate the weights and PSFs.

sim coadd proper.m Proper coaddition of images (see Zackay & Ofek 2015b).
The function can also align the images, calculate the weights and PSFs.

sim align shift.m Register a set of images against a reference image.
The function assumes the images can be registered
using an arbitrary large shift, but only a small rotation term.

weights4coadd.m Calculate parameters required for calculation of weights for
coaddition. Including the background, its variance, estimate of the
flux-based zero points (i.e., transparency), and measure the PSF.

sim back std.m Estimate the spatially-dependent background and variance of images.

Note. — High-level functions relevant for coaddition, which are part of the Astronomy and
Astrophysics toolbox for MATLAB (Ofek 2014).

gions20, and to reject from the fitting process pixels with
high values (e.g., the upper 10% of pixel values). Re-
gions containing large galaxies or complex background
may require special treatment.

8.2. PSF estimation and spatial variations

20 We are currently using 256× 256 arcsec2 blocks.

We note that Equations 12 and 13 are roughly linear to
perturbations in the PSF, compared with the real PSF.
Among the complications that may affect the PSF mea-
surement are pixelization, interpolation and the resam-
pling grid. Furthermore, the PSF is likely not constant
spatially and it also may change with intensity due to
charge self repulsion. This specifically may lead to the
brighter-fatter effect (e.g., Walter 2015).
In some cases the PSF may vary over the field of
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view. The simplest approach is to divide the image to
smaller images in which the PSF is approximately con-
stant. These sub-images can be as small as four times
the PSF size. Since the convolution operation is local,
it is straight forward to incorporate a spatially variable
PSF into any subtraction method (e.g., Alard 2000).

8.3. Interpolation

The registration step requires to interpolate one of the
images into a new coordinates grid. If the PSF is Nyquist
sampled (band limited) then one can use the Whittaker-
Shannon interpolation formula (sometimes called sinc in-
terpolation) without losing information due to the inter-
polation process.
However, if the PSF is undersampled, interpolation will

lead to variation in the PSF shape which depends on the
position of the source within the pixel (pixel phase). Such
an effect may cause severe problems to any subtraction
method. One simple way to deal with this problem is to
add a noise term to the denominator of Scorr (Eq. 25)
that takes into account the extra noise induced by the
pixel-phase dependent PSF variations. Such a correction
is under development.

8.4. Registration

Registration is a critical step for any image differencing
technique. Any leftover registration imperfection resid-
uals between the new and reference image will lead to
improper subtraction, subtraction artifacts and eventu-
ally to false detections. In §3.3 and 3.4 we discuss how
registration errors, color-refraction and astrometric scin-
tillations can be treated. However, it is still desirable to
minimize any registration errors prior to subtraction.
In many cases affine transformations are not enough

to map between the two images. The main reasons
include: differential atmospheric refraction, differential
aberration of light, and high-order optical distortions.
Usually when images are taken with the same system

and the same on-sky pointing, optical distortions will not
play an important role as their effect on the two images
is almost identical.
The amplitude of differential atmospheric refraction

can be as high as 8′′ deg−1. Figure 8 shows the ampli-
tude of differential atmospheric refraction as a function
of altitude. Since the direction of the atmospheric re-
fraction is known very well, the best way to deal with
the distortions caused by the atmosphere is to add to
the affine transformation terms that fit the atmospheric
refraction amplitude with its known direction (i.e., the
parallactic angle). Unfortunately, most astrometric and
registration packages do not support distortions of this
form, and instead they absorb the refraction correction
into high order polynomials. Furthermore, the current
WCS header keywords do not support this kind of trans-
formations. Our code described in §7 does support this
transformation.
We note that atmospheric refraction distortions are de-

tectable even on small angular scales. For example, this
effect can reach 0.1′′ arcmin−1 at altitude of 20 deg. In
any case, in order to minimize any higher order distor-
tions, it is recommended to divide the image to small
sections (say 10 by 10 arcmin).
The typical amplitude of differential aberration of light

(due to the Earth motion) is of the order of ∼ 0.2′′ deg−1.
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Figure 8. The differential atmospheric refraction (in the altitude
direction), in units of arcsec per deg. Calculated using the code in
Ofek (2014) and formulae provided in Filippenko et al. (1982), for a
wavelength of 5000 Å, temperature of 15◦ C, pressure of 760mmHg
and partial water vapor pressure of 8mmHg.

This is small enough to be ignored in some cases. How-
ever, since the effect of aberration is fully predictable it
is straightforward to incorporate it into the transforma-
tion. As far as we know popular image registration (and
astrometric) packages ignore the aberration of light.

8.5. Astrometric scintillations

Astrometric registration of ground-based imaging is
typically limited by astrometric scintillation induced by
the Earth atmosphere. An order of magnitude estimate
for the amplitude of astrometric scintillation is:

σscint ∼
FWHM√
tint/tscint

, (49)

where FWHM is the PSF FWHM, tint is the integration
time, and tscint is the correlation time scale of the tip/tilt
term of the atmospheric scintillations. For example, as-
suming FWHM = 2′′, tint = 60 s, and tscint = 0.03 s, we
get σscint ∼ 40mas. This can be an order of magnitude
larger than the astrometric noise induced by the Poisson
noise of bright stars. In practice this noise depends on
the angular scale (see e.g., Shao & Colavita 1992).
This kind of astrometric noise is hard to remove, and

therefore we expect that bright stars will always have
some leftover residuals in the subtraction process. How-
ever, we presented two methods to deal with this problem
in §3.3 and §3.4.

8.6. Color refraction

The atmospheric refraction is color dependent and
hence sources with different spectra will suffer different
refraction at the same airmass. Figure 9 presents the
relative amplitude of color refraction, in different bands,
between an O5V star and an M5V star and between an
A0V star and an M5V star, as a function of altitude.
We suggest three solutions to this issue: (1) Construct

reference images for several airmass ranges. Since color
refraction is symmetric around the meridian, one needs
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Figure 9. Solid lines represent the difference in color refraction (in
the altitude direction) in arcsec, as a function of altitude, between
an O5V star and M5V star. The various colors correspond to dif-
ferent filters (see legend). The dashed lines show the same, but for
the difference between an A0V star and M5V star. The calculation
includes the atmospheric extinction (at Kitt Peak), and uses stellar
spectra (adopted from Pickles 1998). Atmospheric conditions are
the same as in Figure 8.

to construct such reference images separately for obser-
vations conducted east and west of the meridian; (2) Cal-
culate the variance induced by this effect and introduce
it as extra terms in the denominator of Scorr (Eq. 25);
(3) Fit the astrometric shift for each residual in D using
the scheme presented in §3.4. The last option is likely
the best approach.

8.7. Additional sources of noise

There may be additional sources of noise that can influ-
ence image subtraction. An example for a rare problem
we encountered in our simulations and real images is that
if a binary star has uncorrelated astrometric noise21 this
may affect the calculation of the gradient image (Eqs. 30–
32; see Figure 5 for example). In principle such problems
can be accounted for in Scorr, however, one needs to iden-
tify these issues. Therefore, successful implementation of
this method requires large-scale tests on real data. Such
tests are underway, and this may be further discussed in
future publications.

9. SUMMARY

Current popular image subtraction methods have sev-
eral important limitations, including: non-optimality,
numerical instability in some cases, some of the methods
use matrix inversion which is slow to calculate. Most
importantly, these methods do not provide a closed form
formula for calculation of the significance of a transient
candidate. Moreover, in some cases due to numerical
instability of some of the methods it is not possible to
calculate, even numerically, the significance of a transient
candidate. This undermines any automatic transient de-
tection and classification, and may be a considerable ob-
stacle for future surveys.

21 In reality this is rare as both registration errors and astromet-
ric scintillation noise (but not the Poisson noise) are correlated on
short angular scales.

We present closed-form transient detection and im-
age subtraction statistics that potentially solve all of the
above problems, and have the following properties:

1. The transient detection statistic is mathematically
proven to be optimal in the background-dominated
noise limit;

2. Both statistics are numerically stable for any pair
of input images;

3. For accurately registered, adequately sampled im-
ages, these statistics do not leave any subtraction
residuals or deconvolution artifacts;

4. It is possible to correct the transient detection
statistic to be resilient to registration errors, color-
refraction errors, and any noise for which a model
can be constructed;

5. We can assign credible detection significance for
newly found transients;

6. The proper subtraction image has white noise in
the background-dominated-noise limit. This makes
it attractive for more complex measurements and
visualization;

7. The proper subtraction statistic is a sufficient
statistic for any further statistical test on the differ-
ence image. In particular, it allows to distinguish
particle hits and other image artifacts from real
transients;

8. Both statistics are symmetric to the exchange of
the new and reference images;

9. Both statistics are fast to calculate - at least an
order of magnitude faster to compute than popular
methods;

10. Both statistics are given in closed form and they
are straightforward to implement;

11. The proper subtraction statistic allows to search
for small astrometric changes between the new and
reference images, even in arbitrarily crowded re-
gions;

12. The same statistics are also optimal for flux
measurements in the background-noise dominated
limit;

13. We show that the optimal way to prepare a refer-
ence image is the proper image coaddition statistic
presented in Zackay & Ofek (2015b).

We demonstrate this method on simulated data and
real observations from the Palomar Transient Factory
data release 2. A summary of the algorithm and equa-
tions are presented in §5, while a discussion regarding the
implementation is in §8. We briefly describe our MAT-
LAB and Python code that implement this method and
are available online.
We conclude that this image differencing algorithm has

the potential to solve most of the challenges of astronom-
ical image subtraction. However, testing if this method is
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indeed capable of completely removing the need for post-
subtraction processing (e.g., human scanners) requires
considerable research effort and tests on large datasets.
Such tests are underway.
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APPENDIX

A. FULL DERIVATION OF THE IMAGE SUBTRACTION
STATISTICS

Let R and N be the background subtracted reference
image and background subtracted new image, respec-
tively. Denote by T the background subtracted true con-
stant sky image. Denote by Pr and Pn the point spread
functions (PSFs) of the reference image and the new im-
age, respectively. Pr and Pn are normalized to have unit
sum.
Writing the expression for the reference image:

R = FrT ⊗ Pr + ǫr, (A1)

where ǫr is the additive noise component of the image R.
Given the null hypothesis, H0, that states there are no
new sources in the new image we can write:

N|H0
= FnT ⊗ Pn + ǫn. (A2)

Given the alternative hypothesis, H1(q, α), that states
there is a new point source at position q with flux α, we
can write:

N|H1(q,α) = FnT ⊗ Pn + Fnαδ(q)⊗ Pn + ǫn , (A3)

where δ(q) denotes a two dimensional image with one at
position q, and zero otherwise. Assuming that the im-
ages are background subtracted, and that the dominant
source of noise is the background noise, ǫr and ǫn both
satisfy that all pairs of pixels are uncorrelated – i.e., that
for all pairs of pixels x1, x2 for which x1 6= x2:

Cov (ǫr[x1], ǫr[x2]) = 0 ,Cov (ǫn[x1], ǫn[x2]) = 0, (A4)

and that all pixels have spatially uniform variance22:

V (ǫr[x]) = σ2
r , V (ǫn[x]) = σ2

n. (A5)

22 In practice this assumption can be relaxed.

Because both hypotheses are simple, we can use the
Neyman-Pearson lemma (Neyman & Pearson 1933), that
states the most powerful statistic for deciding between
two simple hypotheses is the likelihood ratio test:

L(q, α) =
P(N,R|H0)

P(N,R|H1(q, α))
, (A6)

where P denotes probability. A critical point is that
we do not have any prior information or assumptions
on T . Therefore, we cannot calculate the probabilities
P(N,R|H0) and P(N,R|H1(q, α)) directly. However, we
can calculate their ratio by developing the expression us-
ing the law of conditional probabilities

L(q, α) =
P(N |R,H0)P(R|H0)

P(N |R,H1(q, α))P(R|H1(q, α))
. (A7)

Using the fact that both H0 and H1(q, α) state the same
probabilistic model for R (and therefore will assign the
same likelihood for observing R) we can further simplify:

L(q, α) =
P(N |R,H0)

P(N |R,H1(q, α))
. (A8)

To calculate P(N |R,H0) we examine the statistical be-
havior of the Fourier transforms of N and R given both
hypotheses, and assume that the images are background-
noise dominated. Using the fact that the Fourier trans-
form of white noise is itself white noise, we know the
exact noise properties of the Fourier transform of both
R,N given both hypotheses:

N̂|H0
= FnT̂ P̂n + ǫ̂n, (A9)

N̂|H1(q,α) = Fn(T̂ + αδ̂(q))P̂n + ǫ̂n, (A10)

R̂|H0
= R̂|H1(q,α) = FrT̂ P̂r + ǫ̂r, (A11)

where the ̂ accent denotes Fourier transform and both
ǫ̂n and ǫ̂r are complex white Gaussian noise23.

Using the fact that R̂ is measured, we can invert its
probabilistic model to obtain a model for T :

T̂ =
R̂

FrP̂r

−
ǫ̂r

FrP̂r

. (A12)

Using this expression for T̂ , we can write a probabilistic
model for N given R and H0:

N̂|R̂ =
R̂

FrP̂r

FnP̂n −
ǫ̂r

FrP̂r

FnP̂n + ǫ̂n . (A13)

Given this model for T and assuming the noise is Gaus-
sian, we can calculate the probability to observe N (this
is the χ2 up to a factor of 2):

log(P[N̂ |R̂,H0]) =
∑

f

∣∣∣N̂ − FnP̂nR̂

FrP̂r

∣∣∣
2

2V (ǫ̂n + FnP̂n ǫ̂r

FrP̂r

)
, (A14)

23 The noise in the Fourier transform of an image with white
noise, is white except for the obvious symmetry ǫ̂n(f1, f2) =

ǫ̂n(−f1,−f2), where over line denotes complex conjugation. This
symmetry is due to the fact that the input images are real.
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Using the linearity and scalar multiplication properties
of the variance and simplifying we get:

log(P[N̂ |R̂,H0]) =
1

2

∑

f

∣∣∣FrP̂rN̂ − FnP̂nR̂
∣∣∣
2

σ2
nF

2
r |P̂r|2 + σ2

rF
2
n |P̂n|2

,

(A15)

Similarly, given H1 we can write:

log(P[N̂ |R̂,H1(q, α)]) = (A16)

=
1

2

∑

f

∣∣∣FrP̂rN̂ − FnP̂nR̂− αFnFrP̂nP̂r δ̂(q)
∣∣∣
2

σ2
nF

2
r |P̂r|2 + σ2

rF
2
n |P̂n|2

.

(A17)

Now, we can express the log-likelihood ratio test statis-
tic by subtracting Equation A17 from Equation A15,
opening the absolute value squared using |a + b|2 =
|a|2+ |b|2+2ℜ[ab], where ℜ is the real number operator,
and removing parts that do not depend on the data:

log(L(q, α)) = (A18)

=
∑

f

ℜ

[(
FrP̂rN̂ − FnP̂nR̂

)
αFrFnP̂nP̂r δ̂(q)

]

σ2
nF

2
r |P̂r|2 + σ2

rF
2
n |P̂n|2

.

(A19)

Noticing that α enters only as a scalar multiplier to the
entire expression, we can define a statistic

S(q) ≡
log(L(q, α))

α
, (A20)

to test optimally for all values of α simultaneously.
In order to express the same score in term of intuitive

quantities we define the proper subtraction image:

D̂ =

(
FrP̂rN̂ − FnP̂nR̂

)

√
σ2
nF

2
r |P̂r|2 + σ2

rF
2
n |P̂n|2

. (A21)

The PSF for transient detection:

P̂D =
FrFnP̂rP̂n

FD

√
σ2
nF

2
r |P̂r|2 + σ2

rF
2
n |P̂n|2

, (A22)

and the normalization:

FD =
FnFr√

Fnσ2
r + Frσ2

n

. (A23)

We note that FD can be derived by substituting 1 into

P̂n and P̂r in the expression for P̂D.
In the background-noise dominated limit, D has white

noise (see §4.5). The score S(q) can now be expressed
by:

S(q) = ℜ


FD

∑

f

D̂P̂D δ̂(q)


 . (A24)

Expressing this in real space using the convolution theo-
rem we get:

S(q) = FDℜ
[
D ⊗

←−
PD ⊗

←−−
δ(q)

]
(0) . (A25)

Noticing that both D and PD contain only real numbers,
the real operator can be removed. Convolution with a
delta function is just the shift operator, therefore the
expression for S(q) can be simplified even further to be:

S(q) = [FDD ⊗
←−
PD](q). (A26)

The expression for its Fourier transform is then expressed
by:

Ŝ = D̂P̂D =
FnF

2
r P̂n|P̂r|

2N̂ − FrF
2
nP̂r|P̂n|

2R̂

σ2
rF

2
n |P̂n|2 + σ2

nF
2
r |P̂r|2

. (A27)

This is the final form of the optimal transient detection
statistic. An alternative form for this expression can be
written as:

Ŝ =
FnF

2
r

P̂n

σ2
n

|P̂r|
2

σ2
r
N̂ − FrF

2
n

P̂r

σ2
r

|P̂n|
2

σ2
n

R̂

F 2
n

|P̂n|2

σ2
n

+ F 2
r

|P̂r|2

σ2
r

. (A28)

B. CONSTRUCTION OF THE REFERENCE IMAGE

Extending the statistical framework to the situations
in which we are given a set of references, we seek to
find the optimal transient detection statistic given all of
the references. Each reference image out of a total of J
images is given by:

Rj = FjPj ⊗ T + ǫj . (B1)

A certain new image N is measured, and we want to
determine which of the following is true, H0:

N = FnPn ⊗ T + ǫn, (B2)

or H1(q):

N = FnPn ⊗ (T + δ(q)) + ǫn. (B3)

As in the previous section, we are trying to test be-
tween two simple hypotheses. Therefore, the optimal
test statistic is the log-likelihood ratio test (Neyman &
Pearson 1933)

L(q, α) =
P(N,R1, . . . , RJ |H0)

P(N,R1, . . . , RJ |H1(q, α))
. (B4)

As before, we can use the law of conditional probabilities,
and the fact that H0 and H1 predict the same likelihood
to all references:

L(q, α) =
P(N |R1, . . . , RJ ,H0)

P(N |R1, . . . , RJ ,H1(q, α))
. (B5)

In order to calculate the conditional probabilities, we
need a probabilistic model for N that does not contain
T . This could be achieved by using all references to get
the best statistical model for T .
As in the previous section, this can be more easily for-

mulated by stating the hypotheses for the images in the
Fourier plane:

N̂|H0
= T̂ P̂n + ǫ̂n, (B6)
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N̂|H1(q,α) = (T̂ + αδ̂(q))P̂n + ǫ̂n, (B7)

R̂j |H0
= R̂j |H1(q,α)

= T̂ P̂j + ǫ̂j . (B8)

Following Appendix A, we can continue to develop this
in the long way into the correct difference image and the
correct transient detection statistic. However, we can
take a shortcut. The key observation we make, is that
we can cast all the information in the reference images

into a statistical model for T̂ . Using the result from
the appendix of Zackay and Ofek 2015a (paper I in the
series on coaddition), the choice that maximizes the S/N
is the weighted addition of all the sources of information

on T̂ (f):

T̂ =

∑
j

Fj P̂j

σ2

j

R̂j

∑
j

F 2

j
|P̂j |2

σ2

j

+ ǫ̂T . (B9)

Where we have denoted the noise contribution from all
the reference images by ǫ̂T . Calculating its variance we
get that:

V [ǫ̂T ] =
1

∑
j

F 2

j
|P̂j |2

σ2

j

≡
1

F 2
r |P̂r|2

, (B10)

where we have defined:

Fr =

√√√√∑

j

F 2
j

σ2
j

, P̂r =
1

Fr

√√√√∑

j

F 2
j

σ2
j

|P̂j |2. (B11)

Given these choices and the template of Equation A12,
we find the formula for the coaddition of the reference
images:

R̂ =

∑
j Fj

P̂j

σ2

j

R̂j

√∑
j F

2
j

|P̂j |2

σ2

j

. (B12)

Here σ̂R = 1. Since R, Pr and T satisfies Equation A1,
we have a single reference image that complies with
the requirements of the statistical model. Interestingly,
Equation B12 is identical to the proper coaddition im-
age presented in Zackay and Ofek (2015b; paper II in the
series of coaddition).

Substituting Equation B12 into D̂ we get:

D̂ =

√∑
j

F 2

j
|Pj |2

σ2

j

N̂ − FnP̂n




∑
j

FjP̂j

σ2
j

R̂j

√
∑

j

F2
j
|P̂j |

2

σ2
j




√
σ2
n

(∑
j

F 2

j
|Pj |2

σ2

j

)
+ σ2

rF
2
n |P̂n|2

. (B13)

Writing the source detection statistic in explicit form we

get:

Ŝ =

FnP̂n

σ2
n

(∑
j

F 2

j |P̂j |
2

σ2

j

)
N̂ −

F 2

n|P̂n|
2

σ2
n

(∑
j

Fj P̂jR̂j

σ2

j

)

F 2
n|P̂n|2

σ2
n

+

(∑
j

F 2

j
|P̂j |2

σ2

j

) .

(B14)

Thus, we arrive at an optimal solution with a closed
formula for optimal transient detection given a set of ref-
erences. We note that there are other choices that can be
used instead of R. However, we prefer the proper coad-
dition image due to its uncorrelated noise (see Zackay &
Ofek 2015b). Finally, also N can be composed of mul-
tiple images. In this case, the optimal solution for the
subtraction is to perform the optimal transient detection
with both N and R being the proper coaddition of all
the images in their corresponding sets.

C. CORRECTION FOR SOURCE NOISE OF BRIGHT
OBJECTS

The assumption that the noise distribution is indepen-
dent of position, and of the true image itself, is of course
not true. Specifically, near bright stars the dominant
source of noise is the Poisson fluctuations of the source
itself, which is obviously position dependent. Therefore,
in the vicinity of bright sources the variance is underes-
timated, and random fluctuations in the noise can cause
false transient detections in these positions. Since only a
negligible part of the sky behaves in such a way, we do
not wish to change the statistic S in places away from
bright sources.
Therefore, the approach we currently recommend is the

following: Calculate separately the two parts of Equa-
tion B14:

ŜN =

FnP̂n

σ2
n

(∑
j

F 2

j |P̂j |
2

σ2

j

)

F 2
n|P̂n|2

σ2
n

+

(∑
j

F 2

j
|P̂j |2

σ2

j

)N̂ ≡ k̂nN̂ , (C1)

and

ŜRj
=

F 2

n|P̂n|
2

σ2
n

Fj P̂j

σ2

j

F 2
n|P̂n|2

σ2
n

+

(∑
j

F 2

j
|P̂j |2

σ2

j

) R̂j ≡ k̂jR̂j . (C2)

Next, apply inverse Fourier transform to get to the image
domain:

S = SN −
∑

j

SRj
. (C3)

Then calculate the corrected score for the existence of
transient sources:

Scorr =
SN −

∑
j SRj√

V (SN ) +
∑

j V (SRj
)
, (C4)

where V (SN ) and V (SRj
) are the variance maps of SN

and SRj
. Essentially, these can be computed analytically

by following all the operations done on Rj and N , and
applying the corresponding corrections to V (SRj

) and
V (SN ) respectively.
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Using the fact that for a zero expectancy noise source
ǫ,

V(ǫ⊗ P ) = V (ǫ)⊗ (P 2) . (C5)

we can derive a closed formula solution for V (SN ) and
V (SRj

):

V (SN ) = V (ǫn)⊗ (k2n) , (C6)

V (SRj
) = V (ǫj)⊗ (k2j ), (C7)

where kn and kj are defined in Equations C1 and C2, re-
spectively. We note that the squaring of the convolution
kernel happens in the image domain.
In the presence of bright stars the noise is correlated,

this means that we need to store, or sum up the individ-
ual V (SRj

). Using the proper coaddition image and its
effective kr will not recover all the information. However,
using R and kr may serve as an approximation to this
process.
The proposed correction (Eq. C4) does not change the

score image away from bright sources (other than move
the detection statistic to units of standard deviations).
The reason for this is that the variance map is spatially
uniform in places away from strong sources. We note that
this correction is sub-optimal near bright sources, but at
least it is a score with known statistical properties, that
we can use to prevent false positives and to retain some
sensitivity.
This method of correcting S by the variance can be

extended to any additional sources of noise for which we
can construct a model. For example, in §3.3 we present
also the variance due to astrometric errors.

D. OPTIMAL PSF PHOTOMETRY OF TRANSIENT
POINT SOURCES

In general, in the statistical community, there is
no consensus on how to derive the best measurement.
Therefore, in this section, we will search for a mea-
surement statistic that is unbiased and has maximal
S/N , and is a linear function of the input images. Not
surprisingly, the resulting statistics is simply S (Equa-
tion 12) normalized by some factor. This analysis also
presents another formalism in which our transient detec-
tion statistic is optimal – it is the maximum S/N linear
statistic composed out of R and N that cancels the con-
stant in time image T .
We start by stating again the statistical model we use:

R = Pr ⊗ T + ǫr, (D1)

N = Pn ⊗ (T + αδ(q)) + ǫn, (D2)

where α is the flux of the new source at position q, and
δ(q) is an image with 0 everywhere except position q
where it’s value is 1. We continue to work under the
assumption that the background noise is the most signif-
icant source of noise, which allows us to write:

V [ǫr] = σ2
r , V [ǫn] = σ2

n. (D3)

We write the statistic that we are looking for in its
most general linear form:

C = kn ⊗N + kr ⊗R, (D4)

where kn and kr are some kernels, and we require that:

Fnkn ⊗ Pn = −Frkr ⊗ Pr. (D5)

Writing C in Fourier space we get:

Ĉ = k̂nN̂ + k̂rR̂ = αδ̂(q)FnP̂nk̂n + ǫ̂c, (D6)

where ǫc absorbs all noise sources in both images.
Here, we will use a well known result (also given in Ap-

pendix B of Zackay & Ofek 2015a) that the maximal S/N
measurement of a parameter θ given a set of statistics Xj

such that:

Xj = µjθ + ǫj , (D7)

where µj are scaling factors and ǫj has variance V [ǫj ] =
σj , is:

θ̃ =

∑
j

µj

σ2

j

Xj

∑
j

|µj |2

σ2

j

. (D8)

In our case µ = δ̂(q)FnP̂nk̂n. Applying this to Ĉ, we
get the maximum S/N statistic for α:

α̃ =

∑
f

δ̂(q)FnP̂nk̂nĈ

σ2
r |k̂r|2+σ2

n|k̂n|2

∑
f

|δ̂(q)FnP̂nk̂n|2

σ2
r |k̂r|2+σ2

n|k̂n|2

, (D9)

substituting Ĉ = k̂nN̂ + k̂rR̂, and

k̂r = −k̂n
FnP̂n

FrP̂r

, (D10)

and simplifying (notice the cancellation of kn in the ratio,

and the use of |δ̂(q)| = 1) we get:

α̃ =

∑
f

δ̂(q)FnP̂nk̂n(k̂nN̂+k̂rR̂)

σ2
r |k̂r|2+σ2

n|k̂n|2

∑
f

|δ̂(q)FnP̂nK̂n|2

σ2
r |k̂r|2+σ2

n|k̂n|2

=

∑
f

δ̂(q)FnP̂n(N̂−FnP̂n

FrP̂r
R̂)

σ2
r |

FnP̂n

FrP̂r
|2+σ2

n

∑
f

F 2
n|P̂n|2

σ2
r |

F2
nP̂n

F2
r P̂r

|2+σ2
n

,

(D11)

α̃ =

∑
f

δ̂(q)(F 2

r Fn|P̂r|
2P̂nN̂−F 2

nFr|P̂n|
2P̂rR̂)

σ2
rF

2
n|P̂n|2+σ2

nF
2
r |P̂r|2

∑
f

F 2
nF

2
r |P̂n|2|P̂r|2

σ2
rF

2
n|P̂n|2+σ2

nF
2
r |P̂r|2

. (D12)

Last, we see that we can calculate all the fluxes for
all the transient sources simultaneously by noticing that
the numerator in the expression for α̃ is the q’th posi-
tion in the previously defined transient detection image
S (Equation A27). That is:

α̃ =
S

∑
f

F 2
nF

2
r |P̂n|2|P̂r|2

σ2
rF

2
n|P̂n|2+σ2

nF
2
r |P̂r|2

. (D13)

This means that the same statistic can be computed both
for detection and measurement. Therefore, in order to
get a flux measurement from S, all we need is to normal-
ize it by FS – the denominator of Equation D13:
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FS =
∑

f

F 2
nF

2
r |P̂n|

2|P̂r|
2

σ2
rF

2
n |P̂n|2 + σ2

nF
2
r |P̂r|2

. (D14)

Via the same process as for the detection, the standard
deviation of the flux measurement S at position q can be
estimated via inspection of SN and SR. We find that the
standard deviation of F can be calculated by:

σα̃ =

√
V (SN ) + V (SR)

FS

. (D15)

If the reference image is constructed from many reference
images than

V (SR) =
∑

j

V (SRj
). (D16)

Note that Equation D15 is valid for both faint (i.e.,
in background-dominated-noise areas) and bright tran-
sients (source-dominated-noise areas). We further note
that Equation D13 is equivalent to PSF photometry as
each pixel is weighted by the appropriate value of the
PSF.

E. D,PD, FD ARE SUFFICIENT FOR ANY STATISTICAL
MEASUREMENT OR DECISION ON THE
DIFFERENCE BETWEEN THE IMAGES

In order to show that D,PD, FD are sufficient statis-
tics, we will use the Fisher-Neyman factorization theo-
rem. This theorem states that: If the probability density
function is Pθ(X), then T is sufficient for the parameter
θ if and only if nonnegative functions g and h can be
found such that

Pθ(X) = h(X)gθ(T (X)). (E1)

In our case, we would like to show that for any gener-
ative model An(θ) for the difference between the images,
with parameter θ, the probability of observing the data
(R and N) factorizes into:

P(R,N |An(θ)) = P(D|An(θ))g(R,N). (E2)

This will prove that D is a sufficient statistics.
We note that the meaning of sufficient statistics is pro-

found – it means that any measurement or decision per-
formed on D will return the same numerical value as if
it was performed using all the data. Examples for such
measurements or decisions are: arbitrary shape measure-
ments, or identifying particle hits.
In this part, we show that D, along with PD,PDN

,PDR
,

are together sufficient for any likelihood calculation (up
to some multiplicative, model independent factor, as
allowed from the Fisher-Neyman criterion) for any in-
stance of a generative model for An(θ), regardless of the
constant-in-time image T . We state the family of statis-
tical models An(θ, q) for which we want D to be sufficient
to:

R = FrT ⊗ Pr + ǫr, (E3)

N = FnT ⊗ Pn +An(θ)⊗ δ(q) + ǫn, (E4)

where An(θ) is the change made in the new image, lo-
cated in position q, and T is the constant-in-time (un-
known) image. Note that we did not convolved An(θ)

with the PSF of the images, as this will allow us to deal
with signal that was not convolved by the PSF (e.g., bad
pixels, small astrometric shifts). However, such a PSF
can be included in An(θ).
Using the law of conditional probability, the probabil-

ity we would like to calculate is:

P(R,N |An(θ)) = P(N |R,An(θ))P(R|An(θ)) (E5)

= P(N |R,An(θ))P(R). (E6)

Since the probability of R is independent of the model
parameter θ (as it only influences the model for N), it
suffices for us to calculate log(P(N |R,An(θ))). As we
did in previous sections, we can project our knowledge
of R to a statistical model for T :

T̂ =
R̂

FrP̂r

−
ǫ̂r

FrP̂r

≡
R̂

FrP̂r

+ ǫ̂T . (E7)

We can then use it to calculate the probability of observ-
ing N given An(θ):

−log(P(N |R,An(θ))) =
∑

f

||N̂ − FnP̂nT̂ − Ân(θ)δ̂(q)||
2

2V [ǫ̂n + FnP̂nǫ̂T ]
.

(E8)

Opening the absolute value, we get the summation of

three terms. The first term,
∑

f
||N̂−FnP̂nT̂ ||2

2V [ǫ̂n+FnP̂n ǫ̂T ]
, does not

depend on An(θ) and therefore can be removed (can be
absorbed in the Fisher-Neyman h). The second term is:

∑

f

2ℜ


 (N̂ − FnP̂nT̂ )Ân(θ)δ̂(q)

2V [ǫ̂n + FnP̂nǫ̂T ]


 = ... = (E9)

=
(F 2

r |P̂r|
2N̂ − FnFrP̂nP̂rR̂)Ân(θ)

σ2
nF

2
r |P̂r|2 + σ2

rF
2
n |P̂n|2

. (E10)

In the last expression we can identify a matched filter
operation between the proper subtraction image D

D̂ =

(
FrP̂rN̂ − FnP̂nR̂

)

√
σ2
nF

2
r |P̂r|2 + σ2

rF
2
n |P̂n|2

, (E11)

and the PSF for delta function in N (the PSF of An):

P̂DN
=

FrP̂r

FDN

√
σ2
nF

2
r |P̂r|2 + σ2

rF
2
n |P̂n|2

, (E12)

with the zero-point:

FDN
=

Fr√
σ2
nF

2
r + σ2

rF
2
n

. (E13)

Finally, we need to show that the third term in Equa-
tion E8 can be calculated only using D and its set of
PSFs and zero-points.

∑

f

|Ân(θ)|
2

V [ǫ̂n + FnP̂nǫ̂T ]
=

F 2
r |P̂r|

2|Ân(θ)|
2

σ2
nF

2
r |P̂r|2 + σ2

rF
2
n |P̂n|2

(E14)

= F 2
DN
|Ân(θ)|

2|P̂DN
|2 . (E15)
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Symmetrically, every statistical change in R can be
calculated in the same fashion using D and PDR

.

P̂DR
=

FnP̂n

FDR

√
σ2
nF

2
r |P̂r|2 + σ2

rF
2
n |P̂n|2

, (E16)

with the zero-point

FDR
=

Fn√
σ2
nF

2
r + σ2

rF
2
n

(E17)

As expected, a change in either N or R, that experiences
the same PSF (and transparency) as the true image (e.g.,
a supernovae, variable star or small solar system body)
will have the effective PSF PD, and zero-point FD.
This analysis means that the subtraction product D,

is the optimal statistics for any, even yet unspecified,
measurement or hypothesis testing we wish to perform
on the data.
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