PROPER LEFT TYPE- A MONOIDS REVISITED

by JOHN FOUNTAIN and GRACINDA M. S. GOMES ${ }^{1}$

(Received 23 September, 1991; revised 10 November, 1992)

Introduction. The relation \mathscr{R}^{*} is defined on a semigroup S by the rule that $a \mathscr{R}^{*} b$ if and only if the elements a, b of S are related by the Green's relation \mathscr{R} in some oversemigroup of S. A semigroup S is an E-semigroup if its set $E(S)$ of idempotents is a subsemilattice of S. A left adequate semigroup is an E-semigroup in which every \mathscr{R}^{*}-class contains an idempotent. It is easy to see that, in fact, each \mathscr{R}^{*}-class of a left adequate semigroup contains a unique idempotent [2]. We denote the idempotent in the \mathscr{R}^{*}-class of a by a^{+}.

In this paper we are concerned with left type- A semigroups. These are semigroups S which are left adequate and in which $a e=(a e)^{+} a$ for each $a \in S$ and $e \in E(S)$. Any inverse semigroup S is left type- A; for an element a of S we have $a^{+}=a a^{-1}$ and certainly, for any $e \in E(S),(a e)(a e)^{-1} a=a e$. The class of left type- A semigroups, however, is much larger than the class of inverse semigroups. For example, every right cancellative monoid is a left type- A semigroup.

On any left type- A semigroup there is a minimum right cancellative congruence which we denote by σ. We say that a left type- A semigroup S is proper if $\sigma \cap \mathscr{R}^{*}=\iota$. For an inverse semigroup, being proper is the same as being E-unitary. In the general case, however, a proper left type- A semigroup is E-unitary but the converse is not true [1]. A famous result of inverse semigroup theory due to McAlister is that every inverse semigroup has an E-unitary cover [6,7]. The corresponding result for left type- A monoids is that every left type- A monoid has a proper left type- A cover. This is the dual of a theorem in [1]. McAlister also gave a structure theorem for E-unitary inverse semigroups in terms of P-semigroups. There is an analogue of this result for left type- A monoids-the dual of Theorem 4.3 of [$\mathbf{1}$].

In [4] and [5] Margolis and Pin develop the theory of a class of E-semigroups called E-dense semigroups. In particular, they describe E-unitary E-dense monoids in terms of groups acting on categories. The class of E-dense semigroups contains the class of inverse semigroups and the techniques introduced by Margolis and Pin can be specialised to obtain the P-theorem of McAlister. These methods also yield another proof of an alternative characterisation of E-unitary inverse semigroups originally due to O'Carroll [8], as the inverse subsemigroups of semidirect products of semilattices by groups.

In an earlier paper [3], the present authors used the Margolis, Pin techniques to investigate left proper E-dense monoids. In the present paper our objective is to extend their methods so that they can be applied to proper left type- A monoids. To do this we have to make use of actions on certain small categories by right cancellative monoids rather than groups. We introduce the appropriate ideas in Section 1 including the notion of left derived category. We use these ideas in Section 2 to obtain a new characterisation of proper left type- A monoids and to give for the first time a characterisation of E-unitary left type- A monoids.

We introduce two further new descriptions of proper left type- A monoids in
${ }^{1}$ This research was supported by "Plano de Reforço da Capacidade Científica do Departamento de Matemática", Fundação Calouste Gulbenkian.

Sections 3 and 4. First we introduce the class of \mathscr{R}-monoids and use the results of Section 2 to show that this class is precisely the class of proper left type- A monoids. In the final section we obtain an analogue of O'Carroll's theorem by showing that a left type- A monoid is proper if and only if it can be embedded by an \mathscr{R}^{*}-preserving embedding in a special submonoid of a semidirect product of a semilattice by a right cancellative monoid.

1. Preliminaries. We start by recalling some definitions and results from [3]. We caution the reader that the definition of left type- A category used in this paper differs from that in [3].

In what follows \mathscr{C} is always a small category with set of objects $\mathrm{Obj} \mathscr{C}$ and set of morphisms Mor \mathscr{C}. For all $v \in \operatorname{Obj} \mathscr{C}$, the set of all morphisms with domain [codomain] v is denoted by $\operatorname{Mor}(v,-)[\operatorname{Mor}(-, v)]$. We use additive notation for the composition of morphisms and represent the identity at an object u by O_{u}.

Definition 1.1 [3]. On Mor \mathscr{C}, we define the relation \mathscr{R}^{*} as follows, for all $p, q \in \operatorname{Mor} \mathscr{C}$,

$$
(p, q) \in \mathscr{R}^{*} \Leftrightarrow[(\forall s, t \in \operatorname{Mor} \mathscr{C}) s+p=t+p \Leftrightarrow s+q=t+q]
$$

whenever any of these identities exist.
It is easy to check that
Lemma 1.2. Let \mathscr{C} be a category, $u \in \operatorname{Obj} \mathscr{C}$ and $p, q \in \operatorname{Mor} \mathscr{C}$. Then
(a) if $p \in \operatorname{Mor}(u,-)$ and $(p, q) \in \mathscr{R}^{*}$, then $q \in \operatorname{Mor}(u,-)$;
(b) if p is an idempotent, that is, $p=p+p$, and $p \in \operatorname{Mor}(u, v)$ then $u=v$;
(c) if p is an idempotent then

$$
(p, q) \in \mathscr{R}^{*} \Leftrightarrow\left\{\begin{array}{l}
q=p+q, \quad \text { and } \\
(\forall s, t \in \operatorname{Mor} \mathscr{C}) s+q=t+q \Rightarrow s+p=t+p
\end{array}\right.
$$

(d) \mathscr{R}^{*} is a left congruence on the partial semigroup Mor \mathscr{C}.

Definition 1.3 [3]. A category \mathscr{C} is said to be left abundant if each \mathscr{R}^{*}-class contains an idempotent.

Definition 1.4. A left abundant category \mathscr{C} in which for all objects u, the idempotents of $\operatorname{Mor}(u, u)$ form a subsemilattice of $\operatorname{Mor}(u, u)$ is said to be left adequate.

In a left adequate category each \mathscr{R}^{*}-class, \mathscr{R}_{p}^{*}, contains exactly one idempotent denoted by p^{+}.

Definition 1.5. A left adequate category is left type- A if for all morphisms p and q,

$$
q+p^{+}=\left(q+p^{+}\right)^{+}+q
$$

whenever either of these elements exists.
Lemma 1.6 [3]. Let \mathscr{C} be a left type-A category and $p, q \in \operatorname{Mor} \mathscr{C}$ be such that $p+q$ exists. Then
(a) $(p+q)^{+}=\left(p+q^{+}\right)^{+}$;
(b) $(p+q)^{+}+p^{+}=(p+q)^{+}$.

The above definitions and results can all be applied to monoids by regarding a monoid as a category with a single object.

Lemma 1.7 [1]. Let M be a left type-A monoid and define the relation σ on S thus: for all $a, b \in S$,

$$
a \sigma b \Leftrightarrow(\exists e \in E(S)) e a=e b .
$$

Then σ is the least right cancellative monid congruence on S and $E(S)$ is contained in a σ-class.

Definition 1.8. A left type- A monoid is proper if $\mathscr{R}^{*} \cap \sigma=\iota$.
Definition 1.9. A monoid M is E-unitary if $E(M)$ is a unitary subset of M.
Every proper left type A monoid is E-unitary but the converse is false as shown by the dual of Example 3 in [1].

Lemma 1.10. For a left type A monoid M, the following conditions are equivalent:
(1) M is E-unitary,
(2) For $e, a \in M, e, e a \in E(M)$ implies $a \in E(M)$,
(3) For $e, a \in M$, e, $a e \in E(M)$ implies $a \in E(M)$,
(4) $E(M)$ is a σ-class.

Proof. Suppose that (2) holds and that $e, a \in M$ are such that $e, a e \in E(M)$. Since M is left type- $A, a e=(a e)^{+} a$ so that $(a e)^{+},(a e)^{+} a$ are both in $E(M)$ and by (2), $a \in E(M)$. Thus (2) implies (3).

Suppose that (3) holds and that $e, a \in M$ with $e, e a \in E(M)$. Then $e a=(e a)^{+}=e a^{+}$so that

$$
\begin{aligned}
(a e a)(a e a) & =a e a^{+} a e a^{+}=a e a e a^{+}=a e(e a) a^{+} \\
& =a(e a) a^{+}=a a^{+} e a=a e a^{+} a=a e a .
\end{aligned}
$$

Thus aea, ea $\in E(M)$ so that $a \in E(M)$ by (3) and hence (2) holds.
It now follows that (1), (2) and (3) are equivalent and it is easy to see that (4) is equivalent to (2).

For the restricted setting of idempotent categories we can also define proper categories. A category \mathscr{C} is idempotent if for each $u \in \operatorname{Obj} \mathscr{C}$, the monoid $\operatorname{Mor}(u, u)$ is a band. We remark that in an idempotent left type- A category, each monoid $\operatorname{Mor}(u, u)$ is a semilattice.

Definition 1.11. An idempotent, left type A category \mathscr{C} is proper if, for all $u, v \in \operatorname{Obj} \mathscr{C}$ and $p, q \in \operatorname{Mor}(u, v)$ we have $p=q$ whenever $(p, q) \in \mathscr{R}^{*}$.

Lemma 1.12 [3]. Let \mathscr{C} be an idempotent left type-A category. The following conditions are equivalent:
(a) \mathscr{C} is proper;
(b) for all $u, v \in \operatorname{Obj} \mathscr{C}$ and $p, q \in \operatorname{Mor}(u, v)$,

$$
p^{+}=q^{+} \Rightarrow p=q .
$$

Let \mathscr{C} be a category. A left ideal I of \mathscr{C} is a subset of Mor \mathscr{C} such that for all objects u, v, w of \mathscr{C} and for all $x \in \operatorname{Mor}(u, v)$ and $p \in \operatorname{Mor}(v, w), p \in I$ implies $x+p \in I$.

A right ideal of \mathscr{C} is defined similarly and a subset of Mor \mathscr{C} is an ideal of \mathscr{C} if it is both a left and a right ideal.

Let $F: \mathscr{C} \rightarrow \mathscr{C}$ be an endofunctor. Recall that F is a full embedding if F is injective on $\operatorname{Obj} \mathscr{C}$ and for each pair u, v of objects of \mathscr{C}, F carries $\operatorname{Mor}(u, v)$ bijectively onto $\operatorname{Mor}(u F, v F)$.

We say that a full embedding $F: \mathscr{C} \rightarrow \mathscr{C}$ is a left ideal full embedding if $($ Mor $\mathscr{C}) F$ is a left ideal of \mathscr{C}.

We denote by $E(\mathscr{C})$ the set of all left ideal full embeddings of \mathscr{C} into itself. It is easy to verify that $E(\mathscr{C})$ is a right cancellative submonoid of the monoid of all endofunctors of \mathscr{C}.

Definition 1.13. A right cancellative monoid T acts on a category \mathscr{C} if there is a monoid morphism $T \rightarrow E(\mathscr{C})$. In this case we write ut (resp. pt) for the result of the action of t on the object u (resp. on the morphism p). We then have the following identities and implications where $u, v, w, z \in \operatorname{Obj} \mathscr{C}, p, q \in \operatorname{Mor}(u, v), r \in \operatorname{Mor}(v, w)$ and $t, t_{1}, t_{2} \in T$:
(1) $(p+r) t=p t+r t$;
(2) $\left(p t_{1}\right) t_{2}=p\left(t_{1} t_{2}\right)$;
(3) $p 1=p$;
(4) $O_{u} t=O_{u t}$;
(5) $p t=q t \Rightarrow p=q$;
(6) $v=z t \Rightarrow u=y t$ for some $y \in \operatorname{Obj} \mathscr{C}$ and $p=s t$ for some $s \in \operatorname{Mor}(y, z)$.

By regarding a partially ordered set \mathscr{X} as a category in the usual way we obtain the definition of an action of a right cancellative monoid T on \mathscr{X}. We observe that each element t of T induces an order-isomorphism from \mathscr{X} onto the order-ideal $\mathscr{X} t$ of \mathscr{X}. It follows from this that if $a, b \in \mathscr{X}$ have a greatest lower bound $a \wedge b$ in \mathscr{X}, then

$$
(a \wedge b) t=a t \wedge b t
$$

In particular, this holds for all a, b when \mathscr{X} is a semilattice.
Let M be an E-unitary left type- A monoid and $T=M / \sigma$. Let $\varphi: M \rightarrow T$ be the canonical epimorphism associated with σ.

We define the left-derived category \mathscr{C} of φ as follows:

$$
\operatorname{Obj} \mathscr{C}=T
$$

and, for $u, v \in \operatorname{Obj} \mathscr{C}$,

$$
\operatorname{Mor}(u, v)=\{(u, m, v): m \in M, u=m \varphi \cdot v\}
$$

composition is given by

$$
(u, m, v)+(u, n, w)=(u, m n, w)
$$

It is easy to prove that \mathscr{C} is indeed a category where for $u \in \operatorname{Obj} \mathscr{C}, O_{u}=(u, 1, u)$. Since M is E-unitary,

$$
\operatorname{Mor}(u, u)=\{(u, e, u): e \in E(M)\}
$$

Thus \mathscr{C} is idempotent. Further, \mathscr{C} is left type- A with $(u, m, v)^{+}=\left(u, m^{+}, u\right)$.
Next, we define an action (on the right) of T on \mathscr{C}. First, T acts on $\operatorname{Obj} \mathscr{C}$ by multiplication and for $(u, m, v) \in \operatorname{Mor}(u, v)$ and $t \in T$ we define $(u, m, v) t=(u t, m, v t)$. It is straightforward to verify that this is an action in the sense of the above definition.
2. E-unitary and proper left type-A monoids. We give structure theorems for the monoids of the title using actions of right cancellative monoids on categories. We start by associating a monoid C_{u} to each object of a category \mathscr{C} on which a right cancellative monoid T acts.

Definition 2.1. For an object u of a category \mathscr{C},

$$
C_{u}=\{(t, p): t \in T, p \in \operatorname{Mor}(u t, u)
$$

and for $(t, p),(h, q) \in C_{u}$,

$$
(t, p)(h, q)=(t h, p h+q)
$$

It is routine to verify that C_{u} actually is a monoid.
Theorem 2.2. A monoid M is an E-unitary (resp. a proper) left type-A monoid if and only if M is isomorphic to C_{u} for some object u of an (resp. a proper) idempotent left type-A category \mathscr{C} acted upon by a right cancellative monoid T.

Proof. First let T be a right cancellative monoid acting on an idempotent left type- A category \mathscr{C}. Then it is easy to see that

$$
E\left(C_{u}\right)=\{(1, p): p \in \operatorname{Mor}(u, u)\}
$$

which is clearly isomorphic to the semilattice $\operatorname{Mor}(u, u)$.
If $(t, p) \in C_{u}$, then $p \in \operatorname{Mor}(u t, u)$ and as \mathscr{C} is left type- A, there is a morphism p^{+}in $\operatorname{Mor}(u t, u t)$ such that $p^{+} \mathscr{R}^{*} p$. Now $p^{+}=p_{0} t$ for some $p_{0} \in \operatorname{Mor}(u, u)$ and it is not difficult to verify that $\left(1, p_{0}\right) \mathscr{R}^{*}(t, p)$ so that C_{u} is left adequate.

Now let $(1, q) \in E\left(C_{u}\right)$ and let $(p+q)^{+}=r t$ where $r \in \operatorname{Mor}(u, u)$. Then

$$
\begin{aligned}
((t, p)(1, q))^{+}(t, p) & =(t, p+q)^{+}(t, p)=(1, r)(t, p)=(t, r t+p) \\
& =\left(t,(p+q)^{+}+p\right)=(t, p+q)=(t, p)(1, q)
\end{aligned}
$$

since $q \in \operatorname{Mor}(u, u)$ is idempotent and \mathscr{C} is left type- A. Thus C_{u} is left type- A. Further, it is clear that C_{u} is E-unitary.

Now, suppose that \mathscr{C} is proper. Let $(t, p),(h, q) \in C_{u}$ be related by $\mathscr{R}^{*} \cap \sigma$. Then $(t, p)^{+}=(h, q)^{+}$so that $\left(1, p_{0}\right)=\left(1, q_{0}\right)$, where $p_{0}, q_{0} \in \operatorname{Mor}(u, u)$ are such that $p_{0} t=p^{+}$, $q_{0} t=q^{+}$. As $(t, p) \sigma(h, q)$ we have

$$
(1, r)(t, p)=(1, r)(h, q)
$$

for some $r \in \operatorname{Mor}(u, u)$ from which it follows that $t=h$. Thus $p, q \in \operatorname{Mor}(u t, u)$ and $p^{+}=q^{+}$so that by Lemma 1.12, $p=q$. Therefore $(t, p)=(h, q)$ and C_{u} is proper.

For the converse we take T to be M / σ and \mathscr{C} to be the left derived category of the canonical epimorphism $M \rightarrow T$ as defined in Section 1. We observed there that \mathscr{C} is idempotent and left type- A.

If M is proper, let $u, v \in T$ and suppose that $(u, m, v),(u, n, v)$ are \mathscr{R}^{*}-related morphisms in $\operatorname{Mor}(u, v)$. Then $u=m \varphi . v=n \varphi . v$ and $m^{+}=n^{+}$. Hence $m \varphi=n \varphi$ since T is right cancellative. Thus $(m, n) \in \sigma \cap \mathscr{R}^{*}$ and so $m=n$ since M is proper. Thus \mathscr{C} is proper in this case.

We now show that M is isomorphic to C_{1}, where 1 is the identity of T, by defining $\psi: M \rightarrow C_{1}$ by putting

$$
m \psi=(m \sigma,(m \sigma, m, 1))
$$

Clearly, ψ is injective. Let $(t,(t, n, 1)) \in C_{1}$. Then $(t, n, 1) \in \operatorname{Mor}(t, 1)$ and so $t=n \varphi .1=$ $n \varphi$. Thus $n \psi=(t,(t, n, 1))$ and ψ is onto. To see that ψ is a morphism, let $m, n \in M$. Then

$$
\begin{aligned}
(m n) \psi & =((m n) \sigma,((m n) \sigma, m n, 1)) \\
& =(m \sigma n \sigma,(m \sigma n \sigma, m n, 1)) \\
& =(m \sigma,(m \sigma, m, 1))(n \sigma,(n \sigma, n, 1)) \\
& =m \psi n \psi
\end{aligned}
$$

and so ψ is an isomorphism.
3. \mathscr{R}-monoids. Here we present a new characterisation of a proper left type- A monoid M as an \mathscr{R}-monoid $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$, obtained by means of the left-derived category of the canonical epimorphism of M onto $T=M / \sigma$.

Definition 3.1. Let \mathscr{X} be a partially ordered set and let \mathscr{Y} be a subsemilattice of \mathscr{X}. Let T be a right cancellative monoid with identity 1 , which acts on \mathscr{X}. Then

$$
\mathscr{S}(T, \mathscr{X}, \mathscr{Y})=\{(t, a t): a \in \mathscr{Y} \text { and }(\forall b \mathscr{Y}) a t \wedge b \in \mathscr{Y} t\},
$$

and for $(t, a t),(h, b h) \in \mathscr{S}(T, \mathscr{X}, \mathscr{Y})$ we define

$$
(t, a t)(h, b h)=(t h, a t h \wedge b h)
$$

If \mathscr{Y} has a greatest element f, we put

$$
\mathscr{R}(T, \mathscr{X}, \mathscr{Y})=\{(t, a t) \in \mathscr{Y}(T, \mathscr{X}, \mathscr{Y}): a t \leq f\},
$$

Lemma 3.2. $\mathscr{P}(T, \mathscr{X}, \mathscr{Y})$ is a left type-A semigroup with semilattice of idempotents isomorphic to 9.

Proof. Let $(t, a t),(h, b h) \in \mathscr{S}(T, \mathscr{X}, \mathscr{Y})$. Then at $\wedge b \in \mathscr{Y} t$ so that at $\wedge b=c t$ for some $c \in \mathscr{Y}$ and hence ath $\wedge b h=(a t \wedge b) h=c t h$ giving

$$
(t, a t)(h, b h)=(t h, c t h)
$$

Let $d \in \mathscr{Y}$. We now prove that $c t h \wedge d$ exists and belongs to $\mathscr{Y} t h$. As $(h, b h) \in$ $\mathscr{F}(T, \mathscr{X}, \mathscr{Y}), b h \wedge d \in \mathscr{Y} h$ and so $b h \wedge d=b_{0} h$ for some $b_{0} \in \mathscr{Y}$. Also, as $(t, a t) \in$ $\mathscr{S}(T, \mathscr{X}, \mathscr{Y})$, at $\wedge b_{0}$ and $a t \wedge b$ exist. Hence ath $\wedge b_{0} h$ and $a t h \wedge b h$ exist and

$$
\text { ath } \wedge b_{0} h=a t h \wedge(b h \wedge d)=(a t h \wedge b h) \wedge d=c t h \wedge d
$$

Thus cth $\wedge d$ exists. Further ath $\wedge b_{0} h=\left(a t \wedge b_{0}\right) h$ and since $(t, a t) \in \mathscr{Y}(T, \mathscr{X}, \mathscr{Y})$, we have at $\wedge b_{0}=x t$ for some $x \in \mathscr{Y}$. Therefore $c t h \wedge d \in \mathscr{Y} t h$. We conclude that $(t h, c t h) \in$ $\mathscr{Y}(T, \mathscr{X}, \mathscr{Y})$ and $\mathscr{Y}(T, \mathscr{X}, \mathscr{Y})$ is closed.

It is now a routine matter to verify that $\mathscr{S}(T, \mathscr{X}, \mathscr{Y})$ is a semigroup with set of idempotents

$$
\{(1, a): a \in \mathscr{Y}\}
$$

which is clearly isomorphic to the semilattice \mathscr{Y}.

Next, let $(t, a t) \in \mathscr{P}(T, \mathscr{X}, \mathscr{Y})$. Then $(1, a) \in E(\mathscr{P}(T, \mathscr{X}, \mathscr{Y}))$ and

$$
(1, a)(t, a t)=(t, a t)
$$

Let $(h, b h),\left(h_{1}, b_{1} h_{1}\right) \in \mathscr{Y}(T, \mathscr{X}, \mathscr{Y})$ be such that

$$
(h, b h)(t, a t)=\left(h_{1}, b_{1} h_{1}\right)(t, a t)
$$

Then $h t=h_{1} t$ and $(b h \wedge a) t=\left(b_{1} h_{1} \wedge a\right) t$. As T is right cancellative $h=h_{1}$ and, by the definition of action, $b h \wedge a=b_{1} h_{1} \wedge a$. Thus

$$
(h, b h)(1, a)=\left(h_{1}, b_{1} h_{1}\right)(1, a)
$$

It follows that

$$
(t, a t)^{+}=(1, a)
$$

Finally, we prove that $\mathscr{P}(T, \mathscr{X}, \mathscr{Y})$ satisfies the type- A condition. Let $(t, a t) \in \mathscr{S}(T, \mathscr{X}, \mathscr{Y})$ and $(1, b) \in E(\mathscr{S}(T, \mathscr{X}, \mathscr{Y}))$. Then

$$
\begin{aligned}
((t, a t)(1, b))^{+}(t, a t) & =(t, a t \wedge b)^{+}(t, a t) \\
& =\left(1, a_{0}\right)(t, a t),
\end{aligned}
$$

where $a_{0} t=a t \wedge b$. Thus

$$
\begin{aligned}
\left(1, a_{0}\right)(t, a t) & =(t, a t \wedge b \wedge a t)=(t, a t \wedge b) \\
& =(t, a t)(1, b)
\end{aligned}
$$

The semigroup $\mathscr{S}(T, \mathscr{X}, \mathscr{Y})$ is therefore left type- A.
We now assume that \mathscr{Y} has a greatest element f so that $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$ is defined.
Lemma 3.3. $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$ is a proper left type- A monoid with semilattice of idempotents isomorphic to 9 .

Proof. We first prove that $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$ is a subsemigroup of $\mathscr{S}(T, \mathscr{X}, \mathscr{Y})$. Let $(t, a t),(h, b h) \in \mathscr{R}(T, \mathscr{X}, \mathscr{Y})$. Then $b h \leq f$ and so ath $\wedge b h \leq f$. Thus $(t, a t)(h, b h) \in$ $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$. Clearly, $\quad E(\mathscr{P}(T, \mathscr{X}, \mathscr{Y}))=E(\mathscr{R}(T, \mathscr{X}, \mathscr{Y}))$ and so, for all $(t, a t) \in$ $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$, we have $(1, a) \in \mathscr{R}(T, \mathscr{X}, \mathscr{Y})$ and so $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$ is a left type- A subsemigroup of $\mathscr{P}(T, \mathscr{X}, \mathscr{Y})$. Both $\mathscr{S}(T, \mathscr{X}, \mathscr{Y})$ and $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$ have identity $(1, f)$.

To prove that $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$ is proper, let $(t, a t)$ and $(h, b h)$ be elements of $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$ such that

$$
((t, a t),(h, b h)) \in \mathscr{R}^{*} \cap \sigma .
$$

Then $(t, a t)^{+}=(h, b h)^{+}$, that is $(1, a)=(1, b)$. Also, for some idempotent $(1, e)$,

$$
(1, e)(t, a t)=(1, e)(h, b h)
$$

Hence $t=h$ and so $(t, a t)=(h, b h)$.
Notice that the over semigroup $\mathscr{S}(T, \mathscr{X}, \mathscr{O})$ is also proper
Definition 3.4. The monoid $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$ is called an \mathscr{R}-monoid.
Our objective is to show that for any proper left type- A monoid M there is a choice of T, \mathscr{X} and \mathscr{Y} such that M is isomorphic to $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$. We do this by showing that all
monoids C_{u} arising from actions of right cancellative monoids on proper, idempotent left type- A categories are isomorphic to \mathscr{R}-monoids. We start by associating a partially ordered set \mathscr{X} with any idempotent left type- A category \mathscr{C}.
Definition 3.5 [3]. Let \mathscr{C} be an idempotent, left type- A category. On Mor \mathscr{C}, we define a relation \leqslant as follows: for all $p, q \in \operatorname{Mor} \mathscr{C}$,

$$
p \leqslant q \Leftrightarrow(\exists a \in \operatorname{Mor} \mathscr{C}) p^{+}=a^{+}, a+q^{+}=a .
$$

Also, we define on Mor \mathscr{C} a relation \sim by the rule: for all $p, q \in \operatorname{Mor} \mathscr{C}$

$$
p \sim q \Leftrightarrow(p \leqslant q \text { and } q \leqslant p) .
$$

The relation \sim is an equivalence on Mor \mathscr{C}.
Let \mathscr{X} be the set of all \sim-classes on Mor \mathscr{C}. On \mathscr{X} we define a relation \leq as follows, for all $A_{p}, A_{q} \in \mathscr{X}$,

$$
A_{p} \leqslant A_{q} \Leftrightarrow p \leqslant q .
$$

The relation \leq is well-defined and is a partial order on \mathscr{X}.
From [3] we have the following lemma.
Lemma 3.6. Let \mathscr{C} be an idempotent left type-A category. Then
(a) $\mathscr{R}^{*} \subseteq \sim$;
(b) if \mathscr{C} is proper, and $p, q \in \operatorname{Mor}(u, v)$ for some $u, v \in \operatorname{Obj} \mathscr{C}$, then

$$
p \sim q \Leftrightarrow p=q .
$$

Let T be a right cancellative monoid acting on a proper idempotent, left type- A category \mathscr{C}. For an object u of \mathscr{C} we shall describe the monoid C_{u} as an \mathscr{R}-monoid $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$ where \mathscr{X} is the partially ordered set defined above and

$$
\mathscr{Y}=\left\{A_{p} \in \mathscr{X}: A_{p} \cap \operatorname{Mor}(u, u) \neq \varnothing\right\} .
$$

In order to obtain the properties required to show that C_{u} is isomorphic to $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$ we need several lemmas.

Lemma 3.7. If $p \in \operatorname{Mor} \mathscr{C}$ and $t \in T$, then $(p t)^{+}=p^{+} t$.
Proof. Let $p \in \operatorname{Mor}(u, v)$ so that $p^{+} \in \operatorname{Mor}(u, u), p t \in \operatorname{Mor}(u t, u v)$ and $p^{+} t \in$ $\operatorname{Mor}(u t, u t)$. We note first that $p^{+} t+p t=\left(p^{+}+p\right) t=p t$.

Now suppose that $r, s \in \operatorname{Mor} \mathscr{C}$ are such that $r_{1}+p t=s_{1}+p t$. Then $r_{1}, s_{1} \in \operatorname{Mor}(v, u t)$ for some object v and by the definition of action we have $v=w t$ for some w and $v_{1}=r t$, $s_{1}=s t$ for some $r, s \in \operatorname{Mor}(w, u)$. Thus

$$
(r+p) t=r t+p t=s t+p t=(s+p) t
$$

and hence $r+p=s+p$ from which we obtain $r+p^{+}=s+p^{+}$and consequently,

$$
r t+p^{+} t=\left(r+p^{+}\right) t=\left(s+p^{+}\right) t=s t+p^{+} t .
$$

Thus $p^{+} t \mathscr{R}^{*} p t$ and as $p^{+} t$ is idempotent we have $(p t)^{+}=p^{+} t$.
Lemma 3.8. Let $p, q \in \operatorname{Mor} \mathscr{C}$ and $t \in T$. Then

$$
p \leqslant q \Leftrightarrow p t \leqslant q t .
$$

Proof. If $p \leqslant q$, then $p^{+}=a^{+}$and $a+q^{+}=a$ for some morphism a. Using the previous lemma we obtain $(p t)^{+}=(a t)^{+}$and $a t+(q t)^{+}=a t$ so that $p t \leqslant q t$.

Conversely, if $b \in \operatorname{Mor} \mathscr{C}$ is such that $(p t)^{+}=b$ and $b+(q t)^{+}=b$, then since $(q t)^{+} \in \operatorname{Mor}(v t, v t)$ for some object v we have $b \in \operatorname{Mor}(-, v t)$.

From the definition of action, it follows that $b=c t$ for some $c \in \operatorname{Mor}(-, v)$. Using the previous lemma we now obtain $p^{+}=c^{+}$and $c+q^{+}=c$ so that $p \leqslant q$ as required.

Lemma 3.9. Let $p, q \in \operatorname{Mor} \mathscr{C}$ and $t \in T$. If p is an idempotent, then

$$
p \leqslant q t \Rightarrow(\exists a \in \operatorname{Mor} \mathscr{C}) p=a t .
$$

Proof. Suppose that $p \leqslant q t$. There exists $b \in \operatorname{Mor} \mathscr{C}$ such that $p=p^{+}=b^{+}$and $b+(q t)^{+}=b$. For some $u \in \operatorname{Obj} \mathscr{C}$, we have $(q t)^{+} \in \operatorname{Mor}(u t, u t)$. So, $b \in \operatorname{Mor}(-, u t)$ and there exists $a \in \operatorname{Mor}(-, u)$ such that $b=a t$. Now, by Lemma 3.7,

$$
p=b^{+}=(a t)^{+}=a^{+} t
$$

as required.
Lemma 3.10. If $t, h \in T$ and $p \in \operatorname{Mor}(u t, u), q \in \operatorname{Mor}(u h, u)$, then

$$
A_{p h} \wedge A_{q}=A_{p h+q}
$$

Proof. Clearly, $p h+q$ is defined and belongs to $\operatorname{Mor}(u t h, u)$. By Lemmas 3.6 and 3.7, $A_{p h}=A_{p^{+} h}$ and $A_{q}=A_{q^{+}}$. Let $a=p h+q^{+}$. Then, by Lemma 1.6,

$$
a^{+}=\left(p h+q^{+}\right)^{+}=(p h+q)^{+} \quad \text { and } \quad a+q^{+}=a
$$

Thus $A_{p h+q} \leqslant A_{q^{+}}$. Also, let $b=(p h+q)^{+}+p^{+} h$. Then, as \mathscr{C} is left type- A,

$$
\begin{aligned}
b^{+} & =\left((p h+q)^{+}+p^{+} h\right)^{+}=\left(\left(p h+q^{+}\right)^{+}+p h\right)^{+}=\left(p h+q^{+}\right)^{+} \\
& =(p h+q)^{+}
\end{aligned}
$$

and

$$
b+p^{+} h=b
$$

It follows that

$$
A_{p h+q} \leqslant A_{p^{+} h_{h}}
$$

Next, let $r \in \operatorname{Mor}(v, w)$, for some $v, w \in \operatorname{Obj} \mathscr{C}$, and suppose that $A_{r} \leq A_{p h}, A_{q}$. There exist morphisms x, y such that

$$
r^{+}=x^{+}=y^{+} \quad \text { and } \quad x+p^{+} h=x, y+q^{+}=y .
$$

Thus, $x+p h, y \in \operatorname{Mor}(v, u h)$ and

$$
(x+p h)^{+}=\left(x+p^{+} h\right)^{+}=x^{+}=r^{+}=y^{+} .
$$

As \mathscr{C} is proper

$$
x+p h=y
$$

Let $c=x+(p h+q)^{+}$. Then $c+(p h+q)^{+}=c$ and

$$
\begin{aligned}
c^{+} & =\left(x+(p h+q)^{+}\right)^{+}=(x+p h+q)^{+} \\
& =(y+q)^{+}=\left(y+q^{+}\right)^{+}=y^{+}=r^{+}
\end{aligned}
$$

and so $A_{r} \leq A_{p h+q}$. Thus

$$
A_{p h} \wedge A_{q}=A_{p h+q}
$$

as required.
Theorem 3.11. A monoid M is proper left type- A if and only if M is isomorphic to some \mathscr{R}-monoid $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$.

Proof. If $M \cong \mathscr{R}(T, \mathscr{X}, \mathscr{Y})$, then by Lemma 3.3, M is proper left type- A.
To prove the converse it suffices, by Theorem 2.2, to show that if T is a right cancellative monoid which acts on a proper idempotent left type- A category \mathscr{C} and if u is an object of \mathscr{C}, then $C_{u} \cong \mathscr{R}(T, \mathscr{X}, \mathscr{Y})$. We use the partially ordered set \mathscr{X} and subset \mathscr{Y} already defined. It is immediate from Lemma 3.10 that if $p, q \in \operatorname{Mor}(u, u)$, then $A_{p} \wedge A_{q}=A_{p+q}$, from which it follows that \mathscr{Y} is a semilattice which by (b) of Lemma 3.6 is isomorphic to $\operatorname{Mor}(u, u)$. Thus \mathscr{Y} has a greatest element namely, $A_{O_{u}}$.

By Lemma 3.8, the rule $A_{p} t=A_{p t}$ gives a well-defined mapping from \mathscr{X} to \mathscr{X} for all $t \in T$. By (a) of Lemma 3.6, $A_{p}=A_{p^{+}}$so that if $A_{p} \leq A_{q} t$, then $p^{+} \leqslant q t$ so that by Lemma $3.9, p^{+}=a t$ for some $a \in$ Mor \mathscr{C}. Hence $A_{p}=A_{a t}=A_{a} t$ and $\mathscr{X} t$ is an order-ideal of \mathscr{X}. It is now easy to verify (using Lemma 3.8) that we have defined an action of T on \mathscr{X}.

We can therefore define the monoids

$$
\mathscr{S}(T, \mathscr{X}, \mathscr{Y})=\left\{\left(t, A_{p} t\right) \in T \times \mathscr{X}: A_{p} \in \mathscr{Y} \text { and }\left(\forall A_{q} \in \mathscr{Y}\right) A_{p} t \wedge A_{q} \in \mathscr{Y}\right\}
$$

and

$$
\mathscr{R}(T, \mathscr{X}, \mathscr{Y})=\left\{\left(t, A_{p} t\right) \in \mathscr{S}(T, \mathscr{X}, \mathscr{Y}): A_{p} t \leq A_{O_{u}}\right\} .
$$

If $(t, p) \in C_{u}$, then $p \in \operatorname{Mor}(u t, u)$ and $p^{+}=r t$ for some $r \in \operatorname{Mor}(u, u)$. Also, $A_{p}=A_{p^{+}}=A_{r} t$ and $A_{r} \in \mathscr{Y}$. Let $A_{q} \in \mathscr{Y}$ with $q \in \operatorname{Mor}(u, u)$. Then $p+q \in \operatorname{Mor}(u t, u)$ so that $(p+q)^{+} \in \operatorname{Mor}(u t, u t)$ and hence $(p+q)^{+}=x t$ for some $x \in \operatorname{Mor}(u, u)$. Hence, using Lemma 3.10,

$$
A_{r} t \wedge A_{q}=A_{p} \wedge A_{q}=A_{p+q}=A_{x} t \in \mathscr{Y} t .
$$

Further, $p \leqslant O_{u}$ since $p^{+}=p^{+}$and $p+O_{u}=p$, so that $A_{r} t=A_{p} \leq A_{O_{u}}$. Thus $\left(t, A_{p}\right)$ is in $\mathscr{R}(T, \mathscr{X}, \mathscr{Y})$ and we can define a mapping

$$
\psi: C_{u} \rightarrow \mathscr{R}(T, \mathscr{X}, \mathscr{Y})
$$

by

$$
(t, p) \psi=\left(t, A_{p}\right)
$$

Using Lemma 3.10, it is routine to verify that ψ is a morphism. Now suppose that $(t, p) \psi=(h, q) \psi$. Then $t=h$ and $A_{p}=A_{q}$ so that $p \sim q$. Hence $p, q \in \operatorname{Mor}(u t, u)$ and, by (b) of Lemma 3.6, $p=q$. Thus ψ is injective.

If $\left(T, A_{p} t\right) \in \mathscr{R}(T, \mathscr{X}, \mathscr{Y})$, then $A_{p} \in \mathscr{Y}$ and we can assume that $p \in \operatorname{Mor}(u, u)$. Also, $A_{p} t \leq A_{O_{u}}$ so that $p t \leqslant O_{u}$ and hence $p t=a^{+}$and $a+O_{u}=a$ for some $a \in \operatorname{Mor} \mathscr{C}$. Thus $a \in \operatorname{Mor}(u t, u)$ so that $(t, a) \in C_{u}$ and we have

$$
(t, a) \psi=\left(t, A_{a}\right)=\left(t, A_{a^{+}}\right)=\left(t, A_{p t}\right)=\left(t, A_{p} t\right) .
$$

Hence ψ is an isomorphism and the proof is complete.
4. The semidirect product of a right cancellative monoid by a semilattice. In this section we prove that any proper left type- A monoid can be embedded in a special subsemigroup of a semidirect product $T * Y$ of a right cancellative monoid T by a semilattice Y.

Let T be a right cancellative monoid acting (according to the definition of Section 1) on a semilattice Y. On the product set $T \times Y$ we define an operation in the usual way:

$$
(t, a)(h, b)=(t h, a h \wedge b)
$$

Then we obtain a semigroup $T * Y$ called the semidirect product of T by Y. Also,

$$
E(T * Y)=\{(1, a): a \in Y\}
$$

and $T * Y$ is a monoid if and only if Y has a greatest element. In general, $T * Y$ is neither left nor right abundant. Inside it, however, sits a proper left type- A subsemigroup,

$$
W=w(T, Y)=\{(t, a t): a \in Y, t \in T\}
$$

which coincides with $T * Y$ when T is a group.
Lemma 4.1. The subset W of $T * Y$ is a full proper left type-A subsemigroup of $T * Y$. Moreover, W is a monoid if and only if Y has a greatest element.

Proof. Let $(t, a t),(h, b h) \in W$. Then

$$
(t, a t)(h, b h)=(t h, a t h \wedge b h)
$$

and as ath $\wedge b h \leq a t h$ we have ath $\wedge b h=c t h$ for some $c \in Y$ by the definition of action. Hence W is a subsemigroup. Clearly,

$$
E(W)=E(T * Y)=\{(1, a): a \in Y\}
$$

so that W is full and $E(W) \cong Y$. Also, W is a monoid if and only if $T * Y$ is a monoid.
To prove that W is left abundant, let $(t, a t) \in W$. Then $(1, a) \in E(W)$ and

$$
(1, a)(t, a t)=(t, a t \wedge a t)=(t, a t)
$$

Now, for all $(h, b h),\left(h_{1}, b_{1} h_{1}\right) \in W$, if

$$
(h, b h)(t, a t)=\left(h_{1}, b_{1} h_{1}\right)(t, a t)
$$

then

$$
(h t, b h t \wedge a t)=\left(h_{1} t, b_{1} h_{1} t \wedge a t\right)
$$

It follows that $h=h_{1}$ and $b h \wedge a=b_{1} h_{1} \wedge a$, so that

$$
(h, b h)(1, a)=\left(h_{1}, b_{1} h_{1}\right)(1, a)
$$

and so $(t, a t) \mathscr{R}^{*}(1, a)$.
Next, we show that W satisfies the type- A condition. Let $(t, a t) \in W$ and $(1, e) \in$ $E(W)$. Then

$$
((t, a t)(1, e))^{+}(t, a t)=(t, a t \wedge e)^{+}(t, a t)=(1, c)(t, a t)
$$

where $c t=a t \wedge e$. Also,

$$
(t, a t)(1, e)=(t, a t \wedge e)=(t, c t)=(1, c)(t, a t)
$$

Thus, W is left type- A.

Finally, we prove that W is proper. Let $(t, a t),(h, b h) \in W$ be such that

$$
((t, a t),(h, b h)) \in \mathscr{R}^{*} \cap \sigma .
$$

Then $(t, a t)^{+}=(h, b h)^{+}$, that is $(1, a)=(1, b)$. Furthermore, for some idempotent $(1, e)$,

$$
(1, e)(t, a t)=(1, e)(h, b h)
$$

and so $t=h$. Whence, $(t, a t)=(h, b h)$ and W is proper, as required.
We can now state the main theorem of the section.
Theorem 4.2. For a proper left type-A monoid M, the following conditions are equivalent:
(a) M is proper;
(b) M is isomorphic to a submonoid V of the submonoid $W=W(T, Y)$ of a semidirect product $T * Y$ of a right cancellative monoid T by a semilattice Y, where Y has a greatest element, and $\mathscr{R}_{V}^{*} \subseteq \mathscr{R}_{W}^{*}$.

We use \mathscr{R}_{V}^{*} (resp. \mathscr{R}_{W}^{*}) to denote the relation \mathscr{R}^{*} on the monoid V (resp. W).
Proof. In view of Lemma 4.1, it is easy to show that (b) implies (a). That (a) implies (b) follows from the next proposition by Theorem 2.2. First we need a definition.

Definition 4.3. Let \mathscr{C} be a category. A subset I of $\operatorname{Mor} \mathscr{C}$ is an \mathscr{R}^{*}-ideal of \mathscr{C} if I is an ideal and I is a union of \mathscr{R}^{*}-classes.

It is easy to check that both the intersection and the union of a family of \mathscr{R}^{*}-ideals of \mathscr{C} are again \mathscr{R}^{*}-ideals. In particular, the set $\mathscr{I}^{*}(\mathscr{C})$ of all \mathscr{R}^{*}-ideals of \mathscr{C} is a semilattice under intersection.

Proposition 4.4. Let \mathscr{C} be a proper, idempotent, left type- A category and let T be a right cancellative monoid acting on \mathscr{C}. For $u \in \operatorname{Obj} \mathscr{C}$, the monoid C_{u} is isomorphic to a submonoid V of the submonoid $W=W\left(T, \mathscr{I}^{*}(\mathscr{C})\right)$ of a semidirect product $T * \mathscr{I}^{*}(\mathscr{C})$ with $\mathscr{R}_{V}^{*} \subseteq \mathscr{R}_{W}^{*}$.

To establish this result we must first define an action of T on $\mathscr{I}^{*}(\mathscr{C})$. From Lemma $4.2,4.3$ and 4.5 of [3] we have

Lemma 4.5. Let $p, q \in$ Mor \mathscr{C}. Then
(a) $A^{*}(p)=\left\{r \in \operatorname{Mor} \mathscr{C}:(\exists x \in \operatorname{Mor} \mathscr{C}) x^{+}=(x+p)^{+}\right\}$is the least \mathscr{R}^{*}-ideal which contains p;
(b) $A_{p} \leq A_{q} \Leftrightarrow A^{*}(p) \subseteq A^{*}(q)$.

Definition 4.6. Let I be an \mathscr{R}^{*}-ideal of \mathscr{C} and let $t \in T$. Then

$$
\text { I. } t=\bigcup_{p \in I} A^{*}(p t) .
$$

It is easy to see that $I . t$ is an \mathscr{R}^{*}-ideal and that it is the least \mathscr{R}^{*}-ideal which contains It.

Lemma 4.7. Let $I, I_{1}, I_{2} \in \mathscr{I}^{*}(\mathscr{C}), t, t_{1}, t_{2} \in T$ and $p \in \operatorname{Mor} \mathscr{C}$. Then
(a) $I .1=I$;
(b) $\left(\bigcup_{\lambda} I_{\lambda}\right) \cdot t=\bigcup_{\lambda}\left(I_{\lambda} \cdot t\right)$, for any collection $\left\{I_{\lambda}: \lambda \in \Lambda\right\}$ of \mathscr{R}^{*}-ideals;
(c) $A^{*}(p)=A^{*}(p t)$;
(d) $I \cdot\left(t_{1} t_{2}\right)=\left(I \cdot t_{1}\right) \cdot t_{2}$;
(e) $I_{1} \subseteq I_{2} \Leftrightarrow I_{1} \cdot t \subseteq I_{2} \cdot t$;
(f) $I_{1}=I_{2} \Leftrightarrow I_{1} \cdot t=I_{2} \cdot t$;
(g) $I \subseteq I_{2} \cdot t \Rightarrow\left(\exists K \in \mathscr{I}^{*}(\mathscr{C})\right) I=K . t$;
(h) $\left(I_{1} \cap I_{2}\right) \cdot t=I_{1} \cdot t \cap I_{2} \cdot t$.

Proof. (a) and (b) are clear from the definition.
(c) Certainly $A^{*}(p t) \subseteq A^{*}(p)$. t. On the other hand, if $q \in A^{*}(p)$, then by Lemma 4.5(b), $q \leq p$ so that $q t \leq p t$, giving $A^{*}(q t) \subseteq A^{*}(p t)$. It now follows from the definition that $A^{*}(p) . t \subseteq A^{*}(p t)$.
(d) This is an easy consequence of the definition and (c).
(e) If $I_{1} \subseteq I_{2}$, then $I_{1}, t \subseteq I_{2}, t$ follows from (b).

If $I_{1} . t \subseteq I_{2} . t$, let $r \in I_{1}$. Then $r t \in I_{1} . t$ and so $r t \in A^{*}(q t)$ for some $q \in I_{2}$. By Lemma 4.5(b), $r t \leq q t$ and so by Lemma 3.8, $t \leq q$. Hence $A^{*}(r) \subseteq A^{*}(q) \subseteq I_{2}$ and $r \in I_{2}$.
(f) follows immediately from (e).
(g) Let $K=\left\{b \in I_{2}: b t \in I\right\}$. If $b \in K$ and $x, y \in$ Mor \mathscr{C} are such that $x+b+y$ exists, then $x+b+y \in I_{2}$ since I_{2} is an ideal and $(x+b+y) t=x t+b t+y t$ is in I since $b t \in I$ and I is an ideal. Hence $x+b+y \in K$ and K is an ideal.

If $c \in \operatorname{Mor} \mathscr{C}$ and $c \mathscr{R}^{*} b$, then $c \in I_{2}$ since I_{2} is an \mathscr{R}^{*}-ideal. Also $c t \mathscr{R}^{*} b t$ and I is an \mathscr{R}^{*}-ideal, so $c t \in I$. Thus $c \in K$ and K is an \mathscr{R}^{*}-ideal.

It is easy to see that $K . t \subseteq I$. If $q \in I$, then $q \in I_{2} . t$ so $q \in A^{*}(p t)$ for some $p \in I_{2}$. Hence $q \leq p t$ and so $q^{+} \leq p t$. By Lemma $3.9, q^{+}=a t$ for some $a \in \operatorname{Mor} \mathscr{C}$. Now at $\leq p t$ and so by Lemma $3.8, a \leq p$. Thus $a \in I_{2}$ and $a t=q^{+}$is in I so that $a \in K$. Hence $q^{+}=a t \in K . t$ and as $K . t$ is an \mathscr{R}^{*}-ideal we also have $q \in K . t$. Consequently, $K . t \subseteq I$ and the proof is complete.
(h) We have now shown that we have an action of T on the semilattice $\mathscr{I}^{*}(\mathscr{C})$ and as remarked in Section 1, it follows that

$$
\left(I_{1} \cap I_{2}\right) \cdot t=I_{1} \cdot t \cap I_{2} \cdot t
$$

Lemma 4.8. If $t, h \in T, u \in \operatorname{Obj} \mathscr{C}$ and $p \in \operatorname{Mor}(u t, u), q \in \operatorname{Mor}(u h, u)$, then

$$
A^{*}(p h+q)=A^{*}(p) \cdot h \cap A^{*}(q)
$$

Proof. By Lemma 4.7(c) $A^{*}(p) . h=A^{*}(p h)$ and as both $A^{*}(p h)$ and $A^{*}(q)$ are ideals we have $p h+q \in A^{*}(p h) \cap A^{*}(q)$, so that

$$
A^{*}(p h+q) \subseteq A^{*}(p) \cdot h \cap A^{*}(q)
$$

On the other hand, if $r \in A^{*}(p h) \cap A^{*}(q)$, then by Lemma 4.5(b), $A_{r} \leq A_{p h}$ and $A_{r} \leq A_{q}$ and so by Lemma 3.10, $A_{r} \leq A_{p h+q}$ and hence $r \in A^{*}(p h+q)$. The result follows.

We can now prove Proposition 4.4. Since we have an action of T on $\mathscr{I}^{*}(\mathscr{C})$ we have a semidirect product $T * \mathscr{I}^{*}(\mathscr{C})$ and the proper left type- A submonoid W is defined.

If $(t, p) \in C_{u}$, then $p \in \operatorname{Mor}(u t, u)$ so that $p^{+} \in \operatorname{Mor}(u t, u t)$ and $p^{+}=r t$ for some $r \in \operatorname{Mor}(u, u)$. Now by Lemmas 3.6(a), 4.5(b) and 4.7(c) we have $A^{*}(p)=A^{*}(r t)=$ $A^{*}(r) . t$ so that $\left(t, A^{*}(p)\right)=\left(t, A^{*}(r) \cdot t\right) \in W$. Thus we can define a mapping

$$
\psi: C_{u} \rightarrow W
$$

given by

$$
(t, p) \psi=\left(t, A^{*}(p)\right)
$$

It follows from Lemma 4.8 that ψ is a morphism.
If $(t, p),(h, q) \in C_{u}$ and $(t, p) \psi=(h, q) \psi$, then $t=h$ and $A^{*}(p)=A^{*}(q)$. Thus $p, q \in \operatorname{Mor}(u t, u)$ and $p \sim q$ so that by Lemma 3.6(b), $p=q$ and so ψ is injective.

We now have $C_{u} \cong V=\operatorname{Im} \psi$. If $v_{1}, v_{2} \in V$ with $v_{1} \mathscr{R}_{v}^{*} v_{2}$, then $v_{1}=(t, p) \psi$ and $v_{2}=(h, q) \psi$ for some $(t, p),(h, q) \in C_{u}$ and $(t, p) \mathscr{R}^{*}(h, q)$. Then $(t, p)^{+}=(h, q)^{+}$that is $r=s$ where $r t=p^{+}$and $s t=q^{+}$. From the proof of Lemma 4.1,

$$
\left(t, A^{*}(p)\right)^{+}=\left(1, A^{*}(r)\right) \quad \text { and } \quad\left(h, A^{*}(q)\right)^{+}=\left(1, A^{*}(s)\right)
$$

so that $\left(t, A^{*}(p)\right)^{+}=\left(h, A^{*}(q)\right)^{+}$and so $v_{1} \mathscr{R}_{w}^{*} v_{2}$. Thus $\mathscr{R}_{\nu}^{*} \subseteq \mathscr{R}_{w}^{*}$ and the proof is complete.

REFERENCES

1. J. Fountain, A class of right PP monoids, Quart. J. Math. Oxford, 28 (2), (1977), 285-330.
2. J. Fountain, Adequate semigroups, Proc. Edinb. Math. Soc., 22 (1979), 113-125.
3. J. Fountain and Gracinda M. S. Gomes, Left proper E-dense monoids, J. Pure \& Appl. Alg., 80 (1) (1992), 1-27.
4. S. W. Margolis and J.-E. Pin, Graphs, inverse semigroups and languages, Proc. 1984 Marquette Conf. on Semigroups, (Marquette University, Milwaukee 1985) 85-112.
5. S. W. Margolis and J.-E. Pin, Inverse semigroups and extensions of groups by semilattices, J. Algebra, 110 (1987), 277-297.
6. D. B. McAlister, Groups, semilattices and inverse semigroups, Trans. Amer. Math. Soc., 192 (1974) 227-244.
7. D. B. McAlister, Groups, semilattices and inverse semigroups II, Trans. Amer. Math. Soc., 196 (1974), 351-370.
8. L. O'Carroll, Embedding theorems for proper inverse semigroups, J. Algebra, 42 (1976), 26-40.

John Fountain

Dept. Mathematics, Univ. York
Heslington, York
YO15DD, England

Gracinda M. S. Gomes
Dep. Matemática, Univ. Lisboa
Rua Ernesto de Vasconcelos, Bloco C1
1700 Lisboa, Portugal

