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Proper orthogonal decomposition and low-dimensional models for driven
cavity flows

W. Cazemier,a) R. W. C. P. Verstappen, and A. E. P. Veldman
Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands

~Received 1 April 1997; accepted 3 March 1998!

A proper orthogonal decomposition ~POD! of the flow in a square lid-driven cavity at Re

522,000 is computed to educe the coherent structures in this flow and to construct a

low-dimensional model for driven cavity flows. Among all linear decompositions, the POD is the

most efficient in the sense that it captures the largest possible amount of kinetic energy ~for any

given number of modes!. The first 80 POD modes of the driven cavity flow are computed from 700

snapshots that are taken from a direct numerical simulation ~DNS!. The first 80 spatial POD modes

capture ~on average! 95% of the fluctuating kinetic energy. From the snapshots a motion picture of

the coherent structures is made by projecting the Navier–Stokes equation on a space spanned by the

first 80 spatial POD modes. We have evaluated how well the dynamics of this 80-dimensional

model mimics the dynamics given by the Navier–Stokes equations. The results can be summarized

as follows. A closure model is needed to integrate the 80-dimensional system at Re522,000 over

long times. With a simple closure the energy spectrum of the DNS is recovered. A linear stability

analysis shows that the first ~Hopf! bifurcation of the 80-dimensional dynamical system takes place

at Re57,819. This number lies about 0.7% above the critical Reynolds number given in

Poliashenko and Aidun @J. Comput. Phys. 121, 246 ~1995!# and differs by about 2% from the first

instability found with DNS. In addition to that, the unstable eigenvector displays the correct

mechanism: a centrifugal instability of the primary eddy, however, the frequency of the periodic

solution after the first bifurcation differs from that of the DNS. The stability of periodic solutions of

the 80-dimensional system is analyzed by means of Floquet multipliers. For Re511,188211,500

the ratio of the two periods of the stable 2-periodic solution of the 80-dimensional system is

approximately the same as the ratio of the two periods of the 2-periodic solution of the DNS at

Re511,000. For slightly higher Reynolds numbers both solutions lose one period. The periodic

solutions of the dynamical system at Re511,800 and the DNS at Re512,000 have approximately

the same period and have qualitatively the same behavior. © 1998 American Institute of Physics.

@S1070-6631~98!03006-2#

I. INTRODUCTION

Coherent structures catch the eye in virtually every visu-

alization of a turbulent flow. Lumley1 was the first who used

proper orthogonal decomposition ~POD! to identify the co-

herent structures in a flow. At that time, the basic technique

was already known among statisticians; they called it

Karhunen–Loève expansion.2

A velocity field, say u(x ,t), is usually decomposed lin-

early. Among all linear decompositions, the proper orthogo-

nal decomposition ( ia i(t)s i(x) is the most efficient in the

sense that the POD captures the largest possible amount of

kinetic energy ~for any given number of modes!. In 1991,

Aubry3 uncovered a till then hidden beauty of the POD: it

yields an optimal, orthogonal, spatial basis as well as an

optimal, orthogonal, temporal basis. The projection of u(x ,t)

on the s i’s/a i’s converges faster ~in quadratic means! than

the projection on any other spatial/temporal basis, with the

same number of elements.

We will use the space–time symmetry to compute the

POD of a flow in a square, lid-driven cavity at a Reynolds

number of Re522,000. The input data for the POD consists

of flow fields that have been computed by a direct numerical

simulation ~DNS!. Results and details of the DNS are given

in Section II. A sketch of the basic idea of POD, the discreti-

zation, the computational method, and the results for the

driven cavity can be found in Section III. Further results

~also in three spatial dimensions! can be found in Ref. 4.

Having a way to educe coherent structures in a driven

cavity flow, the next question that can be posed, reads as

follows: how do these structures move, interact, survive, dur-

ing the early stages of transition to turbulence. Nowadays,

the idea has taken form that the dynamics is low-dimensional

~see e.g., Témam5!. This implies that the transitional behav-

ior of the flow may be described in terms of a few ordinary

differential equations. In Section IV we will utilize the opti-

mality of the spatial basis $s i% to derive low-dimensional

models for driven cavity flows.

Low-dimensional models have been considered for a

number of flows; we mention the examples that can be found

in Refs. 6–10. For further examples the reader is referred to

a!Present address: The Netherlands Organization For Applied Scientific Re-

search ~TNO!, Section Computational Mechanics, P.O. Box 49, Delft, The

Netherlands.
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the overview paper by Berkooz, Holmes, and Lumley11 or to

their recent book.12 In all these references, low-dimensional

dynamical models are constructed by projecting the Navier–

Stokes equations on a space spanned by a small number of

s i’s. Aubry et al.6 were among the pioneers. They consid-

ered the motion of coherent structures in the wall region of a

turbulent boundary layer. Deane et al. applied the method to

grooved channels and circular cylinders in Ref. 7 and to the

wake of a flow past an airfoil in Ref. 8; Glauser et al.9 ap-

plied it to an axisymmetric jet mixing layer; Rempfer10 con-

sidered a flate-plate boundary layer.

From a theoretical point of view, it is not clear how well

POD modes, and the low-dimensional models based on

them, perform at Reynolds numbers different from the one at

which they were constructed. By construction, POD modes

form a complete set of basis functions ~satisfying the bound-

ary conditions and the incompressibility constraint! for all

Reynolds numbers, but this basis set is optimal for one Rey-

nolds number only. So far, a few—encouraging—practical

experiences concerning the robustness of POD modes have

been reported. In all these cases, some kind of scaling ~of the

mean flow, or of all modes! is performed; see also Ref. 13.

For near-wall flows ~like in Ref. 6! the scaling is obvious:

everything can be expressed in terms of wall variables, and

thus a universal scaling can be brought into the basis func-

tions. Liu et al.14 have shown that, also in the outer layer of

a wall-bounded turbulent flow, the one-dimensional POD is

~almost! independent of the Reynolds number when it is

scaled by the wall friction velocity and the outer length scale.

For complex flows, appropriate scalings of the underly-

ing physics are often lacking. Deane et al.7 have shown that

it is possible to obtain a fairly accurate description of some

complex flows by means of a low-dimensional system that is

based on a POD at a particular value of the Reynolds num-

ber. They considered two complex flows: a flow in a grooved

channel and a flow past a circular cylinder. In both cases they

modified the mean flow to tackle a range of Reynolds num-

bers. In the wake of the cylinder, the low-dimensional model

of Deane et al. is only valid for a small neighborhood of the

Reynolds number for which the decomposition was com-

puted. In the case of the grooved channel, they observed a

larger range of Reynolds numbers for which their model is

valid. Noack and Eckelmann15 have studied low-dimensional

Galerkin methods for the cylinder wake, too ~with ‘‘math-

ematical’’ modes instead of POD modes!. They concluded

that the success of their method is insensitive to a reasonal

choice of the basic mode, but depends crucially on the choice

of a weight parameter that they introduced in the inner prod-

uct.

In this paper, we apply POD to a 2D flow in a square,

lid-driven cavity at Reynolds number Re522,000 and use

this empirical basis to model driven cavity flows for a range

of Reynolds numbers. Here, we take one set of basis func-

tions, without scaling them, to investigate the range of Rey-

nolds numbers for which this approach yields a valid model.

In a future sequel to this research, the observed shortcomings

of the model may be overcome by scaling the basis functions

in a proper way, or by adding basis functions of other Rey-

nolds numbers, or by modifying the basis iteratively ~as in

Ref. 13, for instance!. The ability of the model to mimic the

DNS for Reynolds numbers lower than 22,000 is studied

numerically by means of a bifurcation analysis. To that end,

the first 80 s i’s of the flow in a lid-driven cavity at Re

522,000 have been computed. Projecting the Navier–Stokes

equation on them yields a 80-dimensional model. The basis

is optimal for Re522,000, but what about the model: is it

able to mimic the transition behavior of the flow in a lid-

driven cavity? This question is addressed in Section V. DNS

results are available for comparison ~see Section II C!.

II. DIRECT NUMERICAL SIMULATION

The input data for the POD consists of flow fields that

are computed by a direct numerical simulation ~DNS! of a

flow in a two-dimensional driven cavity at Reynolds number

Re522,000. The simulation method is outlined in Section

II A. Results are briefly presented in Section II B. Direct nu-

merical simulations have also been performed for Reynolds

numbers in the range Re58,000216,000 to obtain reference

data for the transition analysis of low-dimensional models

for driven cavity flows. DNS results for Re58,000

216,000 can be found in Section II C.

A. Simulation method

We consider the flow in a square, lid-driven cavity. All

lengths are made dimensionless by taking the height of the

cavity as a unit length; velocities are made dimensionless

with the help of the speed at which the lid is driven. No-slip

conditions are imposed at all walls. For the computation of

the POD data, the velocity field is discretized on a 3332

staggered grid. The incompressible Navier–Stokes equations

are solved using a second-order accurate, finite-volume

method, where the spectral properties of the convective and

diffusive operators are preserved, i.e., convection ↔ skew-

symmetric; diffusion ↔ symmetric positive-definite; see

Ref. 16. The pressure gradient and the incompressibility con-

straint are integrated implicitly in time ~using backward Eu-

ler!; the convective and diffusive fluxes are treated explicitly

~second-order Adams–Bashforth!. The pressure is solved us-

ing the conjugate gradient method with a modified incom-

plete Choleski preconditioner.17,18

The first few bifurcations of the low-dimensional models

will be compared to the results of DNS in Section V. For

these direct numerical simulations a fourth-order spatial dis-

cretization method is used that also preserves the spectral

properties of the convection and diffusion. A detailed discus-

sion of the spatial discretizations, including a comparison

with other schemes, can be found in Refs. 19 and 20.

B. Data for the POD: Results at Re522,000

The database of flow fields for the POD originates from

a direct numerical simulation of a two-dimensional flow in a

lid-driven cavity at Re522,000. Figure 1 shows the vorticity

of the mean flow in the cavity. It takes roughly five time

units for the primary eddy in the core of the cavity to turn

around. We call this period a large-eddy turnover-time. At

Re522,000 vortical structures move seemingly chaotically

around in the cavity along trajectories that stay relatively

1686 Phys. Fluids, Vol. 10, No. 7, July 1998 Cazemier, Verstappen, and Veldman
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close to the walls of the cavity. In Ref. 21 we have estimated

the Kolmogorov entropy K from the correlation integral ~in
the manner that is outlined in Refs. 22 and 23!. A chaotic,

deterministic system is characterized by 0,K,` , an or-

dered system by K50, and a random system by K5` . We

found K'3. Thus, the dynamical behavior is chaotic.

The DNS of the driven cavity flow at Re522,000 con-

sists of two separate simulations that start from different ini-

tial conditions. Both start from earlier computed velocity

fields that are statistically in equilibrium. The first run covers

500 time units; the second one lasts six times longer. So, in

total, 700 large-eddy turnover-times have been computed.

The integral of the kinetic energy over the spatial domain as

obtained from both runs is shown in Fig. 2~a!. The first 500

time units correspond to the first run; the rest ~from 500 to

3500! belongs to the second run. The integral of the fluctu-

ating kinetic energy of both runs is shown in Fig. 2~b!. It

may be noted that the level of the fluctuating energy is ap-

proximately 1.2% of the total energy. Two sharp peaks in the

fluctuating kinetic energy and two ~corresponding! deep val-

leys in the kinetic energy stand out. These catastrophes occur

after 6 2300 time units and after 6 3400 time units. At

these two times an eddy penetrates the core region of the

cavity. Figure 3 catches such an intruder in the act. This eddy

originates in the shear-layer along the right-hand wall of the

cavity. From there it is advected along the walls ~in the

clockwise direction! to the upper-wall. This part of the jour-

ney is ordinary: many eddies make it up to here. Yet, they

are all flattened up against the upper-wall of the cavity and

vanish soon after that. The eddy that is shown in Fig. 3 is not

squeezed flat when it arrives at the lid, but it is ejected into

the core region and crosses the cavity. Its journey ends near

the lower left-hand corner, where it vanishes. As far as we

know, this phenomenon has not been observed before in a

square, lid-driven cavity. In a cylindrical vessel with a rotat-

ing cover, however, a similar phenomenon has been ob-

served, both in an experimental and in a numerical study; see

Ref. 24. The visualization of the flow in the vessel shows

also a large eddy that crosses the vessel.

C. „Quasi-…periodic driven cavity flows

In many papers on driven cavity flows steady states have

been reported at Re510,000. Often flow computations in a

two-dimensional ~2D! lid-driven cavity by Ghia et al.25 are

taken as a reference for steady state solutions of the Navier–

FIG. 1. The vorticity of the mean flow as obtained from a DNS of a lid-

driven cavity flow at Re522,000. In this figure, and in all following figures

of driven cavities, the orientation of the cavity is such that the upper lid is

driven from the left to the right. Solid lines indicate a clockwise rotation;

dashed lines indicate counter-clockwise rotation.

FIG. 2. Time-series of the kinetic energy ~a! and of the fluctuating kinetic

energy ~b! in a square lid-driven cavity at Re522,000. Both quantities are

integrated over the spatial domain.

FIG. 3. A rarity which occurred only twice during 700 large-eddy turnover-

times: an eddy has penetrated the core region of the cavity. This figure

shows the vorticity; Re522,000.
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Stokes equations up to and including Re510,000. Yet, the

flow goes unstable, becomes periodic in time, bifurcates

once more, and becomes two-periodic for Re,10,000. The

first bifurcation, from steady to periodic, has been investi-

gated by Poliashenko and Aidun.26 They showed that the

steady state in a driven cavity becomes unstable at Re

57,76362%.

To put the critical Reynolds number beyond doubt, we

have performed a fourth-order accurate DNS at Re57,800.

However, we could not observe a periodic solution at this

Reynolds number. The lowest Reynolds number at which the

DNS yielded a clearly visible periodic solution was Re

58,000. It is known for the Hopf bifurcation ~see, for in-

stance, Ref. 27! that the amplitude of the solution grows ~in
first-order approximation! with the square-root of the bifur-

cation parameter. In our case, this means that the square of a

velocity component should be proportional to the difference

of the Reynolds number Re and the critical Reynolds num-

ber after the bifurcation has taken place. To verify this, we

have performed direct numerical simulations at the Reynolds

numbers 8,100, 8,200, and 8,400. A phase plot of a horizon-

tal velocity u against a vertical velocity v at a point near the

bottom of the cavity is shown in Fig. 4. The plot of the

square of the v versus the Reynolds number is approximately

a straight line. This line can be extrapolated to where it

crosses the zero axis to approximate the bifurcation point,

which gives a critical value of approximately Re57,972.

This number lies about 2.6% above the critical Reynolds

number of Poliashenko and Aidun.26 In addition to that, the

frequency of the periodic solution in Ref. 26 (2.8661%)

agrees well with the frequency that rolled out of the DNS

(2.85).

Recently, the quasi-periodic nature of the flow at Re

510,000 has been mentioned in Ref. 28. To demonstrate that

the flow is two-periodic at Re510,000, we have performed

three direct numerical simulations at Re510,000. One with

a second-order accurate finite-volume method ~on a 3332

grid! and two with the fourth-order method using a 2502 grid

and a 5002 stretched grid, respectively. All three simulations

gave a quasi-periodic solution with two fundamental fre-

quencies: f 1'2.7 and f 2'1.7. The same two fundamental

frequencies are also present in the time-series obtained from

a DNS of the flow in a driven cavity at Re511,000.

By playing with the initial conditions, we have found

two different periodic solutions at Re512,000. The frequen-

cies are subharmonics of those at Re511,000, namely, 2 f 1

2 f 2 and f 11 f 2. Figure 5 shows the creation, motion, and

merging of eddies near three corners of the cavity for the

periodic solution with the frequency 2 f 12 f 2. A return from

a quasi-periodic state to a periodic state has been observed

experimentally in a cylindrical lid-driven cavity too:

So”rensen et al.29 noted that a two-periodic flow in a cylindri-

cal cavity loses one period when the Reynolds number is

increased.

We have computed periodic solutions with a frequency

of approximately 2 f 12 f 2 for the Reynolds numbers 14,000,

15,000, and 16,000. Periodic solutions with the frequency

f 11 f 2 came out the DNS at Re512,000 and Re513,000.

III. PROPER ORTHOGONAL DECOMPOSITION

To make this paper self-contained, we will sketch the

main lines of Proper Orthogonal Decomposition ~POD! in

FIG. 4. Phase plot of the horizontal velocity u versus the vertical velocity v

in a point (x ,y)5(0.5, 0.02) ~a! and a plot of the square of v(0.5, 0.02)

versus the Reynolds number ~b!. The critical Reynolds number is extrapo-

lated from the latter.

FIG. 5. Streaklines of one period of the periodic solution of the DNS at

Re512,000. Solid lines indicate a clockwise rotation, and dashed lines in-

dicate counter-clockwise rotation.
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Section III A. Hereby, the space–time symmetry is empha-

sized ~like in Ref. 3! since this property leaves us the option

between solving ~discrete! eigenproblems for the spatial ba-

sis $s i% or for the temporal basis $a i%. The latter option

requires much less computational work ~see Section III B!
and is thus preferred. The temporal discretization is done by

snapping the fluctuating flow in the driven cavity every time

the primary eddy has turned over. The use of those snapshots

has been proposed by Sirovich.30 Results of the POD of the

flow in a driven cavity at Re522,000 are presented in Sec-

tion III C.

A. Continuous formulation

We consider a velocity field u(x ,t), where the spatial

variable x and the time t are elements of V and T , respec-

tively. The basic idea of POD consists of finding the ‘‘best’’

approximation of u(x ,t) in terms of N spatial components

~the POD modes! s i(x), i51,..,N and N temporal functions

~the time traces of modal energies! a i(t), i51,..,N . The spa-

tial and temporal components are solved from

minE E
VT

S u~x ,t !2(
i51

N

a i~ t !s i~x !D
2

dtdx . ~3.1!

Arbitrary variations of the unknowns s i(x) and a i(t) yield

K S u2(
j

a js j D a iL
T

505K S u2(
j

a js j Ds iL
V

,

~3.2!

where an integration over V is denoted by ^•&V , and an

integration over T by ^•&T . To solve these Euler–Lagrange

equations, we assume that ^s is j&V505^a ia j&T for iÞ j ,

and verify this afterwards. Under this assumption, Eq. ~3.2!
can be written as s i5^ua i&T /^a i

2&T and a i5^us i&V /

^s i
2&V . Substituting the latter ~former! expression into the

former ~latter! shows that the spatial ~temporal! components

are the eigenfunctions of the integral operator with the tem-

poral ~spatial! auto-correlation as a kernel:

l is i~x !5E
V

^u~x ,t !u~x8,t !&Ts i~x8!dx8, ~3.3!

m ia i~ t !5E
T
^u~x ,t !u~x ,t8!&Va i~ t8!dt8. ~3.4!

These eigenvalue problems are Fredholm integral equations

of the second type, with positive definite Hermitian kernels.

The properties of these equations are given by the Hilbert–

Schmidt theorem ~see, for example, Ref. 31!. This theorem

states that the eigenfunctions are orthogonal. Hence, they are

solutions of Eq. ~3.1!. In addition, Hilbert–Schmidt states

that the eigenvalues l i and m i are real and positive, and that

the flow field u(x ,t) can be ~fully! reconstructed from the

eigenfunctions if N5` .

Eigenfunctions need to be normalized. It is common

practice to normalize the spatial eigenfunctions: ^s i
2&V51.

The norm of a i is then given by ^a i
2&T5l i . An eigenvalue

l i can thus be interpreted as the average amount of energy in

the direction of the corresponding POD mode. To obtain the

‘‘best’’ approximation of u(x ,t) in terms of N eigenfunc-

tions, the eigenvalues are ordered in increasing magnitude:

l1 is the largest eigenvalue, l2 is the second largest, and so

on ~till lN).

It may be noted that a POD can be computed of the

entire velocity field u(x ,t) or of its fluctuating part u8(x ,t)

5u(x ,t)2^u(x ,t)&T . Often, a POD is based on the fluctu-

ating field. The POD of the entire velocity field and the POD

of the fluctuating field are essentially the same when

^^u(x ,t)u(x ,t8)&V&T is constant. Indeed, then a i5 constant

is an eigenfunction @i.e., a solution of ~3.4!# and the corre-

sponding mode s i5^ua i&T /^a i
2&T is a constant times ^u&T .

B. Discretization and computational method

A DNS yields velocities un ,m at grid points xn and at

time levels tm. Consequently, the POD technique is to be

discretized. Then, the spatial and temporal integrations in

~3.1! become summations over n and m . We denote the re-

sulting summations by ^•&n and ^•&m , respectively. To dis-

cretize a temporal ~or spatial! integral, we subdivide the in-

terval of integration into subintervals and in each subinterval

approximate the integrand by a constant, the value of the

integrand at the time level ~grid point! nearest to the mid-

point of the subinterval. Thus, at a grid point xn, the integral

of u over an interval in time is approximated by

^u&m5 (
m51

M

un ,m~dtm1dtm11!/2, ~3.5!

where the time spacing in between two successive snapshots

of the velocity field is given by dtm5tm
2tm21. In the se-

quel, we will restrict ourselves to uniform spacings in time:

dtm5dt5 constant. The grid used for a spatial integration is

identical to that of the DNS. After discretization, the eigen-

problems ~3.3! and ~3.4! become eigenvalue problems for

matrices. The dimension of the matrix in the discrete repre-

sentation of ~3.3! is equal to the number of grid points; the

dimension of the matrix of the discretization of ~3.4! is equal

to the number of time levels.

Fortunately, we do not have to solve both eigenprob-

lems. Indeed, we can solve the discrete spatial ~temporal!
eigenvalue problem and compute the discrete temporal ~spa-

tial! eigenfunctions directly from the discrete Euler–

Lagrange equation that results from ds i50 (da i50). In our

case, the option between parentheses is the cheapest; the al-

ternative leads to an eigenvalue problem of the order of 105

~the number of grid points!. So, we solve the discrete time-

traces of model energies a i5(a i
1 , . . . ,a i

M) at time t1, . . . ,tM

from the eigenvalue problem

m̃ ia i5Ra i , where Rm ,m8
5^un ,mun ,m8&ndt ~3.6!

@i.e., from the discretization of ~3.4!# and compute the i-th

POD modes at grid point xn from the discrete Euler–

Lagrange equation,

s i
n
5

^un ,ma i
m&m

^a i
ma i

m&m

, ~3.7!
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where the eigenvectors of the correlation matrix R are nor-

malized such that ^s i
ns i

n&n51.

The time dt in between two successive snapshots should

be large enough for the snapshots to be ~almost! uncorre-

lated. This requirement is identical to the one put forth by

Sirovich.30 In contrast to Ref. 30, it is here not strictly nec-

essary to have uncorrelated states of the flow, but it is ad-

vantageous from a numerical point of view, because it leads

to a better posed eigenproblem.

As usual, we will compute the POD of the fluctuating

velocity field. A priori, we do not know how many snapshots

M should be taken for the eigenvalues m̃ i in ~3.6! and l̃ i

5^a i
ma i

m&m to approximate the eigenvalues m i in ~3.4! and l i

in ~3.3! accurately. In fact, we have no alternative but to try

different values of M>N and thus to estimate the speed of

convergence of m̃ i and l̃ i as a function of M .

C. POD of driven cavity flow

We have approximated the POD modes using snapshots

of the fluctuating velocity from a two-dimensional DNS of a

driven cavity flow at Re522,000. Successive snapshots are

~almost! uncorrelated if they are separated by five time units,

i.e., by one large-eddy turnover-time. Their correlation is

then less than 0.1. To reduce the correlation further, the

snapshots need to be separated by many more turnover-

times: the correlation decays ~almost! monotone; a separa-

tion of ten large-eddy turnover-times yields a correlation of

about 0.05.

The flow is snapped every time when the primary eddy

has turned over. Thus, M5700 uncorrelated snapshots are

available. This number of snapshots is chosen as large as

reasonably possible for an accurate computation of the POD

eigenfunctions. The first 80 eigenfunctions have been com-

puted. The convergence of the eigenvalues l̃ i for i51,.. . ,6

as a function of the number of snapshots is shown in Fig. 6.

The eigenvalues l̃ i are not fully converged for M5700. Un-

fortunately, the computation of much larger values of M ,

7000, for example, is rather expensive. In fact, 700 large-

eddy turnover-times is already a long period for a DNS.

Partly, the slow convergence of l̃ i towards l i may be ex-

plained by eddies that enter the core region at extreme long

time-intervals ~Figure 3 shows an example!. This phenom-

enon is certainly not represented well in the data. For that it

occurs too infrequently: of the 700 snapshots only a few will

contain information about this rare phenomenon. It may be

observed that the eigenvalues with the higher indices seem to

have converged somewhat better than the first two. This sup-

ports the idea that long-wave phenomena have not fully con-

verged yet.

The eigenfunctions that have been computed from the

snapshots may not be as optimal as the exact eigenfunctions

are. The captured energy, however, converges rapidly, and

that is the crux of the matter. The first few eigenfunctions

contain most of the fluctuating kinetic energy. To illustrate

this, some eigenvalues are listed in Table I. Note that the

average amount of turbulent kinetic energy in the ‘‘direc-

tion’’ of s i
n is equal to the corresponding eigenvalue l̃ i . The

first eigenfunction contains ~on average! 18% of the fluctu-

ating kinetic energy. The first 20, 40, and 80 eigenfunctions

contain ~on average! 77%, 88%, and 95% of the total fluc-

tuating energy, respectively. The number of eigenfunctions

that is required to capture 95% of the energy ~here: 80! is an

indication of the complexity of the signal u8(x ,t). Under

some ergodicity assumptions, this number is also a measure

for the complexity of the underlying attractor ~which then is

represented by the s i’s!.
POD eigenfunctions are optimal in the sense that every

other set of the same number of modes contains less energy

~in a time average! than POD eigenfunctions do. To illustrate

this we have compared the ~approximate! POD eigenfunc-

tions with Fourier-modes. For that purpose a Fourier-

transform of the discrete fluctuating velocity has been com-

puted at all grid points. The resulting 3332 Fourier-

coefficients are ordered by magnitude: the largest first. This

gives the optimal ordering for the Fourier-modes. Yet, even

in this order, the energy contained by the first N Fourier-

modes is significantly smaller than the energy contained by

s1
n , . . . ,sN

n ; see Fig. 7. Thus, as expected, the ~approximate!

FIG. 6. Convergence of the first six eigenvalues as function of the number

of snapshots.

TABLE I. Some characteristic eigenvalues of the POD of the 2D driven

cavity at Re522,000. The right column shows the relative energy of the

projection of the fluctuating velocity field on the first i eigenfunctions ~in the

time average!.

i l̃ i
% energy

1 2.3076531024 18.14

2 1.4445631024 29.50

3 8.5622231025 36.23

4 7.2899131025 41.96

5 6.1728631025 46.81

6 5.3509231025 51.02

7 4.4578931025 54.53

8 3.8159331025 57.53

9 3.0683331025 59.94

10 2.9456531025 62.25

20 1.2822731025 77.64

40 4.1289231026 88.69

80 1.1534531026 95.43
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POD modes converge much faster than Fourier-modes.

The first six s i
n’s are shown in Fig. 8. The eigenfunc-

tions of the spatial auto-correlation ^u(x ,t)u(x8,t)&T are

Fourier-modes if the auto-correlation is invariant under

translations, i.e., depends only on the difference between x

and x8. Fourier-modes can be grouped in pairs, e.g., sin(x)

and cos(x) form a pair; they differ by a shift over one quarter

of their period, and the rule acos(x)1bsin(x)5(a2

1b2)1/2cos(x6d) with tan(d)57a/b , provides the construc-

tion for a complete description of the evolution of a ‘‘cosine-

wave.’’ Figure 8 suggests that the leading POD modes in a

lid-driven cavity can be grouped in pairs too. The first two

(s1
n and s2

n) form a pair; s2
n is approximately a quarter out

of phase compared to s1
n . With the first two eigenfunctions

only, a motion of an eddy in the lower right corner of the

cavity can be represented. Moreover, s3
n and s4

n form a pair.

With them an eddy moving in the lower part of the cavity

can be represented. Rempfer and Fasel10 found that the lead-

ing POD-modes in a flat plate transitional boundary layer

occur approximately in pairs, too. The fact that the leading

POD-modes ~in a driven cavity as well as in a transitional

boundary layer! occur in pairs is likely a result of an approxi-

mate invariance of the auto-correlation. In general, however,

coherent structures do not appear as pairs of POD-modes ~in
Ref. 6 an example can be found where individual coherent

structures can not be formed by a pair of POD-modes!.
The first two eigenfunctions possess the most energy in

the lower right corner. Thus, the largest velocity fluctuations

take place in that area of the cavity. The structures in the first

eigenfunctions are relatively large indicating that large ed-

dies have much energy. The second pair of eigenfunctions

has a substantial amount of energy in the lower left corner

too. These structures are also rather large. The spatial struc-

tures in the lower right corner are smaller than those of the

first pair of eigenfunctions. The main difference between the

third pair, s5
n and s6

n , and the second pair seems to be that

the eddies in the lower right corner rotate in opposite direc-

tions; the eddies in the lower left corner rotate in the same

direction.

The next five, s7
n , . . . ,s11

n , and s17
n , are shown in Fig.

9. Here, the pairing is not so obvious. s9
n and s10

n are the first

eigenfunctions with spatial structures in the upper left corner

of the cavity. They are approximately a quarter out of phase.

The fact that the first eight eigenfunctions do not possess

spatial structures in the upper left corner shows that these

structures have relatively little ~fluctuating! energy.

The seventeenth eigenfunction ~see Fig. 9, lower right

picture! is the first one with a spatial structure in the center of

the cavity, just like the mean flow. Hence, the seventeenth

eigenfunction is an important representative for eddies in the

center of the cavity. The central structure of s17
n turns in the

direction opposite to the rotation of the central eddy in the

mean flow. The energy of the 17th POD mode a17
n and the

total kinetic energy are strongly correlated. That is, on aver-

age, a decrease of a17
n corresponds to an increase of the total

energy ~and vice versa!. s24
n and s39

n are the next eigenfunc-

tions with spatial structures in the core of the cavity ~not

shown!. These structures are considerably smaller than the

core structure of s17
n . Even smaller structures in the core of

the cavity can be observed in s60
n , s70

n , and s80
n ~also not

shown!.
The ~approximate! POD modes form a ~nearly! optimal

basis for reconstructing a signal. To see how fast a projection

on this basis converges, we have randomly selected a veloc-

FIG. 7. Comparison of POD and Fourier-modes: captured fluctuating en-

ergy.

FIG. 8. Vector plots of the eigenfunctions s1 – s6. The numbering goes in

reading order: the upper left picture shows s1; the lower right one depicts

s6. The eigenfunctions are normalized such that ^s is i&V51.
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ity field ~not a snapshot! from the DNS. The lower right

picture in Fig. 10 shows our sample. The upper left picture in

Fig. 10 depicts its projection on $s1
n , . . . ,s5

n%. The most pro-

nouncing difference between the two pictures occurs in the

upper left corner of the cavity, where the projection shows

no structures, whereas the full field possesses structures. But,

what else could the projection on $s1
n , . . . ,s5

n% be; s9
n and

s10
n are the first eigenfunctions with spatial structures in the

upper left corner. Yet, also the projection on $s1
n , . . . ,s10

n %
~Fig. 10, upper right picture! shows no clear structures in the

upper-left corner. For that, the sample has to be projected

onto the first twenty s i
n’s; see Fig. 10. All the large-scale

structures are reasonably represented in this projection.

When the basis of the projection is increased from 20 to 40

or 80, the adjustments are small and concentrated on the

small scales. The coefficients of the projection are depicted

in Fig. 11.

IV. LOW-DIMENSIONAL MODELS

The Galerkin projection of the Navier–Stokes equations

on the spatial structure s i reads as

K s i

]u

]t
L

V

52^s i¹•~uu !&V2

1

Re
^¹s i¹u&V . ~4.1!

Here we have made use of properties that the divergence

of the spatial structures is zero and that they vanish at the

FIG. 9. Vector plots of s7 , . . . ,s11 and s17 . The numbering goes in read-

ing order. The lower right picture shows s17 . The seventeenth eigenfunc-

tion is the first with a spatial structure in the centre of the cavity.

FIG. 10. Projections of a randomly selected fluctuating flow field on the

space spanned by the first N s i ’s. The lower right picture shows the sample

(N5`). The other pictures are vector plots of the projections on the first 5,

10, 20, 40, 80 s i’s, respectively ~in reading order!.

FIG. 11. Coefficients in the expansion of the arbitrary fluctuating velocity

field that is shown in Fig. 10.
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boundaries. For the discrete POD these two properties are

obvious, since any s i is a linear combination of snapshots,

and every snapshot of u8 satisfies these properties. For the

continuous POD it can be shown that if all fluctuating veloc-

ity fields u8 having a certain property form a closed linear

subspace, then the spatial structures s i have the same prop-

erty, and the converse is also true; see Ref. 11.

Equation ~4.1! forms the basis for our dynamical model-

ing of the flow in a driven cavity. To obtain a low-

dimensional, discrete model ~4.1! is to be truncated and dis-

cretized in space and time ~Section IV A!. The effect of the

truncation can be neglected ~as in Section IV B! or modeled

by introducing an artificial dissipation ~Section IV C!. The

latter is not needed for the transition analysis that is per-

formed in Section V; it is just needed for long-term integra-

tions in the turbulent regime (Re522,000).

A. Truncation and discretization

We decompose the velocity field u(x ,t) into the mean

velocity ^u&T and the fluctuating velocity u8(x ,t), and trun-

cate the projection of u8 on the spatial structures s i :

u~x ,t !'^u&T1(
i51

N

a i~ t !s i~x !. ~4.2!

Substituting this approximation into ~4.1! shows that the evo-

lution of the temporal coefficients a i(t) is given by

da i

dt
52A i jka jak2B i ja j2C i , ~4.3!

where A i jk , B i j , and C i depend on the mean flow ^u&T , the

spatial structures s i(x), and gradients thereof:

A i jk5^s i¹•~s jsk!&V ,

B i j5

1

Re
^¹s i¹s j&V1^s i¹•~s j^u&T!&V

1^s i¹•~^u&Tsk!&V ,

C i5^s i¹•~^u&T^u&T!&V1

1

Re
^¹s i¹^u&T&V .

It may be emphasized that a coefficient a i is not equal to

a i , due to the truncation of the series in the right-hand side

of ~4.2!; a i5a i only holds if N5` , or at least large enough

to capture all dynamically significant scales of motion.

In Section V, we will integrate Eq. ~4.3! for a range of

Reynolds numbers. We will do this by simply altering the

Reynolds number Re in the expressions for B i j and C i . The

mean velocity ^u&T and the POD-modes s i are not changed.

The mean velocity ^u&T is directly taken from the DNS.

Thus, it is also not altered to compensate for the truncation

of the system. It may be noted that in a number of papers

~see, e.g., Refs. 6 and 9!, the mean velocity profile is ap-

proximated in terms of the POD-modes before the Galerkin

projection is performed. Both Aubry et al.6 and Glauser

et al.9 have approximated the mean velocity ~in a turbulent

boundary layer and in a jet mixing layer, respectively! in

terms of Reynolds stresses, so that coherent structures of the

truncated system get feedback from the mean flow as the

fluctuation varies.

The coefficients A i jk , B i j , and C i are discretized on the

grid of the DNS. The spatial derivatives in these coefficients

are discretized exactly like the corresponding derivatives in

the DNS. That is, by central, finite-differences on a staggered

grid. The integrations over the flow domain V are approxi-

mated using the trapezoidal rule for numerical integration.

For the temporal integration of the thus obtained semi-

discrete dynamical system we have tested three numerical

methods: the classical fourth-order Runge–Kutta method,

Crank–Nicolsons method with a Newton linearization for the

non-linear terms, and a fifth-order DOPRI method with a

variable step size ~details of the DOPRI method can be found

in Ref. 32, for example!. With all these methods the semi-

discrete dynamical system can be integrated accurately with

a time step that is ~much! larger than the one used for the

DNS. From the three methods mentioned above, the DOPRI

method performs the best in relation to the costs. Therefore,

we have applied the fifth-order DOPRI method.

B. Short-term dynamics

We can close the system given by Eq. ~4.3! by simply

neglecting all contributions related to spatial structures s i

with an index i larger than N , i.e., by taking i , j ,k51,...,N in

Eq. ~4.3!. This yields a direct, fully spectral, simulation

method for the flow in the driven cavity. Fully spectral meth-

ods are rarely used; usually quasi-spectral methods are pre-

ferred. In quasi-spectral methods the velocity and its gradient

are transformed from spectral space to physical space. After

that, the non-linear terms are evaluated in physical space and

the result is transformed back to spectral space. This ap-

proach is not suited in combination with POD, since a trans-

formation from the physical space to the space spanned by

the spatial structures is tremendously expensive to compute.

This holds also for the inverse transformation. Therefore we

apply a fully spectral method, where the spectral space is

spanned by the s i’s with i51,...,N .

The convergence of the solution of the 20-, 40-, and

80-dimensional dynamical systems ~4.3! to the solution of

the Navier–Stokes equations is shown in Fig. 12 (Re

522,000). For this comparison, all time-integrations were

started from the same initial condition. That is, after the

POD-modes have been computed, we have taken an arbitrary

velocity field from the DNS. The projection of this field on

the first 20 modes forms the initial condition from which the

time-integration of the Navier–Stokes equations restarted,

and the time-integration of the 20-, 40-, and 80-dimensional

system is started. In Fig. 13 the coefficient of s1 is shown

during one large-eddy turnover-time.

Figures 12 and 13 demonstrate the potential of the low-

dimensional dynamical system ~4.3! to approximate the

Navier–Stokes equations for relatively short times.

In the next section we consider a closure model to take

the energy transfer from and to the neglected, low-energetic,

modes into account. It may be remarked that, for the initial

condition considered here, the results for short time integra-
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tions do not become significantly better or worse using this

closure model. That is, for short times, the result of the low-

dimensional model with closure as well as that without di-

verge exponentially from the Navier–Stokes solution. The

time-integral of the absolute difference with the Navier–

Stokes solution is in both cases proportional to exp(Ct),

where the constant C depends strongly on the number of

modes N , but ~practically! not on the closure.

C. Closure model for long-term integrations at
Re522,000

For N520, 40, and 80 our direct spectral simulation

method does not predict the long-term physics of the flow at

Re522,000 correctly. That is, after a transient phase, the

result of the integration of the dynamical system ~4.3! with

i , j ,k51,...,N converges to a statistical equilibrium around a

state with a much too high energy content. So, we need a

~dissipative! closure model to mimic the behavior of the flow

in a driven cavity at Re522,000 for long times.

Here, we consider a closure model that is based on the

average energy exchange between the spatial structures. To

start, the series in the right-hand side of ~4.2! is not truncated

(N5`). The coefficients a i are then equal to a i . The rate of

change of energy in the direction of s i is given by (a i
2(t))8.

On average the energy a i
2 has to be conserved: ^2a ia i8&T

50. Hence,

(
j ,k

A i jk^a ia jak&T1B iil i50. ~4.4!

Note that the average of a i is zero, and that the a i’s satisfy

^a ia j&T5d i jl i . These properties hold since a i5a i . Equa-

tion ~4.4! does not hold if we truncate the system ~4.3!. To

account for the unresolved modes we add a linear damping

term 2D ia i to the right-hand side of ~4.3!, and take i , j ,k

51,...,N ~with N small!. The value of D i is determined from

the requirement that the energy of the resulting modified

finite-dimensional system is conserved:

(
j ,k51

N

A i jk^a i
ma j

mak
m&m1~B ii1D i!l i50, ~4.5!

where the triple product is approximated by averaging over

the snapshots used to compute the POD.

We have implemented the artificial damping term

2D ia i by modifying the coefficient 1/Re for the diagonal

elements of B i j in order to have a point of reference for the

magnitude of the damping that is introduced by the closure

model. The modified coefficient is denoted by 1/Rẽ i :

1

Rẽ i

5

1

Re
1

D i

^¹s i¹s i&V
. ~4.6!

According to Eq. ~4.5! D i depends on the number of retained

modes N , and so does 1/Rẽ i . Figure 14 displays the first

twenty 1/Rẽ i for N520, 40, and 80. The time-average of the

energy dissipated by mode i is given by l i^¹s i¹s i&V /Re

On average, the ratio of the energy transfered from mode i to

unresolved modes and the energy that is dissipated by mode

i is equal to Re/Rẽ i21. This ratio is at most 2.7 (N520),

1.8 (N540), and 1.7 (N580). For all three values of N the

maximum value is obtained for i58. Figure 14 shows that,

FIG. 12. The difference between the numerical solution of the 20-, 40-, and

80-dimensional model and the solution of the Navier–Stokes equations.

This figure shows the time-integral of the absolute difference of the projec-

tion of the numerical solution of the Navier–Stokes equations, and that of

the dynamical models, on s1 versus time.

FIG. 13. The projection of the solution on the first eigenfunction s1 during

one large-eddy turnover-time.

FIG. 14. The modified coefficient 1/Rẽ i as a function of the index i for the

20-, the 40-, and the 80-dimensional model. The reference level 1/Re is

denoted by the dashed line.
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on average, the coefficients tend to 1/Re when more modes

are retained. Yet, the modes for which the corresponding

coefficient 1/Rẽ i is smaller than 1/Re for N580 seem not to

be converged. It may be emphasized that these modes are not

damped, but blown up, by the closure model. The coefficient

1/Rẽ46 becomes even negative for N580 ~not shown in Fig.

14!.
Runs with the closure model outlined above showed that

the results of long-term integrations are better than those

without the closure model, but are still not in fair agreement

with the results of the DNS at Re522,000. Therefore we

adjust the closure model: instead of 1/Rẽ i we take

1

Rē i

5maxH 1

Re
,

1

Rẽ i

J , ~4.7!

so that the closure model is dissipative for all modes. Figure

15 shows the spectrum as obtained from a long time integra-

tion with the closure given by ~4.7!. Compared to the spec-

trum of the DNS ~the dotted line in Fig. 15! the tail of the

spectrum of the 80-dimensional model is somewhat lifted up,

but the general picture is correct. The 80-dimensional model

is reasonably able to reproduce the spectrum of the DNS,

albeit that the closure given by ~4.7! is still open for im-

provement: the modes for which the damping coefficient is

limited to 1/Re (i517, for example! peak too high in the

spectrum. To improve the closure, the energy budgets need

to be considered, as in Ref. 33.

V. TRANSITION BEHAVIOR OF AN 80-DIMENSIONAL
MODEL

In this section, we perform a transition analysis of the

low-dimensional dynamical system ~4.3! for N580. For this

N , 95% of the fluctuating energy is captured (Re522,000).

The system is closed as described in Section IV B, that is,

the effect of the non-resolved modes is simply neglected. We

will refer to the thus obtained dynamical system as the 80-

dimensional model. As far as possible, the stability of steady

and periodic solutions of the 80-dimensional model will be

compared to the results obtained with DNS ~in Section II C!.

In Section V A, a linear stability analysis of the steady

flow in the cavity is performed with the help of the 80-

dimensional model. The stability of periodic solutions of the

80-dimensional model is considered in Section V B.

A. Stability of steady states

The solution of the 80-dimensional model converges

rapidly to a steady state for Re55,000. To determine the

stability of this steady state we have linearized the 80-

dimensional dynamical system around this state and com-

puted the eigenvalues of the Jacobian: all have negative real

parts. Thus, small disturbances of the steady state are

damped for Re55,000.

The eigenvalues of the Jacobian move towards the

imaginary axis when the Reynolds number is increased. To

determine the point where one or more eigenvalues cross the

imaginary axis we have computed the Jacobian at two dif-

ferent Reynolds numbers and have extrapolated the smallest

negative real part of the eigenvalues to zero ~assuming that

the dependence on the Reynolds number is linear!. By iter-

ating this procedure we have found that at Re57,819 a pair

of complex conjugate eigenvalues crosses the imaginary axis

~see Fig. 16!. So, the first ~Hopf! bifurcation of the 80-

dimensional model takes place at ~approximately! Re

57,819. The eigenvector that corresponds to the unstable

pair of complex conjugate eigenvalues is shown in Fig. 17.

Obviously, some kind of vortex-street is developing along

the edge of the primary eddy in the core of the cavity. The

velocities are largest in the lower-right corner of the cavity,

where the shear-stress is also maximal. This indicates a

shear-layer instability along the edge of the primary eddy.

Poliashenko and Aidun26 have also computed the first

bifurcation point of the flow in a square lid-driven cavity.

They did not compute eigenvalues of the Jacobian directly,

but used a alternative technique which they have applied to

the incompressible Navier–Stokes equations. They found

that the first transition from a steady state occurs at Re

57,763 and estimated the ~discretization! error in this bifur-

cation point at 62%. The difference between their critical

Reynolds number and that of the 80-dimensional dynamical

system is approximately 0.7%. The streamlines of their dis-

FIG. 15. The spectrum of the 80-dimensional dynamical system with the

adjusted closure model. Note the peak in the energy of the 17-th eigenfunc-

tion ~see the text!.

FIG. 16. Eigenvalues of the Jacobian of the linearized 80-dimensional sys-

tem at Re57,819. A pair of complex conjugate eigenvalues crosses the

imaginary axis.
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turbance look like the unstable eigenvector depicted Fig. 17,

and they also concluded that the first bifurcation is due to the

centrifugal instability of the primary eddy. In addition, they

noted that at the threshold of Hopf bifurcation, there are four

other complex-conjugate eigenvalues with relatively small

real parts and one small real eigenvalue. This can be ob-

served in Fig. 16, too.

To re-examine the first transition of the 80-dimensional

model we have performed fourth-order accurate direct nu-

merical simulations of the flow in a lid-driven cavity at Re

58,000, Re58,100, Re58,200, and Re58,400. From the

results of these four simulations the critical value of the Rey-

nolds number is estimated at Re57,972; see Section II C.

This number lies about 2% above the critical Reynolds num-

ber of the 80-dimensional model.

Thus, the 80-dimensional model predicts the Reynolds

number at which the first transition of the flow in a driven

cavity occurs accurately and the growing disturbances look

correct compared to Ref. 26. Yet, the frequency of the peri-

odic solution that arises after the first bifurcation is not pre-

dicted well by the 80-dimensional model: it yields a fre-

quency of about 3.85, whereas Poliashenko and Aidun26 and

our DNS give 2.8661% and 2.85, respectively.

After the first bifurcation non-linear terms come into

play and continuing the linear stability analysis of the steady-

state solution seems to be meaningless at first sight. Yet, as

we will see in the next section, this is not the case. Therefore,

we continue the linear stability analysis of the steady-state

solution.

At Re58,214 a second pair of eigenvalues crosses the

imaginary axis, as shown in Fig. 18 ~the top picture!. The

frequency belonging to this instability is higher than that

belonging to the first instability. The eigenvector associated

with this second instability is shown in the right ~top! plot of

Fig. 18. Like the first eigenvector, also the second eigenvec-

tor displays a vortex street along the primary eddy in the core

of the cavity. The size of the eddies is smaller than before.

Further increasing the Reynolds number leads to a third,

fourth, and fifth pair of eigenvalues crossing the imaginary

axis ~see Fig. 18!. Here, it may be emphasized that the sec-

ond pair returns to the complex left half-plane before the

fourth pair crosses the imaginary axis. All eigenvectors dis-

play a vortex street. The size of the eddies that form the

vortex street is smaller for the higher frequencies than for the

lower frequencies. The largest velocity fluctuations appear in

the lower right corner for all but the fifth instability. The fifth

eigenvector has the largest fluctuations in the lower left side

of the cavity.

B. Stability of periodic solutions

As far as we know, the stability of periodic driven cavity

flows has remained unexplored. The stability of a periodic

solution is determined by its Floquet multipliers. We denote

the cross section of a periodic orbit in the state space by S . A

periodic solution intersects S in one point p . The Poincaré

map P maps points q of S in some neighborhood U,S of p

by following the solution through q until it first crosses S . A

periodic orbit is stable if all points qPU converge to p under

the iteration of P . This holds, if all the eigenvalues of the

linearization of the map P at p , the Floquet multipliers, lie in

the unit disc in the complex plane.

FIG. 17. Streaklines of the unstable eigenvector of the 80-dimensional

model at Re57,819. The solid lines indicate a clockwise turning direction

and the dotted lines indicate a counter-clockwise turning direction.

FIG. 18. Subsequent instabilities of the unstable steady state. Eigenvalues of

the Jacobian ~left! and streaklines ~right! of the eigenvector belonging to the

eigenvalue at the imaginary axis. The solid lines indicate a clockwise turn-

ing direction and the dotted lines indicate a counter-clockwise turning di-

rection.
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Periodic solutions have been computed using a shooting

method ~see, for instance, Ref. 34!. The method starts with a

solution sufficiently close to a periodic orbit. This initial so-

lution is determined by either a time-integration ~for stable

solutions! or is taken equal to a solution at a slightly different

Reynolds number that has been determined previously. Also

a reasonable estimate of the period is needed. From this start-

ing point the 80-dimensional dynamical system is integrated

over one period. If the difference between the solution after

one period and the initial solution is not zero, a Newton

iteration is started and is continued until a periodic state is

reached.

Thus, we have computed the periodic solution of the

80-dimensional system at Re58,000. This solution is stable:

all its Floquet multipliers lie within the unit disc. Both our

linear stability analysis of the 80-dimensional model and the

analysis of the Navier–Stokes equations in Ref. 26 showed

that there are four complex conjugate pairs of eigenvalues

with small real parts and one small negative eigenvalue at

the point of the first instability ~Figure 16!. This indicates

that the transition of the flow is complicated.

The transition behavior of the 80-dimensional model is

summarized in Fig. 19. The characteristic points of this

graph are discussed in the sequel.

At Re58,200 a pair of complex conjugate Floquet mul-

tipliers leaves the unit disc, as is shown in Fig. 20~a!. ~Note

that a Floquet multiplier 11 is always present since the dy-

namical model does not explicitly depend on the time t .!
Figure 21~a! shows the eigenvector that corresponds to the

unstable mode. The two frequencies of the solution at Re

58,200 are 3.85 and 7.30, i.e., the fast part oscillates ap-

proximately 1.9 times around the slow part. The ratio be-

tween the imaginary parts of the first two pairs of unstable

eigenvalues of the Jacobian of the steady-state solution ~see

Fig. 18! is also approximately 1.9. Hence, the Floquet analy-

sis and the linear analysis give similar results here.

The unstable periodic solution stays unstable for higher

Reynolds numbers. A second pair of Floquet multipliers

leaves the unit disc at approximately Re510,350. Somewhat

later, at Re510,700, a Floquet multiplier leaves the unit disc

at 21 indicating a period-doubling. Unfortunately, we can

not follow this branch of solutions with our method, since

these ~unstable! solutions have more than one period.

The stable 2-periodic solution that appears after the bi-

furcation at Re58,200 becomes 1-periodic again at approxi-

mately Re58,400. Its frequency (7.30) corresponds to that

of the second pair of unstable eigenvalues of the Jacobian

~see Fig. 18!. In Fig. 20~b! the Floquet multipliers which

enter the unit disc are shown. They correspond to an unstable

periodic solution that becomes stable. The solution with a

frequency of 7.30 stays stable till approximately Re58,750.

The behavior of the 80-dimensional system in the range

between Re58,200 and Re58,750 is not confirmed by the

results of the DNS presented in Section II C. It is possible

that this behavior is an artifact of the model ~i.e., that the

model is destabilized by the truncation!, or that we overlook

FIG. 19. Qualitative bifurcation diagram of the 80-dimensional dynamical

system. Not all the bifurcations from the steady-state solution are shown for

simplicity. Note that the horizontal axis is not linear.

FIG. 20. Floquet multipliers of periodic solutions of the 80-dimensional

system at Re58,200 ~a!, Re58,400 ~b!, Re58,750 ~c!, and Re511,118

~d!. The Floquet multipliers move in and out the unit disc. Figure ~a! shows

a pair of complex conjugate multipliers that leaves the unit disc. In Fig. ~b!,
a pair of complex conjugate multipliers enters the unit disc; in ~c! a real

multiplier leaves the unit disc at 21. In Fig. ~d!, a pair of complex conjugate

multipliers leaves the unit disc.

FIG. 21. Streaklines of the eigenvectors corresponding to the unstable Flo-

quet multipliers at Re58,200 ~a! and Re511,118 ~b!. The unstable Floquet

multipliers are shown in Fig. 20.
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frequencies with a small amplitude in the DNS-data ~like

many others did, when they stated that the flow is stationary

up to and including Re510,000). Here, a stability analysis

of the Navier–Stokes equations should give a decisive an-

swer.

At Re58,750 a Floquet multiplier leaves the unit disc at

21, indicating a period-doubling @see Fig. 20~c!#. We have

followed the unstable periodic solution with the frequency

7.30 until Re59,200. This solution is rather unstable: it has

a large Floquet multiplier. The stable periodic solution that

arises after the period-doubling stays stable for Reynolds

numbers up to Re511,188. Hence, it exists for a relatively

large range of Reynolds numbers. Moreover, its frequency is

almost equal to that of the stable solution after the first Hopf

bifurcation.

At Re511,188 a pair of complex conjugate Floquet

multipliers leaves the unit disc as is shown in Fig. 20~d!. The

two frequencies of the stable solution are 3.77 and 2.33.

Their ratio 3.77/2.3351.62 is comparable to that of the two

frequencies of the 2-periodic solution obtained with the DNS

at Re511,000 ~see Section II C!: 2.7/1.751.6. Thus, the

angle at which the Floquet multipliers leave the unit disc is

predicted well by the 80-dimensional model; the absolute

values of the frequencies are not predicted accurately ~at

Re'11,000). Moreover, the Reynolds number at which the

flow becomes quasi-periodic is too high: the DNS yields a

two-periodic solution at Re510,000; the 80-dimensional

model bifurcates at Re511,188.

For somewhat higher Reynolds numbers both the DNS

and the 80-dimensional model have again periodic solutions.

At Re511,500 a pair of complex conjugate eigenvalues re-

enters the unit disc. The frequency of the solutions of the

80-dimensional model for Reynolds numbers in the range

Re511,500211,900 ~i.e., 3.74) is almost the same as the

frequency (3.7) of a periodic solution of the DNS at Re

512,000. The ~stable! periodic solution of the 80-

dimensional model at Re511,800 is shown in Fig. 22. It

displays qualitatively the same behavior as the result of the

DNS at Re512,000 that is shown in Fig. 5.

VI. CONCLUSIONS

In this paper, a proper orthogonal decomposition of a 2D

flow in a lid-driven cavity at Re522,000 is computed ~from

DNS data! to educe the coherent structures in this flow and

to construct a 80-dimensional dynamical model for it. The

following conclusions can be drawn from this study. By uti-

lizing their space–time symmetry, POD-modes can be com-

puted efficiently. The first 80 spatial POD modes capture ~on

average! 95% of the fluctuating kinetic energy. They, indeed,

educe the coherent structures in the flow. A projection of the

Navier–Stokes equation on them gives a 80-dimensional dy-

namical system. We have evaluated this 80-dimensional

model by comparing the results of its transition analysis with

data from direct numerical simulation for Reynolds numbers

in the range Re58,000212,000. The agreement with the

available DNS-data is good, albeit that the stability analysis

of periodic solutions of the 80-dimensional model also re-

veals some complicated transitions that we could not yet

confirm by means of DNS.
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