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Abstract

LQG compensator control of transverse vibrations was implemented on an aluminum can-
tilevered beam in a ”smart structure” paradigm. The beam was mounted with two self-sensing,
self-actuating piezoceramic patches. The Euler-Bernoulli beam equation was discretized via a
Galerkin type approximation (referred to as the full order model). To reduce the size of the re-
sulting finite dimensional approximating system, the Proper Orthogonal Decomposition (POD)
was employed as a reduced basis method. A reduction of dimension from 34 to 2 was obtained
through the model reduction technique. Feedback control based on the reduced order system was
implemented in real time using a dSpace DS1103 control system. Experimental results indicate
that POD based control achieves comparable control attenuation with full order model based
control.

1 Introduction

Real-time control of smart material structures requires numerical integration of the linear
system at each discrete time step at which the real-time processor runs. For complex
structural systems such as shells [16, 17, 18] or structural acoustic systems [6], the compu-
tationally intensive algorithms needed for the online computation of PDE-based controls
must be supplemented by model reduction techniques. Numerical studies in [5] have shown
the feasibility of employing model reduction techniques in feedback control of thin cylin-
drical shells perturbed by a periodic external force. This investigation provides the next
step in the development of efficient model based feedback control methodologies by im-
plementing the ideas presented in [5] in a physical system. We chose to demonstrate the
ideas in the context of a beam system but the extension of the ideas to more complex
systems is rather straightforward.

The proliferation of the use of the Proper Orthogonal Decomposition (POD) as a
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reduced basis method in control and estimation applications can be attributed to its
ability to accurately represent the system data with only a small number of basis elements
(or POD modes). The system data obtained at different parameter values can either
be experimental measurements of the state or numerical simulations of the system. The
POD method attempts to extract characteristic information from the data through an
orthogonalization procedure. It is essentially a linear transformation of a multivariate
data set into an optimal set of uncorrelated variables or POD modes. Approximation
applications of POD include turbulent coherent flows [3, 12, 13, 27, 38, 20], structures
(30, 31, 32, 33, 35], materials processing [24, 23, 29, 28, 41], characterization of human
faces [39], and statistical and pattern recognition fields [19], to name a few. In numerical
control applications, the use of POD in open loop control of fluids described by Navier
Stokes type PDE can be found in [29, 28] while its first use in feedback control design (in
the context of smart material structures) is reported in [5]. Other recent applications in
feedback control can be found in [1, 2, 24, 23, 25] while POD use in inverse problems for
damage detection is first found in [9)].

Another type of reduced basis method, the Lagrange model reduction technique, has
been numerically studied in [21, 22] (in the context of approximation and control of fluid
flows) and in [5, 15] (in approximation and control of thin shell dynamics). This model
reduction technique employs the snapshots themselves as basis functions. As detailed in
[5, 15], the method possesses inherent difficulties since the user must rely on knowledge of
the solution of the system in order to obtain linearly independent snapshots. The question
of which parameter values (or time instances in the case vibrating structures) to use for
the snapshots in order to capture the key characteristics of the system is another difficult
issue to be addressed in the Lagrange reduced basis method. These questions, as we shall
see in Section 3.2, are of little concern in the POD approach.

In this paper, we employ the POD model reduction technique in real-time experimental
control of a beam structure. The simplicity of the beam structure (i.e., the relatively
low dimension of the resulting system in the Galerkin expansion using full order basis
functions such as cubic splines) allows us to implement real-time full order based control
and compare these results with control based on the POD reduced order method. In
Section 2, the governing equations are presented and existing theories regarding well-
posedness of the model are summarized. Approximation methods regarding the full order
method and POD reduced order method are presented in Section 3. Control methodologies
are given in Section 4 and experimental results can be found in Section 5. Finally, we offer
some concluding remarks in Section 6 relating our POD based methods to standard finite
element and modal based control techniques.

2 Beam Model

In this section, we briefly present the equations governing transverse displacements of an
Euler-Bernoulli beam with Kelvin-Voigt damping and cantilevered boundary conditions.
We also summarize existing results regarding well-posedness of the model. We denote the
beam length, width, thickness, density, Young’s modulus and Kelvin-Voigt damping by



Figure 1: Cantilever beam with piezoceramic patches

£,b,h,p, E and cp, respectively. The origin is taken to be at the clamped edge of the
beam, and the axial direction is denoted by the z-axis (see Figure 1). A pair of identical
piezoceramic patches are bonded on opposite sides of the beam with edges located at z; and
xy. Passive patch contributions arising from material changes due to the presence of the
patches are included in the model. Patch parameters are denoted by the subscript pe, thus,
the patch thickness, width, density, Young’s modulus and Kelvin-Voigt damping are given
by hpe, bpe, ppes Epe and cp,., respectively. We denote the piezoelectric constant relating
mechanical strain and applied electric field by ds;. Finally, we denote the transverse
displacement by y and the voltages applied to the front and back patches by V; and V5,
respectively.

As derived in [11], the transverse (or bending) equation of the beam is given in terms
of resultant moments b M, by

L0%y  0*(DM,)  O0*(bMy)pe
Por T o Yo @

Passive patch contributions are incorporated in the model above and hence the linear mass
density p(z) = phb + 2bpyehpexpe(x) is piecewise constant. The characteristic function
Xpe(2) employed to isolate patch contributions is defined by

I, mp <z <y
Xpe(J;) - { (2)

0 , otherwise.

Incorporating both internal damping and material changes due to the presence of the
patches, the internal moment resultant bM,, has the form

2 63

bM,(t,z) = —Ej(a:)@y(t,x) —enl(@)5—mry(l2) (3)



where
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and az = (/2 4 hye)® — h*/8 (we refer the reader to [11, Chapter 3] for details regarding
patch contributions to the internal moment resultant). When voltages are applied to the
front and back patches, the induced external moment (bM,),. is given by

(DM et 2) = 5 By i) () VA (1) = Vi) 5

External transverse forces acting on the beam are modeled by the function f(¢,z). Can-
tilever boundary conditions are given by

dy 0
y(1,0) = aa:(t 0) =0, M, (t,0) = a—wMz(t,E) =0, (6)
and initial conditions are denoted by
dy
y(0,2) = yo(z),  5.(0,2) = p(z) . (7)

To reduce regularity requirements in the discontinuous moment resultants we employ the
weak formulation of (1) given by
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for all ¢(z) € V.= HE(0,0) = {¢ € H*(0,0)|¢(0) = ¢'(0) = 0}. Here I = bh®/12, the state
space is taken to be the Hilbert space H = L*(0,/), and we seek solutions y(¢,-) € V.
Using a variational framework, the existence and uniqueness of the solution to (8)
has been established in [11, Chapter 4] and those results will be summarized here. We
reformulate (8) in a variational setting by first defining the sesquilinear forms oy and o,

defined on V x V — € by

o1(6,9) = (EI¢",¢")  and  oa(,9) = (cpld", ") (9)



for all ¢,¢» € V. Note that V and H form a Gelfand triple V — H ~ H* — V~*,
i.e., V is continuously and densely embedded in H and we identify H* with H through
the Riesz map (see [42, pages 165,261]). We take the duality pairing (-,")y.; to be the
extension by continuity of the inner product (-, ), from V x H to V* x H. We then define
(DM, )ye + f € V* by ((BMa)ye + F) (6) = {(BM,)pe(t), 6" + (£(1), 8) for 6 € V.. Equation

(8) can now be abstractly formulated as

(P§(1); O)ve v + 02((1), 8) + 1(y(1), 8) = ((OMx)pe(l) + [ (1), D)y v - (10)

It can be readily verified that (i) the stiffness sesquilinear form oy is symmetric, V-
continuous and V-elliptic, and (ii) the damping sesquilinear form o3 is V-continuous and
V-elliptic. Under the additional assumptions (iii) the forcing terms (bM,),. + f satisfy
the regularity condition (6M,),. + f € L*((0,7),V*), (iv) yo € V and (v) y; € H then
Theorem 4.1 in [11] (which is first proven in [8]) states that there exists a unique solu-
tion y of (10) with the regularity properties y € L*((0,7),V),y € L*((0,7),V) and § €
L*((0,T),V*). Moreover, the solutions depend continuously on the data (yo, y1, (bM,),e +
f) in that the map (yo,y1, (bMq)pe + f) — (y,9) is continuous from V x H x L*((0,T), V*)
to L2((0,7),V) x L*((0,7),V).

For control applications, the equivalent operator formulation of the abstract variational
form (10) is more familiar. Again we give a brief summary of the theoretical results. Under
the assumption that oy and oy are V-continuous, we can define the operators Ay, Ay from
V — V* given by

(A)(@) = o1(d,9) ,  (Ap)(9) = 0a(d,¢) (11)
for all ¢,v € V. Then an equivalent formulation of equation (10) is given by
pi(t) + Ay (1) + Aoy (t) = (bBMa)pe (1) + f(1)  in V™. (12)

The first order formulation of (12) is obtained by first defining the product spaces V =
V xVand H=V x H. We then let

0 1 0 0
F(t) = , B=-FE,bdsi(h+ h, , 13
O T R LR (N "
and u(t) = [Vi(t), Va(#)]T. Finally we define the system operator A in matrix form by
0 1
A=
-A —A (14)
domA = {x = (¢,¢) € Hltp € V and A1¢ + Astp € H}
and the strong first order form of (12) is now given by
w(t) = Aw(t) + Bu(t) + F(t
()= Aw(t) + Bu(t) + 71 .

w(0) = wo = (Yo, ¥1) »
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where w = (y,y). The mild solution to (15) is given by
t
w(t) = T(t)wo +/0 T(t — s)[Bu(s) + F(s)|ds (16)

and its existence, uniqueness and equivalence to the variational solution is detailed in
[11]. Here 7 is the semigroup generated by A (see [34] for details regarding semigroup
generators).

3 Galerkin Discretization and Model Reduction

A Galerkin method employing cubic splines as basis functions was used to discretize the
system (8). As discussed in [16], cubic splines were chosen over modes since for the sys-
tem under consideration, explicit expressions of the modes and natural frequencies are not
readily available. In order to use mode shapes in the expansion, they must first be numeri-
cally approximated or experimentally determined. Moreover, the piecewise discontinuities
in the density, stiffness and damping coefficients arising due to contributions by the piezo-
ceramic patches cause difficulties for the use of standard finite element packages since
the meshes must be aligned with the regions bounded by the patches. Moreover, finite-
difference approximations are not employed due to difficulties associated with high-order
equations in the beam model.

The standard Galerkin approximation employing cubic splines is efficient for numeri-
cal simulations but the size of the resulting finite dimensional system is still not suitable
for real-time feedback control implementation. Hence we investigate the use of Proper
Orthogonal Decomposition reduced basis methods in decreasing the dimension of the ap-
proximating system.

In Section 3.1, we briefly discuss the Galerkin discretization method, and specify the
cubic spline basis functions employed. We denote the use of modified cubic spline basis
functions in the discretization by full order methods. In Section 3.2, the ideas underlying
the Proper Orthogonal Decomposition reduced basis method are presented. This method
is referred to as the reduced basis method. Finally, in Section 3.3, we report in detail
the methods and discretization sizes employed in numerically implementing the methods
presented in this section.

3.1 Galerkin Approximation

The approximate solution y € L*((0,7),V) to (8) is obtained by replacing the space
V with appropriate finite dimensional subsets VV = span{Bi}f\il C H = L*(0,¢) and
performing the Galerkin expansion

" N

y (tz) =) z(t)Bi(x) . (17)

=1

The approximating finite dimensional subsets V* are chosen to satisfy the condition



(H1) for any ¢ € V, there exists a sequence {(ﬁN};_l in V& such that quN — ¢>HV — 0 as
N — . -

We then restrict the weak form (8) to VA with basis functions also used as test functions
and N fixed. (All of the resulting matrices are understood to depend on A throughout,
but for convenience we shall suppress this in our notation.) This yields the matrix system
approximating (8) given by

(M + Myo) 5(t) + (D + Dye) 2(t) + (KE + K Ey.) 2(t) = F(1) + Bu(1)

(18)
2(0) = zo, 2(0) = =z,
where z(t) = [z1(1),...,zx(t)]T is the vector of coefficients. The matrices in (18) are
defined by
l T2
My = phb [ Bi2)Bu(z)de  [MpJus = 2bpyehy, [ Bilz)Bi(z)da
- ¢ " " - Qb ¥z " "
(KBl = Bl | Bl(@)B{(a)dz . [KEy = 3 Bpas [ Bi(2)Bl(x)ds
¢ 2b 2
(Dhes=col [ BI@BL)z . (Dyls= eppes [ BBz (19
~ 4 . T
L) = [ S nBua)de . Bl = 3Eubda(h+ by) [ Bl(a)de
u(t) = A1) . Va(0))" + [Blia = ~3Eyubdsi(h+ y.) [ Bl(a)do .
The first order reformulation of (18),
w(t) = Aw(t) + Bu(t) + F(t
(1) (1) (T) (1) (20)
w(0) = wo = [z0,21] ,
is obtained by letting w = (z,2)7,
0 1o I
A= . . , (21)
0 M+ M, | | ~(KE+KE,) —(D+D,)
P o S R I IR I N B (22)
“lo M+M, Py | =10 M+ M, Bl

Cubic splines were employed as basis functions in the standard (or full order) Galerkin
expansion. This choice of basis functions was motivated by smoothness requirements, ac-
curacy, adaptability to different boundary conditions and flexibility with regard to internal
and external patch contributions. To define the standard cubic splines, we first partition



the interval [0, ¢] with grid points =, = nh,, h, = /N, n =0,..., N. The standard cubic
splines are then defined by

(x — :z:n_z)?’, T E [Tpo, Tp1]
B3 4+ 3h2(x — xp1) + 3he (v — 2021)? — 3(2 — 24—2)°, T € [Tpo1, T4
b(z) = h1_3 B3 4+ 3h2(xn41 — ) + 3he (21 — )2 — 3(2p41 — 2)°, T € (T4, Tpt1]
" (g2 — 7)°, € [Tni1, Tnya]
0, otherwise ,
(23)

forn = —1,..., N 4 1,(see [36]). These standard splines must be modified to satisfy the
clamped edge boundary conditions (6). The modified cubic splines satisfying the zero slope
and zero displacements conditions at x = 0 are given by

bo(x) = 2b_1(z) — 2b1(z) , n=1
B.(z) =
b () , n=2,---,N+1 ,
for a total of N 4+ 1 basis functions. These basis elements satisfy

B.(0)=B,(0)=0 n=1,--,N+1.

(24)

Therefore, if N standard cubic splines are employed, the system (20) is of dimension
N = 2(N + 1) (note that the factor 2 comes from reformulating the system in first order
form).

A general framework for the convergence of full order solutions has been given in
the electronic version of [7]. Under the assumption that (H1) is satisfied by the cubic
splines, Lemma 4.1 in [7] guarantees convergence of the full order solution to the infinite
dimensional solution of (8).

3.2 Basis Reduction via Proper Orthogonal Decomposition

The POD reduced order basis method we discuss here involves the use of a smaller approx-
imating subspace of V. To differentiate full order basis functions from reduced basis
elements, we denote the i** full order basis functions by B; while we denote the :** POD
reduced basis function by ®;. We also denote the full order dimension index by A and
reduced order dimension index by Np.

To Create the POD basis elements, we take Ny temporal snapshots of the model,
{yV(t;,2)} Y i=1, and seek basis elements of the form

Ns -
= Ea;‘y (tjaw) . (25)
Jj=1

The snapshots can either be numerical solutions or physical measurements of the state. We
require each basis element ®; to resemble all the snapshots in the sense that it maximizes

Niz (rV(15.), 0:0))

, subject to (®;,®;) = ||®,]|>=1. (26)




As detailed in [5, 12, 15, 29], the coefficients of the i"* POD basis function (i.e., the o} in
(25)) are the elements of the i" eigenvector of the covariance matrix C, where C' is defined

by

Ly w N
[C]k,éz E<y (tka)ay (tf7)> ) k7€: 17"'7N8 . (27)
Since ' is Hermitian and nonnegative, we can order the eigenvalues Ay > Xy > ... >

An, > 0 and it has a complete set of orthogonal vectors. Note that the eigenvectors are
normalized in such a way that

0, k#/
o o = 1

—, k=1.
N

The POD basis functions ®; were shown to be orthonormal in [29]. It was also shown in
[12] that the numerical solution using the POD basis functions in the expansion is optimal
in the sense that it maximizes the time average of the displacements. This optimality of
the POD basis functions is summarized in [12, Prop. 2.3].

Lemma 1 Let {®1,P,,..., Oy} denole the orthonormal set of POD basis elements and
A > ... > Ay, denote the corresponding set of eigenvalues. If y™Ne = SN b;(1)®; denotes
the approximation to y with respect to this basis, then for any arbitrary orthonormal basis

{1,109, ..., 0N}, the following hold

Lo bi(t)bi(t) > = Xibij,  where < - >> denotes the average over time,

QfoveveryNs,Z<<b Z)\ >Z<<a ) >,

where the a;(t) are coefficients of the approximation to y, yfpv = N ai(t)es, using the

arbitrary orthonormal basis {¢J}§V:1

Lemma 1 provides a systematic way of creating an ANp dimensional POD reduced
basis (where Np < N;) out of Ny snapshots. Since the most significant POD modes
correspond to the largest eigenvalues, we take Ap to be the smallest integer such that
Ej\ipl Ai ~ S°Ne \;. The ratio gives the percentage of the mean square error when the first
Np POD modes are eliminated in the reduced basis representation (see [24] for details and
the references cited therein). Initial approximation results for the use of POD elements in
Galerkin schemes are given in [26].

As emphasized in [5], we note that for the POD reduced basis method, a fundamental
practical question is not of convergence but of (i) how to take an ensemble of snapshots
which lead to a good approximation of the full order solution and (ii) how to choose a
reduced set of basis elements that will capture the approximation properties of the original
ensemble. It is difficult to address the first question since it requires knowledge of the
solution of the original physical system. Since the POD reduced basis method does not
use the snapshots as basis themselves, the question of independence of snapshots is not



important. Hence one way to capture the characteristics of the full order solution is to
take a sufficiently large number of snapshots. This is an acceptable strategy since the
covariant matrix ' and the POD basis functions are computed offline. In relation to the
second question, Lemma 1 provides a systematic method to choose a reduced set of basis
elements out of the N, snapshots. The lemma shows how well the first Np POD basis
functions approximate the displacement average contained in all the snapshots (see [5]).

3.3 Numerical Implementation

Numerical discretization using the full order method was performed using 16 standard
cubic splines, resulting in an N' = 34 dimensional matrix system (20). Integration of the
basis functions (see (19)) were performed using a four point Gaussian quadrature rule with
N, = 64 nodes. This quadrature is of the form

/0 " I(2)de ~ ;kz_j cof () | (28)

where the quadrature weights ¢; and points zj; on the (" interval [I —1,1] * h,, hq = {/N,
are given by

49 h, . 1 /15 +2V30]
— N , T = -
" 618 +4/30) 2 R P 235
19 h, (1 /15— 2V30]
Cg= ——7—="—7 ,  Ty=hy|lz—
6(18 —+/30) 2 2 2V35 |
49 h, (1 /15— 2v/30]
3= ———Fr="—> , Ty=hy|z+
6(18 —\/30) 2 2 235 |
49 h, (1 /154230
4 = T , Tyl = hq -+ )
6(18 + /30) 2 2 21/35

(see [40] for details).

To obtain the snapshots for creating the POD basis elements, the uncontrolled full
order system excited by a voltage spike to the back patch was numerically simulated on
the interval £ = 0 to ¢ = 0.5 seconds. The voltage spike is triangular in shape with
a duration of 0.001 s and a magnitude at the peak of 90 V. A variable stepsize stiff
ODE solver was employed in time stepping the system. One hundred evenly spaced time
snapshots (Ns = 100) were taken from which the 100 x 100 covariant matrix C' given
by (27) was created. After obtaining the eigenvectors and eigenvalues of the covariant
matrix, the number of POD basis functions was determined by ensuring the percentage
of the displacement average of all snapshots contained by the reduced basis was at least
90%. It can be seen in Table 1 that this requirement is satisfied even with 1 POD basis
function.
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Np 1 2 3 1 516
s 2/ N A | 9008399 | .9999942 | 19999988 | .9999996 | 1.0 | 1.0

Table 1: Ratio of full order model snapshots captured by the POD basis functions; Ny, =
100 snapshots; Np is the number of POD reduced basis elements.

4 LQG Compensator Control

Infinite dimensional control for the system (15) where F = 0 or F is periodic has been
studied extensively in [7, 11, 37]. Since our goal is to implement real time control, we
will concentrate on finite dimensional control methods for the matrix equation (20) and
consider only transient shell vibrations (¥ = 0). This case we consider is suitable when
controlling vibrations caused by an impulse force (such as a hammer impact), or when the
structure responds to a perturbation and vibrates to a steady state.

A state estimator must be employed in the control scheme due to the nature of the
sensing device employed in the experiment. Vibrations measured at only one point  on
the beam by the proximity probe are used as observations. Thus, we consider observations
of the state given by the operator C : V — Y, w,, = Cw(t), where Y is the observation
space and wo(t) =y (1, 2) ~ y(t, 2).

We present the approximate LQG control problem with no exogenous input in Sec-
tion 4.1. In order to experimentally implement the control method in Section 4.1, we
must modify the assumptions that observations can be obtained at any time through-
out the time interval of interest, and that the state and state estimator can be exactly
integrated. Thus, we discuss the discrete-time compensator problem in Section 4.2.

4.1 Continuous-time Finite Dimensional Control

The infinite horizon control problem is

minimize J(u, wo) = /0 T HQu(t), w(t)) + (Ru(t), u(t))}dt (29)

subject to the matrix equation

30
wep(t) = Cw(t) . (30)

Here C' is the observation matrix which maps w(t) with the observation w.(t), while @
and R are control parameter matrices used to weigh the state and control, respectively. We
follow the control methods numerically implemented in [5, 18] where the optimal control
is given by

u(t) = —Kw.(t) . (31)
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Here the state estimator is given by

we(t) = Aw.(t) + Bu(t) + Flwa(t) — Cw.(1)]

we(0) = w, = Cuwg,

(32)

(see [11] for details) and the optimal feedback gain (regulator) K and observer (Kalman

filter) gain F' are given by
K = R'BTI

N (33)
F = HUCTR™,
where II and II are solutions to the algebraic Riccati equations
MA+ AT - TBR'BTI+Q =0 (34)
34

[TAT + Al - ICTR'CTI+Q =0,

respectively. Playing a similar role to that of () and R in the control problem, the matrices
Q and R are design criteria for the state estimator.

The structure of the observation matrix C' depends on the sensor employed in the
experiment. In our model, the sensor is a proximity probe located at the back of the beam
sensing displacements at the point . The observation matrix C' is thus of the form

C = |Bi(#),...,By(#), 0,...,0| ,
N

where the B;(Z)’s are the basis functions evaluated at &.

It was shown in [7, 11] (see also [4]) that the approximate controls and Riccati so-
lutions based on full order methods converge (as NV — o) to the corresponding infinite
dimensional optimal control and Riccati operators. The assumptions needed to establish
convergence of the full order Riccati operators and optimal controls are that (i) (H1) holds,
(ii) V is compactly embedded in H, and (iii) the infinite and finite dimensional systems are
stabilizable and detectable. For the POD based controls, the questions of convergence are
not meaningful. The issue, rather, is how the reduced order based controls would perform
when implemented in physical infinite dimensional systems. In a previous investigation,
the issue was computationally addressed when POD reduced order based controls were
applied to the full order system in controlling thin cylindrical shell vibrations (see [5]). In
Section 5, we further address the issue of effectiveness on the orginal infinite dimensional
system by implementing POD based controls on a physical system.

4.2 Discrete-Time Finite Dimensional Control

In experimental applications, the signals from the sensors are digitized and the real-time
processor can only perform at a discrete sample rate At. Thus, the state estimator equation
(32) can only be evolved in time in discrete time steps, and the control voltage can be
only computed at this rate. The numerical ODE approximation method to solve the

12



state estimator equation must satisfy the following criteria: (i) the control u(¢;) must be
calculated before the arrival of the data at the next time step t;11 = t; + At, (ii) the
method must be sufficiently accurate to resolve system dynamics and (iii) since the ode
systems are often stiff, the method must be A-stable or a-stable. We chose a modified
backward Euler method given in [11, Chapter 8.2.1]. The fast sample rate (and hence
small At) at which we can carry out the experiment allows the use of this method. An
A-stable modified backward Euler method integrating the state estimator (32) at time ¢;14
is given by

w

= (I —AtA) "we, + AT — AtA) 7 Fug(t;)

= R(Aw, + AtR(A.)Fwa(t;) ,

where A, = A — BK — FC, R(A.) = (I — AtA.)™! and the constant time step is At =
tj+1 — ;. Note that the method is modified from standard backward Euler methods since

the observation w(t;) at future time steps are not available. We now summarize the
discrete-time algorithm in Algorithm 1, which is essentially Algorithm 8.5 in [11]

G+1

(35)

Offline | (i) | Construct matrices A, B,C,Q, R, Q. k
(ii) | Solve Riccati equations (34) for II and I
(iii) | Construct K = R BTII, F = [ICTR,
and A. = A—- BK — IF'C

(iv) | Construct R(A.) = (I — AtA.)~" and
R(A)F = (I — AtA)'F

Online | (i) | Collect observation w,(t;)

(ii) | Time step the discrete compensator system
= R(A)w.; + AtR(A:)Fwe(l;)
(iii) | Calculate the voltage u(t;4+1) = —Kw,

Cy41

Wejts

Algorithm 1: Discrete compensator for systems running at a sample rate of At.

5 Real-Time Feedback Control Implementation

In Table 2, we report the dimensions and parameters of our experimental beam struc-
ture depicted in Figure 2. The aluminum beam parameters p, £, ¢cp and the lead zirconate
titanate piezoceramic patch parameters pp., Fye, cp,., d31 were obtained from the manufac-
turers. Typically, parameter estimation techniques must be carried out in order to obtain
more accurate values but since the goal of this investigation is the application of the POD
reduced basis method in real time control, we do not consider the inverse problem in detail
here. Rather, we refer the reader to [11, Chapter 5.4] for discussions and experimental
results regarding estimation of parameters and inverse problems involving the beam.
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‘ Beam ‘ Patch ‘

0 =10.286 m hpe = 5.3 x 107* m
h =0.001 m Ppe = 745 x 10° kg/m?
b=0.2543 m E,e = 6.4 x 10'1° N/m?

p=3.438 x 10° kg/m® | ¢p,. = 3.96 x 10° Ns/m?
E = 7.062 % 101 N/m? | dy = 262 x 1072 m/V
cp = 1.04 x 10° Ns/m? | z; = 0.02041 m

z = 0.11076 m x9 = 0.04592 m

Table 2: Beam and Patch Parameters

Figure 2: Experimental beam with piezoceramic patches

Numerical simulations were performed to obtain reasonable values of the control pa-
rameter matrices , R, Q and R to be used in (29) and (34). We sought parameters leading
to maximum control voltages within the 100V range of the patches while at the same
time providing good attenuation (see [5, 17] for discussions regarding the choice of control
parameters in shell control simulations). The matrices employed were of the form

QZ%[AE+K@S 0

] , R=rI7? p=1

0 M+ M,
N0 (36)
Q:dllﬂ ]N] ) R:fllsxsaszla

where p is the number of actuators and s is the number of sensors. In Table 3, we report
the values of dl,rl,a?l,fl, for three discretization sizes: full order system, POD system
with 2 POD basis functions, and POD system with 1 POD basis function. To illustrate
the expected performance of the control, we also report in Table 3 the maximum of the
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real parts of the eigenvalues of the matrices A, A — BK and A — FC for each of the three
discretization sizes. It can be seen that the maximum real part of the eigenvalues of the
closed loop system A— B K was 3 orders of magnitude less than that of the system matrix A,
while for the state estimator, A— F'C was 2 orders of magnitudes less. To further illustrate
the features of the reduced basis method, the controllability matrices of the linear systems
arising from the three discretization sizes were analyzed. Controllability is a necessary (but
not sufficient) condition for a linear system to be driven to zero starting at any initial state.
Linear systems described by the matrices A and B in the first order linear system (20) are
controllable if the 2Np x 2sNp controllability matrix C(A, B) = [B|AB|A?B| - - - |A*"r-1B],
where A = A*NP B = B™F has full rank 2Ap. For systems with rank (C(A, B)) = m <
2Np, any initial condition of the state z2YP in the m dimensional subspace of R2VP
spanned by the columns of C(A, B) can be driven to zero (see [14]). Generally speaking,
the larger the deficit of C(A, B) from its maximum possible rank, the more difficulty in
stabilizing or controlling the linear system (30). The ranks of the controllability matrices
for the three discretization systems are reported in the last row of Table 3. It can be seen
that the full order linear system is more difficult to stabilize than that of the two POD
systems (whose controllability matrices are of full rank).

| | Full Order | Np =2 | Ny =1 |
dy,re 2 x 10%,0.98 | 6 x 10,1 x 107* | 6 x 10'9,1 x 1074
dy, 1x10%1 | 5x10%1x 107" | 5x10%,1 x 107!
max(R(eig(A))) —3.107e — 2 —3.111le — 2 —3.112¢ — 2
max(R(eig(A — BK))) | —1.215e + 1 —6.625e + 1 —6.695¢ + 1
max(R(eig(A — FC))) | —8.526e + 0 —3.445e + 0 —3.433¢ + 0
rank(C(4, 5)) 9/34 4/4 2/2
max possible rank

Table 3: Control Parameter Values and some properties of the resulting linear systems
due to the three discretization sizes: full order, POD system with 2 basis functions and
POD system with 1 basis function.

In Figure 3, we present a diagram of the experimental setup and implementation of
the online component of Algorithm 1. Voltage spikes to the back patch (to excite the
beam) were generated by a DS1103 dSpace control system. The excitation signal was low
pass filtered and amplified before being applied to the back patch. The voltage spike was
amplified so as to produce 90 volts at the peak. A proximity probe located at the back of
the beam at * = z = 0.11076 m was used to measure displacements and the observation
readings were digitized through one analog to digital channel of the dSpace hardware. This
observation signal enters the online component of Algorithm 1 as w,;(¢;). By employing the
discrete modified backward Euler method (35), the state estimator w.(¢;41) was obtained
and multipled with the gain matrix K to produce the control voltage. The control signal
was then low pass filtered and amplified before being sent to the front patch. A constant
discrete time rate of At = 107 s was employed in Tunning the real-time processor.
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I Proximity Probe

i Back Patch

Beam —
f Front Patch
’ Amplifier ‘ ’ Amplifier ‘
’ Low Pass Filter‘ ’ Low Pass Filter‘
Y
dSpace ADC dSpace DAC dSpace DAC
Channel 17 Channel 1 Channel 2
dSpace i i
P WOb(tJ)
Y
Multiply by
R(AQF
R(AQF w1 /.
ob(t J)
w Y Y
Multiply by | C(tj+1) + +
Gain Matrix K | Add
Control Voltage R(A) We(t)
L )
»| Multiply by /\
Wc(tj) R(AJ)
Store Wc(tj+1) Voltage Spike
in memory

Figure 3: Experimental setup and implementation of online component of Algorithm 1.

In Figure 4, we report the uncontrolled and controlled displacements in the left column
and the control voltages in the right column for the three discretization sizes: full order
method, POD based control with 2 POD basis elements and POD based control with 1
POD basis element. Note that the three control systems have basically attenuated the

displacements after 1 second.
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6 Concluding Remarks

Our initial experimental results suggest that application of POD based control in real
time control is most promising. Creation of the POD reduced basis using numerical
solutions as snapshots is relatively easy to implement since a lot of effort has been invested
in developing accurate models and efficient numerical approximation methods for smart
material structures. The online component control method (shown in Algorithm 1) can be
efficiently implemented in real-time due to the simplicity of the algorithm and the simple
programming of the real-time control implementation system employed.

A comparison of the attenuation levels due to three discretization sizes, i.e., full order
(34 dimensional linear system), POD with 2 basis functions (4 dimesions) and POD with
1 basis function (2 dimensions) illustrates the feasibility of POD based control in phys-
ical implementation. Aside from decreasing the dimension of the linear approximating
system, the POD model reduction also results in linear systems that are controllable and
observable.

For the particular physical system (a cantilevered beam) used here to illustrate the
effectiveness of POD based control methods, one might expect that an effective low order
model (dimension < 3) would suffice based on the research literature on modal based
methods in structures. However, this does not lessen the importance of our contributions
here. First, we note that the POD based methods offer an attractive implementable al-
ternative to modal methods since analytical modes for even the simple piezo mounted
beam are not attainable. Moreover, such systems do not have normal modes [10], further
complicating any modal based computational control method. Furthermore, the compu-
tation of POD basis elements is even simpler than computation of modal elements. When
compared to standard finite element approaches, the POD based methods offer control
authority with much smaller approximating systems and hence are clearly preferable for
implementation. In addition, for more complicated structural problems such as those
arising in many applications, the POD based methods will offer a far superior approach
in implementation of control and stabilization design. Finally, for control design in fluid
or electromagnetic systems where modes are difficult if not impossible to find and where
finite element approximations result in really large (N on the order of 10,000-100,000)
approximating systems, POD based methods offer even more exciting possibilities
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Figure 4: Displacements at & = 0.11075 m; (a) Full Order (b) 2 POD (c¢) 3 POD
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