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1. Introduction

Optimal control problems for partial differential equation are often hard to
tackle numerically because their discretization leads to very large scale opti-
mization problems. Therefore, different techniques of model reduction were
developed to approximate these problems by smaller ones that are tractable
with less effort.

Balanced truncation [2, 66, 81] is one well studied model reduction tech-
nique for state-space systems. This method utilizes the solutions to two Lya-
punov equations, the so-called controllability and observability Gramians.
The balanced truncation method is based on transforming the state-space
system into a balanced form so that its controllability and observability
Gramians become diagonal and equal. Moreover, the states that are difficult
to reach or to observe, are truncated. The advantage of this method is that it
preserves the asymptotic stability in the reduced-order system. Furthermore,
a-priori error bounds are available. Recently, the theory of balanced trunca-
tion model reduction was extended to descriptor systems; see, e.g., [50] and
[21].

Recently the application of reduced-order models to linear time varying
and nonlinear systems, in particular to nonlinear control systems, has received
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an increasing amount of attention. The reduced-order approach is based on
projecting the dynamical system onto subspaces consisting of basis elements
that contain characteristics of the expected solution. This is in contrast to,
e.g., finite element techniques (see, e.g., [7], where the basis elements of the
subspaces do not relate to the physical properties of the system that they ap-
proximate. The reduced basis (RB) method, as developed in [20, 56] and [32],
is one such reduced-order method, where the basis elements correspond to the
dynamics of expected control regimes. Let us refer to the [14, 23, 51, 55] for
the successful use of reduced basis method in PDE constrained optimization
problems. Currently, Proper orthogonal decomposition (POD) is probably the
mostly used and most successful model reduction technique for nonlinear op-
timal control problems, where the basis functions contain information from
the solutions of the dynamical system at pre-specified time-instances, so-
called snapshots; see, e.g., [8, 31, 69, 77]. Due to a possible linear dependence
or almost linear dependence the snapshots themselves are not appropriate as
a basis. Hence a singular value decomposition is carried out and the leading
generalized eigenfunctions are chosen as a basis, referred to as the POD ba-
sis. POD is successfully used in a variety of fields including fluid dynamics,
coherent structures [1, 3] and inverse problems [6]. Moreover in [5] POD is
successfully applied to compute reduced-order controllers. The relationship
between POD and balancing was considered in [46, 63, 79]. An error analysis
for nonlinear dynamical systems in finite dimensions were carried out in [60]
and a missing point estimation in models described by POD was studied in
[4].

Reduced order models are used in PDE-constrained optimization in var-
ious ways; see, e.g., [28, 65] for a survey. In optimal control problems it is
sometimes necessary to compute a feedback control law instead of a fixed opti-
mal control. In the implementation of these feedback laws models of reduced-
order can play an important and very useful role, see [5, 45, 48, 61]. Another
useful application is the use in optimization problems, where a PDE solver
is part of the function evaluation. Obviously, thinking of a gradient evalu-
ation or even a step-size rule in the optimization algorithm, an expensive
function evaluation leads to an enormous amount of computing time. Here,
the reduced-order model can replace the system given by a PDE in the ob-
jective function. It is quite common that a PDE can be replaced by a five- or
ten-dimensional system of ordinary differential equations. This results com-
putationally in a very fast method for optimization compared to the effort
for the computation of a single solution of a PDE. There is a large amount
of literature in engineering applications in this regard, we mention only the
papers [49, 52]. Recent applications can also be found in finance using the
RB model [58] and the POD model [64, 67] in the context of calibration for
models in option pricing.

In the present work we use POD for deriving low order models of dy-
namical systems. These low order models then serve as surrogates for the dy-
namical system in the optimization process. We consider a linear-quadratic
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optimal control problem in an abstract setting and prove error estimates for
the POD Galerkin approximations of the optimal control. This is achieved by
combining techniques from [11, 12, 25] and [40, 41]. For nonlinear problems
we refer the reader to [28, 57, 65]. However, unless the snapshots are generat-
ing a sufficiently rich state space or are computed from the exact (unknown)
optimal controls, it is not a-priorly clear how far the optimal solution of the
POD problem is from the exact one. On the other hand, the POD method is a
universal tool that is applicable also to problems with time-dependent coeffi-
cients or to nonlinear equations. Moreover, by generating snapshots from the
real (large) model, a space is constructed that inhibits the main and relevant
physical properties of the state system. This, and its ease of use makes POD
very competitive in practical use, despite of a certain heuristic flavor. In this
work, we review results for a POD a-posteriori analysis; see, e.g., [73] and
[18, 35, 36, 70, 71, 76, 78]. We use a fairly standard perturbation method to
deduce how far the suboptimal control, computed on the basis of the POD
model, is from the (unknown) exact one. This idea turned out to be very
efficient in our examples. It is able to compensate for the lack of a priori
analysis for POD methods. Let us also refer to the papers [13, 19, 51], where
a-posteriori error bounds are computed for linear-quadratic optimal control
problems approximated by the reduced basis method.

The manuscript is organised in the following manner: In Section 2 we
introduce the method of POD in real, separable Hilbert spaces and discuss its
relationship to the singular value decomposition. We distinguish between two
versions of the POD method: the discrete and the continuous one. Reduced-
order modelling with POD is carried out in Section 3. The error between
the exact solution and its POD approximation is investigated by an a-priori
error analysis. In Section 4 we study quadratic optimal control problems gov-
erned by linear evolution problems and bilateral inequality constraints. These
problems are infinite dimensional, convex optimization problems. Their op-
timal solutions are characterised by first-order optimality conditions. POD
Galerkin discretizations of the optimality conditions are introduced and anal-
ysed. By an a-priori error analysis the error of the exact optimal control and
its POD suboptimal approximation is estimated. For the error control in the
numerical realisations we make use of an a-posteriori error analysis, which
turns out to be very efficient in our numerical examples, which are presented
in Section 5.

2. The POD method

Throughout we suppose that X is a real Hilbert space endowed with the

inner product 〈· , ·〉X and the associated induced norm ‖ · ‖X = 〈· , ·〉1/2X .
Furthermore, we assume that X is separable, i.e., X has a countable dense
subset. This implies that X posesses a countable orthonormal basis; see, e.g.,
[62, p. 47]. For the POD method in complex Hilbert spaces we refer to [75],
for instance.
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2.1. The discrete variant of the POD method

For fixed n, ℘ ∈ N let the so-called snapshots yk1 , . . . , y
k
n ∈ X be given for

1 ≤ k ≤ ℘. To avoid a trivial case we suppose that at least one of the ykj ’s is
nonzero. Then, we introduce the finite dimensional, linear subspace

Vn = span
{
ykj | 1 ≤ j ≤ n and 1 ≤ k ≤ ℘

}
⊂ X (2.1)

with dimension dn ∈ {1, . . . , n℘} <∞. We call the set Vn snapshot subspace.
In Section 2.3 we consider the case, where the number n is varied. Therefore,
we emphasize this dependence by using the super index n. We distinguish
two cases:

1) The separable Hilbert space X has finite dimension m. Then, X is iso-
morphic to R

m; see, e.g., [62, p. 47]. We set I = {1, . . . ,m}. Clearly, we
have dn ≤ min(n℘,m).

2) Since X is separable, each orthonormal basis of X has countably many
elements. In this case X is isomorphic to the set ℓ2 of sequences {xi}i∈N

of real numbers which satisfy
∑∞
i=1 |xi|2 < ∞; see [62, p. 47], for in-

stance. Then, we define I = N.

The method of POD consists in choosing a complete orthonormal basis
{ψi}i∈I in X such that for every ℓ ∈ {1, . . . , dn} the mean square error
between the n℘ elements ykj and their corresponding ℓ-th partial Fourier sum
is minimized on average:





min

℘∑

k=1

n∑

j=1

αnj

∥∥∥ykj −
ℓ∑

i=1

〈ykj , ψi〉X ψi
∥∥∥
2

X

s.t. {ψi}ℓi=1 ⊂ X and 〈ψi, ψj〉X = δij , 1 ≤ i, j ≤ ℓ,

(Pℓ
n)

where the αnj ’s denote positive weighting parameters. Here, the symbol δij
denotes the Kronecker symbol satisfying δii = 1 and δij = 0 for i 6= j. An
optimal solution {ψ̄ni }ℓi=1 to (Pℓ

n) is called a POD basis of rank ℓ. Notice that

∥∥∥ykj −
ℓ∑

i=1

〈ykj , ψi〉X ψi
∥∥∥
2

X

=
〈
ykj −

ℓ∑

i=1

〈ykj , ψi〉X ψi, y
k
j −

ℓ∑

l=1

〈ykj , ψl〉X ψl
〉

X

= ‖ykj ‖
2

X
− 2

ℓ∑

i=1

〈ykj , ψi〉
2

X
+

ℓ∑

i=1

ℓ∑

l=1

〈ykj , ψi〉X〈ykj , ψl〉X〈ψi, ψl〉X

= ‖ykj ‖
2

X
−

ℓ∑

i=1

〈ykj , ψi〉
2

X

(2.2)
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holds for any set {ψi}ℓi=1 ⊂ X satisfying 〈ψi, ψj〉X = δij . Thus, (Pℓ
n) is

equivalent with the maximization problem




max

℘∑

k=1

n∑

j=1

αnj

ℓ∑

i=1

〈ykj , ψi〉
2

X

s.t. {ψi}ℓi=1 ⊂ X and 〈ψi, ψj〉X = δij , 1 ≤ i, j ≤ ℓ.

(P̂ℓ
n)

Suppose that {ψi}i∈I is a complete orthonormal basis in X. Since X is sep-
arable, any ykj ∈ X, 1 ≤ j ≤ n and 1 ≤ k ≤ ℘, can be written as

ykj =
∑

i∈I

〈ykj , ψi〉X ψi (2.3)

and the (probably infinite) sum converges for all snapshots (even for all ele-
ments in X). Thus, the POD basis {ψ̄ni }ℓi=1 of rank ℓ maximizes the absolute
values of the first ℓ Fourier coefficients 〈ykj , ψi〉X for all n℘ snapshots ykj in
an average sense. Let us recall the following definition for linear operators in
Banach spaces.

Definition 2.1. Let B1, B2 be two real Banach spaces. The operator T : B1 →
B2 is called a linear, bounded operator if these conditions are satisfied:

1) T (αu+ βv) = αT u+ βT v for all α, β ∈ R and u, v ∈ B1.
2) There exists a constant c > 0 such that ‖T u‖B2 ≤ c ‖u‖B1 for all u ∈

B1.

The set of all linear, bounded operators from B1 to B2 is denoted by L(B1,B2)
which is a Banach space equipped with the operator norm [62, pp. 69-70]

‖T ‖
L(B1,B2)

= sup
‖u‖B1

=1

‖T ‖
B2

for T ∈ L(B1,B2).

If B1 = B2 holds, we briefly write L(B1) instead of L(B1,B2). The dual
mapping T ′ : B′

2 → B′
1 of an operator T ∈ L(B1,B2) is defined as

〈T ′f, u〉
B′

1,B1
= 〈f, T u〉

B′
2,B2

for all (u, f) ∈ B1 ×B′
2,

where, for instance, 〈· , ·〉B′
1,B1

denotes the dual pairing of the space B1 with
its dual space B′

1 = L(B1,R).

LetH1 andH2 denote two real Hilbert spaces. For a given T ∈ L(H1,H2)
the adjoint operator T ⋆ : H2 → H1 is uniquely defined by

〈T ⋆v, u〉
H1

= 〈v, T u〉
H2

= 〈T u, v〉
H2

for all (u, v) ∈ H1 ×H2.

Let Ji : Hi → H′
i, i = 1, 2, denote the Riesz isomorphisms satisfying

〈u, v〉
Hi

= 〈Jiu, v〉H′

i,Hi
for all v ∈ Hi.

Then, we have the representation T ⋆ = J−1
1 T ′J2; see [72, p. 186]. Moreover,

(T ⋆)⋆ = T for every T ∈ L(H1,H2). If T = T ⋆ holds, T is said to be
selfadjoint. The operator T ∈ L(H1,H2) is called nonnegative if 〈T u, u〉H2

≥
0 for all u ∈ H1. Finally, T ∈ L(H1,H2) is called compact if for every bounded
sequence {un}n∈N ⊂ H1 the sequence {T un}n∈N ⊂ H2 contains a convergent
subsequence.
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Now we turn to (Pℓ
n) and (P̂ℓ

n). We make use of the following lemma.

Lemma 2.2. Let X be a (separable) real Hilbert space and yk1 , . . . , y
k
n ∈ X are

given snapshots for 1 ≤ k ≤ ℘. Define the linear operator Rn : X → X as
follows:

Rnψ =

℘∑

k=1

n∑

j=1

αnj 〈ψ, ykj 〉X y
k
j for ψ ∈ X (2.4)

with positive weights αn1 , . . . , α
n
n. Then, Rn is a compact, nonnegative and

selfadjoint operator.

Proof. It is clear that Rn is a linear operator. From

‖Rnψ‖X ≤
℘∑

k=1

n∑

j=1

αnj
∣∣〈ψ, ykj 〉X

∣∣ ‖ykj ‖X for ψ ∈ X

and the Cauchy-Schwarz inequality [62, p. 38]
∣∣〈ϕ, φ〉X

∣∣ ≤ ‖ϕ‖X‖φ‖X for ϕ, φ ∈ X

we conclude that Rn is bounded. Since Rnψ ∈ Vn holds for all ψ ∈ X, the
range of Rn is finite dimensional. Thus, Rn is a finite rank operator which
is compact; see [62, p. 199]. Next we show that Rn is nonnegative. For that
purpose we choose an arbitrary element ψ ∈ X and consider

〈Rnψ,ψ〉X =

℘∑

k=1

n∑

j=1

αnj 〈ψ, ykj 〉X 〈ykj , ψ〉X =

℘∑

k=1

n∑

j=1

αnj 〈ψ, ykj 〉
2

X
≥ 0.

Thus, Rn is nonnegative. For any ψ, ψ̃ ∈ X we derive

〈Rnψ, ψ̃〉X =

℘∑

k=1

n∑

j=1

αnj 〈ψ, ykj 〉X 〈ykj , ψ̃〉X =

℘∑

k=1

n∑

j=1

αnj 〈ψ̃, ykj 〉X 〈ykj , ψ〉X

= 〈Rnψ̃, ψ〉X = 〈ψ,Rnψ̃〉X .
Thus, Rn is selfadjoint. �

Next we recall some important results from the spectral theory of oper-
ators (on infinite dimensional spaces). We begin with the following definition;
see [62, Section VI.3].

Definition 2.3. Let H be a real Hilbert space and T ∈ L(H).

1) A complex number λ belongs to the resolvent set ρ(T ) if λI − T is a
bijection with a bounded inverse. Here, I ∈ L(H) stands for the identity
operator. If λ 6∈ ρ(T ), then λ is an element of the spectrum σ(T ) of T .

2) Let u 6= 0 be a vector with T u = λu for some λ ∈ C. Then, u is said
to be an eigenvector of T . We call λ the corresponding eigenvalue. If λ
is an eigenvalue, then λI − T is not injective. This implies λ ∈ σ(T ).
The set of all eigenvalues is called the point spectrum of T .

We will make use of the next two essential theorems for compact oper-
ators; see [62, p. 203].
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Theorem 2.4 (Riesz-Schauder). Let H be a real Hilbert space and T : H → H

a linear, compact operator. Then the spectrum σ(T ) is a discrete set having
no limit points except perhaps 0. Furthermore, the space of eigenvectors cor-
responding to each nonzero λ ∈ σ(T ) is finite dimensional.

Theorem 2.5 (Hilbert-Schmidt). Let H be a real separable Hilbert space and
T : H → H a linear, compact, selfadjoint operator. Then, there is a se-
quence of eigenvalues {λi}i∈I and of an associated complete orthonormal ba-
sis {ψi}i∈I ⊂ X satisfying

T ψi = λiψi and λi → 0 as i→ ∞.

Since X is a separable real Hilbert space and Rn : X → X is a linear,
compact, nonnegative, selfadjoint operator (see Lemma2.2), we can utilize
Theorems 2.4 and 2.5: there exist a complete countable orthonormal basis
{ψ̄ni }i∈I and a corresponding sequence of real eigenvalues {λ̄ni }i∈I satisfying

Rnψ̄ni = λ̄ni ψ̄
n
i , λ̄n1 ≥ . . . ≥ λ̄dn > λ̄dn+1 = . . . = 0. (2.5)

The spectrum of Rn is a pure point spectrum except for possibly 0. Each
nonzero eigenvalue of Rn has finite multiplicity and 0 is the only possible
accumulation point of the spectrum of Rn.

Remark 2.6. From (2.4), (2.5) and ‖ψ‖X = 1 we infer that
℘∑

k=1

n∑

j=1

αnj 〈ykj , ψ̄ni 〉
2

X
=

〈 ℘∑

k=1

n∑

j=1

αnj 〈ykj , ψ̄ni 〉Xy
k
j , ψ̄

n
i

〉

X

= 〈Rnψ̄ni , ψ̄
n
i 〉X = λ̄ni for any i ∈ I.

(2.6)

In particular, it follows that
℘∑

k=1

n∑

j=1

αnj 〈ykj , ψ̄ni 〉
2

X
= 0 for all i > dn. (2.7)

Since {ψ̄ni }i∈I is a complete orthonormal basis and ‖ykj ‖X < ∞ holds for
1 ≤ k ≤ ℘, 1 ≤ j ≤ n, we derive from (2.6) and (2.7) that

℘∑

k=1

n∑

j=1

αnj ‖ykj ‖
2

X
=

℘∑

k=1

n∑

j=1

αnj
∑

ν∈I

〈ykj , ψ̄nν 〉
2

X

=
∑

ν∈I

℘∑

k=1

n∑

j=1

αnj 〈ykj , ψ̄nν 〉
2

X
=
∑

i∈I

λ̄ni =

dn∑

i=1

λ̄ni .

(2.8)

By (2.8) the (probably infinite) sum
∑
i∈I

λ̄ni is bounded. It follows from (2.2)

that the objective of (Pℓ
n) can be written as

℘∑

k=1

n∑

j=1

αnj

∥∥∥ykj −
ℓ∑

i=1

〈ykj , ψi〉X ψi
∥∥∥
2

X
=

dn∑

i=1

λ̄ni −
℘∑

k=1

n∑

j=1

αnj

ℓ∑

i=1

〈ykj , ψi〉
2

X
(2.9)

which we will use in the proof of Theorem 2.7. ♦

Now we can formulate the main result for (Pℓ
n) and (P̂ℓ

n).
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Theorem 2.7. Let X be a separable real Hilbert space, yk1 , . . . , y
k
n ∈ X for

1 ≤ k ≤ ℘ and Rn : X → X be defined by (2.4). Suppose that {λ̄ni }i∈I

and {ψ̄ni }i∈I denote the nonnegative eigenvalues and associated orthonormal
eigenfunctions of Rn satisfying (2.5). Then, for every ℓ ∈ {1, . . . , dn} the

first ℓ eigenfunctions {ψ̄ni }ℓi=1 solve (Pℓ
n) and (P̂ℓ

n). Moreover, the value of
the cost evaluated at the optimal solution {ψ̄ni }ℓi=1 satisfies

℘∑

k=1

n∑

j=1

αnj

∥∥∥ykj −
ℓ∑

i=1

〈ykj , ψ̄ni 〉X ψ̄
n
i

∥∥∥
2

X
=

dn∑

i=ℓ+1

λ̄ni (2.10)

and

℘∑

k=1

n∑

j=1

αnj

ℓ∑

i=1

〈ykj , ψ̄ni 〉
2

X
=

ℓ∑

i=1

λ̄ni . (2.11)

Proof. We prove the claim for (P̂ℓ
n) by finite induction over ℓ ∈ {1, . . . , dn}.

1) The base case: Let ℓ = 1 and ψ ∈ X with ‖ψ‖X = 1. Since {ψ̄nν }ν∈I is
a complete orthonormal basis in X, we have the representation

ψ =
∑

ν∈I

〈ψ, ψ̄nν 〉X ψ̄nν . (2.12)

Inserting this expression for ψ in the objective of (P̂ℓ
n) we find that

℘∑

k=1

n∑

j=1

αnj 〈ykj , ψ〉
2

X
=

℘∑

k=1

n∑

j=1

αnj

〈
ykj ,
∑

ν∈I

〈ψ, ψ̄nν 〉X ψ̄nν
〉2
X

=

℘∑

k=1

n∑

j=1

αnj
∑

ν∈I

∑

µ∈I

(〈
ykj , 〈ψ, ψ̄nν 〉X ψ̄nν

〉
X

〈
ykj , 〈ψ, ψ̄nµ〉X ψ̄

n
µ

〉
X

)

=

℘∑

k=1

n∑

j=1

αnj
∑

ν∈I

∑

µ∈I

(
〈ykj , ψ̄nν 〉X〈ykj , ψ̄nµ〉X〈ψ, ψ̄nν 〉X〈ψ, ψ̄nµ〉X

)

=
∑

ν∈I

∑

µ∈I

(〈 ℘∑

k=1

n∑

j=1

αnj 〈ykj , ψ̄nν 〉X y
k
j , ψ̄

n
µ

〉

X
〈ψ, ψ̄nν 〉X〈ψ, ψ̄nµ〉X

)
.

Utilizing (2.4), (2.5) and ‖ψ̄nν ‖X = 1 we find that

℘∑

k=1

n∑

j=1

αnj 〈ykj , ψ〉
2

X
=
∑

ν∈I

∑

µ∈I

(
〈λ̄nν ψ̄nν , ψ̄nµ〉X〈ψ, ψ̄nν 〉X〈ψ, ψ̄nµ〉X

)

=
∑

ν∈I

λ̄nν 〈ψ, ψ̄nν 〉
2

X .
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From λ̄n1 ≥ λ̄nν for all ν ∈ I and (2.6) we infer that
∑

ν∈I

λ̄nν 〈ψ, ψ̄nν 〉
2

X ≤ λ̄n1
∑

ν∈I

〈ψ, ψ̄nν 〉
2

X = λ̄n1 ‖ψ‖2X = λ̄n1

=

℘∑

k=1

n∑

j=1

αnj 〈ykj , ψ̄n1 〉
2

X
,

i.e., ψ̄n1 solves (P̂ℓ
n) for ℓ = 1 and (2.11) holds. This gives the base case.

Notice that (2.9) and (2.11) imply (2.10).
2) The induction hypothesis: Now we suppose that




for any ℓ ∈ {1, . . . , dn − 1} the set {ψ̄ni }ℓi=1 ⊂ X solve (P̂ℓ
n)

and

℘∑

k=1

n∑

j=1

αnj

ℓ∑

i=1

〈ykj , ψ̄ni 〉
2

X
=

ℓ∑

i=1

λ̄ni .
(2.13)

3) The induction step: We consider




max

℘∑

k=1

n∑

j=1

αnj

ℓ+1∑

i=1

〈ykj , ψi〉
2

X

s.t. {ψi}ℓ+1
i=1 ⊂ X and 〈ψi, ψj〉X = δij , 1 ≤ i, j ≤ ℓ+ 1.

(P̂ℓ+1
n )

By (2.13) the elements {ψ̄ni }ℓi=1 maximize the term

℘∑

k=1

n∑

j=1

αnj

ℓ∑

i=1

〈ykj , ψi〉
2

X
.

Thus, (P̂ℓ+1
n ) is equivalent with





max

℘∑

k=1

n∑

j=1

αnj 〈ykj , ψ〉
2

X

s.t. ψ ∈ X and ‖ψ‖X = 1, 〈ψ, ψ̄ni 〉X = 0, 1 ≤ i ≤ ℓ.

(2.14)

Let ψ ∈ X be given satisfying ‖ψ‖X = 1 and 〈ψ, ψ̄ni 〉X = 0 for i =
1 . . . , ℓ. Then, using the representation (2.12) and 〈ψ, ψ̄ni 〉X = 0 for
i = 1 . . . , ℓ, we derive as above

℘∑

k=1

n∑

j=1

αnj 〈ykj , ψ〉
2

X
=
∑

ν∈I

λ̄nν 〈ψ, ψ̄nν 〉
2

X =
∑

ν>ℓ

λ̄nν 〈ψ, ψ̄nν 〉
2

X .

From λ̄nℓ+1 ≥ λ̄nν for all ν ≥ ℓ+ 1 and (2.6) we conclude that

℘∑

k=1

n∑

j=1

αnj 〈ykj , ψ〉
2

X
≤ λ̄nℓ+1

∑

ν>ℓ

〈ψ, ψ̄nν 〉
2

X ≤ λ̄nℓ+1

∑

ν∈I

〈ψ, ψ̄nν 〉
2

X

= λ̄nℓ+1 ‖ψ‖2X = λ̄nℓ+1 =

℘∑

k=1

n∑

j=1

αnj 〈ykj , ψ̄nℓ+1〉
2

X
.
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Thus, ψ̄nℓ+1 solves (2.14), which implies that {ψ̄ni }ℓ+1
i=1 is a solution to

(P̂ℓ+1
n ) and

℘∑

k=1

n∑

j=1

αnj

ℓ+1∑

i=1

〈ykj , ψ̄ni 〉
2

X
=

ℓ+1∑

i=1

λ̄ni .

Again, (2.9) and (2.11) imply (2.10).

�

Remark 2.8. Theorem 2.7 can also be proved by using the theory of nonlin-
ear programming; see [31, 75], for instance. In this case (P̂ℓ

n) is considered as
an equality constrained optimization problem. Applying a Lagrangian frame-
work it turns out that (2.5) are first-order necessary optimality conditions

for (P̂ℓ
n). ♦

For the application of POD to concrete problems the choice of ℓ is cer-
tainly of central importance for applying POD. It appears that no general
a-priori rules are available. Rather the choice of ℓ is based on heuristic con-
siderations combined with observing the ratio of the modeled to the “total
energy” contained in the snapshots yk1 , . . . , y

k
n, 1 ≤ k ≤ ℘, which is expressed

by

E(ℓ) =
∑ℓ
i=1 λ̄

n
i∑dn

i=1 λ̄
n
i

∈ [0, 1].

Utilizing (2.8) we have

E(ℓ) =
∑ℓ
i=1 λ̄

n
i∑℘

k=1

∑n
j=1 α

n
j ‖ykj ‖

2

X

,

i.e., the computation of the eigenvalues {λ̄i}di=ℓ+1 is not necessary. This is
utilized in numerical implementations when iterative eigenvalue solver are
applied like, e.g., the Lanczos method; see [2, Chapter 10], for instance.

In the following we will discuss three examples which illustrate that
POD is strongly related to the singular value decomposition of matrices.

Remark 2.9 (POD in Euclidean space R
m; see [39]). Suppose that X = R

m

with m ∈ N and ℘ = 1 hold. Then we have n snapshot vectors y1, . . . , yn
and introduce the rectangular matrix Y = [y1 | . . . | yn] ∈ R

m×n with rank
dn ≤ min(m,n). Choosing αnj = 1 for 1 ≤ j ≤ n problem (Pℓ

n) has the form




min
n∑

j=1

∥∥∥yj −
ℓ∑

i=1

(
y⊤j ψi

)
ψi

∥∥∥
2

Rm

s.t. {ψi}ℓi=1 ⊂ R
m and ψ⊤

i ψj = δij , 1 ≤ i, j ≤ ℓ,

(2.15)

where ‖ · ‖Rm stands for the Euclidean norm in R
m and “⊤” denotes the

transpose of a given vector (or matrix). From

(
Rnψ

)
i
=
( n∑

j=1

(
y⊤j ψ

)
yj

)

i
=

n∑

j=1

m∑

l=1

YljψlYij =
(
Y Y ⊤ψ

)
i
, ψ ∈ R

m,
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for each component 1 ≤ i ≤ m we infer that (2.5) leads to the symmetric
m×m eigenvalue problem

Y Y ⊤ψ̄ni = λ̄ni ψ̄
n
i , λ̄n1 ≥ . . . ≥ λ̄ndn > λ̄ndn+1 = . . . = λ̄nm = 0. (2.16)

Recall that (2.16) can be solved by utilizing the singular value decomposition
(SVD) [53]: There exist real numbers σ̄n1 ≥ σ̄n2 ≥ . . . ≥ σ̄ndn > 0 and orthog-
onal matrices Ψ ∈ R

m×m with column vectors {ψ̄ni }mi=1 and Φ ∈ R
n×n with

column vectors {φ̄ni }ni=1 such that

Ψ⊤Y Φ =

(
D 0
0 0

)
=: Σ ∈ R

m×n, (2.17)

where D = diag (σ̄n1 , . . . , σ̄
n
dn) ∈ R

d×d and the zeros in (2.17) denote matrices
of appropriate dimensions. Moreover the vectors {ψ̄ni }di=1 and {φ̄ni }di=1 satisfy

Y φ̄ni = σ̄ni ψ̄
n
i and Y ⊤ψ̄ni = σ̄ni φ̄

n
i for i = 1, . . . , dn. (2.18)

They are eigenvectors of Y Y ⊤ and Y ⊤Y , respectively, with eigenvalues λ̄ni =
(σ̄ni )

2 > 0, i = 1, . . . , dn. The vectors {ψ̄ni }mi=dn+1 and {φ̄ni }ni=dn+1 (if dn < m

respectively dn < n) are eigenvectors of Y Y ⊤ and Y ⊤Y with eigenvalue 0.
Consequently, in the case n < m one can determine the POD basis of rank ℓ as
follows: Compute the eigenvectors φ̄n1 , . . . , φ̄

n
ℓ ∈ R

n by solving the symmetric
n× n eigenvalue problem

Y ⊤Y φ̄ni = λ̄ni φ̄
n
i for i = 1, . . . , ℓ

and set, by (2.18),

ψ̄ni =
1

(λ̄ni )
1/2

Y φ̄ni for i = 1, . . . , ℓ.

For historical reasons this method of determing the POD-basis is sometimes
called the method of snapshots; see [69]. On the other hand, if m < n holds,
we can obtain the POD basis by solving them×m eigenvalue problem (2.16).
If the matrix Y is badly scaled, we should avoid to build the matrix product
Y Y ⊤ (or Y ⊤Y ). In this case the SVD turns out to be more stable for the
numerical computation of the POD basis of rank ℓ. ♦

Remark 2.10 (POD in R
m with weighted inner product). As in Remark 2.9

we choose X = R
m with m ∈ R

m and ℘ = 1. Let W ∈ R
m×m be a given

symmetric, positive definite matrix. We supply R
m with the weighted inner

product

〈ψ, ψ̃〉W = ψ⊤Wψ̃ = 〈ψ,Wψ̃〉
Rm = 〈Wψ, ψ̃〉

Rm for ψ, ψ̃ ∈ R
m.

Then, problem (Pℓ
n) has the form





min

n∑

j=1

αnj

∥∥∥yj −
ℓ∑

i=1

〈yj , ψi〉W ψi

∥∥∥
2

W

s.t. {ψi}ℓi=1 ⊂ R
m and 〈ψi, ψj〉W = δij , 1 ≤ i, j ≤ ℓ.
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As in Remark 2.9 we introduce the matrix Y = [y1 | . . . | yn] ∈ R
m×n with

rank dn ≤ min(m,n). Moreover, we define the diagonal matrix D = diag (αn1 ,
. . . , αnn) ∈ R

n×n. We find that

(
Rnψ

)
i
=
( n∑

j=1

αnj 〈yj , ψ〉W yj

)

i
=

n∑

j=1

m∑

l=1

m∑

ν=1

αnj YljWlνψνYij

=
(
Y DY ⊤Wψ

)
i

for ψ ∈ R
m,

for each component 1 ≤ i ≤ m. Consequently, (2.5) leads to the eigenvalue
problem

Y DY ⊤Wψ̄ni = λ̄ni ψ̄
n
i , λ̄n1 ≥ . . . ≥ λ̄ndn > λ̄ndn+1 = . . . = λ̄nm = 0. (2.19)

Since W is symmetric and positive definite, W possesses an eigenvalue de-
composition of the form W = QBQ⊤, where B = diag (β1, . . . , βm) contains
the eigenvalues β1 ≥ . . . ≥ βm > 0 of W and Q ∈ R

m×m is an orthogonal
matrix. We define

W r = Qdiag (βr1 , . . . , β
r
m)Q⊤ for r ∈ R.

Note that (W r)−1 = W−r and W r+s = W rW s for r, s ∈ R. Moreover, we
have

〈ψ, ψ̃〉W = 〈W 1/2ψ,W 1/2ψ̃〉
Rm for ψ, ψ̃ ∈ R

m

and ‖ψ‖W = ‖W 1/2ψ‖Rm for ψ ∈ R
m. Analogously, the matrix D1/2 is

defined. Inserting ψni = W 1/2ψ̄ni in (2.19), multiplying (2.19) by W 1/2 from

the left and setting Ŷ = W 1/2Y D1/2 yield the symmetric m×m eigenvalue
problem

Ŷ Ŷ ⊤ψni = λ̄ni ψ
n
i , 1 ≤ i ≤ ℓ.

Note that
Ŷ ⊤Ŷ = D1/2Y ⊤WYD1/2 ∈ R

n×n. (2.20)

Thus, the POD basis {ψ̄ni }ℓi=1 of rank ℓ can also be computed by the methods
of snapshots as follows: First solve the symmetric n× n eigenvalue problem

Ŷ ⊤Ŷ φni = λ̄ni φ
n
i , 1 ≤ i ≤ ℓ and 〈φni , φnj 〉Rn

= δij , 1 ≤ i, j ≤ ℓ.

Then we set (by using the SVD of Ŷ )

ψ̄ni =W−1/2ψni =
1

σ̄ni
W−1/2Ŷ φni =

1

σ̄ni
Y D1/2φni , 1 ≤ i ≤ ℓ. (2.21)

Note that

〈ψ̄ni , ψ̄nj 〉W = (ψ̄ni )
⊤Wψ̄nj =

1

σ̄ni σ̄
n
j

(φni )
⊤D1/2Y ⊤WYD1/2
︸ ︷︷ ︸

=Ŷ ⊤Ŷ

φnj = δij

for 1 ≤ i, j ≤ ℓ. Thus, the POD basis {ψ̄ni }ℓi=1 of rank ℓ is orthonormal in R
m

with respect to the inner product 〈· , ·〉W . We observe from (2.20) and (2.21)
that the computation of W 1/2 and W−1/2 is not required. For applications,
where W is not just a diagonal matrix, the method of snapshots turns out
to be more attractive with respect to the computational costs even if m > n
holds. ♦
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Remark 2.11 (POD in R
m with multiple snapshots). Let us discuss the more

general case ℘ = 2 in the setting of Remark 2.10. The extension for ℘ > 2
is straightforward. We introduce the matrix Y = [y11 | . . . | y1n | y21 | . . . |y2n] ∈
R
m×(n℘) with rank dn ≤ min(m,n℘). Then we find

Rnψ =

n∑

j=1

(
αnj 〈y1j , ψ〉W y1j + αnj 〈y2j , ψ〉W y2j

)

= Y

(
D 0
0 D

)

︸ ︷︷ ︸
=:D̃∈R(n℘)×(n℘)

Y ⊤Wψ = Y D̃Y ⊤Wψ for ψ ∈ R
m.

Hence, (2.5) corresponds to the eigenvalue problem

Y D̃Y ⊤Wψ̄ni = λ̄ni ψ̄
n
i , λ̄n1 ≥ . . . ≥ λ̄ndn > λ̄ndn+1 = . . . = λ̄nm = 0. (2.22)

Setting ψni =W 1/2ψ̄ni in (2.22) and multiplying by W 1/2 from the left yield

W 1/2Y D̃Y ⊤W 1/2ψni = λ̄ni ψ
n
i . (2.23)

Let Ŷ =W 1/2Y D̃1/2 ∈ R
m×(n℘). UsingW⊤ =W as well as D̃⊤ = D̃ we infer

from (2.23) that the POD basis {ψ̄ni }ℓi=1 of rank ℓ is given by the symmetric
m×m eigenvalue problem

Ŷ Ŷ ⊤ψni = λ̄ni ψ
n
i , 1 ≤ i ≤ ℓ, and 〈ψni , ψnj 〉Rm

= δij , 1 ≤ i, j ≤ ℓ

and ψ̄ni =W−1/2ψni . Note that

Ŷ ⊤Ŷ = D̃1/2Y ⊤WY D̃1/2 ∈ R
(n℘)×(n℘).

Thus, the POD basis of rank ℓ can also be computed by the methods of snap-
shots as follows: First solve the symmetric (n℘)× (n℘) eigenvalue problem

Ŷ ⊤Ŷ φni = λ̄ni φi, 1 ≤ i ≤ ℓ and 〈φni , φnj 〉Rn℘
= δij , 1 ≤ i, j ≤ ℓ.

Then we set (by SVD)

ψ̄ni =W−1/2ψni =
1

σ̄ni
W−1/2Ŷ φni =

1

σ̄ni
Y D̃1/2φni

for 1 ≤ i ≤ ℓ. ♦

2.2. The continuous variant of the POD method

Let 0 ≤ t1 < t2 < . . . < tn ≤ T be a given time grid in the interval [0, T ].
To simplify of the presentation, the time grid is assumed to be equidistant
with step-size ∆t = T/(n − 1), i.e., tj = (j − 1)∆t. For nonequidistant
grids we refer the reader to [41, 42, ]. Suppose that we have trajectories
yk ∈ C([0, T ];X), 1 ≤ k ≤ ℘. Here, the Banach space C([0, T ];X) contains
all functions ϕ : [0, T ] → X, which are continuous on [0, T ]; see, e.g., [72,
p. 142]. Let the snapshots be given as ykj = yk(tj) ∈ X or ykj ≈ yk(tj) ∈ X.
Then, the snapshot subspace Vn introduced in (2.1) depends on the chosen
time instances {tj}nj=1. Consequently, the POD basis {ψ̄ni }ℓi=1 of rank ℓ as well

as the corresponding eigenvalues {λ̄ni }ℓi=1 depend also on the time instances
(which has already been indicated by the superindex n). Moreover, we have
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not discussed so far what is the motivation to introduce the positive weights
{αnj }nj=1 in (Pℓ

n). For this reason we proceed by investigating the following
two questions:

• How to choose good time instances for the snapshots?
• What are appropriate positive weights {αnj }nj=1?

To address these two questions we will introduce a continuous version of
POD. In Section 2.1 we have introduced the operator Rn in (2.4). By {ψ̄ni }i∈I

and {λ̄ni }i∈I we have denoted the eigenfunctions and eigenvalues for Rn sat-
isfying (2.5). Moreover, we have set dn = dimVn for the dimension of the
snapshot set. Let us now introduce the snapshot set by

V = span
{
yk(t) | t ∈ [0, T ] and 1 ≤ k ≤ ℘

}
⊂ X

with dimension d ≤ ∞. For any ℓ ≤ d we are interested in determining a
POD basis of rank ℓ which minimizes the mean square error between the
trajectories yk and the corresponding ℓ-th partial Fourier sums on average in
the time interval [0, T ]:





min

℘∑

k=1

∫ T

0

∥∥∥yk(t)−
ℓ∑

i=1

〈yk(t), ψi〉X ψi
∥∥∥
2

X
dt

s.t. {ψi}ℓi=1 ⊂ X and 〈ψi, ψj〉X = δij , 1 ≤ i, j ≤ ℓ.

(Pℓ)

An optimal solution {ψ̄i}ℓi=1 to (Pℓ) is called a POD basis of rank ℓ. Analo-

gous to (P̂ℓ
n) we can – instead of (Pℓ) – consider the problem




max

℘∑

k=1

∫ T

0

ℓ∑

i=1

〈yk(t), ψi〉
2

X dt

s.t. {ψi}ℓi=1 ⊂ X and 〈ψi, ψj〉X = δij , 1 ≤ i, j ≤ ℓ.

(P̂ℓ)

A solution to (Pℓ) and to (P̂ℓ) can be characterized by an eigenvalue problem
for the linear integral operator R : X → X given as

Rψ =

℘∑

k=1

∫ T

0

〈yk(t), ψ〉X yk(t) dt for ψ ∈ X. (2.24)

For the given real Hilbert space X we denote by L2(0, T ;X) the Hilbert space
of square integrable functions t 7→ ϕ(t) ∈ X so that [72, p. 143]

• the mapping t 7→ ϕ(t) is measurable for t ∈ [0, T ] and

• ‖ϕ‖L2(0,T ;X) =
(∫ T

0

‖ϕ(t)‖2X dt
)1/2

<∞.

Recall that ϕ : [0, T ] → X is called measurable if there exists a sequence
{ϕn}n∈N of step functions ϕn : [0, T ] → X satisfying ϕ(t) = limn→∞ ϕn(t)
for almost all t ∈ [0, T ]. The standard inner product on L2(0, T ;X) is given
by

〈ϕ, ψ〉L2(0,T ;X) =

∫ T

0

〈ϕ(t), φ(t)〉X dt for ϕ, φ ∈ L2(0, T ;X).
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Lemma 2.12. Let X be a (separable) real Hilbert space and yk ∈ L2(0, T ;X),
1 ≤ k ≤ ℘, be given snapshot trajectories. Then, the operator R introduced
in (2.24) is compact, nonnegative and selfadjoint.

Proof. First we write R as a product of an operator and its Hilbert space
adjoint. For that purpose let us define the linear operator Y : L2(0, T ;R℘) →
X by

Yφ =

℘∑

k=1

∫ T

0

φk(t)yk(t) dt for φ = (φ1, . . . , φ℘) ∈ L2(0, T ;R℘). (2.25)

Utilizing the Cauchy-Schwarz inequality [62, p. 38] and yk ∈ L2(0, T ;X) for
1 ≤ k ≤ ℘ we infer that

‖Yφ‖X ≤
℘∑

k=1

∫ T

0

∣∣φk(t)
∣∣‖yk(t)‖X dt ≤

℘∑

k=1

‖φk‖L2(0,T )‖yk‖L2(0,T ;X)

≤
( ℘∑

k=1

‖φk‖2L2(0,T )

)1/2( ℘∑

k=1

‖yk(t)‖2X
)1/2

= CY ‖φ‖L2(0,T ;R℘) for any φ ∈ L2(0, T ;R℘),

where we set CY = (
∑℘
k=1 ‖yk(t)‖

2

X)1/2 < ∞. Hence, the operator Y is
bounded. Its Hilbert space adjoint Y⋆ : X → L2(0, T ;R℘) satisfies

〈Y⋆ψ, φ〉L2(0,T ;R℘) = 〈ψ,Yφ〉X for ψ ∈ X and φ ∈ L2(0, T ;R℘).

Since we derive

〈Y⋆ψ, φ〉L2(0,T ;R℘) = 〈ψ,Yφ〉X =

〈
ψ,

℘∑

k=1

∫ T

0

φk(t)yk(t) dt

〉

X

=

℘∑

k=1

∫ T

0

〈ψ, yk(t)〉Xφk(t) dt =
〈(

〈ψ, yk(·)〉X
)
1≤k≤℘

, φ
〉

L2(0,T ;R℘)

for ψ ∈ X and φ ∈ L2(0, T ;R℘), the adjoint operator is given by

(Y⋆ψ)(t) =




〈ψ, y1(t)〉X
...

〈ψ, y℘(t)〉X


 for ψ ∈ X and t ∈ [0, T ] a.e.,

where ‘a.e.’ stands for ‘almost everywhere’. From (2.4) and

(
YY⋆

)
ψ = Y




〈ψ, y1(·)〉X
...

〈ψ, y℘(·)〉X


 =

℘∑

k=1

∫ T

0

〈ψ, yk(t)〉Xyk(t) dt for ψ ∈ X
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we infer that R = YY⋆ holds. Moreover, let K = Y⋆Y : L2(0, T ;R℘) →
L2(0, T ;R℘). We find that

(
Kφ
)
(t) =




℘∑
k=1

∫ T
0
〈yk(s), y1(t)〉Xφk(s) ds

...
℘∑
k=1

∫ T
0
〈yk(s), y℘(t)〉Xφk(s) ds



, φ ∈ L2(0, T ;R℘).

Since the operator Y is bounded, its adjoint and therefore R = YY⋆ are
bounded operators. Notice that the kernel function

rik(s, t) = 〈yk(s), yi(t)〉X , (s, t) ∈ [0, T ]× [0, T ] and 1 ≤ i, k ≤ ℘,

belongs to L2(0, T )×L2(0, T ). Here, we shortly write L2(0, T ) for L2(0, T ;R).
Then, it follows from [80, pp. 197 and 277] that the linear integral operator
Kik : L2(0, T ) → L2(0, T ) defined by

Kik(t) =
∫ T

0

rik(s, t)φ(s) ds, φ ∈ L2(0, T ),

is a compact operator. This implies, that the operator
∑℘
k=1 Kik is compact

for 1 ≤ i ≤ ℘ as well. Consequently, K and therefore R = K⋆ are compact
operators. From

〈Rψ, ψ〉X =

〈 ℘∑

k=1

∫ T

0

〈ψ, yk(t)〉X yk(t) dt, ψ
〉

X

=

℘∑

k=1

∫ T

0

∣∣〈ψ, yk(t)〉X
∣∣2 dt ≥ 0 for all ψ ∈ X

we infer that R is nonnegative. Finally, we have R⋆ = (YY⋆)⋆ = R, i.e. the
operator R is selfadjoint. �

In the next theorem we formulate how the solution to (Pℓ) and (P̂ℓ)
can be found.

Theorem 2.13. Let X be a separable real Hilbert space and yk ∈ L2(0, T ;X)
are given trajectories for 1 ≤ k ≤ ℘. Suppose that the linear operator R
is defined by (2.24). Then, the exist nonnegative eigenvalues {λ̄i}i∈I and
associated orthonomal eigenfunctions {ψ̄i}i∈I satisfying

Rψ̄i = λ̄iψ̄i, λ̄1 ≥ . . . ≥ λ̄d > λ̄d+1 = . . . = 0. (2.26)

For every ℓ ∈ {1, . . . , d} the first ℓ eigenfunctions {ψ̄i}ℓi=1 solve (Pℓ) and

(P̂ℓ). Moreover, the value of the objectives evaluated at the optimal solution
{ψ̄i}ℓi=1 satisfies

℘∑

k=1

∫ T

0

∥∥∥yk(t)−
ℓ∑

i=1

〈yk(t), ψ̄i〉X ψ̄i
∥∥∥
2

X
dt =

d∑

i=ℓ+1

λ̄i (2.27)
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and
℘∑

k=1

∫ T

0

ℓ∑

i=1

〈yk(t), ψ̄i〉
2

X dt =

ℓ∑

i=1

λ̄i, (2.28)

respectively.

Proof. The existence of sequences {λ̄i}i∈I of eigenvalues and {ψ̄i}i∈I of asso-
ciated eigenfunctions satisfying (2.26) follows from Lemma 2.12, Theorem 2.4
and Theorem 2.5. Analogous to the proof of Theorem 2.7 in Section 2.1 one
can show that {ψ̄i}ℓi=1 solves (Pℓ) as well as (P̂ℓ) and that (2.27) respectively
(2.28) are valid. �

Remark 2.14. Similar to (2.6) we have

℘∑

k=1

∫ T

0

‖yk(t)‖2X dt =

d∑

i=1

λ̄i. (2.29)

In fact,

Rψ̄i =
℘∑

k=1

∫ T

0

〈yk(t), ψ̄i〉X yk(t) dt for every i ∈ I.

Taking the inner product with ψ̄i, using (2.26) and summing over i we get

d∑

i=1

℘∑

k=1

∫ T

0

〈yk(t), ψ̄i〉
2

X dt =
d∑

i=1

〈Rψ̄i, ψ̄i〉X =
d∑

i=1

λ̄i.

Expanding each yk(t) ∈ X in terms of {ψ̄i}i∈I for each 1 ≤ k ≤ ℘ we have

yk(t) =
d∑

i=1

〈yk(t), ψ̄i〉X ψ̄i

and hence
℘∑

k=1

∫ T

0

‖yk(t)‖2X dt =

℘∑

k=1

d∑

i=1

∫ T

0

〈yk(t), ψ̄i〉
2

X dt =

d∑

i=1

λ̄i,

which is (2.29). ♦

Remark 2.15 (Singular value decomposition). Suppose that yk ∈ L2(0, T ;X)
holds. By Theorem 2.13 there exist nonnegative eigenvalues {λ̄i}i∈I and as-
sociated orthonomal eigenfunctions {ψ̄i}i∈I satisfying (2.26). From K = R⋆

it follows that there is a sequence {φ̄i}i∈I such that

Kφ̄i = λ̄iφ̄i, 1 . . . , ℓ.

We set R
+
0 = {s ∈ R | s ≥ 0} and σ̄i = λ̄

1/2
i . The sequence {σ̄i, φ̄i, ψ̄i}i∈I in

R
+
0 × L2(0, T ;R℘)×X can be interpreted as a singular value decomposition

of the mapping Y : L2(0, T ;R℘) → X introduced in (2.25). In fact, we have

Yφ̄i = σ̄iψ̄i, Y⋆ψ̄i = σ̄iφ̄i, i ∈ I.

Since σ̄i > 0 holds for 1 = 1 . . . , d, we have φ̄i = λ̄i/σi for i = 1, . . . , d. ♦
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2.3. Perturbation analysis for the POD basis

The eigenvalues {λ̄ni }i∈I satisfying (2.5) depend on the time grid {tj}nj=1. In

this section we investigate the sum
∑dn

i=ℓ+1 λ̄
n
i , the value of the cost in (Pℓ

n)

evaluated at the solution {ψ̄ni }ℓi=1 for n → ∞. Clearly, n → ∞ is equivalent
with ∆t = T/(n− 1) → 0.

In general the spectrum σ(T ) of an operator T ∈ L(X) does not depend
continuously on T . This is an essential difference to the finite dimensional
case. For the compact and selfadjoint operator R we have σ(R) = {λ̄i}i∈I.
Suppose that for ℓ ∈ N we have λ̄ℓ > λ̄ℓ+1 so that we can seperate the
spectrum as follows: σ(R) = Sℓ ∪ S′ℓ with Sℓ = {λ̄1, . . . , λ̄ℓ} and S′ℓ = σ(R) \
Sℓ. Then, Sℓ ∩ S′ℓ = ∅. Moreover, setting V ℓ = span {ψ̄1, . . . , ψ̄ℓ} we have
X = V ℓ ⊕ (V ℓ)⊥, where the linear space (V ℓ)⊥ stands for the X-orthogonal
complement of V ℓ. Let us assume that

lim
n→∞

‖Rn −R‖
L(X) = 0 (2.30)

holds. Then it follows from the perturbation theory of the spectrum of linear
operators [37, pp. 212-214] that the space V ℓn = span {ψ̄n1 , . . . , ψ̄nℓ } is iso-
morphic to V ℓ if n is sufficiently large. Furthermore, the change of a finite
set of eigenvalues of R is small provided ‖Rn −R‖L(X) is sufficiently small.
Summarizing, the behavior of the spectrum is much the same as in the finite
dimensional case if we can ensure (2.30). Therefore, we start this section by
investigating the convergence of Rn −R in the operator norm.

Recall that the Sobolev space H1(0, T ;X) is given by

H1(0, T ;X) =
{
ϕ ∈ L2(0, T ;X)

∣∣ϕt ∈ L2(0, T ;X)
}
,

where ϕt denotes the weak derivative of ϕ. The space H1(0, T ;X) is a Hilbert
space with the inner product

〈ϕ, φ〉H1(0,T ;X) =

∫ T

0

〈ϕ(t), φ(t)〉X+ 〈ϕt(t), φt(t)〉X dt for ϕ, φ ∈ H1(0, T ;X)

and the induced norm ‖ϕ‖H1(0,T ;X) = 〈ϕ,ϕ〉1/2H1(0,T ;X).

Let us choose the trapezoidal weights

αn1 =
T

2(n− 1)
, αnj =

T

n− 1
for 2 ≤ j ≤ n− 1, αnn =

T

2(n− 1)
. (2.31)

For this choice we observe that for every ψ ∈ X the element Rnψ is a
trapezoidal approximation for Rψ. We will make use of the following lemma.

Lemma 2.16. Suppose that X is a (separable) real Hilbert space and that the
snapshot trajectories yk belong to H1(0, T ;X) for 1 ≤ k ≤ ℘. Then, (2.30)
holds true.

Proof. For an arbitrary ψ ∈ X with ‖ψ‖X = 1 we define F : [0, T ] → X by

F (t) =

℘∑

k=1

〈yk(t), ψ〉X yk(t) for t ∈ [0, T ].
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It follows that

Rψ =

∫ T

0

F (t) dt =

n−1∑

j=1

∫ tj+1

tj

F (t) dt,

Rnψ =

n∑

j=1

αjF (tj) =
∆t

2

n−1∑

j=1

(
F (tj) + F (tj+1)

)
.

(2.32)

Then, we infer from ‖ψ‖X = 1 that

‖F (t)‖2X ≤
( ℘∑

k=1

‖yk(t)‖2X
)2

. (2.33)

Now we show that F belongs to H1(0, T ;X) and its norm is bounded inde-
pendently of ψ. Recall that yk ∈ H1(0, T ;X) imply that yk ∈ C([0, T ];X)
holds for 1 ≤ k ≤ ℘. Using (2.33) we have

‖F‖2L2(0,T ;X) ≤
∫ T

0

( ℘∑

k=1

‖yk‖2C([0,T ];X)

)2

dt ≤ C1

with C1 = T (
∑℘
k=1 ‖yk‖2C([0,T ];X))

2. Moreover, F ∈ H1(0, T ;X) with

Ft(t) =

℘∑

k=1

〈ykt (t), ψ〉X yk(t) + 〈yk(t), ψ〉X ykt (t) f.a.a. t ∈ [0, T ],

where ‘f.a.a.’ stands for ’for almost all’. Thus, we derive

‖Ft‖2L2(0,T ;X) ≤ 4

∫ T

0

( ℘∑

k=1

‖yk(t)‖X‖ykt (t)‖X
)2

dt ≤ C2

with C2 = 4
∑℘
k=1 ‖yk‖2C([0,T ];X)

∑℘
l=1 ‖ylt‖2L2(0,T ;X) <∞. Consequently,

‖F‖H1(0,T ;X) =

(∫ T

0

‖F (t)‖2X + ‖Ft(t)‖2X dt

)1/2

≤ C3 (2.34)

with the constant C3 = (C1+C2)
1/2, which is independent of ψ. To evaluate

Rnψ we notice that
∫ tj+1

tj

F (t) dt =
1

2

∫ tj+1

tj

(
F (tj) +

∫ t

tj

Ft(s) ds
)
dt

+
1

2

∫ tj+1

tj

(
F (tj+1) +

∫ t

tj+1

Ft(s) ds
)
dt

=
∆t

2

(
F (tj) + F (tj+1)

)

+
1

2

∫ tj+1

tj

(∫ t

tj+1

Ft(s) ds+

∫ t

tj+1

Ft(s) ds
)
dt.

(2.35)
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Utilizing (2.32) and (2.35) we obtain

∥∥Rnψ −Rψ
∥∥
X

=

∥∥∥∥
n−1∑

j=1

(∆t
2

(F (tj) + F (tj+1))−
∫ tj+1

tj

F (t) dt
)∥∥∥∥

X

≤ 1

2

n−1∑

j=1

∥∥∥∥
∫ tj+1

tj

∫ t

tj

Ft(s) dsdt

∥∥∥∥
X

+
1

2

n−1∑

j=1

∥∥∥∥
∫ tj+1

tj

∫ t

tj+1

Ft(s) dsdt

∥∥∥∥
X

.

From the Cauchy-Schwarz inequality [62, p. 38] we deduce that

n−1∑

j=1

∥∥∥∥
∫ tj+1

tj

∫ t

tj

Ft(s) dsdt

∥∥∥∥
X

≤
n−1∑

j=1

∫ tj+1

tj

∥∥∥∥
∫ t

tj

Ft(s) ds

∥∥∥∥
X

dt

≤
√
∆t

n−1∑

j=1

(∫ tj+1

tj

∥∥∥
∫ t

tj

Ft(s) ds
∥∥∥
2

X
dt

)1/2

≤
√
∆t

n−1∑

j=1

(∫ tj+1

tj

(∫ t

tj

‖Ft(s)‖X ds
)2

dt

)1/2

≤ ∆t

n−1∑

j=1

(∫ tj+1

tj

∫ t

tj

‖Ft(s)‖2X dsdt

)1/2

≤ T
√
∆t ‖F‖H1(0,T ;X).

(2.36)

Analogously, we derive

n−1∑

j=1

∥∥∥∥
∫ tj+1

tj

∫ t

tj+1

Ft(s) dsdt

∥∥∥∥
X

≤ T
√
∆t ‖F‖H1(0,T ;X). (2.37)

From (2.34), (2.36) and (2.37) it follows that

∥∥Rnψ −Rψ
∥∥
X

≤ C4√
n
,

where C4 = C3T
3/2 is independent of n and ψ. Consequently,

‖Rn −R‖
L(X) = sup

‖ψ‖X=1

‖Rnψ −Rψ‖X
n→∞−→ 0

which gives the claim. �

Now we follow [41, Section 3.2]. We suppose that yk ∈ H1(0, T ;X) for
1 ≤ k ≤ ℘. Thus yk ∈ C([0, T ];X) holds, which implies that

℘∑

k=1

n∑

j=1

αnj ‖yk(tj)‖
2

X →
℘∑

k=1

∫ T

0

‖yk(t)‖2X dt as n→ ∞. (2.38)

Combining (2.38) with (2.8) and (2.29) we find

dn∑

i=1

λ̄ni →
d∑

i=1

λ̄i as n→ ∞. (2.39)

Now choose and fix
ℓ such that λ̄ℓ 6= λ̄ℓ+1. (2.40)
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Then, by spectral analysis of compact operators and Lemma 2.16 it follows
that

λ̄ni → λ̄i for 1 ≤ i ≤ ℓ as n→ ∞. (2.41)

Combining (2.39) and (2.41) we derive

dn∑

i=ℓ+1

λ̄ni →
d∑

i=ℓ+1

λ̄i as n→ ∞.

As a consequence of (2.40) and Lemma 2.16 we have limn→∞ ‖ψ̄ni −ψ̄i‖X = 0
for i = 1, . . . , ℓ. Summarizing the following theorem has been shown.

Theorem 2.17. Let X be a separable real Hilbert space, the weighting pa-
rameters {αnj }nj=1 be given by (2.31) and yk ∈ H1(0, T ;X) for 1 ≤ k ≤ ℘.

Let {(ψ̄ni , λ̄ni )}i∈I and {(ψ̄i, λ̄i)}i∈I be eigenvector-eigenvalue pairs satisfying
(2.5) and (2.26), respectively. Suppose that ℓ ∈ N is fixed such that (2.40)
holds. Then we have

lim
n→∞

∣∣λ̄ni − λ̄i
∣∣ = lim

n→∞
‖ψ̄ni − ψ̄i‖X = 0 for 1 ≤ i ≤ ℓ,

and

lim
n→∞

dn∑

i=ℓ+1

λ̄ni =

d∑

i=ℓ+1

λ̄i.

Remark 2.18. Theorem 2.17 gives an answer to the two questions posed at
the beginning of Section 2.2: The time instances {tj}nj=1 and the associated
positive weights {αnj }nj=1 should be chosen such that Rn is a quadrature
approximation of R and ‖Rn−R‖L(X) is small (for reasonable n). A different
strategy in applied in [44], where the time instances {tj}nj=1 are chosen by
an optimization approach. Clearly, other choices for the weights {αnj }nj=1 are
also possible provided (2.30)is guaranteed. For instance, we can choose the
Simpson weights. ♦

3. Reduced-order modelling for evolution problems

In this section error estimates for POD Galerkin schemes for linear evolution
problems are presented. The resulting error bounds depend on the number of
POD basis functions. Let us refer, e.g., to [18, 22, 30, 40, 41, 42, 64] and [34],
where POD Galerkin schemes for parabolic equations and elliptic equations
are studied. Moreover, we would like to mention the recent papers [9] and
[68], where improved rates of convergence results are derived.

3.1. The abstract evolution problem

Let V and H be real, separable Hilbert spaces and suppose that V is dense
in H with compact embedding. By 〈· , ·〉H and 〈· , ·〉V we denote the inner
products in H and V , respectively. Let T > 0 the final time. For t ∈ [0, T ]
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we define a time-dependent symmetric bilinear form a(t; · , ·) : V × V → R

satisfying
∣∣a(t;ϕ, ψ)

∣∣ ≤ γ ‖ϕ‖V ‖ψ‖V ∀ϕ ∈ V a.e. in [0, T ], (3.1a)

a(t;ϕ,ϕ) ≥ γ1 ‖ϕ‖2V − γ2 ‖ϕ‖2H ∀ϕ ∈ V a.e. in [0, T ] (3.1b)

for constants γ, γ1 > 0 and γ2 ≥ 0 which do not depend on t. In (3.1),
the abbreviation “a.e.” stands for “almost everywhere”. By identifying H
with its dual H ′ it follows that V →֒ H = H ′ →֒ V ′ each embedding being
continuous and dense. Recall that the function space (see [10, pp. 472-479]
and [72, pp. 146-148], for instance)

W (0, T ) =
{
ϕ ∈ L2(0, T ;V )

∣∣ϕt ∈ L2(0, T ;V ′)
}

is a Hilbert space endowed with the inner product

〈ϕ, φ〉W (0,T ) =

∫ T

0

〈ϕ(t), φt(t)〉V + 〈ϕt(t), φt(t)〉V ′ dt for ϕ, φ ∈W (0, T )

and the induced norm ‖ϕ‖W (0,T ) = 〈ϕ,ϕ〉1/2W (0,T ). Furthermore, W (0, T ) is

continuously embedded into the space C([0, T ];H). Hence, ϕ(0) and ϕ(T )
are meaningful in H for an element ϕ ∈ W (0, T ). The integration by parts
formula reads
∫ T

0

〈ϕt(t), φ(t)〉V ′,V dt+

∫ T

0

〈φt(t), ϕ(t)〉V ′,V dt =
d

dt

∫ T

0

〈ϕ(t), ψ(t)〉H dt

= ϕ(T )φ(T )− ϕ(0)φ(0)

for ϕ, φ ∈W (0, T ). Moreover, we have the formula

〈ϕt(t), φ〉V ′,V =
d

dt
〈ϕ(t), φ〉H for (ϕ, φ) ∈W (0, T )×V and f.a.a. t ∈ [0, T ].

We suppose that for Nu ∈ N the input space U = L2(0, T ;RNu) is
chosen. In particular, we identify U with its dual space U ′. For u ∈ U ,
y◦ ∈ H and f ∈ L2(0, T ;V ′) we consider the linear evolution problem

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈(f + Bu)(t), ϕ〉V ′,V

∀ϕ ∈ V a.e. in (0, T ],

〈y(0), ϕ〉H = 〈y◦, ϕ〉H ∀ϕ ∈ H,

(3.2)

where 〈· , ·〉V ′,V stands for the dual pairing between V and its dual space V ′

and B : U → L2(0, T ;V ′) is a continuous, linear operator.

Remark 3.1. Notice that the techniques presented in this work can be adapted
for problems, where the input space U is given by L2(0, T ;L2(D)) for some

open and bounded domain D ⊂ R
Ñu for an Ñu ∈ N. ♦
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Theorem 3.2. For t ∈ [0, T ] let a(t; · , ·) : V ×V → R be a time-dependent sym-
metric bilinear form satisfying (3.1). Then, for every u ∈ U , f ∈ L2(0, T ;V ′)
and y◦ ∈ H there is a unique weak solution y ∈W (0, T ) satisfying (3.2) and

‖y‖W (0,T ) ≤ C
(
‖y◦‖H + ‖f‖L2(0,T ;V ′) + ‖u‖U

)
(3.3)

for a constant C > 0 which is independent of u, y◦ and f . If f ∈ L2(0, T ;H),
a(t; · , ·) = a(· , ·) (independent of t) and y◦ ∈ V hold, we even have y ∈
L∞(0, T ;V )∩H1(0, T ;H). Here, L∞(0, T ;V ) stands for the Banach space of
all measurable functions ϕ : [0, T ] → V with esssupt∈[0,T ] ‖ϕ(t)‖V < ∞ (see

[72, p. 143], for instance).

Proof. For a proof of the existence of a unique solution we refer to [10, pp. 512-
520]. The a-priori error estimate follows from standard variational techniques
and energy estimates. The regularity result follows from [10, pp. 532-533] and
[17, pp. 360-364]. �

Remark 3.3. We split the solution to (3.2) in one part, which depends on
the fixed initial condition y◦ and right-hand f , and another part depending
linearly on the input variable u. Let ŷ ∈W (0, T ) be the unique solution to

d

dt
〈ŷ(t), ϕ〉H + a(t; ŷ(t), ϕ) = 〈f(t), ϕ〉V ′,V ∀ϕ ∈ V a.e. in (0, T ],

ŷ(0) = y◦ in H.

We define the subspace

W0(0, T ) =
{
ϕ ∈W (0, T )

∣∣ϕ(0) = 0 in H
}

endowed with the topology of W (0, T ). Let us now introduce the linear solu-
tion operator S : U → W0(0, T ): for u ∈ U the function y = Su ∈ W0(0, T )
is the unique solution to

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈(Bu)(t), ϕ〉V ′,V ∀ϕ ∈ V a.e. in (0, T ].

From y ∈ W0(0, T ) we infer y(tb) = 0 in H. The boundedness of S follows
from (3.3). Now, the solution to (3.2) can be expressed as y = ŷ + Su. ♦

3.2. The POD method for the evolution problem

Let u ∈ U , f ∈ L2(0, T ;V ′) and y◦ ∈ H be given and y = ŷ + Su. To
keep the notation simple we apply only a spatial discretization with POD
basis functions, but no time integration by, e.g., the implicit Euler method.
Therefore, we utilize the continuous version of the POD method introduced
in Section 2.2. In this section we distinguish two choices for X: X = H and
X = V . We suppose that the snapshots yk, k = 1, . . . , ℘, belong to L2(0, T ;V )
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and introduce the following notations:

RV ψ =

℘∑

k=1

∫ T

0

〈ψ, yk(t)〉V yk(t) dt for ψ ∈ V,

RHψ =

℘∑

k=1

∫ T

0

〈ψ, yk(t)〉H yk(t) dt for ψ ∈ H. (3.4)

Moreover, we set KV = R⋆
V and KH = R⋆

H . In Remark 2.15 we have intro-
duced the singular value decomposition of the operator Y defined by (2.25).
To distinguish the two choices for the Hilbert space X we denote by the
sequence {(σVi , ψVi , φVi )}ℓi∈I

⊂ R
+
0 × V × L2(0, T ;R℘) of triples the singular

value decomposition for X = V , i.e., we have that

RV ψ
V
i = λVi ψ

V
i , KV φVi = λVi φ

V
i , σVi =

√
λVi , i ∈ I.

Furthermore, let the sequence {(σHi , ψHi , φHi )}ℓi∈I
⊂ R

+
0 × H × L2(0, T ;R℘)

in satisfy

RHψ
H
i = λHi ψ

H
i , KHφHi = λHi φ

H
i , σHi =

√
λHi , i ∈ I. (3.5)

The relationship between the singular values σHi and σVi is investigated in
the next lemma, which is taken from [68].

Lemma 3.4. Suppose that the snapshots yk ∈ L2(0, T ;V ), k = 1, . . . , ℘. Then
we have:

1) For all i ∈ I with σHi > 0 we have ψHi ∈ V .
2) σVi = 0 for all i > d with some d ∈ N if and only if σHi = 0 for all

i > d, i.e., we have dH = dV if the rank of RV is finite.
3) σVi > 0 for all i ∈ I if and only if σHi > 0 for all i ∈ I.

Proof. We argue similarly as in the proof of Lemma 3.1 in [68].

1) Let σHi > 0 hold. Then, it follows that λHi > 0. We infer from yk ∈
L2(0, T ;V ) that RHψ ∈ V for any ψ ∈ H. Hence, we infer from (3.5)
and that ψHi = RHψ

H
i /λ

H
i ∈ V .

2) Assume that σVi = 0 for all i > d with some d ∈ N. Then, we deduce
from (2.27) that

yk(t) =
d∑

i=1

〈yk(t), ψVi 〉V ψVi for every k = 1, . . . , ℘. (3.6)

From

RHψ
H
j =

℘∑

k=1

∫ T

0

〈ψHj , yk(t)〉H y
k(t) dt

=

d∑

i=1

( ℘∑

k=1

∫ T

0

〈ψHj , yk(t)〉H 〈yk(t), ψVi 〉V dt

)
ψVi , j ∈ I,
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we conclude that that the range of RH is at most d, which implies that
λHi = 0 for all i > d. Analogously, we deduce from σHi = 0 for all i > d
that the range of RV is at most d.

3) The claim follows directly from part 2).

�

Next we recall an inverse inequality from [40, Lemma 2].

Lemma 3.5. For all v ∈ V = span {yk(t)
∣∣ t ∈ [0, T ] and 1 ≤ k ≤ ℘} we

‖v‖V ≤
√
‖(Mℓ)−1‖2‖Sℓ‖2 ‖v‖H , (3.7)

where

Mℓ =
((
〈ψj , ψi〉H

))
∈ R

d×d and Sℓ =
((
〈ψj , ψi〉V

))
∈ R

d×d

denote the mass and stiffness matrix, respectively, with ψi = ψVi for X = V
and ψi = ψHi for X = H. Moreover, ‖ · ‖2 denotes the spectral norm for
symmetric matrices.

Proof. Let v ∈ V ∈ V be chosen arbitrarily. Then,

v =

d∑

i=1

〈v, ψi〉X ψi

with ψi = ψVi for X = V and ψi = ψHi for X = H. Defining the vector
v = (〈v, ψ1〉X , . . . , 〈v, ψd〉X) ∈ R

d we get

‖v‖2V = v⊤Sℓv ≤ ‖Sℓ‖2 v⊤v
≤ ‖Sℓ‖2‖(Mℓ)−1‖2 v⊤Mℓv = ‖Sℓ‖2‖(Mℓ)−1‖2‖v‖

2
H

which gives (3.7). �

Remark 3.6. In the case X = H the mass matrix Mℓ is the identity, whereas
Sℓ is the identity for the choice X = V . Thus, we have

‖v‖V ≤
√
‖Sℓ‖2 ‖v‖H and ‖v‖V ≤

√
‖(Mℓ)−1‖2 ‖v‖H

for X = H and X = V , respectively. ♦

Let us define the two POD subspaces

V ℓ = span
{
ψV1 , . . . , ψ

V
ℓ

}
⊂ V, Hℓ = span

{
ψH1 , . . . , ψ

H
ℓ

}
⊂ V ⊂ H,

where Hℓ ⊂ V follows from part 1) of Lemma 3.4. Moreover, we introduce the
orthogonal projection operators PℓH : V → Hℓ ⊂ V and Pℓ : V → V ℓ ⊂ V as
follows:

vℓ = PℓHϕ for any ϕ ∈ V iff vℓ solves min
wℓ∈Hℓ

‖ϕ− wℓ‖V ,

vℓ = PℓV ϕ for any ϕ ∈ V iff vℓ solves min
wℓ∈V ℓ

‖ϕ− wℓ‖V .
(3.8)

It follows from the first-order optimality conditions that vℓ = PℓHϕ satisfies

〈vℓ, ψHi 〉V = 〈ϕ, ψHi 〉V , 1 ≤ i ≤ ℓ. (3.9)
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Writing vℓ ∈ Hℓ in the form vℓ =
∑ℓ
j=1 v

ℓ
jψ

H
j we derive from (3.9) that the

vector vℓ = (vℓ1, . . . , v
ℓ
ℓ)

⊤ ∈ R
ℓ satisfies the linear system

ℓ∑

j=1

〈ψHj , ψHi 〉
V
vℓj = 〈ϕ, ψHi 〉V , 1 ≤ i ≤ ℓ.

For the operator PℓV we have the explicit representation

PℓV ϕ =
ℓ∑

i=1

〈ϕ, ψVi 〉V ψVi for ϕ ∈ V.

Since the linear operators PℓV and PℓH are orthogonal projections, we have
‖PℓV ‖L(V ) = ‖PℓH‖L(V ) = 1. As {ψVi }i∈I is a complete orthonormal basis in
V , we have

lim
ℓ→∞

∫ T

0

‖w(t)− PℓV w(t)‖
2

V dt = 0 for all w ∈ L2(0, T ;V ). (3.10)

Next we review an essential result from [68, Theorem 6.2], which we
will use in our a-priori error analysis for the choice X = H. Recall that
ψHi ∈ V holds for 1 ≤ i ≤ d and the image of PℓH belongs to V . Consequenlty,
‖ψHi − PℓHψHi ‖V is well-defined for 1 ≤ i ≤ d.

Theorem 3.7. Suppose that yk ∈ L2(0, T ;V ) for 1 ≤ k ≤ ℘. Then,

℘∑

k=1

∫ T

0

‖yk(t)− PℓHyk(t)‖
2

V dt =

dH∑

i=ℓ+1

λHi ‖ψHi − PℓHψHi ‖2V .

Here, dH is the rank of the operator RH , which may be infinite. Moreover,
PℓHyk converges to yk in L2(0, T ;V ) as ℓ tends to ∞ for each k ∈ {1, . . . , ℘}.

Proof. We sketch the proof. For more details we refer the reader to [68].
Suppose that 1 ≤ ℓ ≤ dH and 1 ≤ ℓ◦ < ∞ hold. Then, λHi > 0 for 1 ≤
i ≤ ℓ. Let IV : V → V denote the identity operator. As IV − PℓH is an
orthonormal projection on V , we conclude ‖I − PℓH‖L(V ) = 1. Furthermore,

yk ∈ L2(0, T ;V ) holds for each k ∈ {1, . . . ℘}. Thus, (3.10) implies that

Pℓ◦V yk → yk in L2(0, T ;V ) as ℓ◦ → ∞ for each k. Hence, we obtain

℘∑

k=1

∫ T

0

∥∥(IV − PℓH
)(
yk(t)− Pℓ◦V yk(t)

)∥∥2
V
dt

≤
℘∑

k=1

∫ T

0

‖yk(t)− Pℓ◦V yk(t)‖
2

V dt =

dV∑

i=ℓ◦+1

λVi → 0 as ℓ◦ → ∞,

where, dV is the rank of the operatorRV , which may be infinite. This implies,
that (IV − PℓH

)
Pℓ◦V yk converges to (IV − PℓH

)
yk in L2(0, T ;V ) as ℓ◦ → ∞
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for each k. Hence,

℘∑

k=1

∫ T

0

‖yk(t)− PℓHyk(t)‖
2

V dt

= lim
ℓ◦→∞

℘∑

k=1

∫ T

0

∥∥(IV − PℓH
)
Pℓ◦V yk(t)

∥∥2
V
dt.

(3.11)

Now, we apply the following result [68, Lemma 6.1]:

℘∑

k=1

∫ T

0

‖(I − PℓH)Pℓ◦V yk(t))‖
2

V dt =

ℓ◦∑

i=1

λVi ‖ψVi − PℓHψVi ‖
2

V . (3.12)

Combining (3.11) and (3.12) we get the error formula:

℘∑

k=1

∫ T

0

‖yk(t)− PℓHyk(t)‖
2

V dt

= lim
ℓ◦→∞

ℓ◦∑

i=1

λVi ‖ψVi − PℓHψVi ‖
2

V =
∑

i∈I

λVi ‖ψVi − PℓHψVi ‖
2

V .

(3.13)

From ‖IV −PℓH‖L(V ) = 1, ‖ψVi ‖V = 1 for all i ∈ I and
∑
i∈I

λi <∞ we infer
that sum on the right-hand side in (3.13) is finite. Now, the claim follows by
arguments from the Hilbert-Schmidt theory. �

We will also need the following result, which follows from the continuous
embedding V →֒ H . For a proof we refer to [68, Proposition 6.5].

Lemma 3.8. Let yk ∈ L2(0, T ;V ) for each k ∈ {1, . . . , ℘} and λHi > 0 for all
i ∈ I. Then,

lim
ℓ→∞

‖ϕ− PℓHϕ‖V = 0 for all ϕ ∈ V.

3.3. The POD Galerkin approximation

In the context of Section 2.2 we choose ℘ = 1, y1 = Su and compute a
POD basis {ψi}ℓi=1 of rank ℓ by solving (Pℓ) with ψi = ψVi for X = V and
ψi = ψHi for X = H. Then, we define the subspace Xℓ = span {ψ1, . . . , ψℓ},
i.e., Xℓ = V ℓ for X = V and Xℓ = Hℓ for X = H. Now we approximate the
state variable y by the Galerkin expansion

yℓ(t) = ŷ(t) +
ℓ∑

i=1

yℓi(t)ψi ∈ V a.e. in [0, T ] (3.14)

with coefficient functions yℓi : [0, T ] → R. We introduce the vector-valued
coefficient function

yℓ =
(
yℓ1, . . . , y

ℓ
ℓ

)
: [0, T ] → R

ℓ.

Since ŷ(0) = y◦ holds, we suppose that yℓ(0) = 0. Then, yℓ(0) = y◦ is valid,
i.e., the POD state matches exactly the initial condition. Inserting (3.14) into
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(3.2) and using the test space in V ℓ for 1 ≤ i ≤ ℓ we obtain the following
POD Galerkin scheme for (3.2): yℓ ∈W (0, T ) solves

d

dt
〈yℓ(t), ψ〉H + a(t; yℓ(t), ψ) = 〈(f + Bu)(t), ψ〉V ′,V ∀ψ ∈ Xℓ a.e.,

yℓ(0) = 0.
(3.15)

We call (3.15) a low dimensional or reduced-order model for (3.2).

Proposition 3.9. Let all assumptions of Theorem 3.2 be satisfied and the POD
basis of rank ℓ be computed as desribed at the beginning of Section 3.1. Then,
there exists a unique solution yℓ ∈ H1(0, T ;Rℓ) →֒W (0, T ) solving (3.15).

Proof. Choosing ψ = ψi, 1 ≤ i ≤ ℓ, and applying (3.14) we infer from (3.15)
that the coefficient vector yℓ satisfies

Mℓẏℓ(t) + Aℓ(t)y(t) = F̂ℓ(t) a.e. in [0, T ], yℓ(0) = 0, (3.16)

where we have set

Mℓ =
((
〈ψi, ψj〉X

))
∈ R

ℓ×ℓ, Aℓ(t) =
((
a(t;ψi, ψj)

))
∈ R

ℓ×ℓ,

F̂ℓ(t) =
(
〈(f + Bu)(t)− ŷt(t), ψi〉V ′,V − a(t; ŷ(t), ψi)

)
∈ R

ℓ
(3.17)

with ψi = ψVi for X = V and ψi = ψHi for X = H. Since (3.16) is a
linear ordinary differential equation system the existence of a unique yℓ ∈
H1(0, T ;Rℓ) follows by standard arguments. �

Remark 3.10. 1) In contrast to [29, 73], for instance, the POD approxima-
tion does not belong toXℓ, but to the affine space ŷ+Xℓ provided ŷ 6= 0.
The benefit of this approach is that yℓ(0) = y◦ – and not yℓ(0) = PℓHy◦
or yℓ(0) = PℓV y◦. This improves the approximation quality of the POD
basis which is illustrated in our numerical tests.

2) We proceed analogously to Remark 3.3 and introduce the linear and
bounded solution operator Sℓ : U → W0(0, T ): for u ∈ U the function
wℓ = Sℓu ∈W (0, T ) satisfies wℓ(0) = 0 and

d

dt
〈wℓ(t), ψ〉H + a(t;wℓ(t), ψ) = 〈(Bu)(t), ψ〉V ′,V ∀ψ ∈ Xℓ a.e.

Then, the solution to (3.15) is given by yℓ = ŷ+ Sℓu. Analogous to the
proof of (3.3) we derive that there exists a positive constant C2 which
does not depend on ℓ or u so that

‖Sℓu‖W (0,T ) ≤ C ‖u‖U .

Thus, Sℓ is bounded uniformly with respect to ℓ. ♦

To investigate the convergence of the error y − yℓ we make use of the
following two inequalities:

1) Gronwall’s inequality: For T > 0 let v : [0, T ] → R be a nonnegative,
differentiable function satisfying

v′(t) ≤ ϕ(t)v(t) + χ(t) for all t ∈ [0, T ],
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where ϕ and χ are real-valued, nonnegative, integrable functions on
[0, T ]. Then

v(t) ≤ exp

(∫ t

0

ϕ(s) ds

)(
v(0) +

∫ t

0

χ(s) ds

)
for all t ∈ [0, T ]. (3.18)

In particular, if

v′ ≤ ϕv in [0, T ] and v(0) = 0

hold, then v = 0 in [0, T ].
2) Young’s inequality: For every a, b ∈ R and for every ε > 0 we have

ab ≤ εa2

2
+
b2

2ε
.

Theorem 3.11. Let u ∈ U be chosen arbitrarily so that Su 6= 0.

1) To compute a POD basis {ψi}ℓi=1 of rank ℓ we choose ℘ = 1 and y1 =
Su. Then, y = ŷ + Su and yℓ = ŷ + Sℓu satisfies the a-priori error
estimate

‖yℓ − y‖2W (0,T )

≤





2
dV∑

i=ℓ+1

λVi + C1 ‖y1t − PℓV y1t ‖
2

L2(0,T ;V ′) if X = V,

2
dH∑

i=ℓ+1

λHi ‖ψHi − PℓHψHi ‖2V
+C1 ‖y1t − PℓHy1t ‖

2

L2(0,T ;V ′) if X = H,

(3.19)

where the constant C1 depends on the terminal time T and the constants
γ, γ1, γ2 introduced in (3.1).

2) Suppose that Su ∈ H1(0, T ;V ) holds true. If we set ℘ = 2 and compute
a POD basis of rank ℓ using the trajectories y1 = Su and y2 = (Su)t,
it follows that

‖yℓ − y‖2W (0,T ) ≤





C2

dV∑
i=ℓ+1

λVi for X = V,

C2

dH∑
i=ℓ+1

λHi ‖ψVi − PℓHψHi ‖2V for X = H,

(3.20)

for a constant C2 which depends on γ, γ1, γ2, and T .
3) If Sũ belongs to H1(0, T ;V ) for every ũ ∈ U and if λHi > 0 for all i ∈ I,

then we have

lim
ℓ→∞

‖S − Sℓ‖
L(U,W (0,T )) = 0. (3.21)

Proof. 1) For almost all t ∈ [0, T ] we make use of the decomposition

yℓ(t)− y(t) = ŷ(t) + (Sℓu)(t)− ŷ(t)− (Su)(t)
= (Sℓu)(t)− Pℓ

(
(Sℓu)(t)

)
+ Pℓ

(
(Sℓu)(t)

)
− (Su)(t)

= ϑℓ(t)− ̺ℓ(t),

(3.22)
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where Pℓ = PℓV for X = V , Pℓ = PℓH for X = H, ϑℓ(t) = (Sℓu)(t) −
Pℓ((Sℓu)(t)) ∈ Xℓ and ̺ℓ(t) = Pℓ((Sℓu)(t)) − (Su)(t). From y1(t) =
(Su)(t) and (2.27) we infer that

‖̺ℓ‖2W (0,T ) = ‖y1 − PℓV y1(t)‖
2

L2(0,T ;V ) + ‖y1t − PℓV y1t (t)‖
2

L2(0,T ;V ′)

=

dV∑

i=ℓ+1

λi + ‖y1t − PℓV y1t (t)‖
2

L2(0,T ;V ′)

(3.23)

in case of X = V , where dV stands for rank of RV . For the choice
X = H we derive from Theorem 3.7 that

‖̺ℓ‖2W (0,T ) =

dH∑

i=ℓ+1

λHi ‖ψHi − PℓHψHi ‖2V + ‖y1t − PℓV y1t (t)‖
2

L2(0,T ;V ′). (3.24)

Here, dH denotes for rank of RH . Using (3.2), (3.15), and

ϑℓ(t) = yℓ − ŷ(t)− Pℓ
(
(Su)(t)

)
= yℓ(t)− y(t) + (Su)(t)− Pℓ

(
(Su)(t)

)

we derive that

d

dt
〈ϑℓ(t), ψ〉H + a(t;ϑℓ(t), ψ) = 〈y1t (t)− Pℓy1t (t), ψ〉V ′,V (3.25)

for all ψ ∈ Xℓ and for almost all t ∈ [0, T ]. From choosing ψ = ϑℓ(t),
(3.1b) and (3.21) we find

d

dt
‖ϑℓ(t)‖2H + γ1 ‖ϑℓ(t)‖

2

V − 2γ2 ‖ϑℓ(t)‖
2

H ≤ 1

γ1
‖y1t (t)− Pℓy1t (t)‖

2

V ′ .

From (3.18) – setting v(t) = ‖ϑℓ(t)‖2H ≥ 0, ϕ(t) = γ2 > 0, χ(t) =
‖y1(t)− Pℓy1t ‖2L2(0,T ;V ′) ≥ 0 – and ϑℓ(0) = 0 it follows that

‖ϑℓ(t)‖2H ≤ c1 ‖y1t − Pℓy1t ‖
2

L2(0,T ;V ′) for almost all t ∈ [0, T ]

with c1 = exp(γ2T ), so that

‖ϑℓ‖2L2(0,T ;V ) ≤
2γ2
γ1

‖ϑℓ‖2L2(0,T ;H) +
1

γ21
‖y1t − Pℓy1t ‖

2

L2(0,T ;V ′)

≤ c2 ‖y1t − Pℓy1t ‖
2

L2(0,T ;V ′)

(3.26)

with c2 = max(2γ2Tc1, 1/γ1)/γ1. Moreover, we conclude from (3.1a),
(3.19) and (3.26) that

‖ϑℓt‖
2

L2(0,T ;V ′) ≤
γ

2
‖ϑℓ‖2L2(0,T ;V ) +

1

2
‖y1t − Pℓy1t ‖

2

L2(0,T ;V ′)

≤ c3 ‖y1t − Pℓy1t ‖
2

L2(0,T ;V ′)

(3.27)

with c3 = max(γc2, 1)/2. Combining (3.22), (3.23), (3.26) and (3.27) we
obtain (3.22) with C1 = 2max(1, c2, c3).
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2) The claim follows directly from

‖(Su)t − Pℓ(Su)t‖
2

L2(0,T ;V ) = ‖y2 − Pℓy2‖2L2(0,T ;V )

≤





dV∑
i=ℓ+1

λVi if X = V,

dH∑
i=ℓ+1

λHi ‖ψHi − PℓHψHi ‖2V if X = H.

3) Using Sũ ∈ H1(0, T ;V ) for any ũ ∈ U , Remark 2.8 and applying the
proof of Proposition 4.4 in [73] we infer that there exists a constant C3

which is independent of ℓ satisfying
∥∥S − Sℓ

∥∥
L(U,W (0,T ))

= sup
‖ũ‖U=1

∥∥(S − Sℓ)ũ
∥∥
W (0,T )

≤ c3 sup
‖ũ‖U=1

∫ T

0

‖ỹ(t)− Pℓỹ(t)‖2V + ‖ỹt(t)− Pℓỹt(t)‖
2

V dt
ℓ→∞−→ 0

with ỹ = Sũ. By assumption, the elements ỹ(t) and ỹt(t) belong to
L2(0, T ;V ). Now the claim follows forX = V from (3.10) and forX = H
from Lemma 3.8.

�

Remark 3.12. 1) Note that the a-priori error estimates (3.19) and (3.20)
depend an the arbitrarily chosen, but fixed control u ∈ U , which is also
utilized to compute the POD basis. Moreover, these a-priori estimates
do not involve errors by the POD discretization of the initial condition
y◦ – in contrast to the error analysis presented in [29, 40, 41, 64, 73],
for nstance.

2) From (3.21) we infer

∥∥ŷ + Sℓũ− ŷ − Sũ
∥∥
W (0,T )

≤
∥∥S − Sℓ

∥∥
L(U,W (0,T ))

‖ũ‖U
ℓ→∞−→ 0

for any ũ ∈ U .
3) For the numerical realization we have to utilize also a time integration

method like, e.g., the implicit Euler or the Crank-Nicolson method.
We refer the reader to [40, 41, 42], where different time discretization
schemes are considered. Moreover, in [47, 64] also a finite element dis-
cretization of the ansatz space V is incorporated in the a-priori error
analysis. ♦

Example 3.13. Accurate approximation results are achieved if the subspace
spanned by the snapshots is (approximatively) of low dimension. Let T > 0,
Ω = (0, 2) ⊂ R and Q = (0, T )× Ω. We set f(t,x) = e−t(π2 − 1) sin(πx) for
(t,x) ∈ Q and y◦(x) = sin(πx) for x ∈ Ω. Let H = L2(Ω), V = H1

0 (Ω) and

a(t;ϕ, φ) =

∫

Ω

ϕ′(x)φ′(x) dx for ϕ, φ ∈ V,
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i.e., the bilinear form a is independent of t. Finally, we choose u = 0. Then,
the exact solution to (3.2) is given by y(t,x) = e−t sin(πx) spans the oned-
imensional space {αψ | α ∈ R} with ψ(x) = sin(πx). Choosing the space
X = H, this implies that all eigenvalues of the operator RH introduced in
(3.4) except of the first one are zero and ψ1 = ψ ∈ V is the single POD el-
ement corresponding to a nontrivial eigenvalue of RH . Further, the reduced
order model of the rank-1 POD-Galerkin ansatz

ẏ1(t) + ‖ψ′
1‖

2
H y1(t) = 〈f(t), ψ1〉H for t ∈ (0, T ],

y1(0) = 〈y◦, ψ1〉H
has the solution y1(t) = e−t, so both the projection

(
P1y

)
(t,x) = 〈y(t), ψ1〉Xψ1(x), (t,x) ∈ Q,

of the state y on the POD-Galerkin space and the reduced-order solution
y1(t) = y1(t)ψ1 coincide with the exact solution y. In the latter case, this is
due to the fact that the data functions f and y◦ as well as all time derivative
snapshots ẏ(t) are already elements of span(ψ1), so no projection error occurs
here, cp. the a priori error bounds given in (3.20). In the case X = V , we get
the same results with ψ1(x) = sin(πx)/2 and y1(t) = 2e−t. ♦

Utilizing the techniques as in the proof of Theorem 7.5 in [68] one can
derive an a-priori error bound without including the time derivatives into the
snapshot subspace. In the next proposition we formulate the a-priori error
estimate.

Proposition 3.14. Let y◦ ∈ V and u ∈ U be chosen arbitrarily so that Su 6= 0.
To compute a POD basis {ψi}ℓi=1 of rank ℓ we choose ℘ = 1 and y1 = Su.
Then, y = ŷ + Su and yℓ = ŷ + Sℓu satisfies the a-priori error estimate

‖yℓ − y‖2W (0,T ) ≤





C
dV∑

i=ℓ+1

λVi ‖ψVi − PℓψVi ‖
2

V if X = V,

C
dH∑

i=ℓ+1

λHi ‖ψHi ‖2V if X = H,

(3.28)

where the constant C depends on the terminal time T and the constants γ, γ1,
γ2 introduced in (3.1). Moreover, Pℓ : V → V ℓ is the orthogonal projection
given as follows:

vℓ = PℓV ϕ for any ϕ ∈ V iff vℓsolves min
wℓ∈V ℓ

‖ϕ− wℓ‖H .

In particular, we have yℓ → y in W (0, T ) as ℓ→ ∞.

4. The linear-quadratic optimal control problem

In this section we apply a POD Galerkin approximation to linear-quadratic
optimal control problems. Linear-quadratic problems are interesting in sev-
eral respects: in particular, they occur in each level of a sequential quadratic
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programming (SQP) methods; see, e.g., [54]. In contrast to methods of bal-
anced truncation type, the POD method is somehow lacking a reliable a-priori
error analysis. Unless its snapshots are generating a sufficiently rich state
space, it is not a-priorly clear how far the optimal solution of the POD prob-
lem is from the exact one. On the other hand, the POD method is a universal
tool that is applicable also to problems with time-dependent coefficients or
to nonlinear equations. By generating snapshots from the real (large) model,
a space is constructed that inhibits the main and relevant physical properties
of the state system. This, and its ease of use makes POD very competitive in
practical use, despite of certain heuristic.

Here we prove convergence and derive a-priori error estimates for the
optimal control problem. The error estimates rely on the (unrealistic) as-
sumption that the POD basis is computed from the (exact) optimal solution.
However, these estimates are utilized to develop an a-posteriori error analysis
for the POD Galerkin appproximation of the optimal control problem. Using
a perturbation method [16] we deduce how far the suboptimal control, com-
puted by the POD Galerkin approximation, is from the (unknown) exact one.
This idea turned out to be very efficient in our numerical examples. Thus, we
are able to compensate for the lack of an a-priori error analysis for the POD
method.

4.1. Problem formulation

In this section we introduce our optimal control problem, which is an con-
strained optimization problem in a Hilbert space. The objective is a quadratic
function. The evolution problem (3.2) serves as an equality constraint. More-
over, bilateral control bounds lead to inequality constraints in the minimiza-
tion. For the readers convenience we recall (3.2) here. Let U = L2(0, T ;RNu)
denote the control space with Nu ∈ N. For u ∈ U , y◦ ∈ H and f ∈
L2(0, T ;V ′) we consider the state equation

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈(f + Bu)(t), ϕ〉V ′,V

∀ϕ ∈ V a.e. in (0, T ],

〈y(0), ϕ〉H = 〈y◦, ϕ〉H ∀ϕ ∈ H,

(4.1)

where B : U → L2(0, T ;V ′) is a continuous, linear operator. Due to Theo-
rem 3.2 there exists a unique solution y ∈W (0, T ) to (4.1).

We introduce the Hilbert space

X =W (0, T )× U

endowed with the natural product topology, i.e., with the inner product

〈x, x̃〉X = 〈y, ỹ〉W (0,T ) + 〈u, ũ〉U for x = (y, u), x̃ = (ỹ, ũ) ∈ X

and the norm ‖x‖X = (‖y‖2W (0,T ) + ‖u‖2U )1/2 for x = (y, u) ∈ X.

Assumption 1. For t ∈ [0, T ] let a(t; · , ·) : V × V → R be a time-dependent
symmetric bilinear form satisfying (3.1). Moreover, f ∈ L2(0, T ;V ′), y◦ ∈ H
and B ∈ L(U,L2(0, T ;V ′)) holds.
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In Remark 3.3 we have introduced the particular solution ŷ ∈ W (0, T )
as well as the linear, bounded solution operator S. Then, the solution to (4.1)
can be expressed as y = ŷ + Su. By Xad we denote the closed, convex and
bounded set of admissible solutions for the optimization problem as

Xad =
{
(ŷ + Su, u) ∈ X

∣∣ua ≤ u ≤ ub in R
m a.e. in [0, T ]

}
,

where ua = (ua,1, . . . , ua,Nu
), ub = (ub,1, . . . , ub,Nu

) ∈ U satisfy ua,i ≤ ub,i for
1 ≤ i ≤ Nu a.e. in [0, T ]. Since ua,i ≤ ub,i holds for 1 ≤ i ≤ Nu, we infer from
Theorem 3.2 that the set Xad is nonempty.

The quadratic objective J : X → R is given by

J(x) =
σQ
2

∫ T

0

‖y(t)− yQ(t)‖2H dt+
σΩ
2

‖y(T )− yΩ‖2H +
σ

2
‖u‖2U (4.2)

for x = (y, u) ∈ X, where (yQ, yΩ) ∈ L2(0, T ;H)×H are given desired states.
Furthermore, σQ, σΩ ≥ 0 and σ > 0. Of course, more general cost functionals
can be treated analogously.

Now the quadratic programming problem is given by

min J(x) subject to (s.t.) x ∈ Xad. (P)

From x = (y, u) ∈ Xad we infer that y = ŷ+Su holds. Hence, y is a dependent
variable. We call u the control and y the state. In this way, (P) becomes an
optimal control problem. Utilizing the relationship y = ŷ + Su we define a
so-called reduced cost functional Ĵ : U → R by

Ĵ(u) = J(ŷ + Su, u) for u ∈ U.

Moreover, the set of admissible controls is given as

Uad =
{
u ∈ U

∣∣ua ≤ u ≤ ub in R
m a.e. in [0, T ]

}
,

which is convex, closed and bounded in U . Then, we consider the reduced
optimal control problem:

min Ĵ(u) s.t. u ∈ Uad. (P̂)

Clearly, if ū is the optimal solution to (P̂), then x̄ = (ŷ+Sū, ū) is the optimal
solution to (P). On the other hand, if x̄ = (ȳ, ū) is the solution to (P), then

ū solves (P̂).

Example 4.1. We introduce an example for (P) and discuss the presented
theory for this application. Let Ω ⊂ R

d, d ∈ {1, 2, 3}, be an open and bounded
domain with Lipschitz-continuous boundary Γ = ∂Ω. For T > 0 we set
Q = (0, T ) × Ω and Σ = (0, T ) × Γ. We choose H = L2(Ω) and V = H1

0 (Ω)
endowed with the usual inner products

〈ϕ, ψ〉H =

∫

Ω

ϕψ dx, 〈ϕ, ψ〉V =

∫

Ω

ϕψ +∇ϕ · ∇ψ dx

and their induced norms, respectively. Let χi ∈ H, 1 ≤ i ≤ m, denote given
control shape functions. Then, for given control u ∈ U , initial condition
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y◦ ∈ H and inhomogeneity f ∈ L2(0, T ;H) we consider the linear heat
equation

yt(t,x)−∆y(t,x) = f(t,x) +
m∑

i=1

ui(t)χi(x), a.e. in Q,

y(t,x) = 0, a.e. in Σ,

y(0,x) = y◦(x), a.e. in Ω.

(4.3)

We introduce the time-independent, symmetric bilinear form

a(ϕ, ψ) =

∫

Ω

∇ϕ · ∇ψ dx for ϕ, ψ ∈ V

and the bounded, linear operator B : U → L2(0, T ;H) →֒ L2(0, T ;V ′) as

(Bu)(t,x) =
m∑

i=1

ui(t)χi(x) for (t,x) ∈ Q a.e. and u ∈ U.

Hence, we have γ = γ1 = γ2 = 1 in (3.1). It follows that the weak formula-
tion of (4.3) can be expressed in the form (3.2). Moreover, the unique weak
solution to (4.3) belongs to the space L∞(0, T ;V ) provided y◦ ∈ V holds. ♦

4.2. Existence of a unique optimal solution

We suppose the following hypothesis for the objective.

Assumption 2. In (4.2) the desired states (yQ, yΩ) belong to L2(0, T ;H)×H.
Furthermore, σQ , σΩ ≥ 0 and σ > 0 are satisfied.

Let us review the following result for quadratic optimization problems
in Hilbert spaces; see [72, pp. 50-51].

Theorem 4.2. Suppose that U and H are given Hilbert spaces with norms ‖·‖U
and ‖ · ‖H, respectively. Furthermore, let Uad ⊂ U be non-empty, bounded,
closed, convex and zd ∈ H, κ ≥ 0. The mapping G : U → H is assumed to
be a linear and continuous operator. Then there exists an optimal control ū
solving

min
u∈Uad

J (u) :=
1

2
‖Gu− zd‖2H +

κ

2
‖u‖2

U
. (4.4)

If κ > 0 holds or if G is injective, then ū is uniquely determined.

Remark 4.3. In the proof of Theorem 4.2 it is only used that J is continuous
and convex. Therefore, the existence of an optimal control follows for general
convex, continuous cost functionals J : U → R with a Hilbert space U. ♦

Next we can use Theorem 4.2 to obtain an existence result for the op-
timal control problem (P̂), which imply the existence of an optimal solution
to (P).

Theorem 4.4. Let Assumptions 1 and 2 be valid. Moreover, let the bilateral
control constraints ua, ub ∈ U satisfy ua ≤ ub componentwise in R

m a.e. in
[0, T ]. Then, (P̂) has a unique optimal solution ū.
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Proof. Let us choose the Hilbert spaces H = L2(0, T ;H) × H and U = U .
Moreover, E : W (0, T ) → L2(0, T ;H) is the canonical embedding operator,
which is linear and bounded. We define the operator E2 : W (0, T ) → H by
E2ϕ = ϕ(T ) for ϕ ∈ W (0, T ). Since W (0, T ) is continuously embedded into
C([0, T ];H), the linear operator E2 is continuous. Finally, we set

G =

( √
σQ E1S√
σΩ E2S

)
∈ L(U,H), zd =

( √
σQ (yQ − ŷ)

√
σΩ
(
yΩ − ŷ(T )

)
)

∈ H (4.5)

and Uad = Uad. Then, (P̂) and (4.4) coincide. Consequently, the claim follows
from Theorem 4.2 and σ > 0. �

Next we consider the case that ua = −∞ or/and ub = +∞. In this case
Uad is not bounded. However, we have the following result [72, p. 52].

Theorem 4.5. Let Assumptions 1 and 2 be satisfied. If ua = −∞ or/and

ub = +∞, problem (P̂) admits a unique solution.

Proof. We utilize the setting of the proof of Theorem 4.4. By assumption
there exists an element u0 ∈ Uad. For u ∈ U with ‖u‖2U > 2Ĵ(u0)/σ we have

Ĵ(u) = J (u) =
1

2
‖Gu− zd‖2H +

σ

2
‖u‖2U ≥ σ

2
‖u‖2U > Ĵ(u0).

Thus, the minimization of Ĵ over Uad is equivalent with the minimization of
Ĵ over the bounded, convex and closed set

Uad ∩
{
u ∈ U

∣∣∣ ‖u‖2U ≤ 2Ĵ(u0)

σ

}
.

Now the claim follows from Theorem 4.2. �

4.3. First-order necessary optimality conditions

In (4.4) we have introduced the quadratic programming problem

min
u∈Uad

J (u) =
1

2
‖Gu− zd‖2H +

σ

2
‖u‖2

U
. (4.6)

Existence of a unique solution has been investigated in Section 4.2. In this
section we characterize the solution to (4.6) by first-order optimality condi-
tions, which are essential to prove convergence and rate of convergence results
for the POD approximations in Section 4.4. To derive first-order conditions
we require the notion of derivatives in function spaces. Therefore, we recall
the following definition [72, pp. 56-57].

Definition 4.6. Suppose that B1 and B2 are real Banach spaces, U ⊂ B1 be
an open subset and F : U ⊃ B1 → B2 a given mapping. The directional
derivative of F at a point u ∈ U in the direction h ∈ B2 is defined by

DF(u;h) := lim
εց0

1

ε

(
F(u+ εh)−F(u)

)
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provided the limit exists in B2. Suppose that the directional derivative ex-
ists for all h ∈ B1 and there is a linear, continuous operator T : U → B2

satisfying
DF(u;h) = T h for all h ∈ U.

Then, F is said to be Gâteaux-differentiable at u and T is the Gâteaux
derivative of F at u. We write T = F ′(u).

Remark 4.7. Let H be a real Hilbert space and F : H → R be Gâteaux-
differentiable at u ∈ H. Then, its Gâteaux derivative F ′(u) at u belongs to
H′ = L(H,R). Due to Riesz theorem there exists a unique element ∇F (u) ∈
H satisfying

〈∇F(u), v〉
H

= 〈F ′(u), v〉
H′,H for all v ∈ H.

We call ∇F(u) the (Gâteaux) gradient of F at u. ♦

Theorem 4.8. Let U be a real Hilbert space and Uad be convex subset. Suppose
that ū ∈ Uad is a solution to (4.6)

min
u∈Uad

J (u).

Then the following variational inequality holds

〈∇J (ū), u− ū〉
U
≥ 0 for all u ∈ Uad, (4.7)

where the gradient of J is given by

∇J (ū) = G⋆(Gu− zd) + σu for u ∈ U.

If ū ∈ Uad solves (4.7), then ū is a solution to (4.6).

Proof. Since J is Gâteaux-differentiable and convex in U, the result follows
directly from [72, pp. 63-63]. �

Inequality (4.7) is a first-order necessary and sufficient condition for
(4.6), which can be expressed as

〈Gū− zd,Gu− Gū〉
H

+ 〈σū, u− ū〉
U
≥ 0 for all u ∈ Uad. (4.8)

Next we study (4.8) for (P̂). Utilizing the setting from (4.5) we obtain

〈Gū− zd,Gv̄〉H
= σQ 〈Sū− (yQ − ŷ),S(u− ū)〉L2(0,T ;H)

+ σΩ 〈(Sū)(T )− (yΩ − ŷ(T )), (S(u− ū))(T )〉H
= σQ 〈Sū,S(u− ū)〉L2(0,T ;H) + σΩ 〈(Sū)(T ), (S(u− ū))(T )〉H
− σQ 〈yQ − ŷ,S(u− ū)〉L2(0,T ;H) − σΩ 〈yΩ − ŷ(T ), (S(u− ū))(T )〉H .

Let us define the two linear, bounded operators Θ : W0(0, T ) → W0(0, T )
′

and Ξ : L2(0, T ;H)×H →W0(0, T )
′ by

〈Θϕ, φ〉W0(0,T )′,W0(0,T ) =

∫ T

0

〈σQϕ(t), φ(t)〉H dt+ 〈σΩϕ(T ), φ(T )〉H ,

〈Ξz, φ〉W0(0,T )′,W0(0,T ) =

∫ T

0

〈σQzQ(t), φ(t)〉H dt+ 〈σΩzΩ, φ(T )〉H
(4.9)
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for ϕ, φ ∈W0(0, T ) and z = (zQ, zΩ) ∈ L2(0, T ;H)×H. Then, we find

〈Gū− zd,Gv̄〉H
= 〈Θ(Sū)− Ξ(yQ − ŷ, yΩ − ŷ(T )),S(u− ū)〉W0(0,T )′,W0(0,T )

= 〈S ′ΘSū, u− ū〉U − 〈S ′Ξ(yQ − ŷ, yΩ − ŷ(T )), u− ū〉U .
(4.10)

Let us define the linear A : U → W (0, T ) as follows: for given u ∈ U
the function p = Au ∈W (0, T ) is the unique solution to

− d

dt
〈p(t), ϕ〉H + a(t; p(t), ϕ) = −σQ 〈(Su)(t), ϕ〉H ∀ϕ ∈ V a.e.,

p(T ) = −σΩ (Su)(T ) in H.
(4.11)

It follows from (3.1) and Su ∈ W (0, T ) that the operator A is well-defined
and bounded.

Lemma 4.9. Let Assumption 1 be satisfied and u, v ∈ U . We set y = Su ∈
W0(0, T ), w = Sv ∈W0(0, T ), and p = Av ∈W (0, T ). Then,
∫ T

0

〈(Bu)(t), p(t)〉V ′,V dt = −
∫ T

0

σQ 〈w(t), y(t)〉H dt− σΩ 〈w(T ), y(T )〉H .

Proof. We derive from y = Su, p = Au, y ∈ W0(0, T ) and integration by
parts

∫ T

0

〈(Bu)(t), p(t)〉V ′,V dt =

∫ T

0

〈yt(t), p(t)〉V ′,V + a(t; y(t), p(t)) dt

=

∫ T

0

−〈pt(t), y(t)〉V ′,V + a(t; p(t), y(t)) dt+ 〈p(T ), y(T )〉H

= −
∫ T

0

σQ 〈w(t), y(t)〉H dt− σΩ 〈w(T ), y(T )〉H

which is the claim. �

We define p̂ ∈W (0, T ) as the unique solution to

− d

dt
〈p̂(t), ϕ〉H + a(t; p̂(t), ϕ) = σQ 〈yQ(t)− ŷ(t), ϕ〉H ∀ϕ ∈ V a.e.,

p(T ) = σΩ (yΩ − ŷ(T )) in H.
(4.12)

Then, for every u ∈ U the function p = p̂+Au is the unique solution to

− d

dt
〈p(t), ϕ〉H + a(t; p(t), ϕ) = σQ 〈yQ(t)− y(t), ϕ〉H ∀ϕ ∈ V a.e.,

p(T ) = σΩ (yΩ − y(T )) in H

with y = ŷ + Su. Moreover, we have the following result.

Lemma 4.10. Let Assumption 1 be satisfied. Then, B′A = −S ′ΘS ∈ L(U),
where linear and bounded operator Θ has been defined in (4.9). Moreover,
B′p̂ = S ′Ξ(yQ − ŷ, yΩ − ŷ(T )), where p̂ is the solution to (4.12).
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Proof. Let u, v ∈ U be chosen arbitrarily. We set y = Su ∈ W0(0, T ) and
w = Sv ∈ W0(0, T ). Recall that we identify U with its dual space U ′. From
the integration by parts formula and Lemma 4.9 we infer that

〈S ′ΘSv, u〉U = 〈ΘSv,Su〉W0(0,T )′,W0(0,T ) = 〈Θw, y〉W0(0,T )′,W0(0,T )

=

∫ T

0

σQ 〈w(t), y(t)〉H dt+ σΩ 〈w(T ), y(T )〉H
= −〈Bu, p〉L2(0,T ;V ′),L2(0,T ;V ) = −〈u,B′p〉U = −〈B′Av, u〉U .

Since u, v ∈ U are chosen arbitrarily, we have B′A = S ′ΘS. Further, we find

〈S ′Ξ(yQ − ŷ, yΩ − ŷ(T )), u〉U = 〈Ξ(yQ − ŷ), yΩ − ŷ(T )),Su〉W0(0,T )′,W0(0,T )

=

∫ T

0

σQ 〈yQ − ŷ(t), y(t)〉H dt+ σΩ 〈yΩ − ŷ(T ), y(T )〉H

=

∫ T

0

−〈p̂t(t), y(t)〉H + a(t; p̂(t), y(t)) dt+ 〈p̂(T ), y(T )〉H

=

∫ T

0

〈yt(t), p̂(t)〉H + a(t; y(t), p̂(t)) dt =

∫ T

0

〈(Bu)(t), p̂(t)〉V ′,V dt

= 〈B′p̂, u〉U .
which gives the claim. �

We infer from (4.10) and Lemma 4.10 that

〈Gū− zd,Gv̄〉H = −〈B′(p̂+Aū), u− ū〉U .

This implies the following variational inequality for (P̂)

〈Gū− zd,Gu− Gū〉
H

+ σ 〈ū, u− ū〉
U

= 〈σū− B′(p̂+Aū), u− ū〉U ≥ 0 for all u ∈ Uad.

Summarizing we have proved the following result.

Theorem 4.11. Suppose that Assumptions 1 and 2 hold. Then, (ȳ, ū) is a
solution to (P) if and only if (ȳ, ū) satisfy together with the adjoint variable
p̄ the first-order optimality system

ȳ = ŷ + Sū, p̄ = p̂+Aū, ua ≤ ū ≤ ub (4.13a)

〈σū− B′p̄, u− ū〉U ≥ 0 for all u ∈ Uad. (4.13b)

Remark 4.12. By using a Lagrangian framework it follows from Theorem 4.11
and [72] that the variational inequality (4.13b) is equivalent to the existence
of two functions µ̄a, µ̄b ∈ U satisfying µ̄a, µ̄b ≥ 0,

σū− B′p̄+ µ̄b − µ̄a = 0

and the complementarity condition

µ̄a(t)
⊤(ua(t)− ū(t)) = µ̄b(t)

⊤(ū(t)− ub(t)) = 0 f.a.a. t ∈ [0, T ].
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Thus, (4.13) is equivalent to the system

ȳ = ŷ + Sū, p̄ = p̂+Aū, σū− B′p̄+ µ̄b − µ̄a = 0,

ua ≤ ū ≤ ub, 0 ≤ µ̄a, 0 ≤ µ̄b,

µ̄a(t)
⊤(ua(t)− ū(t)) = µ̄b(t)

⊤(ū(t)− ub(t)) = 0 a.e. in [0, T ].

(4.14)

Utilizing a complementarity function it can be shown that (4.14) is equivalent
with

ȳ = ŷ + Sū, p̄ = p̂+Aū, σū− B′p̄+ µ̄b − µ̄a = 0, ua ≤ ū ≤ ub,

µ̄a = max
(
0, µ̄a + η(ū− ua)

)
, µ̄b = max

(
0, µ̄b + η(ū− ub)

)
,

(4.15)

where η > 0 is an arbitrary real number. The max-and min-operations are
interpreted componentwise in the pointwise everywhere sense. ♦

The gradient ∇Ĵ : U → U of the reduced cost functional Ĵ is given by

∇J(u) = σu− B⋆p, u ∈ U,

where p = p̂ + Au holds true; see, e.g., [26]. Thus, a first-order sufficient

optimality condition for (P̂) is given by the variational inequality

〈σū− B′p̄, u− ū〉U ≥ 0 for all u ∈ Uad, (4.16)

with p̄ = p̂+Aū.
Problem (P̂) can be solved numerically by a primal-dual active set strat-

egy with the choice η = σ. In this case the method is equivalent to a locally
superlinearly convergent semi-smooth Newton algorithm applied to (4.15);
see [24, 26, 74]. In Algorithm 4.1 we formulate the method in the context
of our application. In Section 5 we compare Algorithm 4.1 with the Banach
fixed point iteration as well as with the projected gradient method [38, 54].

Algorithm 4.1 (Primal-dual active set strategy)

Require: Starting value (u0, λ0) and maximal iteration number kmax.
1: Set k = 0. For i = 1, . . . ,m determine the active sets

Akai =
{
t ∈ [0, T ]

∣∣σuki + λki < uai a.e.
}
,

Akbi =
{
t ∈ [0, T ]

∣∣σuki + λki > ubi a.e.
}

and the inactive set Iki = [0, T ]\Aki with Aki = Akai ∪Akbi.
2: repeat
3: Compute the solution (y, p, u) to the optimality system

y = ŷ + Su, p = p̂+Au, ui =





uai on Akia,

ubi on Akib,

(B′p)i/σ on Iki ,

(1 ≤ i ≤ m)

4: Set (yk+1, uk+1, pk+1) = (y, u, p), λk+1 = B′pk+1−σuk+1 and k = k+1.
5: Compute the active and inactive sets according to step 1.
6: until (Akai = A

k−1
ai and Akbi = A

k−1
bi ) or k = kmax.
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4.4. The POD Galerkin approximation for (P̂)

In this subsection we introduce the POD Galerkin schemes for the variational
inequality (4.16) using a POD Galerkin approximation for the state and dual
variables. Moreover, we study the convergence of the POD discretizations,
where we make use of the analysis in [29, 40, 41, 42, 68, 73]. For a general
introduction we also refer the reader to the survey paper [28].

In Section 3.3 we have introduced a POD Galerkin scheme for the state
equation (4.1). Suppose that {ψi}ℓi=1 be a POD basis of rank ℓ computed
from (Pℓ) with ψi = ψVi in case of X = V and ψi = ψHi in case of X = H.
We set Xℓ = span {ψ1, . . . , ψℓ} ⊂ V . Let the linear and bounded projection
operator Pℓ denote PℓV for X = V and PℓH for X = H; see (3.8).

Recall the POD Galerkin ansatz (3.14) for the state variable. Analo-
gously, we approximate the adjoint variable p = p̂ + Au by the Galerkin
expansion

pℓ(t) = p̂(t) +

ℓ∑

i=1

pℓi(t)ψi ∈ V for t ∈ [0, T ] (4.17)

with coefficient functions pℓi : [0, T ] → R and with p̂ from (4.12). Let the
vector-valued coefficient function given by

pℓ =
(
pℓ1, . . . , p

ℓ
ℓ

)
: [0, T ] → R

ℓ

If we assume that pℓ(T ) = −σΩyℓ(T ) holds, then we infer from p̂(T ) =
σΩ(yΩ − ŷ(T )) and (4.17) that

pℓ(T ) = p̂(T )− σΩ

ℓ∑

i=1

yℓi(t)ψi = σΩ
(
yΩ − yℓ(T )

)
.

This motivates the following POD scheme for the approximation of p = p̂+Au
is given as follows: pℓ ∈W (0, T ) satisfies

− d

dt
〈pℓ(t), ψ〉H + a(t; pℓ(t), ψ) = σQ 〈(yQ − yℓ)(t), ψ〉H ∀ψ ∈ Xℓ a.e.,

pℓ(T ) = −σΩyℓ(T ).
(4.18)

It follows by similar arguments as for (3.15) that there is a unique solution
pℓ ∈W (0, T ).

Remark 4.13. Recall that we have introduced the linear and bounded solu-
tion operator Sℓ : U → W (0, T ) as an approximation for the state solution
operator S; see Remark 3.10-2). Analogously, we define an approximation of
the adjoint solution operator A as follows: Let Aℓ : U →W (0, T ) denote the
solution operator to

− d

dt
〈wℓ(t), ψ〉H + a(t;wℓ(t), ψ) = −σ1 〈(Sℓu)(t), ψ〉H ∀ψ ∈ Xℓ a.e.,

wℓ(T ) = −σ2(Sℓu)(T ).
Then pℓ = p̂+Aℓu is the unique solution to (4.18). ♦
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Lemma 4.14. Let Assumption 1 on page 33 be satisfied and u, v ∈ U . We set
yℓ = Sℓu ∈W0(0, T ), w

ℓ = Sℓv ∈W0(0, T ), and p
ℓ = Aℓv ∈W (0, T ). Then,

∫ T

0

〈(Bu)(t), pℓ(t)〉V ′,V dt = −
∫ T

0

σQ〈wℓ(t), yℓ(t)〉H dt−σΩ〈wℓ(T ), yℓ(T )〉H .

Moreover, B′Aℓ = −(Sℓ)′ΘSℓ ∈ L(U), where linear and bounded operator Θ
has been defined in (4.9).

Proof. Since the POD basis for the state and adjoint coincide, the claim
follows by the same arguments used to prove Lemmas 4.9 and 4.10. �

Theorem 4.15. Suppose that Assumptions 1 and 2 hold. Let X = V and
u ∈ U be arbitrarily given so that Su, Au ∈ H1(0, T ;V ) \ {0}.
1) To compute a POD basis {ψi}ℓi=1 of rank ℓ we choose ℘ = 4, y1 = Su,

y2 = (Su)t, y3 = Au and y4 = (Au)t. Then, p = p̂ + Au and pℓ =
p̂+Aℓu satisfies thea-priori error estimate

‖pℓ − p‖2W (0,T ) ≤





C
dV∑

i=ℓ+1

λVi if X = V,

C
dH∑

i=ℓ+1

λHi ‖ψHi − PℓHψHi ‖2V if X = V

(4.19)

for a constant C which depends on γ, γ1, γ2, T , σΩ and σQ.
2) If Sũ and Aũ belong to H1(0, T ;V ) for every ũ ∈ U and if λHi > 0 for

all i ∈ I, then we have

lim
ℓ→∞

∥∥A−Aℓ
∥∥
L(U,W (0,T ))

= 0. (4.20)

Proof. Analogous to (3.22) we have pℓ(t) − p(t) = θℓ(t) + ρℓ(t) for almost
all t ∈ [0, T ] with θℓ(t) = (Aℓu)(t) − Pℓ(Au)(t)) and ρℓ(t) = Pℓ(Au)(t)) −
(Au)(t). Here, Pℓ = PℓV for X = V and Pℓ = PℓH for X = H. Now, the proof
of the claims follows by similar arguments as the proofs of Theorem 3.11,
Proposition 4.7 in [29], Proposition 4.6 in [73] and Theorem 7.3 in [68]. To
estimate the terminal term θℓ(T ) we use observe that

∥∥θℓ(T )
∥∥
H

=
∥∥Pℓ

(
(Au)(T )

)
− (Aℓu)(T )

∥∥
H

≤ σΩ

(∥∥Pℓ
(
(Su)(T )

)
− (Su)(T )

∥∥
H
+
∥∥(Su)(T )− (Sℓu)(T )

∥∥
H

)

≤ σΩ

(∥∥Pℓ
(
(Su)(T )

)
− (Su)(T )

∥∥
H
+
∥∥y(T )− yℓ(T )

∥∥
H

)

≤ σΩ

(∥∥Pℓ(Su)− (Su)
∥∥
C([0,T ];H)

+
∥∥y − yℓ

∥∥
C([0,T ];H)

)

≤ σΩCE

(∥∥Pℓ(Su)− (Su)
∥∥
H1(0,T ;V )

+
∥∥y − yℓ

∥∥
W (0,T )

)

with an embedding constant CE . The first term on the right-hand can be han-
dled by (2.27), the second term is estimated in Theorem 3.11. Finally, (4.20)
follows from (3.21) and the fact that the operator Sℓ is bounded uniformly
with respect to ℓ. �
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Remark 4.16. 1) The inclusion of adjoint information into the snapshot en-
semble improves the approximation quality also for nonlinear problems;
see [15].

2) Analogous to Remark 3.12-2) the a-priori estimate (4.19) holds for an
arbitrarily chosen, but fixed control u ∈ U . Furthermore, (4.20) implies
that

lim
ℓ→∞

∥∥p̂+Aℓũ− p̂−Aũ
∥∥
W (0,T )

= 0

for any ũ ∈ U .
3) We can also extend the results in Proposition 3.14 for the adjoint equa-

tion and get an a-priori error estimate choosing ℘ = 2, y1 = Su and
y2 = Au. ♦

The POD Galerkin approximation for (P̂) is as follows:

min Ĵℓ(u) s.t. u ∈ Uad, (P̂ℓ)

where the cost is defined by Ĵℓ(u) = J(ŷ + Sℓu, u) for u ∈ U . Let ūℓ be the

solution to (P̂ℓ). Then, a first-order sufficient optimality condition is given
by the variational inequality

〈σūℓ − B′p̄ℓ, u− ūℓ〉U ≥ 0 for all u ∈ Uad, (4.21)

where p̄ℓ = p̂ℓ +Aℓūℓ holds.

Theorem 4.17. Suppose that Assumptions 1 and 2 hold. Let u ∈ U be arbi-
trarily given so that Su, Au ∈ H1(0, T ;V ) \ {0}.
1) To compute a POD basis {ψi}ℓi=1 of rank ℓ we choose ℘ = 4, y1 = Su,

y2 = (Su)t, y3 = Au and y4 = (Au)t. Then, the optimal solution ū to

(P̂) and the associated POD suboptimal solution ūℓ to (P̂ℓ) satisfy

lim
ℓ→∞

∥∥ūℓ − ū
∥∥
U
= 0 (4.22)

for X = V and X = H.
2) If an optimal POD basis of rank is computed by choosing ℘ = 4, y1 =

Sū, y2 = (Sū)t, y3 = Aū and y4 = (Aū)t, then we have

∥∥ūℓ − ū
∥∥
U
≤





C

σ

dV∑
i=ℓ+1

λVi if X = V,

C

σ

dH∑
i=ℓ+1

λHi ‖ψHi − PℓHψHi ‖2V if X = H,

(4.23)

where the constant C which depends on γ, γ1, γ2, T , σΩ, σQ and the
norm ‖B′‖L(L2(0,T ;V ),U).

Proof. Choosing u = ūℓ in (4.16) and u = ū in (4.21) we get the variational
inequality

0 ≤ 〈σ(ū− ūℓ)− B′(p̄− p̄ℓ), ūℓ − ū〉U . (4.24)
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Utilizing Lemma 4.14 and 〈Θϕ,ϕ〉W0(0,T )′,W0(0,T ) ≥ 0 for all ϕ ∈ W0(0, T )
we infer from (4.24) that

0 ≤ 〈B′Aℓūℓ − B′Aū, ūℓ − ū〉U − σ ‖ū− ūℓ‖2U
= 〈B′Aℓ(ūℓ − ū) + B′(Aℓ −A)ū, ūℓ − ū〉U − σ ‖ū− ūℓ‖2U
≤ 〈ΘSℓ(ū− ūℓ),Sℓ(ūℓ − ū)〉U + ‖B′(Aℓ −A)ū‖U‖ūℓ − ū‖U − σ ‖ū− ūℓ‖2U
≤ ‖B′(Aℓ −A)ū‖U‖ūℓ − ū‖U − σ ‖ū− ūℓ‖2U .

Consequently,

‖ū− ūℓ‖U ≤ 1

σ
‖B′(Aℓ −A)ū‖U .

Now (4.22) and (4.23) follow from (4.20) and (4.19), respectively. �

Remark 4.18. It follows from Proposition 3.14 and Remark 4.16-3) that (4.22)
holds true provided we choose ℘ = 2, y1 = Su, y2 = Au or even ℘ = 1 and
y1 = Su. ♦

In Algorithm 4.2 we formulate a discrete version of the primal-dual
active set method (see Algorithm 4.1) which is utilized to solve (P̂ℓ) in Sec-
tion 5.

Algorithm 4.2 (POD discretized primal-dual active set strategy)

Require: POD basis {ψi}ℓi=1, starting value (uℓ0, λℓ0) and maximal iteration
number kmax.

1: Set k = 0, determine the active sets

Aℓkai =
{
t ∈ [0, T ]

∣∣σukℓi + λkℓi < uai a.e.
}
,

Aℓkbi =
{
t ∈ [0, T ]

∣∣σukℓi + λkℓi (t) > ubi(t)
}

and the inactive sets Iℓki = [0, T ] \Aℓki with Aℓki = Aℓkai ∪Aℓkbi .
2: repeat
3: Determine the solution (yℓ, uℓ, pℓ) to the optimality system

yℓ = ŷ + Sℓuℓ, pℓ = p̂+Aℓuℓ, uℓ =





ua on Akℓa ,

ub on Akℓb ,

B′pℓ/σ on Ikℓ.

4: Set (yℓ,k+1, uℓ,k+1, pℓ,k+1) = (yℓ, uℓ, pℓ), λℓ,k+1 = B′pℓ,k+1 − σuℓ,k+1

and k = k + 1.
5: Compute the active and inactive sets according to step 1.

6: until (Aℓka = Aℓ,k−1
a and Aℓkb = A

ℓ,k−1
b ) or k = kmax.

4.5. POD a-posteriori error analysis

In [73] a POD a-posteriori error estimates are presented which can be applied
to our optimal control problem as well. Based on a perturbation method [16]
it is deduced how far the suboptimal control ūℓ is from the (unknown) exact
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optimal control ū. Thus, our goal is to estimate the norm ‖ū− ūℓ‖U without
the knowledge of the optimal solution ū. In general, ūℓ 6= ū holds, so that
ūℓ does not satisfy the variational inequality (4.16). However, there exists a
function ζℓ ∈ U such that

〈σūℓ − B′p̃ℓ + ζℓ, u− ūℓ〉U ≥ 0 ∀v ∈ Uad, (4.25)

with p̃ℓ = p̂ + Aūℓ. Therefore, ūℓ satisfies the optimality condition of the
perturbed parabolic optimal control problem

min
u∈Uad

J̃(u) = J(ŷ + Su, u) + 〈ζℓ, u〉U

with “perturbation” ζℓ. The smaller ζℓ is, the closer ūℓ is to ū. Next we
estimate ‖ū− ūℓ‖U in terms of ‖ζℓ‖U . By Lemma 4.10 we have

B′
(
p̄− p̃ℓ

)
= B′A

(
ū− ūℓ

)
= −S ′ΘS

(
ū− ūℓ

)
= S ′Θ

(
ỹℓ − ȳ

)
(4.26)

with ỹℓ = ŷ + Sūℓ. Choosing u = ūℓ in (4.16), u = ū in (4.25) and using
(4.26) we obtain

0 ≤ 〈−σ(ū− ūℓ) + B′(p̄− p̃ℓ) + ζℓ, ū− ūℓ〉U
= −σ ‖ū− ūℓ‖2U + 〈S ′Θ(ỹℓ − ȳ), ū− ūℓ〉U + 〈ζℓ, ū− ūℓ〉U
= −σ ‖ū− up‖2U − 〈Θ(ȳ − ỹℓ), ȳ − ỹℓ〉W0(0,T )′,W0(0,T ) + 〈ζℓ, ū− ūℓ〉U
= −σ ‖ū− ūℓ‖2U + 〈ζℓ, ūℓ − ūℓ〉U ≤ −σ ‖ū− ūℓ‖2U + ‖ζℓ‖U‖ū− ūℓ‖U .

Hence, we get the a-posteriori error estimation

‖ū− ūℓ‖U ≤ 1

σ
‖ζℓ‖U .

Theorem 4.19. Suppose that Assumptions 1 and 2 hold. Let u ∈ U be arbi-
trarily given so that Su, Au ∈ H1(0, T ;V ) \ {0}. To compute a POD basis
{ψi}ℓi=1 of rank ℓ we choose ℘ = 4, y1 = Su, y2 = (Su)t, y3 = Au and
y4 = (Au)t. Define the function ζℓ ∈ U by

ζℓi (t) =





−min(0, ξℓi (t)) a.e. in Aℓai =
{
t ∈ [0, T ] |ūℓi(t) = uai(t)

}
,

max(0, ξℓi (t)) a.e. in Aℓbi =
{
t ∈ [0, T ] |ūℓi(t) = ubi(t)

}
,

− ξℓi (t) a.e. in [0, T ] \
(
Aℓai ∪Aℓbi

)
,

where ξℓ = σūℓ − B′(p̂+Aūℓ) in U . Then, the a-posteriori error estimate

‖ū− ūℓ‖U ≤ 1

σ
‖ζℓ‖U . (4.27)

In particular, lim
ℓ→∞

∥∥ζℓ
∥∥
U
= 0.

Proof. Estimate (4.27) has already be shown. We proceed by constructing the
function ζℓ. Here we adapt the lines of the proof of Proposition 3.2 in [73] to
our optimal control problem. Suppose that we know ūℓ and p̃ℓ = p̂+Aūℓ. The
goal is to determine ζℓ ∈ U satisfying (4.25). We distinguish three different
cases.
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• Case ūℓi(t) = uai(t) for fixed t ∈ [0, T ] and i ∈ {1, . . . , Nu}: Then,
ui(t) − ūℓi(t) = ui(t) − uai(t) ≥ 0 for all u ∈ Uad. Hence, ζℓi (t) has to
satisfy (

σūℓ − B′p̃ℓ
)
i
(t) + ζℓi (t) ≥ 0. (4.28)

Setting ζℓi (t) = −min(0, (σūℓ−B′p̃ℓ)i(t)) the value ζ
ℓ
i (t) satisfies (4.28).

• Case ūℓi(t) = ubi(t) for fixed t ∈ [0, T ] and i ∈ {1, . . . , Nu}: Now, ui(t)−
ūℓi(t) = u(t) − ubi(t) ≤ 0 for all u ∈ Uad. Analogously to the first case
we define ζℓi (t) = max(0, (σūℓ − B′p̃ℓ)i(t)) to ensure (4.28).

• Case uai(t) < ūℓi(t) < ubi(t) for fixed t ∈ [0, T ] and i ∈ {1, . . . , Nu}:
Consequently, (σūℓ−B′p̃ℓ)i(t)+ζ

ℓ
i (t) = 0 holds so that ζℓi (t) = −(σūℓ−

B′p̃ℓ)i(t) guarantees (4.28).

It remains to prove that ζℓ tends to zero for ℓ → ∞. Here we follow adapt
the proof of Theorem 4.11 in [73]. By Theorem 4.17-1), the sequence {ūℓ}ℓ∈N

converges to ū in U . Since the linear operator B′A is bounded and p̃ℓ = p̂+Aūℓ
holds, {B′p̃ℓ}ℓ∈N tends to B′p̄ = B′Aū as well. Hence, there exist subsequences
{ūℓk}k∈N and {B′p̃ℓk}k∈N satisfying

lim
k→∞

ūℓki (t) = ūi(t) and lim
k→∞

(B′p̄ℓk)i(t) = (B′p̄)i(t)

f.a.a. t ∈ [0, T ] and for 1 ≤ i ≤ Nu. Next we consider the active and inactive
sets for ū.

• Let t ∈ Ji = {t ∈ [0, T ] |uai(t) < ūi(t) < ubi(t)} for i ∈ {1, . . . , Nu}. For
k◦ = k◦(t) ∈ N sufficiently large, ūℓki (t) ∈ (uai(t), ubi(t)) for all k ≥ k◦
and f.a.a. t ∈ Ji. Thus, (σū

ℓk −B′p̃ℓk)i(t) = 0 for all k ≥ k◦(t) in Ji a.e.
This implies

ζℓki (t) = 0 ∀k ≥ k◦(t) and f.a.a. t ∈ Ji. (4.29)

• Suppose that t ∈ Aai = {t ∈ [0, T ] |uai(t) = ūi(t)} for i ∈ {1, . . . , Nu}.
From (σūi − B′p̄)i(t) ≥ 0 in Aai a.e. we deduce

lim
k→∞

ζℓki (t) = −min(0, (σūℓ − B′p̃ℓ)i(t)) = 0 f.a.a. t ∈ Aai.

• Suppose that t ∈ Abi = {t ∈ [0, T ] |ubi(t) = ūi(t)}. Analogously to the
second case we find

lim
k→∞

ζℓki (t) = 0 f.a.a. t ∈ Abi. (4.30)

Combining (4.29)-(4.30) we conclude that limk→∞ ζℓki = 0 a.e. in [0, T ] and
for 1 ≤ i ≤ Nu. Utilizing the dominated convergence theorem [62, p. 24] we
have

lim
k→∞

∥∥ζℓk
∥∥
U
= 0.

Since all subsequences contain a subsequence converging to zero, the claim
follows from a standard argument. �

Remark 4.20. 1) Theorem 4.19 shows that ‖ζℓ‖U can be expected smaller
than any tolerance ǫ > 0 provided that ℓ is taken sufficiently large.
Motivated by this result we set up Algorithm 4.3. Note that the quality
of the POD Galerkin scheme is improved by only increasing the number
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of POD basis elements. Another approach is to update the POD basis
in the optimization process; see, e.g., [1, 3, 43].

2) We infer from Remark 4.18 that Theorem 4.19 holds still true if we take
℘ = 2, y1 = Su and y2 = Au.

3) In [70] POD a-posteriori error estimates are tested numerically for a
linear-quadratic optimal control problem. It turns out that in certain
cases not only an increase of the number of POD ansatz functions de-
creases the error in the reduced-order solution. In this case a change of
the POD basis is needed; see, [43, 76], for instance.

4) Let us refer to [35], where POD a-posteriori error estimates are combined
with an sequential quadratic programming method in order to solve
a nonlinear PDE constrained optimal control problem. Furthermore,
the presented analysis for linear-quadratic problems can be extended to
semilinear optimal control problems by a second-order analysis; see in
[36]. ♦

Algorithm 4.3 (POD reduced-order method with a-posteriori estimator)

Require: Initial control u0ℓ ∈ U , initial number ℓ for the POD ansatz func-
tions, a maximal number ℓmax > ℓ of POD ansatz functions, and a stop-
ping tolerance ǫ > 0.

1: Determine ŷ, p̂, y1 = Su0ℓ, y2 = Au0ℓ.
2: Compute a POD basis {ψi}ℓmax

i=1 choosing y1 and y2. Set ℓ = 1.
3: repeat
4: Establish the POD Galerkin discretization using {ψi}ℓi=1.
5: Call Algorithm 4.2 to compute suboptimal control ūℓ.
6: Determine ζℓ according to Theorem 4.15 and compute ǫape = ‖ζℓ‖U/σ.
7: if ǫape < ǫ or ℓ = ℓmax then
8: Return ℓ and suboptimal control ūℓ and STOP.
9: end if

10: Set ℓ = ℓ+ 1.
11: until ℓ > ℓmax

5. Numerical experiments

In this section we present numerical test examples to illustrate our theoretical
findings. The programs are written in Matlab utilizing the Partial Dif-

ferential Equation Toolbox for the computation of the finite element
(FE) discretization. For the temporal integration the implicit Euler method
is applied based on the equidistant time grid tj = (j−1)∆t, j = 1, . . . , n and
∆t = T/(n− 1).

Run 5.1 (POD for the heat equation). Let us apply the setting of Exam-
ple 4.1. We choose the final time T = 3, the spatial domain Ω = (0, 2) ⊂ R,
the Hilbert spaces H = L2(Ω), V = H1

0 (Ω), the source term f(t,x) = t3−x
2
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Figure 5.1. Run 5.1: The FE solution yh (left) and the
residuals corresponding to the POD basis rank ℓ (right).

for (t,x) ∈ Q and the discontinuous initial value y◦(x) = χ(0.5,1.0) − χ(1,1.5)

for x ∈ Ω, where, e.g., χ(0.5,1) denotes the characteristic function on the
subdomain (0.5, 1) ⊂ Ω, χ(0.5,1)(x) = 1 for x ∈ (0.5, 1) and χ(0.5,1)(x) = 0
otherwise. To obtain an accurate approximation of the exact solution we
choose n = 4000 so that ∆t ≈ 7.5 · 10−4 holds. For the FE discretiza-
tion we choose m = 500 spatial grid points and the equidistant mesh size
h = 2/(m + 1) ≈ 4 · 10−3. Thus, the FE error – measured in the H-norm –
is of the order 10−4. In the left graphic of Figure 5.1, the FE solution yh to
the state equation (4.3) is visualized. To compute a POD basis {ψi}ℓi=1 of
rank ℓ we utilize the multiple discrete snapshots y1j = yh(tj) for 1 ≤ j ≤ n

as well y21 = 0 and y2j = (yh(tj)− yh(tj−1)/∆t, j = 2, . . . , n, i.e., we include
the temporal difference quotients. We choose X = H and utilize the (stable)
singular value decomposition to determine the POD basis of rank ℓ; compare
Remark 2.11. We address this issue in a more detail in Run 5.4. Since the
snapshots are FE functions, the POD basis elements are also FE functions.
In the right plot of Figure 5.1, the projection and reduced-order error given
by

PROJ Error(ℓ) =

( n∑

j=1

αj

∥∥∥yh(tj)−
ℓ∑

i=1

〈yh(tj), ψi〉H ψi
∥∥∥
2

H

)1/2

,

ROM Error(ℓ) =

( n∑

j=1

αj
∥∥yh(tj)− yℓ(tj)

∥∥2
H

)1/2

are plotted for different POD basis ranks ℓ. The chosen trapezoidal weights
αj have been introduced in (2.31). We observe that both errors decay rapidly
and coincide until the accuracy 10−12, which is already significant smaller
than the FE discretisation error. This numerical results reflects the a-priori
error estimates of Theorem 3.11. ♦

Run 5.2 (POD for a convection dominated parabolic problem). To present a
more challenging situation, we study a convection-reaction-diffusion equation
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Figure 5.2. Run 5.2: The FE solution yh (left) and the
residuals corresponding the POD basis rank ℓ (right).

with a source term which is close to be singular: Let T , Ω, y◦, H and V be
given as in Run 5.1. The time-independent bilinear form a is given by

a(φ, ϕ) = η2 〈φ′, ϕ′〉H + η1 〈φ′, ϕ〉H + η0 〈φ, ϕ〉H for ϕ, φ ∈ V.

We choose the diffusivity σ2 = 0.025, the velocity σ1 = 1.0 that determines
the speed in which the initial profile y◦ is shifted to the boundary and the
reaction rate σ0 = −0.001. Finally, f(t,x) = P( 1

1−t ) cos(πx) for (t,x) ∈ Q,

where (Pz)(t) = min(+l,max(−l, z(t))) restricts the image of z on a bounded
interval. In this situation, the state solution y develops a jump at t = 1 for
l → ∞; see the left plot of Figure 5.2. The right plot of Figure 5.2 demon-
strates that in this case, the decay of the reconstruction residuals and the
decay of the errors are much slower. The manifold dynamics of the state solu-
tion require an inconvenient large number of POD basis elements. Since the
supports of these ansatz functions in general cover the whole domain Ω, the
corresponding system matrices Mℓ and Aℓ of the reduced model (compare
(3.17)) are not sparse in contrast to the matrices arising in the finite ele-
ment Galerkin framework, so the model order reduction cannot be provided
efficiently for this example if a good accuracy of the solution function yℓ is
required. ♦

Run 5.3 (True and exact approximation error). Let us consider the setting of
Run 5.1 again. The exact solution to (4.3) does not possess a representation
by elementary functions. Hence, the presented reconstruction and reduction
errors actually are the residuals with respect to a high-order finite element
solution yh. To compute an approximation y of the exact solution yex we
apply a Crank-Nicolson method (with Rannacher smoothing [59]) ensuring
‖y− yex‖L2(0,T ;H) = O(∆t2+h2) ≈ 10−5. In the context of model reduction,
such a state is sometimes called the “true” solution. To compute the FE
state yh we apply the implicit Euler method. In the left plot of Figure 5.3
we compare the true solution with the associated POD approximation for
different values n = Nt ∈ {64, 128, 256, ..., 8192} of the time integration and
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Figure 5.3. Run 5.3: The ROM errors with respect to the
true solution (left) and the exact one (right).

for the spatial mesh size h = 4 · 10−3. For the norm we apply a discrete
L2(0, T ;H)-norm as in Run 5.1. Let us mention that we compute for every
n a corresponding FE solution yh. We observe that the residuals ignore the
errors arising by the application of time and space discretization schemes for
the full-order model. The errors decay below the discretization error 10−5.
If these discretization errors are taken into account, the residuals stagnate
at the level of the full-order model accuracy instead of decaying to zero;
see the right plot of Figure 5.3. Due to the implicit Euler method we have
‖yh − yex‖L2(0,T ;H) = O(∆t + h2) with h = 4 · 10−3. In particular, from

n ∈ {64, 128, 256, ..., 8192} it follows that ∆t > 3 · 10−4 > h2 = 1.6 · 10−5.
Therefore, the spatial error is dominated by the time error for all values of
n. We can observe that the exact residuals do not decay below a limit of the
order ∆t. One can observe that for fixed POD basis rank ℓ, the residuals with
respect to the true solution increase if the high-order accuracy is improved
by enlarging n, since the reduced order model has to approximate a more
complex system in this case, where the residuals with respect to the exact
solution decrease due to the lower limit of stagnation ∆t = 3/(n− 1). ♦

Run 5.4 (Different strategies for the POD basis computation). Let Y ∈ R
m×n

denote the matrix of snapshots in the discrete setting, W = (〈ϕi, ϕj〉X) ∈
R
m×m be the (sparse) spatial weight matrix arising from the finite element

basis {ϕi}mi=1 and D = ∆t diag( 12 , 1, ..., 1,
1
2 ) ∈ R

n×n be the trapezoidal time
integration matrix fitting to implicit Euler discretization. As it is stated in
Remark 2.10, the POD basis {ψi}ℓi=1 of rank ℓ can be determined by provid-

ing an eigenvalue decomposition of the matrix Ŷ Ŷ ⊤ = W 1/2Y DY ⊤W 1/2 ∈
R
m×m, one of Ŷ ⊤Ŷ = D1/2Y ⊤WYD1/2 ∈ R

n×n, or a singular value decom-
position of Ŷ = W 1/2Y D1/2 ∈ R

m×n. Since n ≫ m in Runs 5.1-5.3, the
first variant is the cheepest one from a computational point of view. In case
of multiple space dimensions or if a second-order time integration scheme
such as some Crank-Nicolson technique is applied, the situation is converse.
On the other hand, a singular value decomposition is more accurate than
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Figure 5.4. Run 5.4: Singular values σi using the SVD
(SVD Vals) or the eigenvalue decomposition (EIG Vals) and
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an eigenvalue decomposition if the POD elements corresponding to eigen-
values/singular values which are close to zero are taken into account: Since
λi = σ2

i holds for all eigenvalues λi and singular values σi, the singular values
are able to decay to machine precision, where the eigenvalues stagnate signif-
icantly above. This is illustrated in the left graphic of Figure 5.4. Indeed, for
ℓ > 20 the EIG-ROM system matrices become singular due to the numerical
errors in the eigenfunctions and the reduced order system is ill-posed in this
case while the SVD-ROMmodel remains stable. In the right plot of Figure 5.4
POD elements are constructed with respect to different scalar products and
the resulting ROM errors are compared: ‖ · ‖H -residuals for X = H (denoted
by POD(H)), ‖·‖V -residuals forX = V (denoted by POD(V)), ‖·‖V -residuals
for X = H (denoted by POD(H,V)), which also works quite well, the consid-
eration of time derivatives in the snapshot sample (denoted by POD(H,dt))
which allows to apply the a priori error estimate given in (3.20) and the
corresponding sums of singular values (denoted by SV(H,dt)) corresponding
to the unused eigenfunctions in the latter case which indeed nearly coincide
with the ROM errors. In many applications, the quality of the reduced order
model does not vary significantly if the weights matrix W refers to the space
X = H or X = V and if time derivatives of the used snapshots are taken
into account or not. Especially, the ROM residual decays with the same order
as the sum over the remaining singular values, ‖y − yℓ‖W (0,T ) ∼

∑∞
i=ℓ+1 σi

independent of the chosen geometrical framework. ♦

Run 5.5 (Iterative methods for the optimal control problem). In this nu-
merical test we consider solution techniques for the linear-quadratic optimal
control problem (P). We define the weights σQ = 1, σΩ = 0, the desired state
yQ(t,x) = t(1−(x−1)2) for (t,x) ∈ Q, the desired final state yΩ = 0 (which is
redundant due to σΩ = 0, of course), the upper and lower bounds ua = 0.25,
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Figure 5.5. Residuals of the Banach fixpoint iteration
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regularization parameters σ.

ub = 0.75, the control operator (Bu)(t,x) = u1(t)χΩ1
(x)+· · ·+u10(t)χΩ10

(x),
where {Ωi | i = 1, ..., 10} is a uniform partition of Ω (especially, (B⋆p)i(t) =∫
Ω
χi(x)p(t,x) dx holds) and initial control u◦(t) ≡ 1.

1) Banach fixed point method: The first-order necessary and sufficient opti-
mality conditions (4.13) can be refurmaleted as the equivalent fixpoint
problem

u = P

(
1

σ

(
B′Au− B′p̂

))
=: F (u),

where P(u) = min(max(u, ua), ub) is the orthogonal projection on the
set of admissible points Uad. The optimal control ū ∈ U can therefore
be determined by the Banach fixpoint iteration uk+1 = F (uk) (k > 0)
with arbitrary initialization u0 ∈ Uad provided that F is a contraction.
Since P is Lipschitz-continuous with respect to the Lipschitz constant
1, we get

‖F (u)− F (v)‖U ≤ ‖B′A‖L(U)

σ
‖u− v‖U for all u, v ∈ U,

so the contraction of F is guaranteed if the regularization parameter
σ is sufficiently large. Except of matrix multiplications, each iteration
step requires the forward solving of the state equation for ỹ(u) = Su
and the backwards solving of the adjoint equation for p̃(ỹ) = Au. As
it can be observed in the left plot of Figure 5.5, the iteration indeed
does not converge if σ is smaller than some critical calue σ◦ ≈ 0.02.
Furthermore, the convergence speed of the iteration loop tends to zero
for σ ↓ σ◦. We therefore can make use of this method if the control
term ‖u‖2U/2 in the objective functional J models a control cost such
as the required energy and hence shall be small. On the other hand, if
we just penalize the objective functional to enforce the strict convexity
property and are interested in the case σ → 0 (the resulting controls
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usually are of “bang-bang”-type in this case, i.e. u(t) ∈ {ua, ub} for
almost all t ∈ [0, T ]), we shall apply some other optimization technique.

2) Projected gradient method: A suitable steepest descent method for the
control-constrained optimization problem is the projected gradient al-
gorithm; see, [38], for instance. Here, the next iteration point is given
by the formula uk+1 = P(uk + skdk), where dk = −∇J(uk) = σuk −
B′(Auk + p̂) is the direction of the steepest descent of J in the cur-
rent iteration point uk and sk > 0 is chosen by Algorithm 5.1. This

Algorithm 5.1 (Backtracking strategy)

Require: Maximal number jmax of iterations and parameter c ∈ (0, 1).
1: Set s(0) = 1 and j = 1.
2: while Ĵ(uk + s(j)dk) > Ĵ(uk)− cs(j) ‖dk‖U and j < jmax do

3: Set s(j+1) = s(j)/2 and j = j + 1.
4: end while
5: return sk = s(j)

procedure is globally convergent. However, as before, the convergence
speed becomes extremely slow for σ → 0. In addition, if the step size
condition Ĵ(uk + s(j)dk) ≤ Ĵ(uk) − cs(j) ‖dk‖U is just fulfilled for very

small step sizes s(j), many evaluations of the reduced objective func-
tional are required to test whether Ĵ(uk+ s

(j)dk) ≤ Ĵ(uk)− cs(j) ‖dk‖U
is satisfied. Here, each evaluation requires to solve the state equation.
Therefore, also the single iteration steps may become quite expensive.
The right plot of Figure 5.5 demonstrates that also the projected gra-
dient method cannot deal with small regularizations. In contrast to the
Banach iteration, the residuals decay for arbitrarily small values of σ,
but the numerical effort explodes if σ tends to zero.

3) Primal-dual active set strategy: This method – see Algorithm 4.1 for the
infinite-dimensional case and Algorithm 4.2 for the POD discretization
– solves the state and the adjoint equation simultaneously within the
implicit linear scheme

uk+1(t) = χAk
a
(t)ua + χAk

b
(t)ub(t) + χIk(t)

1

σ
(B′Auk+1)(t)

f.a.a. t ∈ [0, T ]. Since this technique is equivalent to a semismooth New-
ton procedure [24] locally superlinear convergence rates are provided.
Further, the algorithm is able to deal with smaller regularizations than
the other two methods presented: Reasonable computation times are
provided for all σ > σ◦ ≈ 0.0002, see Figure 5.6. For parameters below
this critical value, the bang-bang-control u oscillates between ua and
ub at the boundary grid points of the active sets. Notice that both the
critical σ◦ and the error between the exact solution and the suboptimal
final iteration depend on the number of discretization points. The nu-
merical effort of the simultaneous solving operations in each iteration
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step is significantly larger than the single solution since the initial condi-
tion for the state and the final condition for the adjoint state prevent to
iteratively solve n times a system of dimension 2m; instead, all time and
space values (y(ti,xj), p(ti,xj)) are determined by solving a linear sys-
tem of the dimension 2nm. Here, the model order reduction techniques
come into play which will lead to formidable calculation time reduc-
tions (or even make an execution of the primal-dual active set strategy
just possible). In the following, we will make use of this optimization
procedure. ♦

Run 5.6 (Different Galerkin expansions). In this run we compare themodified
POD Galerkin expansions (3.14) for the state variable and (4.17) for the dual
variable with the standard Galerkin approximations:

yℓ(t) =

ℓ∑

i=1

yℓi(t)ψi, pℓ(t) =

ℓ∑

i=1

pℓi(t)ψi for t ∈ [0, T ]. (5.1)

We choose the same setting as in Run 5.5. Let σ = 0.1. In Figures 5.7 and
5.8 we plot the optimal FE solution components (ȳh, ūh, p̄h, λ̄h) obtained by
using the primal-dual active set strategy. We observe that the support of
the multiplier Bλ̄h coincides with the active set for the control variable Būh.
Further, the relation ūh = P(B′p̄h/σ) can be observed. As it is stated in
Remark 3.10-1) the advantage of the modified Galerkin ansatz is that the
ROM errors do not include the projection of the initial value on the POD
space. Figure 5.9 illustrates the impact of homogenization, where we not only
plot the ROM errors, but also the a-posteriori error estimate for different ℓ;
compare Section 4.5. First we see that the ROM errors and the a-posteriori
error estimate nearly coincide in all scenarios. In the left plot of Figure 5.9
the POD basis is computed from snapshots of the state equation taking the
control guess u0 ≡ 1. One observes that the dynamics of the corresponding
homogeneous snapshots in the modified ansatz are not sufficient to decrease
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Figure 5.7. Run 5.6: The optimal FE control Būh (left)
and the optimal FE state ȳh (right).
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Figure 5.10. Run 5.6: The first POD basis elements for the
modified (left) and the standard (right) Galerkin expansion.

the control error below a level of 10−3 while the standard Galerkin ansatz,
exploiting also the dynamics of the initial value and the inhomogeneity, in-
duces a higher dimensional POD space and leads to an error order below
10−6. In the right plot of Figure 5.9 the optimal FE control ūh creates the
snapshots. Here, the modified Galerkin ansatz pays: The approximation error
in the standard Galerkin ansatz is dominated by the projection error of the
initial value y◦ on the POD Galerkin ansatz space. This example also shows
that good approximations of the reduced order model are just guaranteed
in the case that the snapshots which build up the POD basis include the
dynamics of the optimal state solution; otherwise, enlarging the POD basis
rank does not necessarily improve the accuracy of the results. Algorithm 4.3
proposes a solution for this problem: Here, basis updates are provided if the a
posteriori error estimator presented in Theorem 4.19 indicate that the control
error does not decay in the current POD model. Figure 5.9 shows that these
error bounds are sharp. Indeed, if the algorithm is initialized with the control
guess u◦ ≡ 1 and a single basis update is provided, i.e., a new POD basis is
calculated with respect to the achieved suboptimal POD control uℓmax

1 . This
new POD basis coincides with the POD basis associated with the best (but
usually unknown) control guess ūh. Thus, the resulting error decay by en-
larging ℓ is the same one as in the right graphic of Figure 5.9. In Figure 5.10
the first POD basis functions are presented for the modified and standard
Galerkin expansions. Consequently, the reconstruction of the initial condition
y◦ with the standard Galerkin ansatz works quite well as it is demonstrated
in Figure 5.11 – especially, due to the shape of the POD basis functions, no
oscillations at the jump points occur as can be observed by trigonometric
Fourier approximations, for instance. For the modified POD Galerkin ansatz
it is neither required nor possible to build up the initial value y◦ accurately.
But this is not needed, because the initial condition is explicitly included in
the initial condition; see (3.14). If the model data is perturbed by noise, the
improvement of homogenization is even significantly stronger. For the follow-
ing simulation, we add random data onto the initial value y◦. The controls



POD for Linear-Quadratic Optimal Control 57

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

Ψ
ℓ
y
ℓ ◦
(x
)

first seven homogeneous POD expansions of y0

Ψ1
2
y
1
◦
(x)

Ψ2
2
y
2
◦
(x)

Ψ3
y
3
◦
(x)

Ψ4
y
4
◦
(x)

Ψ5
y
5
◦
(x)

Ψ6
y
6
◦
(x)

Ψ7
y
7
◦
(x)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

Ψ
ℓ
y
ℓ ◦
(x
)

first seven inhomogeneous POD expansions of y0

Ψ1
2
y
1
◦
(x)

Ψ2
2
y
2
◦
(x)

Ψ3
y
3
◦
(x)

Ψ4
y
4
◦
(x)

Ψ5
y
5
◦
(x)

Ψ6
y
6
◦
(x)

Ψ7
y
7
◦
(x)

Figure 5.11. Run 5.6: The reconstruction error Ψℓy◦ =∑ℓ
i=1〈y◦, ψi〉H ψi for the initial condition y◦ for the modified

(left) and the standard (right) POD Galerkin expansions.

0

1

2

3

0

0.5

1

1.5

2

−1.5

−1

−0.5

0

0.5

1

1.5

time t

optimal state

direction x

ȳ
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Figure 5.12. Run 5.6: The optimal state solution for per-
turbed initial data (left) and the ROM errors for the two
POD ansatzes (right).

gained by the modified model then reach the optimal precision 10−13 with 29
POD basis functions, where even 50 basis elements are not sufficient in the
standard ansatz to decrease the error below a level of 10−11, see Figure 5.12.
We observe that the noise in the initial value is inherited to the POD basis
elements of the modified Galerkin ansatz; despite of this perturbation, their
shape does not differ much from those of the POD basis for the unperturbed
initial conditions standard Galerkin ansatz. This is different for the standard
POD Galerkin ansatz; compare Figures 5.10 and 5.13. ♦
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[73] F. Tröltzsch and S. Volkwein. POD a-posteriori error estimates for linear-
quadratic optimal control problems. Computational Optimization and Appli-
cations, 44:83-115, 2009.

[74] M. Ulbrich. Semismooth Newton Methods for Variational Inequalities and Con-
strained Optimization Problems in Function Spaces. MOS-SIAM Series on Op-
timization, vol. 11, SIAM, 2011.

[75] S. Volkwein. Optimal control of a phase-field model using proper orthogonal
decomposition. Zeitschrift für Angewandte Mathematik und Mechanik, 81:83-
97, 2001.

[76] S. Volkwein. Optimality system POD and a-posteriori error analysis for linear-
quadratic problems. Control and Cybernetics, 40:1109-1125, 2011.

[77] S. Volkwein. Proper Orthogonal Decomposition: Theory and Reduced-Order
Modelling. Lecture Notes, University of Konstanz, 2012.

[78] G. Vossen and S. Volkwein. Model reduction techniques with a-posteriori er-
ror analysis for linear-quadratic optimal control problems. Numerical Algebra,
Control and Optimization, 2:465-485, 2012.

[79] K. Willcox and J. Peraire. Balanced model reduction via the proper orthogonal
decomposition. American Institute of Aeronautics and Astronautics (AIAA),
2323-2330, 2002.

[80] K. Yosida. Functional Analysis Classics in Mathematics, Reprint of the 1980
edition, Springer-Verlag, Heidelberg, 1995.

[81] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-
Hall, Upper Saddle River, NJ, 1996.



POD for Linear-Quadratic Optimal Control 63

Martin Gubisch
University of Konstanz
Department of Mathematics and Statistics
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