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PROPER ORTHOGONAL DECOMPOSITION FOR OPTIMALITY SYSTEMS

Karl Kunisch1 and Stefan Volkwein1

Abstract. Proper orthogonal decomposition (POD) is a powerful technique for model reduction of
non-linear systems. It is based on a Galerkin type discretization with basis elements created from
the dynamical system itself. In the context of optimal control this approach may suffer from the fact
that the basis elements are computed from a reference trajectory containing features which are quite
different from those of the optimally controlled trajectory. A method is proposed which avoids this
problem of unmodelled dynamics in the proper orthogonal decomposition approach to optimal control.
It is referred to as optimality system proper orthogonal decomposition (OS-POD).
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1. Introduction

In this research we focus on a model reduction technique for open loop optimal control problems of the form

min J(y, u) s.t.

{
yt(t) = F (y(t)) + B(u(t)) for t ∈ (0, T ],

y(0) = y0.
(P)

Here J denotes a cost-functional depending on the state y and the control u, with y and u depending on time
t ∈ [0, T ] and the spatial variable x from the domain Ω ⊂ R

d with d ∈ N. The differential equation constraint
in (P) will be considered in weak form in a separable Hilbert space V of functions defined on Ω. The precise
conditions on the possibly nonlinear operator F : V → V ∗ and the control operator B : U → V ∗ will be given
in the following section. Here U denotes the control space. We utilize a Gelfand triple V ⊂ H ⊂ V ∗, with V
compactly and densely embedded in the real Hilbert space H , and V ∗ denoting the dual space of V . Further
y0 stands for the given initial condition.

While significant advances have been made over the last decade in efficient solving of (P) good reasons
remain for applying model reduction techniques to the partial differential equation and solving the optimal
control problem for the reduced system. Such a procedure can become necessary in the case a large systems of
partial differential equations or in the context of real time requirements, for example. It provides a possibility
for obtaining closed loop solutions based on solving the Hamilton-Jacobi-Bellman equation which is otherwise
computationally infeasible even for very coarse spatial discretizations.
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To obtain low dimensional models of complex high dimensional systems many different approaches, including
balanced truncation and reduced basis methods, were proposed. Here we focus on model reduction based on
proper orthogonal decomposition (POD). It is based on a Galerkin technique where the basis functions {ψi}ℓ

i=1

are chosen as the solutions to

⎧
⎪⎨

⎪⎩
min

{ψi}ℓ

i=1

∫ T

0

∥∥∥y(t, ·) −
ℓ∑

i=1

〈y(t, ·), ψi〉X ψi

∥∥∥
2

X
dt

subject to 〈ψi, ψj〉X = δi,j for 1 ≤ i, j ≤ ℓ,

(1.1)

with X a Hilbert space satisfying V ⊂ X ⊂ H . The basis defined by (1.1) is given by the eigenfunctions
corresponding to the ℓ largest eigenvalues λi of the following eigenvalue problem:

Rψi :=

∫ T

0

〈y(t), ψi〉X y(t) dt = λiψi for 1 ≤ i ≤ ℓ, (1.2a)

〈ψj , ψi〉X = δij for 1 ≤ i, j ≤ ℓ, (1.2b)

see [9], for example. Let us denote Xℓ = span {ψi}ℓ
i=1 endowed with the norm induced by X . In (1.2) the

function y denotes a solution to the dynamical system in (P) computed at a reference control u. Hence the
Galerkin subspace Xℓ depends on the control as well. Typical choices for X are X = H and X = V . Our
assumptions will guarantee that Xℓ ⊂ V . Let P ℓ : H → Xℓ denote the orthogonal projection with respect to the
H norm. Since Xℓ ⊂ V the projection P ℓ can be extended to a bounded linear mapping from V ∗ → Xℓ ⊂ V ∗

satisfying 〈P ℓf − f, φ〉V ∗,V = 0 for all φ ∈ Xℓ and f ∈ V ∗. In the POD-approach to (P) the dynamical system
is replaced by a Galerkin projection on the POD-subspace Xℓ. This results in

min J(yℓ, u) s.t.

{
yℓ

t = P ℓ
(
F (yℓ(t)) + B(u(t))

)
for t ∈ (0, T ],

yℓ(0) = P ℓ y0.
(Pℓ)

The discretization of the control variable u ∈ L2(0, T ; U) is a different issue that is not the focus of the present
research. In Section 2 the control space U will be chosen to be finite dimensional. Note that the projection
in (Pℓ) depends on the state y and hence on the reference control u at which the eigenvalue problem (1.2)
is solved for the basis {ψi}ℓ

i=1. This may deter from one of the main advantages of the POD-approach for
model reduction, which consists in the fact that unlike typical finite element basis functions the elements of the
POD-basis reflect the dynamics of the system. In optimal control this feature gets lost if the dynamics of the
state corresponding to the reference control is significantly different from that of the trajectory corresponding
to the optimal control of (P) or the POD-Galerkin approximation (Pℓ). To eliminate this weakness of the
conventional approach we propose to consider

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min J(yℓ, u) subject to

yℓ
t(t) = P ℓ(u)F (yℓ(t)) + P ℓ(u)B(u(t)), for t ∈ (0, T ],

yℓ(0) = P ℓ(u) y0,

yt(t) = F (y(t)) + B(u(t)), for t ∈ (0, T ],

y(0) = y0,

R(y(u))ψi = λiψi for 1 ≤ i ≤ ℓ,

〈ψj , ψi〉X = δij for 1 ≤ i, j ≤ ℓ,

(Pℓ
OS-POD)
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where we now indicate the dependence of the projection (Pℓ) and the correlation operator R on the control u.
The first three lines in (Pℓ

OS-POD) coincide with (Pℓ), the next two are the infinite dynamical system and the last
two represent the eigenvalue problem characterizing the POD basis. For the optimal solution (yℓ ∗, y∗, ψ∗

i , λ∗
i , u

∗)
the problem formulation (Pℓ

OS-POD) has the property that the associated POD-reduced system is computed from
the trajectory corresponding to the optimal control u∗ and thus, differently from (Pℓ), the problem of unmodelled
is removed. (Pℓ

OS-POD) can be considered as an optimization problem in the variables (yℓ, y, ψi, λi, u) or,
alternatively it can be looked upon in the reduced sense with u the only independent variable, and yℓ, y, ψi, λi

dependent variables defined by the equations in (Pℓ
OS-POD). In either case (Pℓ

OS-POD) is more complicated
than the original problem and we thus need to justify its scope. We shall show that the optimality system
for (Pℓ

OS-POD) involves two adjoint equations. The adjoint equation for the finite dimensional system is the
common one for the Galerkin approach. It contains the linearization of the cost J with respect to the state-
variable yℓ as forcing function. The second adjoint equation results from the infinite dimensional system and
contains as forcing term information of the linearization of the correlation operator R. The gradient of the
reduced functional u �→ J(yℓ(u), u) with yℓ the solution to the POD system in (Pℓ

OS-POD) can be expressed in
terms of the solutions to these two adjoints. This can be utilized for practical realizations of (Pℓ

OS-POD). It
suggests a splitting of the variables z into z1 = (yℓ, u) and z2 = (y, ψi, λi). Minimizing J(yℓ, u) with respect to
the former for fixed z2 results in the common POD-optimization problem for which first order, gradient based,
or second order methods can be used. Minimization with respect to the second set of variables requires one
additional forward and one adjoint sweep of the full system if gradient iterations are used. Thus for practical
realization of (Pℓ

OS-POD) we suggest a splitting scheme where minimization with respect to the z1 is done more
accurately than with respect to z2. The benefit for this extra work is that the POD basis is updated in the
direction of the minimum of J .

In the above discussion we presented OS-POD by means of the spatial correlation operator R. There is an
equivalent formulation based on a temporal correlation operator K. For numerical realizations one can choose
the formulation involving R, respectively K, depending on which of the two results in a descretized eigenvalue
problem of smaller dimension.

To overcome the problem of unmodelled dynamics in the POD-basis it was proposed earlier [1,19] to update
the basis after a solution to (Pℓ), to recompute the solution to (Pℓ) with this new basis, and to possibly iterate.
In [2] this updating procedure was combined with a trust region strategy which determines whether at the end
of an optimization step an update of the POD-basis should be performed. The main difference between the
procedure just described and (Pℓ

OS-POD) lies in the fact that the former updates the basis according to the
optimal control obtained from (Pℓ) whereas the update of the POD-basis following (Pℓ

OS-POD) respects the
goal of minimizing J . On a computational level, updating the basis at the end of a (Pℓ

OS-POD) solution step
requires one forward solve of the full system, whereas a gradient step for (Pℓ) for z2 requires one forward and
one backwards solve of the full system.

Let us briefly point to some of the literature on model reduction based on POD. These citations are only of
exemplary nature. We refer to [5,22] as two of the early works on POD much of which is in the context of fluid
dynamics. For optimal control and inverse problems POD was used for a wide variety of diffusion dominated
systems, for instance in [4,12,16,23]. In [14] optimal closed loop control for Burgers equation is based on POD
reduction of the state equation to solve the Hamilton-Jacobi-Bellman equation. For linear systems POD is
closely related to balanced truncation, we refer to [8, 15, 18, 21, 28]. Reduced basis methods also utilize states
of the underlying system to generate a basis but, unlike POD, they do not involve an orthogonalization step,
see [11] in the context of optimal control, for example. While in the present paper we fix the dimension of the
POD-subspace, approaches to the problem of convergence of the reduced order dynamical system to the infinite
dimensional system as ℓ → ∞ are proposed in [9, 10, 13]. This question is nonstandard, since one cannot rely
on approximation theory results as in the case of finite elements for the convergence of elements in Xℓ to those
in X . A difficulty related to POD-based model reduction may result from the evaluation of the nonlinearity on
the POD subspace [3]. In this respect, reduced-basis elements [7, 20] offer an interesting alternative.
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The contents of the following sections is the following. In Section 2 the precise problem statement is given.
Existence of an optimal solution and associated Lagrange multipliers is claimed and a first order optimality
system is derived. The proofs to the claims in Section 2 are given in Section 3. Section 4 contains selected
numerical results which demonstrate the feasibility of the proposed methodology.

2. Existence for augmented systems and optimality condition

The dynamical system under consider is of the form

d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) + 〈N (y(t)), ϕ〉V ∗,V =

m∑

k=1

uk(t) 〈bk, ϕ〉H (2.1a)

for allmost all t ∈ (0, T ] and

〈y(0), ϕ〉H = 〈y0, ϕ〉H for all ϕ ∈ V, (2.1b)

with the following specifications holding throughout

• T > 0, V and H are separable real Hilbert spaces, with V dense and compact in H , and V ⊂ H =
H∗ ⊂ V ∗ a Gelfand triple;

• a : V × V → R is a symmetric bilinear form satisfying a(ϕ, ϕ) ≥ α ‖ϕ‖2
V for some α > 0 independent

of ϕ;
• N : V → V ∗ is a twice continuously Fréchet-differentiable operator;
• the control shape functions bk are chosen in H with control intensities u ∈ L2(0, T ; Rm);
• y0 ∈ V .

We associate with a the isomorphism A : V → V ∗, which can alternatively be considered as linear unbounded
selfadjoint operator in H with domain D(A) = {ϕ ∈ V : Aϕ ∈ H}. Defining B : R

m → H by B(υ) =
∑m

k=1 υk bk

we can express (2.1) in operator form as

⎧
⎨

⎩

d

dt
y(t) + Ay(t) + N (y(t)) = B(u(t)) for t ∈ (0, T ],

y(0) = y0.

(2.2)

Further assumptions are necessary for the nonlinearity N . We choose conditions which are satisfied for nonlin-
earities of Navier-Stokes type, see [24], Chapter III, for example.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

For every u ∈ L2(Rm) there exists a unique solution

y = y(u) ∈ L2(D(A)) ∩ H1(V ) and moreover

there exists a continuous function c1 : R → R such that

‖y(u)‖L2(D(A))∩H1(V ) ≤ c1

(
‖u‖L2(Rm)

)
for all u ∈ L2(Rm).

(H1)

Here and throughout we shall abbreviate L2(0, T ; Y ) by L2(Y ), and analogously for H1(0, T ; Y ) and C([0, T ]; Y ).
We further require the assumptions

⎧
⎪⎨

⎪⎩

there exist real constants c2 and c3 such that

−〈N (ψ), ψ〉V ∗,V ≤ α
2 ‖ψ‖2

V + c2 ‖ψ‖2
H + c3 for all ψ ∈ V and

N maps bounded sets in V to bounded sets in V ∗,

(H2)

and

D(A) embeds compactly into V. (H3)
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For the Navier-Stokes nonlinearity, (H2) is satisfied with c2 = c3 = 0. We consider an optimal control problem
of tracking type. Different cost functionals could be treated quite analogously.

⎧
⎪⎨

⎪⎩
min J(y, u) = min

β

2

∫ T

0

‖y(t) − z(t)‖2
H dt +

1

2

∫ T

0

u(t)T Ru(t) dt

subject to u ∈ L2(Rm) and (2.1),

(P)

where β > 0, z ∈ L2(H), and R ∈ R
m×m is positive definite and symmetric. To denote the reduced cost

functional we write Ĵ(u) = J(y(u), u), with y(u) the solution to (2.1) for given u. With (H1) holding it is
standard to argue existence of a solution (y∗, u∗) = (y(u∗), u∗) to (P). It also follows from proof to Theorem 2.1
below.

To define the POD reduction with basis {ψi}ℓ
i=1 let

X = H or X = V

and for y ∈ L2(X) let R : X → X be given by

Rψ =

∫ T

0

〈y(t), ψ〉X y(t) dt for ψ ∈ X.

Clearly R is a bounded, nonnegative, selfadjoint operator which can be expressed as

R = YY∗,

where Y : L2(R) → X is defined by

Yv =

∫ T

0

υ(t) y(t, ·) dt for v ∈ L2(R),

and the adjoint Y∗ : X → L2(R) is given by

Y∗ψ = 〈y(t, ·), ψ(·)〉X for ψ ∈ X.

We shall also utilize the operator K : L2(R) → L2(R) defined by

K = Y∗Y

or explicitly

(Kv)(t) =

∫ T

0

〈y(t, ·), y(s, ·)〉X v(s) ds for v ∈ L2(R).

Proposition 2.1. Let y ∈ L2(X). Then the operator K is compact. Moreover, except for possibly 0, K and R
possess the same eigenvalues which are positive with identical multiplicities and ψ is eigenvector of R if and
only if Y∗ψ = 〈y(t, ·), ψ〉X is an eigenvector of K.

Proof. Since the kernel of K is square integrable on (0, T )×(0, T ) the integral operator K is Hilbert-Schmidt and
therefore compact. From K = Y∗Y we deduce that K is selfadjoint and nonnegative. Its positive spectral values
are necessarily eigenvalues with finite multiplicity and their only possible accumulation point is 0. If ϕ is an
eigenvector of K with eigenvalue λ > 0 then Y∗Yϕ = λϕ and thus Yϕ is an eigenvector of R. Analogously, if ψ is
an eigenvector of R with eigenvalue λ �= 0 then Y∗ψ is an eigenvector of K. Let λ �= 0 be an eigenvalue of K and
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let ker {K − λI} = span {ϕi}r
i=1 with {ϕi}r

i=1 linearly independent. Then {Yϕi}r
i=1 are linearly independent.

If not, then there exist scalars αi, 1 ≤ i ≤ r, with Πr
i=1 αi �= 0 such that

∑r

i=1 αi Yϕi = 0. This implies

0 = Y∗
( r∑

i=1

αi Yϕi

)
=

r∑

i=1

αi Kϕi = λ

r∑

i=1

αi ϕi,

which is impossible, since λ > 0 and {ϕi}r
i=1 are linearly independent. Hence dim ker {R− λI} ≥ dim ker {K−

αI}. The converse inequality follows analogously and hence dim ker {R− λI} = dim ker {K − λI}. �

We shall utilize POD bases {ψi(y)}ℓ
i=1 with respect to X = H or X = V satisfying λ1 ≥ λ2 ≥ . . . ≥ λℓ > 0,

and

R(y)ψi =

∫ T

0

〈y(t, ·), ψi〉X y(t) dt = λiψi for i = 1, . . . , ℓ, (2.3a)

〈ψi, ψj〉X = δij for i, j = 1, . . . , ℓ. (2.3b)

The POD-subspaces are denoted by

V ℓ = span {ψ1, . . . , ψℓ}.
Note that V ℓ depends on y. In this paper the POD-subspaces are generated by trajectories y which arise as
controlled trajectories of (2.1). We shall require the following condition

min{λℓ(R(y)) | y solves (2.1) with u ∈ L2(Rm)} > 0. (H4)

Note that ψi ∈ V also for X = H . This follows from (2.3a) using that y ∈ L2(V ). Moreover, ψi ∈ D(A) for
y ∈ L2(D(A)).

To obtain the POD-Galerkin approximation to (2.1) we make the ansatz

yℓ(t) =

ℓ∑

j=1

xj(t)ψj ,

replace y by yℓ in (2.1), take inner products in H with respect to {ψi}ℓ
i=1 and obtain the system of ordinary

differential equations in R
ℓ

{
E(ψ) ẋ(t) + A(ψ)x(t) + N(x(t), ψ) = B(ψ)u(t) for t ∈ (0, T ]

E(ψ)x(0) = x0(ψ).
(2.4)

Here E : Xℓ × Xℓ → R
ℓ×ℓ with Xℓ =

⊗ℓ

i=1 X is defined by

Eij(ϕ, φ) = 〈ϕi, φj〉H and E(ϕ) = E(ϕ, ϕ),

A : Xℓ × Xℓ → R
ℓ×ℓ is defined by

Aij(ϕ, φ) = a(ϕi, φj) and A(ϕ) = A(ϕ, ϕ),

B : Xℓ → R
ℓ×m and x0 : Xℓ → R

ℓ are given by

Bij(ϕ) = 〈ϕi, bj〉H , x0,i(ϕ) = 〈y0, ϕi〉H ,
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and the nonlinearity N : R
ℓ × Xℓ × Xℓ → R

ℓ by

Ni(x, ψ, ϕ) =

〈
N

( ℓ∑

j=1

xj ψj

)
, ϕi

〉

V ∗,V

with N(x, ϕ) = N(x, ϕ, ϕ). (2.5)

Discretizing the cost function in the same manner we obtain

Jℓ(x, ψ, u) =
β

2

∫ T

0

(
x(t)T (E(ψ)x(t) − 2zℓ(t, ψ)) + ‖z(t)‖2

H

)
dt

+
1

2

∫ T

0

uT (t)Ru(t) dt,

where zℓ : (0, T ) × Xℓ → R
ℓ is given by

zℓ(t, ϕ)i = 〈z(t), ϕi〉H ,

and Jℓ : L2(Rℓ) × Xℓ × L2(Rm) → R
+.

We are now prepared to specify the POD-Galerkin reduced optimal control problem augmented with the
POD-generation criteria:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min Jℓ(x, ψ, u) over (x, ψ, u) ∈ L2(Rℓ) × Xℓ × L2(Rm),

subject to

E(ψ) ẋ(t) + A(ψ)x(t) + N(x(t), ψ) = B(ψ)u(t) for t ∈ (0, T ],

E(ψ)x(0) = x0(ψ),

d
dt

y(t) + Ay(t) + N (y(t)) = B(u(t)) for t ∈ (0, T ],

y(0) = y0,

R(y)ψi = λiψi for i = 1, . . . , ℓ,

〈ψi, ψj〉X = δij for i, j = 1, . . . , ℓ.

(Pℓ
OS-POD)

As discussed in Section 1, if the POD-eigenvalue problem is solved at a reference trajectory y(ū) corresponding
to a fixed reference control ū, this results in the last four equations from (Pℓ

OS-POD). The remaining optimization
is the standard one in the POD-Galerkin optimal control approach.

Theorem 2.2. If (H1)–(H4) hold, then (Pℓ
OS-POD) admits a (global) solution (x∗, ψ∗, u∗) ∈ W 1,2(Rℓ)×Xℓ ×

L2(Rm) with (λ∗, y∗) ∈ R
m × (L2(D(A)) ∩ W 1,2(V )) and y∗ = y(u∗).

The proof of this theorem and the following ones are given in the Appendix.
We proceed by deriving an optimality system. For this purpose we assume that the eigenvalues of R(y∗) with

y∗ = y(u∗) are distinct. If this is not the case then in the following results we have to keep the orthonormality
condition on the subspace corresponding to a multiple eigenvalue as explicit constraints. For λi �= λj we have
〈ψi, ψj〉X = 0 since R is selfadjoint. Therefore (2.3b) will be replaced by ‖ψ∗

i ‖X = 1 for i = 1, . . . , ℓ.
Henceforth the state and the control variables are considered in the space

Z = H1(Rℓ) × W (0, T ) × Xℓ × R
ℓ × L2(Rm),

where W (0, T ) = L2(V ) ∩ H1(V ∗) and the generic element of Z is denoted by z = (x, y, ψ, λ, u). We utilize
adjoint variables form the space

Ξ = L2(Rℓ) × R
ℓ × L2(V ) × H × Xℓ × R

ℓ
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with generic element
ξ = (q, q0, p, p0, µ, η).

To describe the six equality constraints in (Pℓ
OS-POD) we introduce

e1 : Z → L2(Rℓ), e2 : Z → R
ℓ,

e3 : Z → L2(V ∗), e4 : Z → H,

e5 : Z → Xℓ, e6 : Z → R
ℓ

by

e1(z) = E(ψ) ẋ + A(ψ)x + N(x(·), ψ) − B(ψ)u,

e2(z) = E(ψ)x(0) − x0(ψ),

e3(z) = yt + Ay + N (y(·)) − Bu,

e4(z) = y(0) − y0,

e5(z) = ((R− λ1 I)ψ1, . . . , (R− λl I)ψℓ),

e6(z) =
(
‖ψ1‖2

X − 1, . . . , ‖ψℓ‖2
X − 1

)
.

To obtain a first-order necessary optimality condition we introduce the Lagrange functional L : Z × Ξ → R by

L(z, ξ) = Jℓ(x, ψ, u) + 〈e1(z), q〉L2(Rℓ) + 〈e2(z), q0〉Rℓ

+ 〈e3(z), p〉L2(V ∗),L2(V ) + 〈e4(z), p0〉H + 〈e5(z), µ〉Xℓ + 〈e6(z), η〉Rℓ .

Subsequently we derive the system which arises from setting Lz(z, ξ) = 0. Then we argue existence of ξ∗ such
that Lz(z

∗, ξ∗) = 0 and finally we prove that Lz(z
∗, ξ∗) = 0 is a necessary optimality condition. Setting

Lx(z, ξ) = 0 we find

{
−E(ψ) q̇(t) +

(
A(ψ) + N

T
x (x(t), ψ)

)
q(t) = β

(
z(t, ψ) − E(ψ)x(t)

)
,

q(T ) = 0
(2.6)

and
q0 = q(0), (2.7)

which is the common adjoint equation in the context of POD-Galerkin optimal control. To compute Ly(z, ξ) we
first consider the term e5(z) and denote by I : X∗ → X the canonical Riesz isomorphism, which is the identity
operator in case of X = H . We find

∂

∂y

(〈
(R− λiI)ψi, µi

〉
X

)
δy =

∫ T

0

〈
〈y(t), ψi〉Xµi + 〈y(t), µi〉Xψi, δy(t)

〉
X

dt

=

∫ T

0

〈
〈y(t), ψi〉XI−1µi + 〈y(t), µi〉XI−1ψi, δy(t)

〉

V ∗,V
dt

for i ∈ {1, . . . , ℓ}. Thus, Ly(z, ξ) = 0 implies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ṗ(t) + Ap(t) + N ′(y(t))∗ p(t)

=

ℓ∑

i=1

〈y(t), µi〉X I−1ψi + 〈y(t), ψi〉X I−1µi,

p(T ) = 0

(2.8)
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and

p0 = p(0), (2.9)

i.e., the adjoint equation on the level of the original systems couples with the POD-reduction through the
linearization of the kernel of the correlation operator. From Lλ(z, ξ) = 0 we derive

〈ψi, µi〉X = 0 for 1, . . . , ℓ, (2.10)

and Lu(z, ξ) = 0 implies

Ru(t) = B(ψ)T q(t) + B∗p(t), (2.11)

which is the optimality condition. Note, if we were to only consider the POD-reduced optimal control problem
then (2.11) would be replaced by

Ru(t) = B(ψ)T q(t). (2.12)

Finally we turn to Lψ(z, ξ) = 0, which involves the terms e1, e2, e5 and e6 as well as Jℓ. For any δψ ∈ Xℓ we
have

0 = Lψ(z, ξ) δψ = 〈G(x, ψ, u, q), δψ〉(Xℓ)∗,Xℓ +
ℓ∑

i=1

〈(R− λiI)δψi, µi〉X

+ 2

ℓ∑

i=1

〈δψi, ψi〉X ηi.

Here, G : H1(Rℓ) × Xℓ × L2(Rm) × H1(Rℓ) → (Xℓ)∗ is given by

〈G(x, ψ, u, q), δψ〉(Xℓ)∗,Xℓ = β

∫ T

0

xT (E(ψ, δψ)x − z(·, δψ)) dt

+

∫ T

0

qT [(E(ψ, δψ) + E(δψ, ψ))ẋ + (A(ψ, δψ) + A(δψ, ψ))x] dt

+

∫ T

0

qT [Nψ(x, ψ)δψ − B(δψ)u] dt + q(0)T (E(ψ, δψ) + E(δψ, ψ))x(u).

Note that G can also be expressed as

〈G(x, ψ, u, q), δψ〉(Xℓ)∗,Xℓ =
ℓ∑

k=1

〈Gk(x, ψ, u, q), δψk〉X∗,X ,

where

〈Gk(x, ψ, u, q), δψk〉X∗,X = 〈G(x, ψ, u, q), δ̂ψk〉(Xℓ)∗,Xℓ

and

(δ̂ψk)i = 0 if i �= k, (δ̂ψk)k = δψk.

Then we have

(R− λi I)µi + 2ηi ψi = −I Gi(x, ψ, u, q) for i = 1, . . . , ℓ. (2.13)

By (2.10) this implies

ηi = −1

2
〈Gi(x, ψ, u, q), ψi〉X∗,X (2.14)

and

(R− λi I)µi = −2 ηi ψi − I Gi(x, ψ, u, q) for i = 1, . . . , ℓ. (2.15)
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Since the right-hand side of this equation is orthogonal to the kernel of R− λiI it admits a unique solution µi.
The explicit form of Gi is found to be

Gi(x, ψ, u, q) =

∫ T

0

(
xi

( ℓ∑

j=1

xjψj − z
)

+ qi

ℓ∑

j=1

ẋj ψj + ẋj

ℓ∑

j=1

qj ψj

)
dt

+

∫ T

0

(
qi

ℓ∑

j=1

xj Aψj + xi

ℓ∑

j=1

qj Aψj − qi

m∑

k=1

bk uk

)
dt

+
ℓ∑

j=1

(xj(0)ψj qi(0) + xi(0)ψj qj(0)) − y0 qi(0)

+ N
( ℓ∑

k=1

xk ψk

)
qi + xi

ℓ∑

j=1

N ′
( ℓ∑

k=1

xk ψk

)∗
qjψj .

Theorem 2.3. Let (H1)–(H4) hold and let

z = (x, y, ψ, λ, u) ∈ W 1,2(Rℓ) × W 1,2(V ) × Xℓ × R
m × L2(Rm)

denote a solution to (Pℓ
OS-POD). Assume that the eigenvalues of R(y) are distinct and that

d

dt
v + Av + N ′(y(t))v − Bũ = w for t ∈ (0, T ] and v(0) = v0

admits a solution (v, ũ) ∈ W (0, T ) × L2(Rm) for every (w, v0) ∈ L2(V ∗) × H. Then there exist (q, p, µ, η) ∈
L2(Rℓ) × L2(V ) × Xℓ × R

ℓ such that the following optimality system holds:

{
−E(ψ) q̇(t) +

(
A(ψ) + N

T
x (x(t), ψ)

)
q(t) = −β

(
E(ψ)x(t) − z(t, ψ)

)
,

q(T ) = 0,
(2.16)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ṗ(t) + Ap(t) + N ′(y(t))∗ p(t) =

ℓ∑
i=1

〈y(t), µi〉XI−1ψi + 〈y(t), ψi〉XI−1µi,

p(T ) = 0,

(2.17)

{
ηi = − 1

2 〈Gi(x, ψ, u, q), ψi〉X∗,X

µi = −(R− λi I)−1
[
2 ηi ψi + I Gi(x, ψ, u, q)

]
for i = 1, . . . , ℓ,

(2.18)

Ru(t) = BT (ψ) q(t) + B∗p(t). (2.19)

The following theorem addresses the situation when K is of smaller dimension than R.

Theorem 2.4. Let z = (x, y, ψ, λ, u) ∈ Z denote a solution of (Pℓ
OS-POD) and let the assumptions of The-

orem 2.3 hold. Then there exists (q, pK, µK, η) ∈ L2(Rℓ) × L2(V ) × Xℓ × R
ℓ satisfying the optimality system
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consisting of (2.16) and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ṗK(t) + ApK(t) + N ′(y(t))∗pK(t) =

ℓ∑

i=1

∫ T

0

2I−1y(s, ·)µK
i (s) ds ϕi(t)

+

ℓ∑

i=1

∫ T

0

I−1 y(s, ·)ϕi(s) ds µK
i (t)

pK(T ) = 0,

(2.20)

{
ηi = − 1

2 〈Gi(x, ψi, u, q), ψi〉X∗,X

µK
i = −(K − λi I)−1(K−1 G̃i + 2ηi ϕi),

(2.21)

R u(t) = BT (ψ) q(t) + B∗pK(t), (2.22)

where
√

λi ψi = Y∗ ψi and G̃i =
√

λi Y∗I Gi(x, ψi, u, q).

3. Numerical experiments

In this section feasibility of the proposed methodology is demonstrated by means of optimal boundary control
problems for the unsteady Burgers equation. We explain the numerical realization of OS-POD and present two
test examples.

4.1. Numerical strategy

We consider the minimization problem

min J(y, u, v) =
1

2

∫ T

0

∫ 1

0

|y − z|2 dxdt +
β

2

∫ T

0

(|u|2 + |v|2) dt, (4.1a)

subject to

yt − ν yxx + yyx = f in Q = (0, T )× (0, 1), (4.1b)

νyx(· , 0) + σ0y(·, 0) = u in (0, T ), (4.1c)

νyx(· , 1) + σ1y(·, 1) = v in (0, T ), (4.1d)

y(0, ·) = y0 in (0, 1). (4.1e)

In the context of Section 2 we set H = L2(0, 1) and V = H1(0, 1). We suppose z ∈ L2(0, T ; H), T > 0 and
β > 0. In (4.1b)–(4.1e) let ν > 0, f ∈ L2(0, T ; V ), σ0 ∈ R, σ1 ∈ R and y0 ∈ V be fixed.

Problem (4.1) admits at least one global optimal solution x∗ = (y∗, u∗, v∗); see e.g. [25–27]. Furthermore,
there exist a unique associated Lagrange multiplier p∗ ∈ L2(0, T ; V ) ∩ H1(0, T ; V ′) satisfying

−p∗t − νp∗xx − y∗p∗x = −(y∗ − z) in Q,
νp∗x(· , 0) +

(
σ0 + y∗(·, 0)

)
p∗(· , 0) = 0 in (0, T ),

νp∗x(· , 1) +
(
σ1 + y∗(·, 1)

)
p∗(· , 1) = 0 in (0, T ),
p∗(T, ·) = 0 in (0, 1).

(4.2)

Let us recall how (4.1) was solved by a reduced-order approach in [26]. We shall use the same specifications for
the discretisation and POD basis generation for the numerical results which follow. For given control inputs u
and v (e.g., u = v = 0) a discrete solution {yj

h}m
j=0 to the unsteady Burgers equation (4.1b)–(4.1e) is computed
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by utilizing a finite element approximation for the spatial domain (0, 1) with piecewise linear ansatz functions
and an implicit Euler method for time integration with an equidistant time grid tj = jT/m, 0 ≤ j ≤ m. Instead
of (1.1) we determine the POD basis by solving

⎧
⎪⎨

⎪⎩
min

{ψi}ℓ

i=1

m∑

j=0

αj

∥∥∥yj
h −

ℓ∑

i=1

〈yj
h, ψi〉X ψi

∥∥∥
2

X

subject to 〈ψi, ψj〉X = δi,j for 1 ≤ i, j ≤ ℓ,

(4.3)

where yj
h is the FE solution to (4.1b)–(4.1e) at time instance tj and the αj ’s denote trapezoidal weights given

by α0 = αm = T/(2m), αj = T/m for j = 1, . . . , m − 1. The relationship between (1.1) and (4.3) was studied
in [13]. If a POD basis is computed for the snapshot ensemble V = span {y0

h, . . . , ym
h } ⊂ V , the POD-Galerkin

projection (Pℓ) of (4.1) is derived using ℓ POD basis functions. The corresponding low-dimensional optimal
control problem was treated numerically by an SQP method resulting in a suboptimal solution xℓ = (yℓ, uℓ, vℓ).
Using u = uℓ and v = vℓ we solve (4.1b)–(4.1e) again and re-compute the POD basis. We iterated this strategy
until the suboptimal controls converge within a given tolerance; see also [1, 2].

The main difference between the previous approach and OS-POD results from the fact that in OS-POD the
basis update respects the goal of minimizing J .

This structural benefit results in the difficulty that (Pℓ
OS-POD) not only involves the projected differential

equation as a constraint, but also the eigenvalue problems R(y)ψi = λiψi, 1 ≤ i ≤ ℓ. In the numerical
realization these two constraints were not realized simultaneously but rather a splitting algorithm was used
which alternatingly considered the constraints given by partial differential equation and the eigenvalue problems.
The numerical strategy is presented next.

Algorithm implemented

(1) Choose an initial POD basis {ψ0
i }ℓ

i=1 of rank ℓ and set n = 0.
(2) Compute the POD Galerkin approximation for (4.1).
(3) Solve (Pℓ) by a globalized SQP method for intermediate controls (u, v) = (uℓ

+, vℓ
+) and the Lagrange

multiplier q solving (2.16).
(4) Solve (4.1b)–(4.1e) with (u, v) = (uℓ

+, vℓ
+), system (2.18) and the adjoint equation (2.17).

(5) Use (2.19) in a gradient step to obtain new control variables (uℓ
n, vℓ

n).
(6) Determine a new POD basis {ψn

i }ℓ
i=1 of rank ℓ by solving (4.1b)–(4.1e) with (u, v) = (uℓ

n, vℓ
n).

(7) Set n = n + 1 and go back to back to (2).

Concerning (3) the SQP-iteration is carried out by LU -factorization and the SQP method is terminated at
iteration level k ≥ 0 provided the Lagrangian L : H1(Rℓ) × L2(0, T ) × L2(0, T ) × H1(Rℓ) → R associated with
(Pℓ) satisfies

‖∇L(xk, uk, vk, qk)‖ ≤ εn
rel ‖∇L(x0, u0, v0, q0)‖ for k ≥ 1

with ε0 = 10−2 and εn = max
{
10−4, min{‖g‖L2(0,T )×L2(0,T ), ε

n−1/10}
}

for n ≥ 1, where g = Ru−B(ψ)T q−B∗p

denotes the OS-POD gradient (compare (2.11)). In the SQP iterations descent is achieved by using an L1 merit
function. We stop our algorithm provided

– εn = 10−4,
– ‖∇L(xk, uk, vk, qk)‖ < 10−5 and
– ‖g‖L2(0,T )×L2(0,T ) < δ

with δ = 0.1. In our numerical tests it turns out that decreasing δ does not essentially change the POD solutions,
but rather leads to small variations in the POD basis functions.

A convergence analysis of this splitting method for solving (Pℓ
OS-POD) may be an interesting task which is,

however, not within the scope of this paper.
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Figure 1. Run 1: desired state (left) and FE solution to the uncontrolled Burgers equation,
i.e., u = v = 0 (right).

4.2. Test examples

This section is devoted to numerical test examples illustrating the feasibility of the OS-POD approach.
Comparisons will be made to the ‘basic POD’ approach which consists in solving (Pℓ) for a fixed control, here
u = v = 0, by an SQP-method applied to the optimality system, and to a FE-SQP approach, where the SQP
iteration is carried out inexactly (using a preconditioned GMRES method) and it is terminated as soon as the
same stopping criteria are hold as for the POD-SQP method (see [27] for more details).

Run 1. We consider (4.1) with T = 1, β = 0.001, ν = 0.5, σ0 = 0, σ1 = 0.1, f(t, x) = exp(−3t) sin(2πx),
y0(x) = sin(2πx), z(t, x) = x − 1 for (t, x) ∈ [0, T/2]× [0, 1] and z(t, x) = 1 − x for (t, x) ∈ (T/2, T ]× [0, 1]; see
Figure 1 (left plot). The FE solution to (4.1b)–(4.1e) is computed for the equidistant spatial grid xi = i/256
for i = 0, . . . , 256 and a semi-implicit Euler method on an equidistant time grid tj = jT/m for j = 0, . . . , 256,
where the linear term yt − νyxx is treated implicitly and the nonlinear term yyx explicitly in y, but implicitly
in yx. The corresponding FE solution for u = v = 0 is presented in Figure 1 (right plot). The discrete solution
is plotted on a four times coarser mesh than the computational grid.

Our first curiosity centers on the question whether the POD-basis is significantly changed during the OS-
POD iterations. In this respect note that the solution to the uncontrolled Burgers equation with decay in the
forcing as is the case for this example decays towards 0 as t → ∞. Moreover there is transport in the direction
of increasing (decreasing) x where y ≥ 0 (≤ 0) due to the convection term. The desired state z does not share
these properties so that the optimally controlled trajectory can be expected to be significantly different from
the uncontrolled one, which is depicted in Figure 1 (right plot). Accordingly the basis elements corresponding
to the uncontrolled and the optimally controlled states obtained by (Pℓ

OS-POD) ought to differ. This is in fact
the case as can be seen by comparing the POD basis elements associated to the uncontrolled state to those of
the optimally controlled state in Figures 2 and Figure 3 for the choice ℓ = 4. In Figure 4 we present the POD
basis which result from the optimal state when (4.1) is solved by applying the FE-SQP approach. These basis
functions are very similar to those obtained by OS-POD. For POD not only the shape of the eigenfunctions
but also the associated eigenvalues are of importance. In view of the above discussion and the interpretation
of the POD-basis construction as reconstruction the energy of the system, see e.g. [5], it can be expected that
the eigenvalues for the POD basis computed from the uncontrolled states decay more rapidly than those for the
optimally controlled states. This is confirmed by the results in Table 1 which gives the results for the first four
eigenvalues – scaled by the sum over all eigenvalues – for n = 0, which coincides with the uncontrolled state,
and for n = 4. Moreover, in the last column of Table 1 we present the first four scaled eigenvalues that we
obtain from the snapshots using the optimal FE controls.
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Figure 2. Run 1: POD basis functions associated with the uncontrolled Burgers equation,
i.e., u = v = 0.
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Figure 3. Run 1: POD basis functions associated with the final OS-POD update of the controls.
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Figure 4. Run 1: POD basis functions associated with the optimal FE-SQP controls.
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Table 1. Run 1: decay of the first four eigenvalues λi for the OS-POD strategy for n = 0,
n = 4 and for the first four eigenvalues associated with the snapshots that are computed by
using the optimal FE controls. For n = 0 we have the decay of the first eigenvalues associated
with the uncontrolled solution.

n = 0 n = 4 with FE controls
λ1/tr (Kh) 0.97187 0.87661 0.88092
λ2/tr (Kh) 0.02209 0.08051 0.08734
λ3/tr (Kh) 0.00579 0.02736 0.02744
λ4/tr (Kh) 0.00025 0.00191 0.00292

Table 2. Run 1: values of the cost functional for the different approaches (in brackets: value
of the cost using POD solution in original system).

J(y, u, v)

Uncontrolled solution 0.22134
OS-POD 0.03813 (0.03856)
FE-SQP 0.03765
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Figure 5. Run 1: optimal control for OS-POD strategy (left) and optimal FE-SQP controls (right).

In Table 2 the values of the cost functional are compared for different controls. First the value of the cost
with control set to zero is given. Then the results for the optimal solution obtained by OS-POD and by FE-SQP
are given. In parenthesis the value of the cost J is depicted, where the state y is computed from (4.1b)–(4.1e)
with the optimal control from OS-POD. Note that the value for the cost obtained by OS-POD is close to that
obtained from the FE-SQP solution. It is remarkable that for the optimal solution obtained by basic POD the
values for the cost are 0.02254 (0.27465) with the meaning of the number in parenthesis defined as for OS-POD
in Table 2. The significant difference between these two values for the cost can be explained by the fact that
the POD model on the basis of the uncontrolled solution is not a good approximation for (4.1b)–(4.1e).

Not only the values of the cost J but also the optimal controls obtained from OS-POD and FE-SQP are very
close as can be seen from Figure 5. As expected from the graph of z the most critical point is t = 0.5 for the
control u. – Figure 6 shows the optimal state for OS-POD. The optimal state for FE-SQP is quite similar.

Compared to the basic POD approach, OS-POD requires an increased computational effort. It is therefore
instructive to look at the distribution of the computing times for the steps involved in realizing the algo-
rithm described at the beginning of this section. In Table 3 we provide the numbers for one typical iteration.
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Figure 6. Run 1: optimal POD state for the OS-POD strategy.

Table 3. Run 1: averaged CPU times for one iteration of OS-POD.

Partial steps CPU time

Generate snapshots 0.62 s
POD computation 0.09 s
Compute ROM 0.03 s

SQP solve (Pℓ) 14.16 s
Compute µi’s 2.07 s
FE dual solve 0.71 s
Backtracking in step (5) 0.32 s

It takes on the order of 18 s. OS-POD terminated after 4 iterations. These numbers should be compared to the
FE-SQP solution for where the stopping criterion was met after seven SQP iterations and 445 seconds. Also
for OS-POD, most of the computational effort results from the SQP-step for the reduced system.

While computing time is certainly a significant issue, we should mention that the reduced model associated
to the optimal control may not be the final goal but rather only an intermediate step of a control theoretic
investigation. This can be the case, for instance, in closed loop control, when the closed loop strategy is based
on a reduced model for the open loop system. In this case the open loop model reduction step would be carried
out off-line, whereas the closed loop control for the reduced order model would have to be solved in ‘real-time’.

Run 2. The first example already shows that there can be a significant difference in the POD basis functions
between the initial choice and the optimized basis. In the second example, again the uncontrolled solution and
the desired state (see Fig. 7) are essentially different. For the uncontrolled state most of the energy is represented
by just one mode; compare Table 4. The desired state could also be presented by one mode, namely a constant
function. Due to the initial condition and the discontinuity in time, the desired state is not exactly controllable
by any choice of controls. Rather the dynamics of the optimally controlled state is rich in dynamical features,
as can be seen from Figure 8. Still, ℓ = 4 basis functions capture 99.9% of the energy; compare Table 4.

Let us now turn to the specifications in detail. We consider (4.1) with T = 1, β = 0.001, ν = 0.75, σ0 = ν/2,
σ1 = ν, f(t, x) = x−2, y0(x) = −x, z(t, x) = − sin(2π(t−T/4))/2 for (t, x) ∈ [T/4, 3T/4]× [0, 1] and z(t, x) = 0
otherwise, see Figure 7 (right). Note that φ(x) = x − 2 is a stationary solution to (4.1b)–(4.1d) for u = v = 0
and we have y → φ as t tends to ∞; compare Figure 7 (left). The POD basis associated with the uncontrolled
state is plotted in Figure 9. Taking ℓ = 4 and applying OS-POD we obtain the POD basis depicted in Figure 10.
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Figure 7. Run 2: FE solution to the uncontrolled Burgers equation, i.e., u = v = 0 (left) and
desired state (right).

Table 4. Run 2: decay of the first four eigenvalues λi for the OS-POD strategy for n = 0,
n = 5 and for the first four eigenvalues associated with the snapshots that are computed by
using the optimal FE controls. For n = 0 we have the decay of the first eigenvalues associated
with the uncontrolled solution.

n = 0 n = 5 With FE controls
λ1/tr (Kh) 0.99261 0.84940 0.84464
λ2/tr (Kh) 0.00737 0.13535 0.14117
λ3/tr (Kh) 0.00002 0.01326 0.01236
λ4/tr (Kh) 0.00000 0.00137 0.00114
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Figure 8. Run 2: OS-POD optimal state.

In Figure 11 we present the POD basis which result from the optimal state when (4.1) is solved by applying
the FE-SQP approach. The first three basis functions are very similar to those obtained by OS-POD, whereas
there are still some difference for the fourth POD basis near x = 0. The OS-POD optimal state is shown in
Figure 8. Table 4 gives the results for the first four eigenvalues. We point at that the difference in the decay
rates between the uncontrolled and the optimally controlled POD eigenvalues.
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Figure 9. Run 2: POD basis functions associated with the uncontrolled Burgers equation,
i.e., u = v = 0.

0 0.5 1
0

0.5

1

1.5

x−axis

POD basis ψ
1

0 0.5 1
−1

0

1

2

3

x−axis

POD basis ψ
2

0 0.5 1
−2

0

2

4

x−axis

POD basis ψ
3

0 0.5 1
−4

−2

0

2

4

x−axis

POD basis ψ
4

Figure 10. Run 2: POD basis functions associated with the final OS-POD update of the controls.
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Figure 11. Run 2: POD basis functions associated with the optimal FE-SQP controls.
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Table 5. Run 2: values of the cost functional for the different approaches.

J(y, u, v)

Uncontrolled solution 0.41053
OS-POD 0.01369
FE-SQP 0.01368

In Table 5 the values of the cost functional are compared for different controls. First the value of the cost
with control set to zero is given. Then the results for the optimal solution obtained by OS-POD and by FE-SQP
are given. Note that the value for the cost obtained by OS-POD is close to that obtained from the FE-SQP
solution.

OS-POD terminated after 5 iterations. One OS-POD iteration requires in the order of 10 s. The FE-SQP
solution is computed after two SQP iterations in 101 s.

Appendix

Proof of Theorem 2.2. Since Jℓ is bounded from below, there exists a minimizing sequence {un}∞n=1 which is
bounded in L2(Rm). By (H1) the sequence {yn}∞n=1 is bounded in L2(D(A)) ∩ H1(V ), where yn = y(un).
Clearly {ψn

i }∞n=1 is bounded for each i = 1, . . . , ℓ and {‖R(yn)‖L(X)}∞n=1 is bounded, since {yn}∞n=1 is bounded

in L2(V ). This implies that {λn
i }∞n=1 is bounded for every i = 1, . . . , ℓ as well. Hence there exist

(y∗, u∗, ψ∗, λ∗) ∈ (L2(D(A)) ∩ H1(V )) × L2(Rm) × Xℓ × R
ℓ

such that for a subsequence denoted by the same symbols

(yn, un, ψn
i , λn

i ) ⇀ (y∗, u∗, ψ∗
i , λ∗

i )

weakly in (L2(D(A)) ∩ H1(V )) × L2(Rm) × Xℓ × R
ℓ. It follows that y∗ = y(u∗) is the solution to (2.1) with

u = u∗. We next argue that λ∗
i is an eigenvalue to R(y∗) with eigenvector ψ∗

i . By Aubin’s lemma, cf. [6] and
(H3) it follows that yn → y∗ strongly in L2(V ). Hence for any υ ∈ X

λn
i 〈ψn

i , v〉X = 〈R(yn)ψn
i , v〉X =

∫ T

0

〈yn(t), ψn
i 〉X 〈yn(t), v〉X

→
∫ T

0

〈y∗(t), ψ〉X 〈y∗(t), v〉X = 〈R(y∗)ψ∗
i , v〉X .

Passing to the limit on the left implies that

λ∗
i ψ

∗
i = R(y∗)ψ∗

i for i = 1, . . . , ℓ, (A.1)

so that (ψ∗
i , λ∗

i ) are eigenvector-eigenvalue pairs for each i = 1, . . . , ℓ.
We next argue that

ψn
i → ψ∗

i strongly in X for each i = 1, . . . , ℓ.

Passing to the limit in

λn
i = 〈R(yn)ψn

i , ψn
i 〉X =

∫ T

0

〈yn(t), ψn
i 〉2X dt

implies that

λ∗
i = 〈R(y∗)ψ∗

i , ψ∗
i 〉X = λ∗

i ‖ψ∗
i ‖2

X .
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By (H4) we have λ∗
i > 0 and hence ‖ψ∗

i ‖X = 1. Since

1 = ‖ψ∗
i ‖X ≤ lim inf

n→∞
‖ψn

i ‖X = 1

it follows that limn→∞ ‖ψn
i ‖X = ‖ψ∗

i ‖X and hence ψn
i → ψ∗

i strongly in X , for each i = 1, . . . , ℓ. This also
implies that

〈ψ∗
i , ψ∗

j 〉X = δij for all i, j = 1, . . . , ℓ.

Before passing to the limit in

E(ψn) ẋn(t) + A(ψn)xn(t) + N(xn(t), ψn) = B(ψn)un(t), (A.2)

we need to argue that

ψn
i → ψ∗

i strongly in V for i = 1, . . . , ℓ, (A.3)

also in case X = H . Note that for the following argument we need yn → y∗ strongly in L2(V ), which was not
essential for the case X = V so far. Let

bn =
1

λn
i

〈yn(·), ψn
i 〉H and b∗ =

1

λ∗
i

〈y∗(·), ψ∗
i 〉H in L2(R),

and note that bn → b∗ in L2(R). Therefore we have

‖ψn
i − ψ∗

i ‖V =

∫ T

0

‖(bn(t) − b∗(t)) yn(t) + b∗(t)(yn(t) − y∗(t))‖V dt
n→∞→ 0

for i = 1, . . . , ℓ.
Let us now turn to (A.2) with initial condition x(0) = x0. We need to argue existence before we can pass to

the limit. From (A.2) we have for yℓ,n =
∑ℓ

i=1 xn
i ψn

i and (H2)

1

2

d

dt
‖yℓ,n(t)‖2

H + α‖yℓ,n(t)‖2

V ≤ α

2
‖yℓ,n(t)‖2

V + c2 ‖yℓ,n(t)‖2

H

+ c3 + ‖B‖L(Rm,H)‖u(t)‖
Rm ‖yℓ,n(t)‖H ,

which by Gronwall’s lemma implies the a priori estimate

‖yℓ,n‖C(H) ≤ K3,

for a constant K3 independent of n. Existence of a solution to (A.2) now follows by a local existence and
extension argument.

Since limn→∞ ψn
i = ψ∗

i in V for i = 1, . . . , ℓ it follows that the V , H and V ∗ norms on V ℓ(yn) are uniformly
equivalent. Hence {‖yℓ,n‖C(V )}∞n=1 is uniformly bounded as well. Note that (A.2) can equivalently be expressed
as

d

dt
yℓ,n(t) + Ayℓ,n(t) + P ℓ

OSP(yn)N (yℓ,n(t)) = Bun(t),

for all n, where P ℓ
OSP(yn) denotes the projection of V ∗ onto V ℓ(yn) ⊂ V ∗. Since N maps bounded sets in V

onto bounded sets in V ∗ by (H2), it follows that { d
dt

yℓ,n}∞n=1 is bounded in L2(V ∗) and hence also in L2(V ),

due to the uniform equivalence of the V and V ∗ norm on V ℓ(yn). This implies that {yℓ,n}∞n=1 is bounded in
H1(V ) and {xn}∞n=1 is bounded in W 1,2(Rℓ). Thus there exists a subsequence, denoted by the same symbol,
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and x∗ ∈ H1(Rℓ) such that xn ⇀ x∗ weakly in H1(Rℓ). Together with continuity of N from V to V ∗ and strong
convergence of ψn

i to ψ∗
i we can pass to the limit in (A.2) to obtain

{
E(ψ∗) ẋ∗(t) + A(ψ∗)x∗(t) + N(x∗(t), ψ∗) = B(ψ∗)u∗(t)

x∗(0) = x0,

and thus (y∗, x∗, ψ∗, λ∗, u∗) satisfy all constraints in (Pℓ
OS-POD). Passing to the limit in Jℓ(xn, ψn, un) we find

Jℓ(x∗, ψ∗, u∗) ≤ lim
n→∞

Jℓ(xn, ψn, un),

where (xn, ψn, un) is a minimizing sequence. Hence (x∗, y∗, ψ∗, λ∗, u∗) is a solution to (Pℓ
OS-POD). �

Proof of Theorem 2.3. We argue here that the linearization e′(z) : Z → Ξ∗ of e at the point z ∈ Z is surjective
operator. Then from duality theory, see e.g. [17], it follows that there exists a Lagrange multiplier ξ ∈ Ξ with
Lz(z, ξ) = 0. We have shown before the statement of Theorem 2.3 that this implies the desired optimality
system.

Let ζ = (q̄, q̄0, p̄, p̄0, µ̄, η̄) denote an arbitrary element of Ξ∗. We shall argue the existence of δz=
(δx, δy, δψ, δλ, δu) ∈ Z such that

e′(z)δz = ζ.

By assumption there exists (δy, δu) ∈ W (0, T ) × L2(Rm) such that

e′3(z)δz =
d

dt
δy + Aδy + N ′(y)δy − B δu = p̄,

e′4(z)δz = δy(0) = p̄0.

With δy fixed we turn to surjectivity of (e′5(z), e
′
6(z)) and consider for i = 1, . . . , ℓ

(R− λi I) δψi + δλi ψi = µ̄i −
∫ T

0

〈δyi, ψi〉X yi −
∫ T

0

〈yi, ψi〉X δyi,

2 〈ψi, δψi〉X = η̄i.

Since ker(R − λi I) = span {ψi} this system has a unique solution (δψi, δλi) ∈ X × R for every i = 1, . . . , m.
With δψi fixed we turn to the first two coordinates of e′(z)δz = ξ which are equivalent to the matrix ordinary
differential equation

E(ψ)δ̇x + A(ψ)δx + Nx(x, ψ)δx = q̄ − (e1)ψ(z)δψ,

E(ψ) δx(0) = q̄0 − (e2)ψ(z)δψ,

which has a unique solution δx ∈ H1(Rℓ). Thus e′(z) is surjective and the assertion follows. �

Proof of Theorem 2.4. Utilizing Proposition 2.1 we argue that the relationship between normalized eigenvec-
tor ψi of R = YY∗ and ϕi of K = Y∗Y is given by

√
λi ψi = Y∗ ψi and ψi =

1√
λi

Yϕi.
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To derive the optimality system for the “K-formulation” we proceed as in the “R-formulation” and introduce
the Lagrangian LK : Z × Ξ → R by

LK(z, ξK) = Jℓ(x, ψ, u) + 〈e1(z), q
K〉L2(Rℓ) + 〈e2(z), q

K
0 〉

Rℓ

+ 〈e3(z), p
K〉L2(V ∗),L2(V ) + 〈e4(z), p

K
0 〉H

+
ℓ∑

i=1

〈(K − λiI)ϕi, µ
K
i 〉L2(R) +

ℓ∑

i=1

(
‖ϕi‖2

L2(R) − 1
)
ηK

i ,

where ϕi = 1√
λi

Y∗ψi. In the context of the general setting this means that e5 and e6 are replaced by

(eK5 (z))i =
1√
λi

(K − λi I)Y∗ψi,

(eK6 (z))i =
1

λi

‖Y∗ψi‖2 − 1.

Existence of a Lagrange multiplier ξK follows from surjectivity of the linearisation of the equivalently constraints
which is argued as in the proof of Theorem 2.3. Hence the optimality system is obtained from LK

z
(z, ξK) = 0.

From LK
z
(z, ξK) = 0 we obtain (2.16), i.e., the equations for q and qK coincide. Utilizing LK

y (z, ξK) = 0 we find

(2.20). In fact let us just consider one of the terms 〈(K − λiI)ϕi, µ
K
i 〉L2(R). We find

∂

∂y
〈(K − λi I)ϕi, µ

K
i 〉L2(R) = µK

i (t)

∫ T

0

I−1y(s, ·)ϕi(s) ds

+ ϕi(t)

∫ T

0

I−1y(s, ·)µK
i (s) ds,

which enters into the right hand side of (2.20). From LK
u (z, ξK) = 0 we find (2.22). Finally LK

ψi,λi
(z, ξK) for

i = 1, . . . , ℓ imply

Y(K − λi I)µK
i + 2 ηK

i Yϕi +
√

λi I Gi = 0, (A.4)

〈ϕi, µ
K
i 〉L2(R) = 0. (A.5)

Taking the inner product of (A.4) with ψi and using (A.5) we obtain

ηK
i = −1

2
〈Gi, ψi〉X∗,X ,

so that ηK
i and ηi coincide. From (A.4) we have

K(K − λi I)µK
i = −G̃i − 2 ηi Kϕi

where G̃i =
√

λiY∗IGi. Since K−1(G̃i +2 ηi Kϕi) is orthogonal to ker (K−λiI) = span {ϕi} we have the desired
result. �
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