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PROPERORTHOGONALDECOMPOSITIONIN OPTIMALCONTROLOFFLUIDS*

S.S.IRAVINDIRANt

Abstract. In this article, we present a reduced order modeling approach suitable for active

control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale

behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still

too costly for the purpose of optimization and control of unsteady flows. We examine the possi-

bility of obtaining reduced order models that reduce computational complexity associated with the

Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows

extraction of certain optimM set of basis functions, perhaps few, from a computationM or experimen-

tal data-base through an eigenvalue analysis. The solution is then obtained as a linear combination

of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for

optimM control and estimation of systems governed by partial differential equations. We here use it

in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting

reduced order model can be very efficient for the computations of optimization and control problems

in unsteady flows. Finally, implementationM issues and numericM experiments are presented for

simulations and optimal control of fluid flow through channels.

Key words. POD, reduced order model, flow control, optimM control, Galerkin methods.

AMS subject classifications. 93B40, 49M05, 76D05, 49K20, 65M60, 76D15

1. Introduction. The invention of Micro Electro Mechanical Systems and other

fast micro-devices has generated substantial interest in active control of fluid dy-

namical systems for the design of advanced fluid dynamical technology. There are

a large number of articles devoted to this actively growing field. For example, in

[7, 9, 8, 10, 26, 4] various optimal control problems in viscous incompressible flows

were discussed. In [22, 17, 21, 16, 25] experimental efforts were reported. However, ef-

ficient computational methodologies for use in on-line, real-time computation for PDE

based control design has seen little progress. In this article we discuss a reduced order

method for PDE based control using the proper orthogonal decomposition (POD).

The solution of complex fluid dynamic equations using the available finite element,

finite volume, finite difference or spectral methods is, in general, not feasible for real-

time estimation and control. There are methods that would yield small degree of

freedom models for the purpose of control of partial differential equations. However,

they do not adequately represent the physics of the system and may be very sensitive

to operating conditions as they are based on input/output data of a given system.

We here examine the possibility of obtaining reduced order models that reduces

computational complexity associated with the Navier-Stokes equations while captur-

ing the essential dynamics by using the proper orthogonal decomposition (POD). The

proper orthogonal decomposition is a model reduction technique for complex nonlin-

ear problems. It was first proposed by Karhunen [11] and Loeve [14] independently

and sometimes called Karhunen Loeve (K L) expansion. Subsequently it has been

applied in various applications. In [15] the method was first called POD and there it

was used to study turbulent flows. In [23] another important progress was made and

the method of "snapshots" was incorporated into the POD framework which will be
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2 S.S. RAVINDRAN

described in the sequel. Other applications in turbulent flow simulations are given in

[1, 24, 2, 18, 3, 20] and [12].

When discretizing nonlinear partial differential equations using finite volume, fi-

nite difference, finite element or spectral methods, one uses basis functions that have

very little connection to the problem or to the underlying partial differential equations.

In some spectral methods Legendre polynomials are used, in finite element methods

piecewise polynomials are used and in finite difference methods grid functions are

used. However, POD uses basis functions that are generated from the numerical

solutions of the system or from the experimental measurements.

The essential idea is to generate optimal basis functions for Galerkin representa-

tions of PDEs. In other words, given an ensemble N = {U(i)}/x=l consisting of N data

vectors of length N_, the K L theory yields that we can find an orthonormal coordi-

nate system {v(i)}/xdl that is optimal in the sense that the variance of the dataset in

the coordinate directions becomes maximal. Thus, when the Navier-Stokes equations

are projected onto this optimal base using a Galerkin projection, one obtains a re-

duced order model. The beauty of the POD is that it is a nonlinear model reduction

approach and its mathematical theory is based on the spectral theory of compact, self

adjoint operators.

Our goal here is to discuss a computational approach based on reduced order

models resulting from the application of POD for the active control problems arising

in nonlinear fluid dynamic systems.

As a test problem we take a two-dimensional flow through backward facing step

channel. This flow configuration is considered as a typical unsteady separated flow.

For high Reynolds' numbers, flow separates and recirculation appears. We will for-

mulate a recirculation control problem in this configuration with the control action

achieved through the surface movement/blowing of mass on a part of the boundary.

The plan of the paper is as follows. In the remainder of this section we establish

the notation that will be used throughout the paper. In §2, we present the proper

orthogonal decomposition and its properties. In §3, we describe the prototypical prob-

lem used in this article, that is a backward facing step channel flow. We also outline

the numerical methods used and present numerical results which will later be com-

pared with reduced order model predictions. In §4, we apply POD for the construction

of reduced order model. In §5, we formulate an optimal control problem and discuss

reduced order modeling approach for its solutions. We present computational results

in §6 with two different control mechanisms. Finally we conclude in §7.

1.1. Notation. We denote by L2(fl) the collection ofsquare-integrable functions

defined on flow region a C N2 and we denote the associated norm by I1" II0. Let

H'(fl) = v E L2(fl) : 0--_v/ E L2(fl) for i= 1,2

and the norm on it be I1" II1. We denote by L2(0, T; H 1) the space of all measurable

functions f : (0, T) --+ H 1 such that

(/0IlfllL=¢O,T;Hl>= Ilfll_d* < _.

Vector-valued counterparts of these spaces are denoted by bold-face symbols, e.g.,

Hi(f1) = [Hi(f1)] 2. The L2(fl) or L2(fl) inner product is denoted by (., .). We denote

the inner products for L2(F) or L2(F) by (., .)p, where F denotes the boundary of a.
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2. The POD Subspace. In order to illustrate the POD subspace and its con-

struction, we assume for the ease of exposition that we are dealing with the semi-

discrete nonlinear problem

dy

d--T -- £(y't)' t • _{, y • X,

where X is a finite dimensional space. If finite element method were used to obtain

the above semi-discrete problem, X would be a piecewise polynomial space. However,

the choice for the POD subspace is different.

2.1. The Proper Orthogonal Decomposition. The underlying problem is

to identify a structure in a random vector field. Given an ensemble of random vector

fields U (/), we seek to find a function (I) which has a structure typical of the members

of the ensemble. One way to resolve the problem is to project the ensemble on (I), i.e.,

(U (/), (I)), to find (I) which is as nearly parallel as possible. Thus we want to maximize

(U (/), (I)) while removing the amplitude by normalizing it. It is now natural to look

at a space of functions (I) for which the inner-product ((I), (I)) exists, i.e. (I) must be

L2(f/). In order to include the statistics, we must maximize the expression

(_, U(i))/(_, _)}

in some average sense. Furthermore, since we are only interested in magnitude and

not the sign, we consider mean of the square of the expression. Following [23], we

consider ensemble which are "snapshots", that is the ensemble set

$={U (i): l<i<N}

are solutions at N different time steps ti and seek a function (I, • L2(f_) that gives

the best representation of $ in the sense that it maximizes

1__ N
N Ei=l I(U(_), _)1_/( _, _). (2.1)

In other words one seeks a function which has the largest mean square projection on

the set S. It was shown in [23] that when the number of degrees of freedom required

to describe U (i) is larger than the number of snapshots N, it is efficient to express

the basis function as a linear combination of the snapshots. Thus we assume (I) has a

special form in terms of the original data as

N

= Z wiu( ), (2.2)
i=1

where ai is to determined such that (I, maximizes (2.1). The maximization problem

(2.1) can be cast in an equivalent eigenvalue problem. To see this define,

K_ = [ u(i) (x)U(i) (x') • (x')dx ' (2.3)

i=1
Jlt

then

(KO, O) = a/a U(i) (x)(I, (x)U (i) (x')(I, (x')dxdx'

N

1  )12
i=1
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Moreover, we have

(e,e) (e,e)

Using the calculus of variations, we can find the maximum as described below: Let

O* be a function that maximizes A. We can then write any other function as O* + eO/.

Then A can be written as

F(Q = (K@*, @*) + e(K@*, @') + e(K@', @*) + e2(K_I,', @')
(_, _,) + _(_, _,) + _(_, _,) + _(_, _,) = A.

dr(O
Clearly, maximum occurs when e = 0 and thus --W-_ I_=0 = O. This leads one to

(K@*, @') = A(_I,*, @').

It is now clear that maximization problem (2.1) is the same as finding the eigenvalue

of the eigenvalue problem

KO* = AO*.

If (2.2) and (2.3) are introduced into (2.4), we have

CW -- AW,

where

(2.4)

It

complete set of orthogonal eigenvectors

4 w._

Wl = , W2 = • ,

wk , w_ ,

Wl

W2

1
U(O(x)U(J)(x)dx and W=

Cij =

WN

follows from the fact that C is a nonnegative Hermitian matrix that it has a

....... , WN =

w_

N

, WN /

along with a set of eigenvalues A1 _> A2

solutions of (2.1):

N N

< =E w u/i , = E .....,
i=1 i=1

We also normalize these by requiring

N

(Wl Wl)= E wl I* 1
, iWi -- _,,,MX l"

i=1

_> ...... _> AN _> 0. We can now write down the

N

i=1
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It is now easy to check

1 l=rn(_'_'_)= 0 1¢_.

This completes the construction of the orthonormal set {(1)1, dp2,. ...... , dPN}. Then the

POD subspace is defined as V p°D = span{d&, dp2,. ..... , dPN}.

To quantify the energy of the data set associated with the corresponding mode

dPi, we note from (2.3) that

N

j=l

In the next section we will show that POD subspace is optimal in the sense that the

approximation of the snapshots

Nk

i=1

maximizes the captured energy

N

i=1

Nk

= E /_i for all Nk < iV.

i=1

2.2. Optimality of the basis functions. Given a signal u(x, *) 6 LU((0, T) ×

a) and an approximation u N of u in terms of an arbitrary orthonormal basis q*i (x), i =|

1,2,. .... ,Nk:

Nk

i=1

If @i(X) have been nondimensionalized, then the average kinetic energy is given by

= ,
\i=l /

where (.} denotes the time average operator. We next state a proposition regarding

the optimality of POD whose proof can be found in [2].

PROPOSITION 2.1. Let {q_l, q_u,. ...... , q_Nk} denote an orthonormal set of POD

basis elements and {)_,. ..... , )_Nk} denote the corresponding set of eigenvalues. If

Nk

i=1

denotes the approx'imation to u with respect to the basis, then the following hold:

(i) (/3i(t)/3_(t)} = 5ijAi,

Nk Nk Nk

i=1 i=1 i=1
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where u N (x, t) Nk= Ei=x _i(t)_(x).
In essence this proposition states that among all the linear combinations, the one

corresponds to POD is the best in the sense that it will capture the most kinetic

energy possible in the average sense.

2.3. Model reduction aspects. To capture the underlying dynamics of the

system one needs to keep N sufficiently large. Thus using a Galerkin procedure one

can obtain a high fidelity model perhaps with large N. However if the eigenvalues of

the covariance matrix C decays fast, one can choose a cutoff value M << N and carry

out a Galerkin procedure with a reduced set of basis elements {_x, _2, •...... , _M}. As
M

noted earlier, _i=x Ai represents the average kinetic energy contained in the first M
M N

modes. Therefore one can choose M such that _i=x Ai _ _i=x Ai through some eX-

M X

perimentation. Also the ratio _ gives the percentage of the total kinetic energy

contained in the first M POD elements. In fluid flow simulations given below the POD

system was constructed for N = 100 and the reduced order model was constructed

with M = 10 which captured 99.99% of the energy. This clearly demonstrates the

advantage of the reduced order model over the finite element model whose dimension

was 3,032.

3. Simulation of Fluid Flow in a Channel. We consider two dimensional

incompressible fluid flow through a channel with a backward facing step. A schematic

of the geometry is given in Figure 2. The fluid flow is governed by the Navier-Stokes

equations which are given by

ut-_TAu+u'Vu+Vp=0 infl× (0, T),

(3.1)
V.u=0 in fl × (0, T),

where the velocity u, the pressure p, the time t and the spatial variable x are in

non-dimensional form. The Reynolds' number Re is defined as Re = pUoL/#, where

p is the density, U0 is the nondimensional velocity. The following boundary conditions

are imposed.

u = (8(y - 1/2)(1- y),0) = Uin on Fin × [0, T]

pII 10u (0, 0) Oil POHt X [0, T]
Re On --

u = (0,0) on r_ u rv u rs u Pc × [0,T].

The boundary condition on Pout is not "physical" but used to represent the flow in

an unbounded region; see [6]. For the finite dimensional approximation and for the

subsequent reduced order approximation, we need a weak form of the state equations

(3.1). A weak form of the equations (3.1) has the form; see [27] fox" similar problems,

(u_+ u. vu, v) + _ (vu, Vv) - (p,v. v) = o

(V •u, q) = 0

fox.all test functions (v, q) E V × L2(_), where

V = {v E UX(fl) : vlrXrou t = 0}.

The state variables (u, p) for the problem are taken to be

u E L2(0, T;HX(_)), uirin = Uin and uirXroutXrin = 0,

(3.2)
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p

3.1. Finite Dimensional Approximations. To approximate the solutions, we

will use standard mixed finite element method. For this, we write u and p as linear

combination of finite number of basis functions:

N

,h= ,o+
i:l

M

ph= Zpi(t)¢(x)
i=1

with u0h be the finite element interpolant of non-zero boundary conditions imposed

on u. Then

V x = span{d_l, _2,. ..... ,d_N}

QM = span{_l/1, _1/2, . ..... , _I/M}

and V N × QM C V × L u. The approximate system is determined by restricting the

weak form (3.2) to v N × QM with basis functions _i substituted for the test functions

v and the basis functions qti substituted for the test functions q. Then the following

finite dimensional system results:

Mfl + Su + N(u)u + LTp = F,

Lu= 0_

(3.3)

where S is the diffusion matrix, N the convection matrix, L the continuity matrix,

M the mass matrix and fl = a__u Moreover u and p are the finite dimensional
dt"

velocity and pressure, respectively. We call the approximations using standard finite

element basis functions such as quadratic or linear piecewise polynomials by "full

order methods/discretization" and the ones using POD by "reduced order methods".

For the full discretization we use continuous piecewise quadratics for the velocity

u and continuous piecewise linear functions for the pressure p; the same triangular

grid is used for both finite element spaces; This choice of spaces complies with the

div-stability condition which is required for stable computation of pressure; see [5].

Tlle nonlinear differential algebraic equations (DAE) (3.3) is discretized using

backward Euler in time with the time step At = 0.01 and the resulting nonlinear

algebraic system is solved using Newtons method along with a banded Gaussian elim-

ination.

In Figure 2, the height of the inflow boundary is 0.5 and that of the outflow

boundary is 1. The length of the narrower section of the channel is 1 and that

of wider section of the channel is 7. The computational domain was divided into

682 triangles with finer mesh around the recirculation region. This resulted in a

system of 3,032 ordinary differential equations that has to be solved for the unknown

1 and H = 1with acoefficients. We choose throughout in this simulation E_ax =

corresponding /_e = 2, where E_ax=maximum inlet velocity, H =channel height,

u=kinematic viscosity of the fluid.
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It is well known that beyond certain Reynolds' number the flow separates and a

recirculation forms near the corner region. We carried out simulations at a Reynolds'

number of 1000 and the long term flow simulation is given in Figure 3. It clearly

predicts the re-circulations first near the corner of the step and the second one near

the wall opposite to the step.

4. POD in Flow Simulation. We follow the "snapshots" approach proposed

in [23] for the derivation of POD basis functions. Let u(x, t) be a given flow field and

{.(x, Ntk)}i=l be the corresponding flow fields at N different time steps tk, i.e. the

"snapshots". We next decompose u(x, t) as follows

.(x,t) = + v(x,t),

whereu. (x)= 1 N_k=_ u(x, tk). We also define a spatial correlation matrix C with

1 f i j

Cij = _JaV V d_,

where v i = v(x, ti). Then the POD basis vectors Ok are defined by

N

w_v i(_k = _ , k= l,....,N,

i=1

where w/k are the components of the eigenvector W k of the eigenvalue problem

CW = AW.

The computation using POD takes the following algorithmic form:

ALGORITHM I

(I) Solve the state equation (3.3) at N different time steps and obtain

"snapshots" $; See Figure 1.

(II) Compute the covariant matrix C. The matrix elements of C are

1 favivJdfl, for i,j = 1,2, N.given by Cij = -_ ...... ,

(III) Solve the eigenvalue problem CW = AW, where C is a nonnegative

Hermitian matrix and has a complete set of eigenvectors

Wl,W2,. ..... ,Wx with W_ = (w),w_,. ...... ,w}).

N w i v k 1 < i < N(IV) Obtain the POD basis vectors ¢_i using ¢_i = _k=_ k ,
N

and define V p°D = span{_l, _2,. ........ , _x}. And set v = _i=1 _i(t)o2i.

(V) Restrict the weak form (3.2) to V p°D and solve for _i, i = 1, 2,. .... , N.

N
(VI) Set u(x,t) = u,_(x) + 2i=1 (_(t)(Pi.

For the channel flow problem we obtained snapshots u(x, ti) of the flow at 100

regular intervals. The correlation matrix C was formed with the aid of the finite
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element routine and the eigenvalue solve was carried out using the RG subroutine in

the Fortran library EISPACK. The eigenvalue spectrum from the correlation matrix

C is shown in Figure 4 (left). As shown in the figure, the eigenvalues quickly decay

and thus very few modes capture the essential energy in the flow.

4.1. POD Reduced Order Model. In this section, we consider the construc-

tion of POD reduced order model using a Galerkin projection of the Navier-Stokes

equations onto a space spanned by the POD basis elements. The nature of the POD

model is that it requires fewer basis vectors than that is used to approximate the flow

field. In fact the first M (<< N) modes carry most of the energy in the flow and if we

choose M such that

N M

i=1 i=1

we obtain a reduced order model. We found out 10(= M) POD basis vectors are

sufficient to capture 99% of the energy. In order to derive the reduced order model,

let us apply Algorithm I, choose M and expand the solution as

M

u(x, _)= u_,(x) + Z _(O_(x). (4.1)
i=1

Then the Galerkin approximation of the weak form (3.2) is as follows

x (Vu, wi) + (vi, x o, _i)Fo,, = o, (4.2)(u_+ u. Vu, _) - (v,v. _) + m _-_o.,

for all _i E V POD. At this point it is important to note that the eigenfuntions Oi

are divergence free as flow is incompressible and satisfy zero boundary conditions on

F \ Fout. Using these properties of Oi and the boundary condition on Fout, we see

that the pressure term and the boundary terms vanishes. Then (4.2) reduces to

(u_+ u. Vu, _) + _(Vu, w_) = o, (4.3)

for all d& ¢ V POD. On substitution of (4.1) into (4.3) we obtain the following

nonlinear evolution equation for the coefficients ai(/):

6 = Mo_ -t- offHo_ -t- e, (4.4)
a(O)= s0,

where

_0i = (u0,_i), Ai5 = -(05. Vu,,, _) - (u,,. ws, _) - 1_(v_5, v_),

_ = -(u.,. Vu.,, ei) _ _(1Vu.,, ve_), H,_, = -(e_ •ve,, e_).

The solution to the above initial value problem (4.4) was obtained using an implicit

Euler method fox" the coefficients of the POD approximation.
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4.2. Numerical Results. We selected {ti} at hundred regular time instances

in the time interval [0, 10]. The eigenvalue analysis of the correlation matrix resulted

in M=10 and a reduced order system of dimension 10 was constructed. The initial

value problem (4.4) for the nonlinear ODE was solved using backward Euler method

with the time step At = 10 -3 and the resulting nonlinear algebraic system was solved

using Newton iterative method. The Figures 5 6 are the channel flow computations

with _Tull solution" and reduced order solution at time t=10 for various stations in

the channel which shows excellent qualitative agreement.

In Table I, we show that fl norm of the difference between solutions of the POD

reduced order and full order solution decays as the dimension of the POD subspace

increases. The percentages of the full order model energy captured by the POD

reduced order model are also given in Table I which indicates only 9 basis functions

were enough to capture 99.9% of the energy of the full order model.

In order to illustrate the features of the POD reduced order model, let us next

compare it with another reduced order model based on the so called reduced basis

method (RBM); see [9]. In [9] several ways to choose reduced basis subspaces were

discussed. Here we consider the so called Lagrange subspace. The basis elements in

the Lagrange subspace are snapshots of the problem obtained by solving the system

(3.1) using a full order method. Supposing {R'i}M_ denote the snapshots, the reduced

order subspace is defined as V RBM = span{R'i}/M__l. Once we have a reduced order

subspace V RBM, the system (3.1) is projected onto V RBM to obtain a reduced order

model as in §4.1.

In algorithmic form the RBM can be summarized in the following form:

ALGORITHM II

(I) Solve the state equation (3.3) at N different time steps and obtain

%napshots" 8; See Figure 1.

(II) Set V RBM = span{q*1, q*2,. ........ , q*M}. And set u = u0 + EM1 ai(t)OA,

where u0 account for the nonzero boundary values.

(III) Restrict the weak form (3.2) to V RBM and solve for _i, i = 1, 2,. .... ,M.

(IV) Set u(x,/) = u0(x) + _M 1 (_i(l)qq.

For numerical implementation of RBM, we considered, the channel flow case described

earlier and compared its performance with the full order model. To generate Lagrange

basis, we obtain snapshots of the model using the full order discretization at M regular

time instances between t = 0 and t = 10 non-dimensionaltime. In order to see whether

the reduced order approximation becomes more accurate as the dimension increases

we computed the fl norm of the difference between the reduced order and full order

solutions. In Table II, we present the _1 norm error using M = 3, 6, 9 and 12 basis

functions. We also report the condition numbers of the resulting mass matrices. As

seen, the condition number can increase dramatically with increasing basis elements

deteriorating convergence. However, the POD reduced order model do not generate

such bad condition numbers as evidenced in Table I. Moreover, the POD allows easy

generation of linearly independent basis elements and more stable system matrices.
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5. An Optimal Control Problem. Minimization of vorticity level in flow do-

main is of interest in control/delay of transition of flow past bluff bodies. Thus in

this section we formulate a related optimal control problem in channel flow. Flow

configuration considered is a backward facing step channel. As Reynolds' number

is increased, the flow separates near the corner of the step. The objective of the

optimal control is to reduce the size of the recirculation and hence of the length of

re-attachment. The control action is effected either through the movement of a por-

tion of wall F_ or through blowing on F_. In terms of boundary condition it takes the

following form along the boundary F_,

u=c(t)g(x) on re × [0, T],

where c(t) : [0, T] + _{ and g(x) represent respectively the temporal dependence

and spatial distribution of the fluid velocity on the boundary Pc. The choice of

cost functional or objective functional to meet the control objective of reducing the

recirculation is not trivial. Here we will consider a functional of the form

T
P

y(u) = J0 IIv × ullgdt

which corresponds to minimization of vorticity levels in the flow. The task is to find

c(t) or, rather, its time derivative U = _(t) such that the cost functional

'/[y(u, u) = _ {llv × ullg + _lvl u}d_

is minimized subject to the constraints that the flow fields satisfy the Navier-Stokes

equations. The appearance of the second term in the cost functional J is necessary

since we will not impose any a priori constraints on the controls. The parameter _ > 0

adjusts the relative weight of the two terms in the functional and roughly speaking,

is large for expensive controls and small for inexpensive controls.

In order to obtain "snapshots" for POD basis functions, we introduce

u_(x) = u_'(x) - u_°(x),

where u q is a steady flow with c(l) = 0.1 on Fc and u c0 is that with c(l) = 0 on Ft.

Then the "snapshots" are defined as

u(x, t_) - 4t_)u_(x)

and the basis functions _I,/ as defined in Algorithm I have zero boundary conditions

on the Dirichlet boundaries. The velocity expansion is defined as

M

u(x,t) = u._(x) + 4t)u_(x) + Z _/(t)_/(x) (51)
i=1

so as to automatically satisfies all the Dirichlet boundary conditions.

5.1. The Reduced Order Control Problem. Inserting the expansion (5.1)

into the Galerkin projection (4.3) of the Navier-Stokes equations, we obtain

& + As + aTA;a + Va + (b + Ba)c + cud + e = 0, (5.2)
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where

Bi5 = (% •Vu_,oi) + (u_ v%, _)

and M, Af and e are as defined in §4. Setting

x:(o) o)c ' A= 0 1 '

// aTAYa + (b + Ba)c + c2d +e "_
N(X)

\ --C / 1

we obtain the reduced order control problem:

subject to

B:(a)1 '

Minimize J(X, U) = L(X) -4- _ dt

X = F(X) + BU,

x(0) = Xo,

(5.3)

(5.4)

Minimize jK = E 2 (L(xk-1) + L(Xk)) + lull _ At (5.5)
k=l

where

1

L(X) = _ xTQx + X. fl + f'_, and F(X) = -AX- N(X).

At this point one can employ a variety of numerical methods designed for finite dimen-

sional nonlinear optimal control problems such as multiple shooting methods. Our

method here is based on Newtons method for the necessary condition of optimality

or the so called optimality system albeit for the discrete version of it.

We further remark here that finite dimensional control systems like the one given

above can also be obtained using, for example, finite element method as in §3. How-

ever, their size is too large for practical control systems whereas POD based reduced

order control systems are low order and maintain high fidelity. This makes our ap-

proach extremely attractive for optimal control problems governed by partial differ-

ential equations.

5.2. Approximation of the Reduced Order Control Problem. We con-

sider the second order discrete time approximation of (5.3) (5.4) obtained by using

the Crank-Nicholson for time discretization of (5.4) and the trapezoidal rule for the

discretization of the integral in the cost functional (5.3). We obtain
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subjectto

Xk-x k-1 _ 1 (F(Xk)+F(Xk_l)) +BUk, 1<k<K (5.6)
At 2

where K AI = T. Note that if a_Al < 1 then the mapping _(X) = X - AI F(X) is

dissipative, that is

(F(X_) - F(X_),Xx - X_) _> (1 - _Xt)IXx - X_l _.

Thus for U k K k K= = {X }k=l satisfying the constraint{U }k=x, there exists a unique X

(5.6) and depending continuously on U. Moreover if aAt < 1 then there exists an

optimal pair (X k, U k) to problem (5.5) (5.6).

The necessary optimality condition, see Appendix A, for (5.5) (5.6) is given by

1

Xk -AtXk-X -- 21 (F(Xk) + F(Xk_X) ) _ 5 BBT(k

(5.7)

X(t) -- F(X(t)) - _ BBT((t)
(5.9)

-¢ = Fx(X)T¢(t) + Lx(X)

with X(0) = X0 and ((T) = 0. Furthermore, (5.7) is a sparse system of nonlinear

equations fox" (X, (). We solve the system (5.7) by Newton method in our calculations

of the optimal control { U k}. The Jacobian J of equation (5.7) has the sparse structure;

J = Q -A t

where S and Q are block-wise diagonal and A is block-wise lower bi-diagonal with

block size K. The diagonal block Ak,k and the off-diagonal block Ak+x,k of A are

given by

I 1 I 1 Fx(Xk)
Ak,k =_+_Fx(X k) and Ak+x,k-- 2At +

¢_+x_ ¢_ _ 1 Fx(X_) T (¢_+ ¢_+x)+ Lx(X _)
At 2

for 1 < k < K, with X ° = X0 and (K+X = 0, and the optimal control U k to (5.5) (5.6)

is given by

Uk 1
=-_BT( k, l<k<K. (5.8)

Assume that {U "_}_=x is a sequence of solutions to (5.5)- (5.6) with associated state

and adjoint states {( ,( )},_=x such that (5.7) holds. Let U'_ denote the step

function defined by U'_(t) = U k on (tk-x,tk), 1 <_ k <_ K and J_'_ and ('_ be the

piecewise linear functions defined by

X k _ Xk_X ¢k+x _ ¢k
J_'_(t)=Xk-X+ At (t-tk-x) and ('_(t)=(k+ At (t-tk-x).

Then it can be proved that the sequence (J_'_, 5 "_, ('_) has a convergent subsequence

as At --+ 0 and for every cluster point (X, U, (), U is an optimal control of (5.3) (5.4)

and (X, U, () satisfies the necessary optimality condition:
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1BTBandthediagonalblockQk,k of Q is givenS has the constant diagonal block 7

by

K k t,k+l
Q_,_ = Lxx(X _) + _ ¢i + -i (_)x,x(X_).

2
i=1

6. Numerical Results. Here we present numerical results for the POD based

control and compare its performance with that of RBM. The flow configuration is

chosen as the two dimensional backward facing step. The control objective is to

reduce the recirculation behind the step and thus of the re-attachment length. The

cost functional is taken to be the vorticity functional defined earlier. Two control

mechanisms are considered. In the first example, we consider moving wall as control

and in the second we consider blowing of mass through a portion of the boundary.

6.1. Example I. In this example, the control is introduced into the problem

through the movement of wall on the boundary F_:

u=c(t)r on re,

where r is the unit tangential vector.

6.1.1. Test I (POD). We present numerical results for POD approach in solv-

ing the optimal control problem at Re = 200. Recall that the control problem we

consider is

' ](,_ {ll v × ull_, + _lUI _} dtMinimize if(u, U) =

subject to

(ut + u. Vu,_i) + _-7(Vu, V_i) = 0, i=l,....,M,

where M is the number of POD modes and

M

i=l

The initial conditions for the states and controls are u(x, 0) = 0 and c(0) = 0,

respectively. Our choice of the portion of the boundary F_, where control is applied,

is the line segment between y = 0 and y = 0.5 at x = 1; see Figure 2. This choice

here is motivated by the fact that if one wants maximum influence in the flow, then

the control has to be in that vicinity. The time interval was chosen [0, T] with T = 10

and the number of POD modes was taken as 4. In Figures 7 9 we present numerical

results for the penalty parameter fl = _ and the time step At = 0.01. The numerical

solution of the optimal control problem was obtained using the Newton's method

described in §5.2. The flow fields presented in Figures 7 8 are u component of the

flow field u for the controlled and baseline cases at different stations in the channel.

As one can see when control is applied the u velocity becomes positive where it is

otherwise negative and helps the formation of recirculation. Significant reduction in

the recirculation bubble and re-attachment length were also observed compared to the

uncontrolled case. We also carried out our calculation with different initial conditions

X0 and the results were qualitatively similar to those described above.
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6.1.2. Test II (RBM). Wepresentherenumericalresultsfor theRBMap-
proachto thesameoptimalcontrolproblemasin TestI. Likein POD,thesolution
expansionin RBMis oftheform

M Mo

i=1 i=1

where u0 denotes the flow corresponding to a zero control, i.e, it satisfies u0 = 0 on

F_, and ul,. ...... ,UMo denotes solution of (3.1) with nonzero values on the control

part of the boundary F_. For the numerical results presented in Figure 9, we have

used basis functions based on the data shown in Table III. For the simulation of the

control problem we take

M

i=1

where M = 4 and the basis functions (I)l,(I)2,(I)3,(I) 4 and q55 are chosen as q51 =

u4 - 2ul + u0, ¢)2 = u3 - 3ul + 2u0, ¢)3 = u4 - 4ul + 3u0, ¢)4 = u5 - 5ul + 4u0 and

¢)5 = u0 - ul. The time interval [0, T], the time step At, the penalty parameter and

the other date were all taken the same as in the previous test case. The numerical

solution of the control problem was also computed using the same method. The control

distribution presented in Figure 9 and the controlled flow fields (not presented here)

all agree well with that of POD. This shows the ability of RBM to provide very good

controls with very few elements. However, RBM can be sensitive in terms of condition

numbers of the system matrices as one increases the number of basis functions in order

to improve convergence and accuracy.

6.2. Example II. In this example, we consider a different control mechanism

from the previous one. The control is effected through blowing on the lower quarter

of the boundary F_. Thus we consider

{4t)g(x) on o< y<1-- -- 81

u= 0 on g<Y-<7

and g(x) = (10y(½ - y), 0). The initial conditions fox" the states and control were

u(x,0) = 0 and c(0) = 0.

6.2.1. Test I (POD). We present numerical results for POD approach in solv-

ing the optimal control problem at /_c = 500. The control is introduced into the

problem through the blowing on the lower quarter of the boundary F_. The compu-

tational domain was similar to Figure 2, but the length of the narrower section of

the channel is 0.5 and that of wider section of the channel is 12. The computational

domain was divided into 794 triangles with finer mesh around the recirculation re-

gion. Our choice of the portion of the boundary, where control is applied, is the line

segment between y = 0 and y = 0.125 at x = 0.5. A linear time varying profile for c(t)

was used to generate 100 "snapshots" for the generation of POD modes. We carried

out calculations with 4, 9 and 14 modes in the time interval [0, T] with T = 10. In

Figures 10 13, we present numerical results for the penalty parameter fl = _0" The

numerical solution of the optimal control problem was obtained using the Newton's

method described in §5.2. The initial conditions for the state and adjoint state were

all zero and the convergence tolerance was taken to be 10 -7.
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The controlled flow fields with 4, 9 and 14 modes showed similar results and

hence only results with 9 modes are presented. The flow fields presented in Figures

10 11 are u component of the flow field u at different stations in the channel for the

controlled and uncontrolled cases with 9 POD modes. As indicated by the controlled

flow fields, separation has been effectively eliminated by the optimal blowing control.

Significant reduction in the recirculation bubble and re-attachment length were also

observed compared to the uncontrolled case.

6.2.2. Test II (RBM). We present here numerical results for the RBM ap-

proach. Like in POD, the solution expansion in RBM is of the form

M M0

i=1 i=1

where u0 denotes the flow corresponding to a zero control, i.e, it satisfies u0 = 0 on

F_, and ul,. ...... ,UM0 denotes solution of (3.1) with nonzero values on the control

part of the boundary re. For the numerical results presented in Figure 13, we have

used basis functions based on the data shown in Table IV. For the simulation of the

control problem we take

M

i=1

with M=4, 9 and 14, respectively. The RBM basis function selection was simi-

lar to that of the previous example. For example, when M=4, the basis functions

¢1,¢2,¢3,¢4,¢5 and ¢6 were chosen as ¢1 = ul - 0.1(u6 - u0/9.9, ¢2 = u2 -

1.9(u6-u0/9.9-ul, ¢3 = ua-3.9(u6-u0/9.9-ul, ¢4 = us-5.9(u6-u0/9.9-ul,

¢5 = u6 - 7.9(u6 - u0/9.9 - ul and ¢6 = u6 - ul. The time interval [0, T], the time

step At, the penalty parameter and the other data were all taken the same as in the

previous case. The numerical solution of the control problem was also computed using

the same method. The control distribution presented in Figure 13 and the controlled

flow fields (not presented here) all agree well with that of POD. These results seem

to re-confirm our earlier observations about RBM's performance and the effectiveness

of the control mechanism.

7. Conclusion. In this article we have presented a reduced order modeling ap-

proach for optimal control of fluid flows. The reduced order models suitable for control

and which captures the essential physics were developed using the POD. Our com-

putational investigations into the use of reduced order methods for control suggest

promise. Significant computational savings were evidenced in the test cases consid-

ered. In the the reduced basis method there is no systematic way to increase the

level of accuracy, and ill-conditioned system matrices can make it impossible to im-

prove the accuracy. However, the POD provides a systematic and optimal way to

improve the level of accuracy while maintaining well-conditioned system matrices. As

we can see, these are not provided as a generic methods rather they must be used

with care. Whenever they can be effective they can provide significant performance

with substantially lower on-line computational resources. We have also investigated

the feasibility of two different control mechanisms. Controlled flow fields in both cases

were comparable. This seems to indicate that the choice of the type of control (wall

movement or blowing) should be decided based on which type is the easiest to apply

in the particular application.
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Appendix A. We consider the problem of minimizing ,7(U) in (5.3) subject to

the ordinary differential equations and initial conditions in (5.4). The control U* is

extremal and ,7 has a relative minimum, if there exists an e such that for all functions

satisfying IIv - v*ll < e the difference ,7(U) - ,7(U*) >_ O. We have the following

classical theorem.

THEOREM A.1. For" U* to be ecctrernal, it is necessary that 5,7(U*,SU*) = 0 for"

all 5U, where 5,7 is the variation in ,7 with respect to the variation in 5U in U.

A proof of this theorem can be found in [13]. In order to apply this theorem, let

us introduce a vector of Lagrange multipliers

Cr =(G,. ....,¢N)

and form an augmented functional including the constraints

We integrate by parts and take variations in ,_ corresponding to variations 5U in U

to get

T

note that 5X(0) = 0 as X(0) is given. We may eliminate some of the terms in (A.2)

by defining

= -Lx - CTF(x), and ¢(0) = O. (A.3)

Equation (A.3) then reduces to

T

52=ff0 [flU+¢B]SUdt

and now from the Theorem A.1, a necessary condition for U* to be extremal is that

flU +¢TB = 0.

The state equation (5.4) and the adjoint equation (A.3) form 2n differential equations

with boundary conditions X(0) = X0 and ¢(T) = 0.

We like to remark here that the Theorem A.1 provides a necessary condition for

optimality. It is easy to show the fact that it is in general not a sufficient optimality

condition, i.e. (X*, U*,¢*) can be an extremal element without (X*, U*) being a

solution to (5.3) (5.4).
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TABLE I. 61 norm difJ_rence between full oMer and POD reduced oMer model

solutions, condition numbers of the mass matrix" and pereentage of full order model

energy captured with M = 3, 6, 9, 12, 15 and 20 POD basis functions.

M 3 6 9 12 15

61 Error 0.0013 0.001 .000769 0.000359 0.00029

Condition _ _ 1.0 1.0 1.0 1.0 1.0

% of Energy 97.0 99.68 99.96 99.997 99.999

20

0.00017

1.0

99.9999

TABLE II. 61 norm difJ_rence between full oMer and RBM reduced oMer model

solutions and condition numbers of the mass matrix" with M = 3, 6, 9 and 12 basis

functions.

M 3 6 9 12

61 Error 0.0327 0.0057 .0035 0.0023

Condition _ n 613.45 21840 388556 1974595

TABLE III. Simulation data for RBM reduced oMer model; Example I.

110 H1 112 113 114 115

Control 0 -0.1 -0.2 -0.3 -0.4 -0.5

TABLE IV. Simulation data for RBM reduced oMer model with 4, 9 and 14 mode,

respectively; Example H.

Ul U2 U3 U4 U5 U6 U7 U8 U9 Ul0 Ull U12 U13 U14 U15 U16

Control 0.1 2 4 6 8 10

Control 0.1 1 2 3 4 5 6 7 8 9 10

Control 0.1 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
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FIG. 1. Illustration of sample selection ("snapshots") for reduced order methods.
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FIG. 2. Computational domain for the backward-facing-step channel problem

FIG. 3. Velocity field at t = 10 and Re=lO00.
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