
Theor. Comput. Fluid Dyn. (2009) 23: 333–351
DOI 10.1007/s00162-009-0152-3

ORIGINAL ARTICLE

Elia Merzari · H. Ninokata · A. Mahmood · M. Rohde

Proper orthogonal decomposition of the flow in geometries
containing a narrow gap

Received: 8 April 2008 / Accepted: 9 June 2009 / Published online: 10 September 2009
© Springer-Verlag 2009

Abstract Geometries containing a narrow gap are characterized by strong quasi-periodical flow oscillations
in the narrow gap region. The above mentioned phenomena are of inherently unstable nature and, even if no
conclusive theoretical study on the subject has been published, the evidence shown to this point suggests that
the oscillations are connected to interactions between eddy structures of turbulent flows on opposite sides of
the gap. These coherent structures travel in the direction of homogeneous turbulence, in a fashion that strongly
recalls a vortex street. Analogous behaviours have been observed for arrays of arbitrarily shaped channels,
within certain range of the geometric parameters. A modelling for these phenomena is at least problematic
to achieve since they are turbulence driven. This work aims to address the use of Proper Orthogonal Decom-
position (POD) to reduce the Navier–Stokes equations to a set of ordinary differential equations and better
understand the dynamics underlying these oscillations. Both experimental and numerical data are used to carry
out the POD.
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List of symbols

y+ Normalized wall distance
xi Cartesian coordinates (vector notation)
x , y, z Cartesian coordinates
u Velocity vector
ui Cartesian velocity components
u Cartesian velocity component in direction x
v Cartesian velocity component in direction y

w Cartesian velocity component in direction z
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wbulk Bulk velocity
〈 f 〉 Ensemble averaging operator on function f

f ′ Fluctuation over the ensemble average f = f − 〈 f 〉
ρ Density
υ Kinematic viscosity
� Filter width, mesh size
uτ Friction velocity
λ Wavelength of the coherent structures
Dh Hydraulic diameter
Re Bulk Reynolds number Re = Dhwbulk/ν

g Inner to outer diameter
e Eccentricity e = d/Dh

d Distance between the cylinder axis for the eccentric channel
f Frequency
T Period
k Wavenumber
m Quantum number
L Length of the domain in the streamwise direction
ai Coefficients of the POD modes
Si j Strain tensor
τi j SGS stress tensor
M Number of snapshots
Neq Number of modes used in the ODE set
Meq Number of oscillatory modes contained in the ODE set

1 Introduction

Turbulent flows often exhibit non-obvious behaviours whose prediction remains a challenge. An example is
the turbulent flow in closely spaced arrays [1], or, more generally, the turbulent flow in parallel arbitrarily
shaped channels connected by a narrow gap [2].

The steady laminar solution of Navier–Stokes equations for these geometries presents a degree of symme-
try that is equivalent to the symmetry of the overall system. As an example, let us examine the fully-developed
laminar solution for the flow in parallel rectangular subchannels of the same shape connected by a narrow gap
(Fig. 1). It is invariant in the axial direction and symmetric to the gap mid-plane (Fig. 1). In the sense of ensem-
ble averaging this fundamental feature is kept by turbulent flows. However, as the analysis does not limit to the
averaged statistics and extends to the instantaneous realizations of the flow, the flow is obviously not symmetric.

Moreover, for some shapes of the narrow gap (for a rectangular gap, when the ratio between gap height
and gap length is smaller than 2—Fig. 1) large scales structures are observed at the edges of the gap. A flow
pulsation is established between the subchannels, whose frequency and spatial distribution are a function of
the Reynolds number and the geometry parameters, as they have been reproduced in different experimental
facilities. It appears to be a large-scale phenomenon originated by the interacting vortices (or local structures)
located in different areas of the domain. We therefore have a symmetric system (the system has reflection
symmetry to the gap mid-plane) and a flow that is strongly asymmetric even after integration in time (unless
long integration time is taken). Moreover, on the gap mid-plane the Probability Density Function (PDF) of the
velocity component parallel to the gap length has a strong non-Gaussian behaviour [3].

At very low Reynolds numbers (Re < 1,000) the laminar flow is stable and no oscillations are present.
At higher Reynolds numbers coherent structures are observed on the border of the gap. This behaviour might
be related to a bifurcation of the laminar steady state that has been observed both computationally and exper-
imentally [4,5]. In fact, experimental results [5] have shown that the onset of the transition to turbulence in
geometries containing a narrow gap is characterized by a strong oscillatory behavior of the cross velocity in the
gap region [6]. Moreover, the bifurcation can be predicted by linear stability analysis as shown by Merzari et
al. [4]. At higher Reynolds numbers, the oscillations begin to be associated to counter-rotating eddies located
near the gap-edge [7].

A satisfying modelling, to complement this phenomenological understating, is still lacking. Such a model
would be viable in nuclear engineering applications to take into account the enhanced mixing between the
channels that these oscillations entail. Basic research is needed to unveil the mechanisms underlying this
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Fig. 1 Geometry and 3D snapshots

phenomenon. Using experimental as well as computational data, this work aims to address this problem through
Proper Orthogonal Decomposition (POD) to identify the most significant modes of turbulence and to use
Galerkin projection in order to reduce the Navier–Stokes equations to a low-dimensional set of Ordinary Differ-
ential Equations (ODEs) [8,9]. By examining the structure of the POD modes and the structure of the coefficient
matrices of the low-dimensional model additional insight into the dynamics of the oscillations will be obtained.

1.1 Proper orthogonal decomposition

Proper Orthogonal Decomposition has been introduced to the turbulence community by Lumley [10,11].
Lumley proposed to define a coherent structure with functions of the spatial variables that have maximum
energy content. That is, coherent structures are (linear combinations of) σ (x) which maximize the following
expression:

〈(σ (x), u′(x))〉
〈(σ (x), σ (x))〉

(1)

In which the expression ( f, g) represents the L2 product
∫

f gd�, 〈〉 the operation of ensemble averaging and
� the domain of integration. u′ represents the velocity fluctuation toward the average. In fact, it is common to
apply POD directly to the velocity fluctuation rather than the complete velocity (thus separating the effect of
coherent structures from the mean motion).

If σ (x) maximizes (1), it means that if the flow field is projected (in the sense of the L2 product) along
σ (x), the average energy content is larger than if the flow field were to be projected along any other function,
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e.g., a Fourier mode. In the space orthogonal to σ (x) the maximization process can be repeated, and in this
way a whole set of orthogonal functions σi(x) can be determined. The power of the POD lies in the fact that
the decomposition of the flow field in the POD eigen-functions:

u′(x) =
∑

i

aiσi(x) (2)

converges optimally fast in L2; i.e., a truncation of Neq modes in the POD decomposition is the optimal pos-
sible truncation for the same number of modes. Each mode is characterized by its energy content, the rank of
the modes based on their energy content will be called “quantum number” m in the following [8].

The direct solution of the eigenvalue problem resulting from (1) can be computationally extremely expen-
sive for three-dimensional (3D) turbulence. In fact it would be cumbersome. A possible solution is given by a
technique first developed by Sirovich [12]. It is possible to reconstruct the eigenvalue–eigenfunction problem
by collecting an adequate number M of realizations of the flow field. This method can be used for ergodic and
non-ergodic flows as shown by Aubry et al. [13]. The eigenvalue problem will then be of size M × M that
would be, in general, much more manageable. The value of M for the present work has been determined such

as the first 16 eigenvalues for the POD matrix M × M are the same eigenvalues of the matrix
√

2M ×
√

2M

(i.e., obtained using
√

2M snapshots, given by the closest integer to
√

2M). Thus, for the chosen number of
snapshots M , the eigenvalues are considered to be converged.

In this work, two cases will be considered: the flow in an eccentric channel and the flow in two rectangular
ducts connected by a narrow gap (Fig. 1). CFD results as well as experimental data have been used to recognize
the coherent structures containing the highest quantity of Turbulent Kinetic Energy.

2 Rectangular channels connected by a narrow gap

The first case considered is the parallel flow in a U-shaped channel. The layout consists of two rectangular
channels connected by a narrow gap (Fig. 1). The flow is in the x-direction. The working fluid is water and the
bulk Reynolds numbers surveyed by the experiment cover a range from 1,000 to 10,000. The area monitored
by Particle Image Velocimetry (PIV) is a 50 mm × 50 mm plane positioned symmetrically in the middle of the
gap. The experimental setup is shown in Fig. 2.

2.1 Redefinition of the eigenvalue problem for the experimental data

Since the area monitored is only two-dimensional (2D), POD needs to be applied carefully. Even though POD
is a pattern recognition technique, and therefore applicable to every set of data, turbulence is inherently 3D
and the results of a 3D POD might have little to do with a 2D POD. However, if turbulence is locally strongly
anisotropic (e.g., if turbulence has a two-component behaviour) and the coherent structures are local (i.e., they
are contained within the measurement area), it is reasonable to assume that even a 2D POD would be able to
yield results in qualitative agreement with a complete 3D POD. To do so the operator of (1) is redefined as
follows:

〈(σ (x), u′

p(x))p〉
〈(σ (x), σ (x))p〉

(3)

where u′

p(x) is the velocity vector projected in the measurement plane (therefore, 2D) and ( f, g)p =
∫

f gd Sp

is the L2 product on the measurement plane Sp. The main hypothesis is that u′

p(x) ·u′

p(x) ∼= u′(x) ·u′(x), ∀x ∈
Sp, i.e., that the turbulent kinetic energy is distributed mainly in the directions lying in the measurement plane.

Interestingly, a recent numerical work suggests that, in the presence of oscillations, turbulence presents
strong anisotropy and a 2D behaviour in the narrow gap [14], thus supporting the validity of the hypothesis
made.

The major drawback for this formulation of the POD problem is that the POD eigenfunctions will not be in
general divergence free. Therefore, a model based on these equations will not in general respect the continuity
equation.
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Fig. 2 Experimental setup

2.2 Computational practices for the CFD calculation

A Large Eddy Simulation (LES) computation has been carried out for this case at Re = 2,700. The application
of POD on LES data instead of Direct Numerical Simulation (DNS) data does not represent a drawback of the
present work, since the modelled scales energy content is inherently incoherent. Moreover, the focus of the
present work is on the large scales. In fact, in LES, the small scales of motion, corresponding to the higher
part of the Kolgomorov spectrum, are considered to have a nearly universal behaviour and can therefore be
modelled. In order to do so a filter operator of the type:

f (x) =
+∞
∫

−∞

G(x ′, x) f (x ′)dx ′ (4)

is applied to the Navier–Stokes equations, obtaining the filtered Navier–Stokes equations. The operation intro-
duces six new unknowns τi j :

∂u j

∂t
+

∂ui u j

∂xi

= −
∂

∂xi

(

p

ρ
δi j + τi j

)

+ ν
∂2ui

∂2xi

(5)

∂ui

∂xi

= 0 (6)

where the six new unknowns are defined by:

τi j = ui u j − ui u j (7)
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Fig. 3 Comparison between experiment (dots) and calculation (solid line) for the U-shaped channel (Re = 2,700). a Averaged
cross velocity, b Streamwise velocity. The experimental data in the center of the channels is slightly different from the results of
Lexmond et al. [7]. In fact the data shown here has been collected by the present authors on the same experimental facility

these unknowns are dimensionally equivalent to stresses, and they are often modelled within the eddy-viscosity
paradigm. In the recent years new approaches have flourished. In the present work, the Smagorinsky model
has been used to model the deviatoric part of the stresses, using the following expression:

τi j − τi jδi j

1

3
= −2(Cs�)2‖S‖Si j (8)

where

‖S‖ =
√

2Si j Si j (9)

and � is the filter width. Since in practical simulation, no actual filtering is usually performed, its definition
is somewhat arbitrary. Several different formulations have been tested and the following definition has been
used:

� = min(�x , �y, �z)(1 − e−y+/25) (10)

which appears to take better into account the effects connected with the adoption of an anisotropic grid and the
wall effect. As for the coefficient Cs it has been chosen to be constant for the present calculation and equal to
0.1 [15]. Streamwise periodic boundary conditions have been implemented and the length of the computational
domain in the streamwise direction has been chosen as equal to 120 mm. The time step for the calculation has
been set to �t = 0.00015 s (with a Courant number lower than 0.1) for about 800,000 meshes. The convective
fluxes have been discretized through a second-order central scheme while time advancement has been carried
out through a Crank–Nicholson scheme. An extensive account of the numerical and modelling practices is
given in Merzari et al. [3], along with a detailed discussion of the computational results. Here, only a brief
comparison with the experiment will be shown along with the POD.

Figure 3 shows a comparison between experiment and computation for Re = 2,700. In particular Fig. 3a
shows the average cross velocity in the experimental section. It appears that the computational methodology
is able to reproduce correctly the secondary flows. Figure 3b shows instead the computed streamwise velocity
compared with the experimental results. The accuracy in the middle of the gap is excellent. As for the higher
moments the peak of rms streamwise velocity is located in the edge of the gap [3], and it has been evaluated
in the calculation at 0.263 m/s (a value very similar to the one measured experimentally at Re = 2,700).

2.3 POD of experimental data

In this section, we will present the results of the problem (3) for the geometry presented at Re = 3,000 and
Re = 2,000 based on experimental data. A total of 1,600 snapshots have been collected at time intervals of
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Fig. 4 Energy fraction contained by each POD mode as a function of their quantum number, experimental data for the U-shaped
channel (Re = 2,000)

Fig. 5 Most energetic modes, m = 1 (a) and m = 2 (b), Re = 2,000, experimental data for the U-shaped channel

0.01 s and a 3,200×3,200 eigenvalue has been assembled and solved (using symmetry considerations). The
results are reported in Fig. 4, it is possible to notice that most of the energy is contained in the first eigenmodes
(the first 6 eigenmodes contain approximately 75% of the energy).

Figures 5, 6 and 7 show the most energetic modes. The two most energetic modes (m = 1 and m = 2)
are evidently the same mode shifted in the axial direction. They represent a traveling wave of the type u =
u0 sin

(

2π
[

x
λ

− t
T

])

, which can in fact be splitted into two contributions:

u = u0 sin

(

2π

λ
x

)

sin

(

2π

T
t +

π

2

)

− u0 sin

(

2π

λ
x +

π

2

)

sin

(

2π

T
t

)

(11)

where the two terms differ in the axial direction x by a phase shift of π/2. The wavelength of the wave can be
evaluated at about 7 cm by simply measuring the length of the region with negative cross velocity in Fig. 5 and
multiplying by a factor of two. The value of the wavelength does not depend upon the Reynolds number and
it has been found constant between Re = 3,000 and Re = 2,000. Similar considerations apply to the modes
with m = 3 and m = 5 and several other less energetic modes.
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Fig. 6 Modes with quantum number m = 4 (a) and m = 64 (b), Re = 2,000, experimental data for the U-shaped channel

Fig. 7 Mode with m = 5, Re = 2,000, experimental data for the U-shaped channel

The other modes are also responsible for the energy transfer between channels. They do not represent,
however, traveling waves. As an example, Fig. 7 shows the mode with m = 4, containing two vortices on the
edge of the gap.

2.4 POD of CFD data

For CFD data 1,000 snapshots have been collected at 0.015 s (100 time steps) intervals. An eigenvalue prob-
lem of size 2,000 has then been carried out (by considering that the system has reflection symmetry) for the
overall 3D flow identifying 6 eigenfunctions that carry 98% of the overall energy. In a similar fashion to what
observed in the previous subsection, the first and second eigenmodes are responsible for the mass transfer
between subchannels. Once again, they represent travelling waves of the type described by Eq. (11). Figure 8a
shows the cross velocity for the most energetic mode while Fig. 8b shows the streamwise velocity for the same
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Fig. 8 Principal mode, POD of the LES computation, Re = 2,700. a Cross velocity, b streamwise velocity, c detail, stream plot,
d detail, vector plot

mode. Figure 8c, d shows the streamlines and a vector plot for the most energetic mode. The similarity with
the results obtained by the POD carried over experimental data is evident by comparing Figs. 5, 6, 7, and 8.

In the mode with m = 3 (the streamlines are shown in Fig. 9), it is possible to recognize that two vortices
are located near the border of the gap (similar to the mode given in Fig. 7). Modes corresponding to Fig. 6 are
not present in the POD carried out over CFD data. A possible explanation is that these modes could represent
a projection of the 3D travelling wave given by Fig. 8, over the measurement plane (i.e., that these are spurious
modes generated by the fact that the POD is 2D and not fully 3D).

The oscillating behaviour of the first two eigenfunctions suggests that decomposition in Fourier space rather
than a direct decomposition may be more revealing. It has to be noted that a POD decomposition will always
be optimal by definition even in a case with streamwise boundary conditions [16] because of the inherent
properties of POD discussed on Sect. 1.1 and the space–time information it carries [17]. However, it is useful
to examine which wavenumbers are involved in the oscillatory phenomenon [3]. The Fast Fourier Transform
(FFT) of the velocity field has been computed and a problem of the type (1) has been solved for the Fourier
coefficients. Instead of the decomposition (2), the following decomposition has been used:
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Fig. 9 Mode m = 3, POD of the LES computation of the U-shaped channel Re = 2,700

u′ (x) =
∑

k

∑

i

ai si,k(y, z)eik 2π
L

x (12)

where k is the wavenumber, x is the streamwise direction, si,k(y, z) is the POD eigenfunction, L is the length
of the domain in the streamwise direction.

The resulting eigenvalue–eigenfunction problem has been studied for each value of the wavenumber k.
The results are reported in Fig. 10a. The first eigenmode for k = 2, carries more than 93% of the entire energy,
while the second eigenmode carries less than 2%. Fourier coefficients at k = 3 and k = 2 show less energetic
modes. Higher wave numbers show a decreasing energy level.

The modes responsible for the mass transfer between channels are (k = 1, m = 1), (k = 2, m = 1),
(k = 3, m = 1), since the value of the cross velocity is significantly grater than 0 in the narrow gap. Figure 10b
shows the cross velocity distribution and the streamwise velocity distribution for the mode (k = 2, m = 1) [3].
Interestingly, this shows that in the computation more than one wavenumber is involved in the energy transfer
between channels, even though only one is clearly dominant (the wavenumber k = 2). Additional results
concerning the POD of computational data for this geometry are available in Merzari et al. [3]. In particular, it
is remarkable that the most energetic mode of turbulence (k = 2, m = 1) is very similar in shape to the most
unstable eigenmode found by the linear stability analysis of Merzari et al. [4].

3 Eccentric channel

An LES has been carried out for the flow in an eccentric annular channel. The approach and the code are
different with the previous chapter. An in-house code has been used, where the Navier–Stokes Eqs. (5) and (6)
are solved in boundary-fitted coordinates [14,18]. The Sub-Grid-Scale (SGS) stresses (7) are modelled through
a dynamic model [19] where the Cs in (8) is determined locally. Streamwise boundary conditions have been
implemented. The convective fluxes have been discretized through a second-order central scheme suitable
for boundary-fitted coordinates while time advancement has been carried out through an Adams–Bashforth
scheme. Details of the numerical practices and details of the results are available in Merzari and Ninokata [14].

In the present work two cases have been considered. The geometry under study presents an eccentricity of
0.5 and an inner to outer diameter ratio g = 0.5. Two Reynolds numbers (3,200 and 12,100) have been surveyed.
The grids used are 256×64×128 and 256×128×256, respectively (spanwise—wall-normal—streamwise).

Extensive results on the calculations carried out are reported in Merzari and Ninokata [14]. Figure 11
however shows a brief comparison for the case with Re = 3,200 and available DNS data for channel flow [20].

In fact, the streamwise velocity near the outer wall presents a distribution comparable to a DNS of channel
flow [20], confirming a previous result of Nikitin [21]. The same can be said for the turbulent kinetic energy



Proper orthogonal decomposition of the flow 343

Fig. 10 a Energy content of the principal modes of the POD decomposition (from [3], computational data for the U-shaped
channel at Re = 2,700); b Most energetic mode of turbulence (k = 2, m = 1) (from [3])

Fig. 11 Validation for the eccentric channel, Re = 3,200, wide gap, computational data. a Streamwise velocity and b rms of the
streamwise velocity
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Fig. 12 Eccentric channel: energy distribution of the principal modes of the POD decomposition, computational data for the
eccentric annulus. a Re = 3,200 and b Re = 12,100

Fig. 13 Most energetic mode, normalization arbitrary, Re = 3,200, computational data. a Cross velocity, b vector plot—detail

and the rms of the streamwise velocity component. Secondary flows are observed in the cross-section and they
are similar in shape to the ones proposed by Nikitin [21]: the flow is transported from the region of higher
momentum (wide gap) to the narrow gap along the walls and it is transported back to the wide gap in the region
of low shear (mid-distance from the cylinders) [14].

3.1 POD

The POD has been carried out at two Reynolds numbers (Re = 3,200 with a domain length of 4π and
Re = 12,100 with a domain length equal to 2π) with 2,000 snapshots each. In both cases the snapshots
were sampled at 0.015 s intervals. Figure 12a shows that, for the case Reynolds number equal to 3,200,
the first 6 modes contain 20% of the total energy while Fig. 12b shows that at higher Reynolds number
the 6 most energetic modes contain approximately 6% of the total energy. This indicates that an energy
transfer occurs between the most energetic modes and the other modes (Fig. 12) as the Reynolds number
increases.

The first four modes in the case with Re = 3,200 and the first two modes in the case at Re = 12,100
are representative of the same type of travelling wave encountered in the previous section. For the case at
Re = 3,200 two wavelengths appear to be present as it appears evident from Figs. 13 and 14. In fact the use of
periodic boundary conditions and a finite computational length in the streamwise direction imply a discretized
wavenumber spectrum and subsequently the impossibility for the computation to reproduce exactly the correct
wavenumber spectrum (unless the domain is extremely long or it is chosen within a certain range, in the sense
discussed in [3]). These issues are discussed extensively in Merzari et al. [3].
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Fig. 14 Mode with quantum number m = 3, normalization arbitrary, Re = 3,200, computational data. a Cross velocity,
b Streamwise velocity

Fig. 15 Streamlines for the mode with quantum number, m = 6, Re = 3,200, computational data

For Re = 3,200, the modes corresponding to quantum numbers m = 4 and m = 5 contain a series of
vortices on the edges of the gap (Fig. 15), similar to the modes shown in Fig. 7. Similar modes have been found
to be dominant at higher Reynolds number.

In conclusion, the POD conducted on eccentric channels shows that travelling wave modes are present in
this geometry as well, but they are considerably less energetic than the case considered in the previous section.
Moreover, as the Reynolds number increases they appear to be less dominant toward other modes. From what
shown in other works [14] this trend might be different for different values of the geometric parameters. In
particular for higher eccentricity, the oscillations have been found to be dominant at higher Reynolds numbers
(e.g., for e = 0.8 they are present at Re = 11,000).

4 Dynamics

In this section, the underlying dynamics of the oscillations will be examined. POD can be used to decompose
the flow field into a series of modes as shown by Eq. (2). The Navier–Stokes equations can then be rewritten
in a set of ODEs of the type:

dai

dt
=

∑

jk

Ai jka j ak +
∑

i

Bi j a j + Ci (13)
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Each obtained by projecting an orthogonal eigenfunction σi onto the momentum equation. In the momentum
equation the fluctuation u′(x) of the velocity toward the average can be truncated as:

u′ (x) =
∑

i=1,Neq

aiσi (x) (14)

thus reducing (13) into a set of Neq ODEs. It is worth noticing that often an additional cubic term [8,22] is
added to (13). The coefficients Ai jk , Bi j and Ci in (13) are determined by the spatial distribution of the eigen-
functions and they are computed numerically using third-order quadrature schemes. The complete expressions
for the coefficients are available in Appendix A.

The problem can also be addressed in an alternative way by considering the decomposition in Fourier
space (12) instead of (2). The expression for the coefficients and the POD eigenfunctions change, and so does
the dynamics, that is more complex [23]. In this work, however, only the POD in physical space with the
coefficients given by Appendix A will be considered, because of its simplicity and more immediate physical
meaning.

Another important issue is the introduction of a necessary closure to take into account all the scales of
turbulence (since the series (14) does not contain all the turbulent kinetic energy if Neq is finite). This has been
widely discussed by Cazemier [24]. An eddy viscosity approach has been employed here.

4.1 Coefficient analysis

At first, let us examine the general properties of the system (13) generated by a decomposition of the type
(2) which has the advantage of not including the average field (i.e., letting us examine the influence of the
Reynolds number separately).

The primary interest of this analysis is in obtaining some insight into the physics of the oscillations starting
from the value of the computed coefficients. The properties discussed in the following have been verified for
all the PODs performed in this work, but, in the interest of brevity, they will be detailed only for the system of
ODEs obtained from the POD carried out over experimental data.

One interesting property of the system is that it can be rewritten into two systems non-linearly coupled (by
reordering the equations):

dai

dt
=

∑

jk

Ai jka j ak +
Meq
∑

j=1

Bi j a j , for j < Meq + 1 (15.1)

dai

dt
=

∑

jk

Ai jka j ak +
Neq
∑

j=Meq+1

Bi j a j + Ci , for j > Meq, j < Neq + 1 (15.2)

because of the properties of the computed matrix Bi j and the computed vector Ci . The first equation represents
the dynamics of modes of the type shown in Figs. 5 and 6 (i.e., the modes responsible for the mass flow
exchange between subchannels). The second equation represents the dynamics of the modes of the type shown
in Fig. 7.

Another interesting property is that the non-linear terms are up to 20 times smaller than the linear terms. If
the non-linear terms are neglected the system given by Eq. (13) can therefore be separated into two uncoupled
linear systems:

dai

dt
=

Meq
∑

j=1

Bi j a j , for j < Meq + 1 (16.1)

dai

dt
=

Neq
∑

j=Meq+1

Bi j a j + Ci , for j > Meq, j < Neq + 1 (16.2)
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Table 1 Eigenvalue spectrum for the linear matrices in Eq. (16.1) and (16.2)

Eigenvalue spectrum of Bi j Eigenvalue spectrum of Bi j

0 + 6.5304 i 0.0 + 1.4178 i
0 − 6.5304 i 0.0 − 1.4178 i
−0.1279 + 1.3626 i 0.0 + 0.5658 i
−0.1279 − 1.3626 i 0.0 − 0.5658 i
−0.0841 + 0.6703 i −0.0098 + 0.0439 i
−0.0841 − 0.6703 i −0.0098 − 0.0439 i
−0.0497 + 0.0233 i −0.0141 + 0.2845 i
−0.0497 − 0.0233 i −0.0141 − 0.2845 i

The coefficients are obtained from the POD carried out over experimental data at Re = 2,000

The eigenvalues of the two linear matrices Bi j and Bi j are given in Table 1 considering the first 16 eigenmodes
(91% of the Turbulent Kinetic Energy) for the experimental POD. The equations given by (16.1) have the
trivial solution:

ai (t) =
Meq
∑

j=1

bi j exp(λ j t) (17)

where λ j are the eigenvalues of the matrix Bi j . Thus, it is interesting to notice that only two eigenvalues have
an almost zero real component, and all real components of the eigenvalues are negative. A stable oscillatory
mode thus exists whose frequency depends upon the value of the Reynolds number. Let us examine in detail
matrix Bi j (Appendix A). It can, in all generality, be written as:

Bi j = B1
i j + νB2

i j (18)

where B1
i j depends upon the value of the mean velocity and thus depends on the Reynolds numbers (whereas

B2
i j is independent of the Reynolds number). B1

i j has several pure imaginary eigenvalues while B2
i j has only

real eigenvalues. Moreover, for Re = 2,000, the value of the imaginary part of the strongest eigenvalue is of
the same order of 2π f , where f is the experimental frequency of the oscillations and does not depend on the
size of Bi j (i.e., it does not depend on Neq if Neq > 8).

The structure of the eigenvalues of Bi j accounts for the presence of a threshold. In fact at low Reynolds

numbers B1
i j is small (since the bulk velocity is small) and as a consequence the eigenvalues of Bi j will be

essentially similar to B2
i j . This corresponds to the fact that, at low Reynolds number, the viscous dumping does

not allow for the propagation of the wave and the oscillations die out quickly.
At higher Reynolds number the eigenvalues of Bi j coincide with B1

i j , moreover, the imaginary part of the

strongest eigenvalue grows linearly with the Reynolds number (if we assume the velocity in the region to grow
linearly) thus explaining the dependence of frequency upon the Reynolds number.

Since B1
i j represents the coupling between each mode and the mean flow it is possible to conclude that

the oscillations are transported by linear interaction between modes of the type presented in Fig. 5 and the
mean flow. The modes represented in Fig. 5 are thus propagated in a travelling wave-like manner by the mean
streamwise flow.

4.2 Solution of POD equations

Since the two systems are uncoupled linearly, the non-linear coupling is essential to represent the whole phys-
ics. The Eq. (13) have been solved by numerical integration using higher order Runge–Kutta schemes [25]. The
results give qualitative agreement with experimental data. In particular, a travelling wave is clearly present,
propagating in the streamwise direction with constant speed.

Similar results have been obtained for all cases considered in this work (eccentric channel, rectangular
channels connected by a narrow gap—both computational and experimental data). In spite of the severe sim-
plifications made in Sect. 2, even the modes obtained through the experimental POD are able to describe
qualitatively well the dynamics of the system.
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Fig. 16 Solution of the ODE set obtained from the POD of experimental data. a Temporal evolution of the coefficient of the most
energetic mode. b Detail of the temporal evolution of the most energetic mode. c Temporal evolution of the mode with m = 3.
d Temporal evolution of the mode with m = 4. e Phase dynamic between the mode with m = 1 and m = 3. f Phase dynamic
between the mode with m = 1 and m = 4
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Fig. 17 Streamline plots. Low-dimensional model (a), experiment (b)

As an example, we report in the following the results for a dynamical system obtained by the POD carried
out over experimental data (Neq = 16).

Figure 16 shows phase plots and time histories for some of the modes. Figure 16a represents the time his-
tory for the most energetic mode (m = 1), while Fig. 16b shows a detail of the same time history. Figure 16c
represent the time history of the mode with m = 3 and Fig. 16d of the mode with m = 4. Figure 16d, e shows
the phase coupling between different types of modes:

1. Figure 16d shows the phase interaction between two oscillatory modes (system 15.1 with non-linear
coupling);

2. Figure 16b shows the interaction between an oscillatory mode (m = 1) and a mode with m = 4.

Figure 17 shows the comparison between a stream plot obtained by solving the non-linear system (13) and
an experimental stream plot for two rectangular channels connected by a narrow gap. The stream plot for the
POD appears to be simpler but at the same time, qualitative features of the flow are reproduced (the arrows
represent typical flow paths in the experiment and the POD).

5 Conclusions

Through the statistical analysis of numerical and experimental data, the present work proposes a POD-based
approach for the studying of the long-standing problem of flow pulsations between channels connected by a
narrow gap.

Experimental and computational data have been used in different geometry and for different Reynolds
numbers. The flow has been decomposed, in the physical space, and then in Fourier space, into a series of
eigenmodes. In all the cases examined the eigenmodes structure is similar, indicating that the properties dis-
cussed here are inherent to the flow in geometry containing a narrow gap.

The modes associated with the flow oscillations have been identified. It has been confirmed by the
experimental observation that the flow is dominated by a single wavenumber in Fourier space. In fact, the
POD carried out on experimental and numerical data shows that a travelling wave is present in the region of
the narrow gap in all cases examined. Such travelling waves are very similar in shape to the most unstable
eigenmode found by the linear stability analysis of Merzari et al. [4]. An additional mode containing alternating
vortices on the edge of the gap is also present (Fig. 7).

The dynamics of the oscillations seems to be driven by the coupling between the average flow field (and
notably the secondary flows) and the modes representing the travelling waves (Figs. 5, 8, 13). Moreover, the
dependency of the frequency oscillations as well as the Reynolds threshold effect on the Reynolds number can
be predicted by eigenvalue decomposition of the linear coefficient matrix Bi j (Sect. 4).

In the case of eccentric channels, two travelling waves of different wavelength were present. This is a
numeric effect, due to the use of periodic boundary conditions in the streamwise direction (which implies a
discretized wavenumber space [3]). Moreover, for the geometric parameters studied here (g = 0.5, e = 0.5),
as the Reynolds increases the oscillatory modes appear to be less dominant toward other modes.



350 E. Merzari et al.

Independently from this work, the statistical decomposition of the flow through a POD technique carries
out some significance: it can in fact be used to analyze the consistency of a numerical simulation with experi-
mental observations [3]. The dominant wavenumber present in the numerical simulation should be sufficiently
close to the experimental wavenumber to correctly reproduce the dynamic of the system.

Future work should entail the extension of the present methodology to more complex geometry (e.g., rod
bundles) where the pattern of the oscillations is inherently 3D. Another important area of investigation would
be the laminar-turbulent transition in eccentric channels or other simplified geometries. In particular it would
be interesting to examine in further detail how the bifurcation found by Gosset and Tavoularis [5] and Merzari
et al. [4] develops into the travelling waves shown here. An in-depth analysis of the mechanics of the energy
transfer between coherent modes and incoherent modes should also be carried out in order to clarity the effect
of the geometric parameters.

Appendix A

Coefficients of Eq. (14):

Ai jk = −(σi, σj · ∇σk) (A1)

Bi j = −(σi, 〈u〉 · ∇σj ) − (σi, σj · ∇ 〈u〉) + ν(σi, �σj ) (A2)

Ci = − (σi, 〈u〉 · ∇ 〈u〉) + ν (σi, � 〈u〉) − (σi, ∇(〈p〉 + p′)) (A3)

Bi j can be rewritten as in Eq. (18), where:

B1
i j = −(σi, 〈u〉 · ∇σj ) − (σi, σj · ∇ 〈u〉) (A4)

B2
i j = (σi, �σj ) (A5)

where clearly only the first term depends on the averaged streamwise velocity profile. The pressure term present
in (A3) can be rewritten considering that the POD expansion is a linear combination of flow realizations (and
therefore solution of the continuity equation):

(σi, ∇(〈p〉 + p′)) = (σi, ∇(〈p〉)) + (div(σi), p′) + (b.t.) = (σi, ∇(〈p〉)) + (b.t.) (A6)

where (b.t.) is a boundary term and depends on the computational domain and the boundary conditions. In
case of Dirichlet boundary conditions or fully developed (cyclic) boundary conditions it is rigorously equal to
zero, and generally speaking it is negligible if compared to other terms [8,22]. An extensive derivation can be
found in Cazemier [24].
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