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Proper Orthogonal Decomposition Technique
for Transonic Unsteady Aerodynamic Flows

Kenneth C. Hall,¤ Jeffrey P. Thomas,† and Earl H. Dowell‡

Duke University, Durham, North Carolina 27708-0300

A new method for constructing reduced-order models (ROM) of unsteady small-disturbance � ows is presented.
The reduced-order models are constructed using basis vectors determined from the proper orthogonal decompo-
sition (POD) of an ensemble of small-disturbance frequency-domain solutions. Each of the individual frequency-
domain solutions is computed using an ef� cient time-linearized � ow solver. We show that reduced-order models
can be constructed using just a handful of POD basis vectors, producing low-order but highly accurate models of
the unsteady � ow over a wide range of frequencies. We apply the POD/ROM technique to compute the unsteady
aerodynamic and aeroelastic behavior of an isolated transonic airfoil and to a two-dimensional cascade of airfoils.

Nomenclature
A = matrix de� ning homogeneous part of discretized

aerodynamic operator
= reduced-order form of A

a = nondimensional location of elastic axis aft
of midchord, e /b

B0 , B1 = matrices relating airfoil motion h and Çh to b
b = airfoil semichord
b = vector de� ning inhomogeneouspart

of discretized aerodynamic operator
C = matrix relating small-disturbancesolution

q to aerodynamic force f
c = airfoil chord
e = distance of elastic axis aft of airfoil midchord
ê = speci� c internal energy
F, G = x and y � ux vectors
f = vector of aerodynamic forces acting on airfoil
G = cascade gap-to-chord ratio
h = airfoil typical section plunging degree of freedom
h = vector of airfoil displacements
ĥ = speci� c enthalpy
I = identity matrix
I a = moment of inertia of airfoil section
J = number of nodes (or cells) in computational grid
j =

p
¡ 1

K = number of proper orthogonal decomposition (POD)
vectors in reduced-ordermodel

K = stiffness matrix of typical section aeroelastic model
kh = bending stiffness of typical section aeroelastic model
k a = torsional stiffness of typical section aeroelastic model
L = sectional airfoil lift
M = number of solution snapshots, Mach number
M = mass matrix of typical section model
M a = aerodynamic pitching moment
m = mass per unit span of typical section aeroelastic model
N = number of degrees of freedom in computational � uid

dynamics (CFD) model
N = vector operator de� ned by small-disturbanceCFD model
p̂ = static pressure
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Q = vector containing steady � ow solution
q = vector containing small-disturbance� ow solution
R = nonlinear vector operator de� ned by steady CFD model
r = magnitude of Laplace variable s
r a = radius of gyration divided by b
S = matrix containing solution snapshots
Sa = static imbalance of airfoil typical section
s = Laplace variable, j x
t = time
U = vector of steady conservationvariables
U 1 = freestream velocity
u = vector of unsteady small-disturbance

conservationvariables
û, v̂ = x and y components of velocity
û = vector of unsteady nonlinear conservationvariables
V = reduced velocity, U 1 / x a b

p
l

v = POD eigenvector
x , y = Cartesian coordinates
x a = static imbalance divided by b
a = airfoil typical section pitching degree of freedom
c = ratio of speci� c heats
H = cascade stagger angle
h = angle made by Laplace variable s in complex plane,

where s is re j h

k = POD eigenvalue
l = mass ratio, m / p q 1 b2

n = aerodynamic state variable
» = vector of aerodynamic state variables
P = quantity extremized to � nd POD vectors
ˆq = static density
r = interblade phase angle of cascade vibration
U = matrix of POD vectors
Á = POD vector
x = frequency
¯x = reduced frequency, x c/ U 1

Subscripts

h = plunging mode
a = pitching mode
1 = freestream conditions

Superscript

H = Hermitian transpose

I. Introduction

U NSTEADY aerodynamictheories and computational� uid dy-
namic (CFD) models for the computation of unsteady � ows

about airfoils, wings, and turbomachinery cascades are quite com-
plex, even for relativelysimple � ow models. Furthermore, the forms

1853



1854 HALL, THOMAS, AND DOWELL

of these analytical and computational � ow models, most often cast
in the time or frequency domain, are not well suited for the direct
computation of aeroelastic stability, nor are they well suited for
applications involvingactive control.Analyticalmodels are usually
formulatedin the frequencydomain for real frequencies,and, there-
fore, the aerodynamic transfer function is not composed of simple
poles and zeros.For example, the Theodorsenfunctionhas a branch
cut with a branch point at the origin of the Laplace plane. CFD
models, on the other hand, may have many thousandsof degrees of
freedom,making them unwieldyfor aeroelasticstabilityand control
computations.

Investigators have developed a number of techniques to reduce
the complexity of unsteady aerodynamic models. Jones1 approx-
imated indicial lift functions with series of exponentials in time.
Such series have particularlysimple Laplace transforms, that is, ra-
tionalpolynomialsin theLaplacevariables, making themespecially
useful for aeroelastic computations.Padé approximantsare rational
polynomials whose coef� cients are found by least-squares curve
� tting the computed aerodynamic loads computed over a range of
frequencies.Vepa,2 Edwards,3 andKarpel4 developedvariousforms
of the matrix Padé approximant technique. This approach reduces
the number of so-called augmented states needed to model the var-
ious unsteady aerodynamic transfer functions (lift due to pitching,
pitching moment due to pitching, etc.) by requiring that all of the
transfer functions share common poles.

Hall,5 Hall etal.,6 FloreaandHall,7 andRomanowskiandDowell8

have developed reduced-order unsteady aerodynamic models of
� ows about airfoils, wings, and turbomachinery cascades. Using
this approach, the dominant eigenvaluesand eigenmodes of a time-
domain or frequency-domain CFD model of unsteady � ow are
computed. The eigenmodes are then used as basis vectors for the
construction of reduced-order models. This eigenmode reduction
techniqueworks well providedone or multiple static correctionsare
applied to account for the eigenmodes not retained in the reduced-
order model. For a review of the eigenmode reduction technique,
see Dowell et al.9

More recently, a number of researchers have used the proper
orthogonal decomposition (POD) technique, also known as
Karhunen–Loève (see Ref. 10) expansions,to determine and model
coherent structures in turbulent � ow� elds. Lumley11 was the � rst
to propose using POD to uncover coherent structures in turbulent
� ow� elds. Using this approach, one examines a series of snapshots
of experimental or computationaldata, each at a different instant in
time. These solution snapshots are used to form a small eigenvalue
problem that is solved to determine a set of optimal basis func-
tions for representing the � ow� eld. Other examples include work
by Berkooz et al.,12 Poje and Lumley,13 Sirovich,14 ¡ 16 Moin and
Moser,17 Rempfer and Fasel,18,19 and Deane et al.20 A recentlypub-
lished book by Holmes et al.21 provides an overview of the POD
method along with extensive details of how the method has been
used by researchers to study a wide variety of � uids problems.

A number of researchers have used the time-domain POD tech-
nique to construct reduced-ordermodels (ROM) of unsteady aero-
dynamic � ows. Romanowski,22 for example, has used the POD
technique to create a reduced-order aeroelastic model of a two-
dimensional isolated airfoil, including compressible aerodynamics.
Romanowski has shown that very accurate unsteady � ow models
can be constructed that reduce the number of degrees of freedom
from the thousands associated with the original CFD � ow solver to
a few tens of degrees of freedom. Tang et al.23 have used the POD
technique to create an ROM of vortex shedding from a cylinder.
They proposed that the ROM could then be used to design an active
control system to control the shedding.

Most of the previous work using POD used data sampled from
the time domain or from ensembles of steady data, as in the case of
graphical feature recognition. Recently, however, Kim24 developed
a frequency-domainform. Using this approach,snapshotsof the un-
steady � ow are computed at a number of discrete frequenciesrather
than at discrete instants in time. He applied the technique to two
relatively simple dynamic systems: a 12-degree-of-freedommass–

springdampersystemand an incompressiblethree-dimensionalvor-
tex lattice model of a rectangular wing.

In this paper, we develop a frequency-domain form of the POD
technique. Here, we use time-linearized CFD analyses to compute
unsteady small-disturbance � ow solutions for vibrating airfoils in
the frequencydomain over a range of frequencies.Basis vectors are
then extracted from this frequency-domaindata set using the POD
technique.The resultingbasis vectorsare then used to constructlow-
degree-of-freedomROMs of theunsteady� ow. Finally, the reduced-
order aerodynamic model is combined with a structural dynamic
model resulting in a compact, but accurate, � utter model. In this
paper,we apply the technique to a two-dimensionaltransonicairfoil
and also to a two dimensionalcascadeof vibratingairfoils.Although
the results presented here are two dimensional, the method itself is
general and can be readily extended to three-dimensional� ows.

II. Theory
A. Steady and Small-Disturbance Unsteady Flow Models

Although the POD technique may be applied to a wide range of
linear and nonlinear � ow problems, in this paper we consider only
small-disturbance unsteady two-dimensional inviscid � ows. Thus,
we consider the time-dependent two-dimensional Euler equations,
which may be expressed as

@û
@t

+
@F(û)

@x
+

@G(û)

@y
= 0 (1)

where û is the vector of conservationvariables given by

û(x , y, t ) =

ˆq

ˆq û

ˆq v̂

ˆq ê

(2)

and ê is the total speci� c energy.The � ux vectorsF and G are given
by

F(û) =

ˆq û

ˆq û2 + p̂

ˆq ûv̂

ˆq ûĥ

, G(û) =

ˆq v̂

ˆq ûv̂

ˆq v̂2 + p̂

ˆq v̂ ĥ

(3)

where the speci� c enthalpy ĥ is

ĥ = ( ˆq ê + p̂) / ˆq (4)

and, for a calorically perfect gas, the pressure p̂ is given by

p̂ = ( c ¡ 1)[ ˆq ê ¡ ( ˆq / 2)(û2 + v̂2)] (5)

In the present investigation, we are interested in small-disturb-
ance, harmonically varying unsteady � ows about some nonlinear
mean operating condition. Thus, we assume the conservative vari-
ables û may be expanded in a perturbation series of the form

û(x , y, t ) = U(x , y) + u(x, y) e j x t (6)

whereU(x , y) representsfor a givenproblemthe steadybackground
� ow, which is also a solution to Eq. (1). Also, u(x , y) is the complex
amplitude of the small-disturbance unsteady � ow that arises from
an external excitation with frequency x .

SubstitutingEq. (6) into thenonlinearEuler equations,Eq. (1) and
expandingthe result in a perturbationseries in the small-disturbance
quantities, one � nds that, to zeroth order, the governing equations
are given by

@F(U)

@x
+

@G(U)

@y
= 0 (7)

This vector equation (the steady Euler equations) describes the
steady background � ow. The � rst-order equation describes the
small-disturbanceunsteady � ow and is given by

j x u +
@

@x

@F
@U

u +
@

@y

@G
@U

u = 0 (8)
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where, for example,

@F
@U

=
@F(û)

@û
û = U

(9)

Equations (7) and (8) are solved sequentially,with boundary condi-
tions thatdependon theparticularphysicalproblemto be solved.For
problems involving airfoil vibration, for example, as in the case of a
� utter calculation,a deforming computationalgrid that conforms to
the motion of the airfoil may be used to improve the accuracy of the
unsteady� ow solution.In this case,Eq. (8)will containan additional
inhomogeneousterm that is dependent on the grid deformation and
the mean � ow.25

B. Numerical Discretization Scheme
The starting point for the construction of a POD-based ROM is

a conventionalCFD scheme. In this study, we use time-linearized,
that is, frequency-domain, small-disturbance � ow solvers. In the
present investigation, we use two different discretization schemes;
one is a cell-centered, explicit, � nite volume Godunov26 method
using Roe’s27 approximate Riemann solver with van Leer’s28 tech-
nique for preserving monotonicity. The other is a node-centered
Lax–Wendroffscheme (see Ref. 29). The steady Euler and unsteady
time-linearized Euler equations are discretized on a computational
mesh composedof quadrilateralcells.At the centerof the j th cell of
the computational grid for a cell-centered scheme, or the j th node
of a node-centered scheme, the estimate of the solution u is stored
and is denotedby u j . The steadyand unsteadysolution for the entire
computationaldomain may be thought of as vectors of the form

q =

u1

u2
...

uJ

, Q =

U1

U2
...

U J

(10)

where J is the totalnumberof computationalcells for a cell-centered
scheme or the number of nodes for a node-centeredscheme. Thus,
the total number of entries N in each of the two vectors in Eq. (10)
is N =4 £ J .

Next, the steady and time-linearized Euler equations are dis-
cretized. The resulting discretization of the steady Euler equations
for an explicit scheme can be expressed as

Qn + 1 ¡ Qn = R(Qn ) (11)

where n is the iteration number. To solve for the steady � ow, the
solution is advanced in time until a steady-statesolution is obtained.

Similarly, once the steady � ow has been computed, the time-
linearized unsteady Euler equations are discretized with the result

qn + 1 ¡ qn = N(qn ; Q, x , D ) (12)

where D is a shorthand notation for the particular type of external
source of excitation.Note the boundary conditionsthemselves may
be functions of x . In other words, the unsteady � ow depends on
the steady � ow, the frequency of the disturbance, and the type of
excitation.

Although N is an operatorfor solving a time-linearizedsystem of
equations,N is not, strictlyspeaking,a linearoperatorbecauseof the
presence of inhomogeneousboundary conditions, that is, N(0) 6= 0.
Nevertheless, the operator N may be expressed as a linear system
of equations of the form

N(q; x , D ) = [A( x )]q ¡ b( x , D ) = 0 (13)

where A is a large sparse matrix and b is a vector arising from the
imposition of unsteady inhomogeneousboundary conditions.

For the cell-centered Roe27 scheme, the matrix A and the vector
b are � rst order in x . Thus, Eq. (13) can be written as

[A0]{q} + j x [A1]{q} = b0 + j x b1 (14)

where A0 and A1 are independent of the excitation frequency x .
For the node-centeredLax–Wendroff scheme, the matrix A and the
vector b are second order in x . Thus, Eq. (13) has the form

[A0]{q} + j x [A1]{q} ¡ x 2[A2]{q} = b0 + j x b1 ¡ x 2b2 (15)

For unsteady � ows about isolated airfoils, the matrices A0 , A1 , and
A2 are purely real. For unsteady � ows about a cascade of airfoils,
the matrices may be complex due to the complex periodicboundary
conditions used to impose the � xed interblade phase angle r of a
traveling wave disturbance.

In some instances, one would like to compute the homogeneous
solutions of the discretized unsteady aerodynamic model. Such
would be the case, for example, if one wanted to compute the onset
of vortex shedding for an airfoil or rotating stall for a turbomachin-
ery compressor. Setting the right-hand side of Eq. (14) to zero, for
example, one obtains the eigenvalue problem

[A0]{q} + s[A1]{q} = 0 (16)

where the eigenvalues = j x will, in general, be complex, as will be
the eigenvectors.For the isolatedairfoil case, the complex eigenval-
ues (and correspondingeigenvectors) will appear in complex conju-
gate pairs. One should be careful when interpreting the eigenvalues
of the CFD model. Some of the eigenvalues will be (nearly) equal
to the eigenvalues of the physical system. Others, however, form
a discrete approximation of a branch cut in the complex Laplace
plane.5

C. De� nition of POD Basis Vectors
The idea behind the frequency-domainPOD technique is a sim-

ple one. We � rst calculate the small-disturbance response of the
aerodynamic system at M different combinationsof frequencyand
excitation. The solutions (also called snapshots) are denoted by qm

for m =1, 2, . . . , M . These snapshots are then linearly combined
to form a smaller number of basis vectors Ák for k =1, 2, . . . , K ,
where K < M . That is,

Ák =
M

m = 1

qmvm
k , k = 1, 2, 3, . . . , K (17)

where vm
k is the contribution of the m th snapshot to the kth basis

vector. In matrix form, Eq. (17) is written as

Ák = Svk (18)

where

S =

j j j
q1 q2 ¢ ¢ ¢ qM

j j j
(19)

vk =

v1
k

v2
k
...

v M
k

(20)

We assume here the vector vk has been suitably scaled so that the
vectors Ák are unit length. The vectors vk are selected so that they
lie along the principal axes of the space spanned by S; that is, the
quantity

SH Svk 2
(21)

is extremized subject to the constraint that Ák is unit length. Thus,
introducing the Lagrange multiplier k k , we � nd the vector vk that
makes P stationary, where

P = vk SH SSH Svk ¡ k k vkSH Svk ¡ 1 (22)

Taking the variation of P and setting the result to zero give

SH Svk = k k vk (23)
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Equation (23) de� nes an eigenvalue problem for the eigenvectors
vk and eigenvalues k k . Those eigenvectorswith the largest values of
k k give the largest values of the quantity in Eq. (21). Said another
way, the snapshotsqm tend to lie in a subspacespanned by the basis
vectors Ák with the largest eigenvalues k k .

D. Reduced-Order Aerodynamic Model
In this section,we describe a techniquefor constructingreduced-

order aerodynamicmodels of CFD schemes using POD vectors. In
the next section, we describe how to construct reduced-orderaero-
elastic models. For the sake of brevity, this development is shown
only for thecell-centeredGodunovscheme.26 However, very similar
analyses can applied to the node-centered Lax–Wendroff scheme
with just minor modi� cations required because the Lax–Wendroff
formulation is second order in x .

To begin,havingcomputedthePOD basis vectors,we assume that
they will provide a useful basis for computing the unsteadysolution
at some other frequencyand/or external excitation than was used to
generate the original snapshots. Thus, we let

q =
K

k = 1

Ák n k (24)

where n k may be thought of as as an aerodynamic state variable
(sometimes referred to as an augmented aerodynamic state in the
Padé literature). In matrix form, Eq. (24) is given by

q = U » (25)

where U is an N £ K matrix, whose kth column is simply the
basis vector Ák , and » is the vector of aerodynamic state variables.
Substitution of Eq. (25) into Eq. (13) gives

AU » = b (26)

In practice, the matrix A is never actually computed. Instead, we
compute the kth column of AU using the original linearized � ow
solver itself. That is,

AÁk = N(Ák ) ¡ N(0) (27)

Next, we project the error in Eq. (26) onto the space spanned by
the basis vectors to obtain

U H A U » = » = U H b (28)

Finally, the matrix is factored using lower–upper decomposition,
and Eq. (28) is solved for the unknown aerodynamic state variables
». This step is computationallyvery ef� cient because the reduced-
order matrix is quite small, sometimes as small as 10 £ 10, but
rarely larger than 100 £ 100. The major expense in constructing the
aerodynamicROM is the computationof the snapshots; the compu-
tational cost of � nding the basis vectors and solution to Eq. (28) is
negligible by comparison.

We note that by construction the reduced-order aerodynamic
model [Eq. (28)] satis� es the boundary conditions (and the dis-
cretized � eld equations) only approximately. This should not be
viewed as a weakness of the method, but a strength. Imposing a
constraint that boundary conditionsbe satis� ed exactly at all of the
points on the boundary would require many more basis functions to
be included in the model, at least as many basis vectors as boundary
points, and would not substantially improve the model.

For some applications, for example, to examine the stability of
the CFD model itself, it is desirable to compute the eigenvalues of
the CFD model. Also, the eigenspectrumof a CFD model is a useful
assessment tool in examining grid and/or modal convergenceof the
original CFD model and/or an associated reduced-ordermodel.

The computational cost of computing even a few of the eigen-
values of the full CFD model of the unsteady � ow [Eq. (16)] can
be quite large, especially for viscous and/or three-dimensional� ow
models. An alternative is to compute the eigenvalues with a Ritz
approach, using the POD modes as basis vectors.Recall that for the

Godunov26 � ow solver the matrix A is � rst order in x ; the homoge-
neous part of Eq. (28) may be written as

0» + s 1» = 0 (29)

where

0 = U H A0 U , 1 = U H A1 U (30)

Equation (29) may be used to determine the dominant eigenvalues
and eigenvectorsof the full CFD model, but Eq. (29) has many fewer
degrees of freedom than the original system, greatly reducing the
computationalcost.

E. Reduced-Order Aeroelastic Model
Having described the basic reduced-order modeling technique,

we next describe how to incorporate an aerodynamic ROM into
an aeroelastic model of � utter. To illustrate, we again consider the
Godunov26 CFD algorithm described earlier. A similar but slightly
more complicated form (not presented here) can be derived for the
Lax–Wendroff scheme.

Consider a two-degree-of-freedomstructural dynamic model of
a typical section.The governingequationsof motion are of the form

Mḧ + Kh = f (31)

where

h =
h

a
(32)

and h and a are the plungingand pitchingdegreesof freedom of the
typical section. Also,

M =
m Sa

Sa Ia

, K =
kh 0

0 k a

, f =
¡ L

M a

(33)

where m , Sa , and I a are the mass, static imbalance, and moment of
inertia of the airfoil section measured about the elastic axis, kh and
k a are the bending and torsional spring constants, and L and M a

are the aerodynamiclift and moment produced by the motion of the
airfoil.

Note that the aerodynamic force vector f is obtained from in-
tegrals involving the pressure at the surface of the airfoil. When
discretized, these integrals may be expressed as

f = Cq (34)

where C is a sparse 2 £ N matrix. Similarly, for the case of airfoil
vibration, the vector b on the right-hand side of Eq. (14) can be
expressed as

b = b0 + j x b1 = B0h + j x B1h (35)

where now we have made the assumption that the airfoil motion
is harmonic in time, that is, h = h̄ exp( j x t ) (x may be complex).
Putting together Eq. (14) and Eqs. (31–35) and converting to � rst
order in x (state-space form) give

A0 ¡ B0 ¡ B1

0 0 I

¡ C K 0

q

h
Çh

+ j x

A1 0 0

0 ¡ I 0

0 0 M

q

h
Çh

= 0

(36)

Equation(36) is a largesparse(N + 4) £ (N + 4) generalizedeigen-
value problem that describes the aeroelastic stability of the airfoil.

For large CFD models, � nding the eigenvalues of Eq. (36) is
prohibitively expensive. To reduce the size of the model, we again
assume that the number of aerodynamicstates can be reducedusing
Eq. (24), so that

A0 U ¡ B0 ¡ B1

0 0 I

¡ CU K 0

»

h
Çh

+ j x

A1 U 0 0

0 ¡ I 0

0 0 M

»

h
Çh

= 0

(37)
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Finally, projecting the error in the aerodynamic equations onto the
space spanned by the POD basis vectors gives

0 ¡ U H B0 ¡ U H B1

0 0 I

¡ CU K 0

»

h
Çh

+ j x
1 0 0

0 ¡ I 0

0 0 M

»

h
Çh

= 0 (38)

Equation (38) is the reduced-order aeroelastic model, which is a
generalized eigenvalue problem of size (K + 4) £ (K + 4), where
K ¿ N .

Equation (38) is similar in form to that obtained using a matrix
Padé approximant for the unsteady aerodynamics (e.g., Ref. 4) and
has some of the same advantagesof the Padé approach.Both meth-
ods produce low-degree-of-freedommodels. Furthermore, both re-
quire the aerodynamic lift and moment transfer functions to share
common eigenvalues (although the zeros are obviously different).
This is appealing because physically the poles should be indepen-
dent of the type of transfer function.However, the present approach
has several advantages over the matrix Padé approximant method.
The present method attempts to compute the actual aerodynamic
poles, or at least the poles of a rational CFD model. The Padé ap-
proach, on the other hand, selects pole locationsby the curve � tting
of tabulated aerodynamic data. In fact, some Padé techniques can
produce unstable aerodynamic poles, even for stable aerodynamic
systems.

III. Computational Results
A. Unsteady Aerodynamic Behavior of a Transonic Isolated Airfoil

In this section, we present some typical two-dimensional steady
and unsteady small-disturbance � ow solutions for a simple model
problem. The results presented are based on a standard aeroelastic
test case proposed by AGARD to test the ability of computational
methods to predict� utter of aircraftwings.30 The airfoilused closely
approximates a NACA 64A010 airfoil but is 10.6% thick to match
closely the actual thickness distributionof an airfoil studied experi-
mentally at the NASA Ames Research Center. We used several dif-
ferent computationalgrids.For calculationsusing the node-centered
Lax–Wendroff scheme, we used computational grids with 65 £ 33
nodes, 97 £ 49 nodes, and 129 £ 65 nodes. For a few sample cal-
culations requiring the use of the cell-centeredGodunov26 scheme,
we used a very coarse mesh with just 32 £ 16 computational cells.
The coarsest and � nest grids are shown in Fig. 1.

Shown in Fig. 2 are the computed steady pressure distributions
for several in� ow Mach numbersat zero angle of attack.These solu-
tions were computedwith the node-centeredLax–Wendroff scheme
using the 129 £ 65 node computationalgrid.As the Mach number is
increased,one observesthat shocks formon the pressureand suction
surfaces of the airfoil; these shocks move aft as the Mach number
increases.Because the airfoil section is symmetric and at zero angle
of attack, the pressure distributionson the upper and lower surfaces
of the airfoil are identical.

We next consider the case of unsteady � ow about a single
steady � ow operating condition. To test the method, we computed
the unsteady small-disturbance solution using the cell-centered
Godunov26 scheme on the coarsest computational grid for a Mach
number M of 0.85 at 11 reduced frequencies ¯x equally spaced be-
tween 0.0 and 1.0, where here the frequency x has been nondimen-
sionalized by U 1 /c, where c is the aerodynamic chord and U 1 is
the freestream � ow speed. In this example, we � rst computed the
POD modes using the method described in Sec. II.C. Then, using
these POD modes, we computed the unsteady aerodynamic eigen-
values and compared these approximate eigenvalues to the exact
eigenvaluesof the completeCFD scheme.Becauseof the large com-
putational cost of computing the eigenvalues of the complete CFD
model [Eq. (15)], we used a coarse grid for the present examples.

At each frequency, two solutions were computed, one for plung-
ing motion of the airfoil and one for pitching motion about a point
one-half chord upstreamof the leading edge. The upwashon the air-
foil associated with plunging motion solution at ¯x =0 is zero, and

a) Grid near airfoil b) Full grid

Fig. 1 Coarse and � ne computational grids for NASA Ames Research
Center NACA 64A010 airfoil.

Fig. 2 Steady surface pressure distributions for NASA Ames Research
Center NACA 64A010 airfoil for several freestream Mach numbers.

thus this solutionis discarded,resultingin a total of 41 nontrivialso-
lutionsor snapshots.For negativefrequencies,the small-disturbance
solutionsare simplycomplexconjugatesof the solutionsat thecorre-
sponding positive frequency.Thus, for no additional computational
effort,we may include an additional20 snapshotsinto the ensemble,
that is, for ¯x = ¡ 0.1, ¡ 0.2, . . . , ¡ 1.0, for a total of 41 snapshots.

Having computed the snapshots, we next used the technique de-
scribed in Sec. II.C to � nd the POD basis vectors. Figure 3 shows
the eigenvalues k of the � rst 41 proper orthogonal decomposition
vectors. One sees the vast majority of the energy is contained in
the � rst 10 or so POD vectors, and the energy in the modes beyond
mode 15 is insigni� cant.

Next, the POD vectors were used to compute the eigenvaluesand
eigenmodesof the aerodynamicsystem using the Ritz-likeapproach
given by Eq. (29) in Sec. II.D. For the � rst case, we retainedall POD
vectors in the analysis.The resultingeigenvaluesare shown in Fig. 4
along with the exact eigenvalues computed by solving the gener-
alized eigenvalue problem formed from the original CFD model,
Eq. (16). For the eigenvalues near the origin, the ROM eigenvalues
and the exact eigenvalues agree almost exactly. For the remaining
eigenvalues, the agreement is not as good, although the qualitative
shape of the eigenvalue constellationsare similar.

Next, we again computed the eigenvalues using the ROM, but in
this case retained the � rst 31 POD modes. These results are plot-
ted in Fig. 5. In this example, a few of the smallest eigenvalues
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Fig. 3 Eigenvalues ¸ of the � rst 41 proper orthogonal decomposition
vectors for small-disturbance � ow about NASA Ames Research Center
NACA 64A010 airfoil (®0 = 0 and M = 0:85) computed on coarse grid.

Fig. 4 Eigenspectrum of small-disturbance � ow about NASA Ames
Research Center NACA 64A010 airfoil (®0 = 0 and M = 0:85) computed
on coarse grid; POD/ROM results computed using 41 of 41 POD modes.

are accurately computed, but many more are not. Nevertheless, the
qualitative shape of the eigenvalue constellationsare again similar.
Similarly, Fig. 6 shows the eigenvaluescomputed using 21 of POD
modes.

One importantquestionregardingthe constructionof the reduced-
order aerodynamicmodel is how the choice of test frequencies (not
just the number of modes retained) in� uences the ef� ciency of the
method. As a rule of thumb, the frequency spacing of the snapshots
shouldbe comparableor smaller than the spacingof theactualeigen-
values near the imaginary axis for the full CFD model and cannot
be known a priori. One can, however, pick a somewhat arbitrary
frequency spacingand compute the eigenvaluesof the aerodynamic
model using the POD basis vectors. If the spacing is coarse com-
pared to the approximate eigenvalues, then one can add additional
snapshots at intermediate frequencies and repeat the process un-
til the computed eigenvalue spectrum is coarser than the snapshot
spectrum.

Fig. 5 Eigenspectrum of small-disturbance � ow about NASA Ames
Research Center NACA 64A010 airfoil (®0 = 0 and M = 0:85) computed
on coarse grid; POD/ROM results computed using 31 of 41 POD modes.

Fig. 6 Eigenspectrum of small-disturbance � ow about NASA Ames
Research Center NACA 64A010 airfoil (®0 = 0 and M = 0:85) computed
on coarse grid; POD/ROM results computed using 21 of 41 POD modes.
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Next, we use the POD basis vectors to constructthe transfer func-
tion between the plungingand pitchingmotionsof the airfoil and the
resulting lift and moment. Thus, for example, to compute the trans-
fer function between the pitching motion and lift, we prescribe a
unit pitchingmotion at a complex frequency ¯x . This motion de� nes
the vector b in Eq. (28). Equation (28) is then solved to determine
», the amount of each POD vector present in the unsteady small-
disturbance solution. Then, by the use of Eq. (24), the entire � ow
� eld is reconstructed from the basis vectors. The unsteady surface
pressure is then integrated to obtain the unsteady lift.

Figure 7 shows the transfer function for three different values of
h for a range of r , where s = j x =r exp( j h ). Shown are the exact
transfer functioncomputed using the small-disturbanceCFD model
and the present ROM using 21 of the possible POD vectors. The
presentROM is seen to be in excellentagreement with the full CFD
model. A small difference between the two solutions is observed
for h = 120 deg for values of r above 0.2. Similarly, Fig. 8 shows
the transfer function for a ROM using just 11 of the possible POD
modes. Here the ROM does not agree as well with the exact solu-
tion. However, the results are still quite acceptable for h =90 deg,
especiallyconsideringthe small number of POD vectors retained in
the model.

Finally, by way of comparison, we plot in Fig. 9 the pitch to lift
transfer function computed using a classical Padé approximation.
Here we have used the matrix Padé approximant method described
by Karpel.4 The quality of the Padé approximation is about as good
as the present ROM using 11 POD vectors.

Fig. 7 Unsteady lift due to pitching motion of NASA Ames Research
Center NACA 64A010airfoil computed with 21 of 41 POD modes (®0 = 0
and M = 0:85).

Fig. 8 Unsteady lift due to pitching motion of NASA Ames Research
Center NACA 64A010airfoil computed with 11 of 41 POD modes (®0 = 0
and M = 0:85).

Fig. 9 Unsteady lift due to pitching motion of NASA Ames Research
Center NACA 64A010 airfoil computed with matrix Padé approximant
(®0 = 0 and M = 0:85).

It is of interest to note that some Padé approximants (including
the one used here) increase the total number of aeroelastic degrees
of freedom by a multiplicativefactor times the number of structural
modes. With this in mind, the minimum state method of Karpel4

has been devised to make the aerodynamic states additive through
a modi� cation of the Padé approximantprocedure.However, this is
achieved at the cost of the aerodynamic transfer function being sat-
is� ed exactly at only a few frequencies. The present ROM method
creates aerodynamic states that are additive to the structural states
and that moreover agree exactly with the transfer functionat all fre-
quenciesused to create the ROM model. Of course the presentROM
model provides a consistent approximation to the eigenvalues and
eigenvectors to the CFD aerodynamic model as well, whereas the
Padé approximant usually prescribes the poles or eigenvaluesof the
Padé approximant without any knowledge of the true aerodynamic
eigenvalues.

B. Unsteady Aeroelatic Behavior of a Transonic Isolated Airfoil
Next, we used the POD reduced-order modeling technique to

compute the � utter boundary of the NASA Ames Research Center
NACA 64A010 airfoil, using the structural dynamic parameters of
Isogai’s test case A (Ref. 31). Isogai chose the structural dynamic
parameters to simulate the vibrational characteristics of a typical
section of a swept wing. Speci� cally, a = ¡ 2, x a = 1.8, r 2

a = 3.48,
x h / x a = 1, and l =60. For this series of examples, we used three
different computational grids (65 £ 33 nodes, 97 £ 49 nodes, and
129 £ 65 nodes). At each Mach number, we computed the response
at 11 nondimensional frequencies ¯x equally spaced between 0.0
and 1.0 for both pitching and plunging motion. Again, noting that
the plunging motion solution is zero for zero frequency and that
solutions for negative frequencies are complex conjugates of the
solutions at positive frequencies, we obtain a total of 41 snapshots.

Figure 10 shows the root locusof the least stableeigenvalueof the
reduced-orderaeroelastic model given by Eq. (37) at a Mach num-
ber M of 0.85 as the reduced velocity V is varied. As the reduced
velocity is increased from zero, the least stable aeroelastic eigen-
values becomes unstable (positive real part) at a reduced velocityof
about 0.5. As we will see, this is the Mach number correspondingto
the lowest � utter speed in the transonic dip region. As the reduced
velocity is further increased, the unstable mode interestingly be-
comes stable again at a reduced velocity of about 2.4. This plot was
computed using the � nest computational mesh (129 £ 65 nodes),
but with ROMs constructedusing 14, 21, 31, and 41 of the possible
41 POD vectors. All of these models are in good agreement. The
21, 31, and 41 vector models agree almost exactlywith one another,
demonstrating that the ROM is mode converged.

Next, calculations similar to those in Fig. 10 were repeated for a
range of Mach numbers. Plotted in Fig. 11 is the reduced velocity
at which one of the aeroelastic modes becomes neutrally stable as
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Fig. 10 Root locus of least stable aeroelastic eigenvalue of NASA Ames
Research Center NACA 64A010 airfoil for a Mach number of 0.85 com-
puted using present reduced-order model.

a function of Mach number. In Fig. 11a, we compare the results
of the present ROM (129 £ 65 node grid with 41 POD vectors)
to the computational results of other investigators. Shown are � ut-
ter speeds predicted using transonic small-disturbance theories of
Edwards et al.32 and Isogai31 and the time-linearized full potential
theory of Ehlers and Weatherill.33 The present method and the po-
tential theories all show the classic transonic dip in � utter speed,
although the rise in � utter speed after the dip occurs at a slightly
lower Mach number in the potential theories.

To test the accuracy of the present method, we repeated this cal-
culation,but used threedifferentcomputationalgrid resolutions(see
Fig. 11b). The � utter speeds predicted using the various computa-
tional grids are in almost exact agreementwith one another.Finally,
to test the modal convergenceof the present ROM, we repeated the
� utter speed calculationusing the � nest computationalgrid but var-
ied the number of POD modes (14, 21, 31, or 41) used in the ROM
(see Fig. 11c). All four ROMs are in good agreement,with the latter
three in almost exact agreement. The results in Fig. 11b and 11c,
taken together, demonstrate that the ROM has excellent grid and
mode convergenceproperties.

C. Unsteady Aerodynamic Behvaior of a Turbomachinery Cascade
The next case we consider is that of a cascade of � at-plate two-

dimensional airfoils with steady � ow Mach number of 0.7. For this
example, the gap-to-chordratio G is 1.0, and the stagger angle H is
45 deg. Because the mass ratio l of turbomachineryblading is very
large, the � uttermechanismis notusuallythe frequency-coalescence
type observed in aircraft wings. The unsteady aerodynamic forces

a)

b)

c)

Fig. 11 Flutter speed of NASA Ames Research Center NACA 64A010
airfoil for various Mach numbers computed using reduced-order mod-
els: a) comparison of present ROM to other computational models
(129 £ £ 65 node grid with 41 POD vectors); b) present ROM with 41
POD vectors computed with coarse, medium,and� ne resolutioncompu-
tational grids; and c) present ROM computed with � ne computational
grid with 12, 21, 31, and 41 POD vectors.

do not signi� cantly alter the natural frequencyor mode shape of the
airfoil’s vibration. However, the unsteady aerodynamic forces can
provide a small amount of positive or negative aerodynamic damp-
ing. Whenever the aerodynamicdamping is negative,the airfoilwill
� utter (in the absence of structural damping). Shown in Fig. 12 is
the imaginary componentof the unsteadyaerodynamicmoment due
to pitching as a function of interblade phase angle and reduced fre-
quency x c / U 1 computedusingWhitehead’s34 semianalyticalanal-
ysis (LINSUB). Using Whitehead’s sign convention, whenever the
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Fig. 12 Imaginary part of aerodynamic moment due to pitching of
cascade of airfoils computed using Whitehead’s34 LINSUB analysis:
M = 0:7, G = 1, and H = 45 deg.

Fig. 13 Imaginary part of aerodynamic moment due to pitching of
cascade of airfoils computed using POD/ROM technique with 18 of 31
POD modes: M = 0:7, G = 1, and H = 45 deg.

imaginarypart of the moment is positive, the aerodynamicdamping
is negative, and the cascade will � utter. One observes that there is a
range of interblade phase angles between 0 and 180 deg for which
the cascade will � utter at low reduced frequencies (high reduced
velocities).

The dark lines in Fig. 12 demark the boundary between subreso-
nant and superresonant� ow conditions.The � ow is said to be super-
resonant whenever at least one acoustic mode is cut-on (propagates
unattenuatedin the axial direction) in the far� eld and is subresonant
otherwise. The boundary between these two regions is known as
acoustic resonance; the responseof the cascadechangesabruptlyas
one passes through acoustic resonance.

Next, we constructed a reduced-order aerodynamic model for
this case using the POD technique applied to a cascade version
of the small-disturbance � ow solver described in Sec. II.B. We
computed snapshots at a combination of six reduced frequencies
( x c/ U 1 =0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) and six interblade phase
angles ( r = ¡ 180, ¡ 120, ¡ 60, 0, 60, and 120 deg) for a total of 36

snapshots. The POD modes of this set of solutions were computed,
and the dominant 18 modes were used to construct a single ROM
valid over a range of interblade phase angles and frequencies. The
imaginarypartof theunsteadypitchingmoment computedusingthis
approach is shown in Fig. 13, and is seen to be in good agreement
with the semianalytical solution of Whitehead34 shown in Fig. 12.
The overall good agreement is especially remarkable considering
that only 18 aerodynamic state variables are required to model the
unsteady � ow over a signi� cant range of interblade phase angles
and reduced frequencies.

IV. Summary
We have described a method for constructing low-order ROMs

using theproperorthogonaldecompositiontechniquein conjunction
with a time-linearized(frequency-domain) � ow solver. The method
has been applied to two model � ow problems, that is, unsteady
transonic � ow about an isolated airfoil and subsonic � ow through a
cascadeof � at-plateairfoils. In both cases,we were able to construct
accurate low-order models of the unsteady � ow; typical ROMs re-
quire on the order of 20 or fewer aerodynamic states. Additionally,
we have shownhow to couplethe reduced-orderaerodynamicmodel
to a structural dynamic model to obtain a reduced-orderaeroelastic
model.

The major computationalcost is the computationof the unsteady
small-disturbance solutions (snapshots) from which the POD vec-
tors are extracted.However, once the POD vectors have been found,
the cost of constructingand solving the ROM is negligible,allowing
one to quickly perform parametric studies. Unlike a conventional
V –g analysis, the resulting eigenvalues are meaningful at all � ow
velocities above and below the � utter velocity, that is, for nonneu-
trally stable solutions.Furthermore, the form of the resultingROM,
with its small number of degrees of freedom, is ideally suited for
use in active control applications. Although in the present paper
we have applied the technique to only two-dimensional � ows, the
method is general and is equally applicable to three-dimensional
unsteady aerodynamic and aeroelastic problems.
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