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PROPER WEYL COLLINEATIONS IN KANTOWSKI-SACHS 
AND BIANCHI TYPE III SPACE-TIMES 

G. SHABBIR1 

A study of proper Weyl collineations in Kantowski-Sachs and Bianchi type III 
space-times is given by using the rank of the 66×  Weyl matrix and direct 
integration techniques. Studying proper Weyl collineations in each of the above 
space-times, it is shown that there exists no such possibility when the above space-
times admit proper Weyl collineations.  

1 Introduction 

 The aim of this paper is to find the existence of proper Weyl collineations 
(WCS) in Kantowski-Sachs and Bianchi type-III space-times. These WCS are 
vector fields, along which the Lie derivative of the Weyl tensor is zero. Different 
approaches [5,9-11] were adopted to study WCS. In this paper an approach, which 
is given in [4], is used to study proper WCS in Kantowski-Sachs and Bianchi 
type-III space-times by using the rank of the 66×  Weyl metric and direct 
integration techniques. Through out M  denotes a (4-dimensional Connected, 
Hausdorff) smooth space-time manifold with Lorentz metric g of signature (-
,+,+,+). The usual covariant, partial and Lie derivatives are denoted by a 
semicolon, a comma and the symbol ,L  respectively. The curvature tensor 
associated with ,abg  through the Levi-Civita connection, is denoted in component 
form where abcdR , the Ricci tensor components are acb

c
ab RR = , the Weyl tensor 

components are bcd
aC , and the Ricci scalar is .ab

ab RgR =  Round and square 
brackets denote the usual symmetrization and skew-symmetrization.  
  Let X  be a smooth vector field on M  then in any coordinate 
system on ,M  one may decompose X  in the form  

 ,
2
1

; ababba FhX +=  (1) 

                                                            

1 Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 

Swabi, NWFP, PAKISTAN, Email: shabbir@giki.edu.pk 



G. Shabbir 46

where abXab gLh =  and )( baab FF −=  are symmetric and skew symmetric tensor 
on ,M  respectively. If abab gh α=  and ):( RM →αα  is a real valued function 
on M  then X  is called a conformal vector field where abF  is called the 
conformal bivector. The vector field X  is called a proper conformal vector field 
if α  is not constant on .M  For a conformal bivector abF  one can show that [1]  

 cba
d

abcdcab gXRF ][;; 2α−=  (2) 
and  

 c
bacab

c
cabba FRLXL )(;; 2

1
+−−= αα  (3) 

where .)6/1( ababab gRRL −=  If X  is a conformal vector field on M  then by 
using (3) one can show that  
 .)(2 ;; abc

c
baabX gRL αα −−=  

Further, the conformal vector field X  also satisfies [3]  
 0=bcd

a
X CL  (4) 

equivalently,  

The vector field X  satisfying the above equation is called a Weyl collineation 
(WC). The vector field X  is called a proper WC if it is not conformal [2]. The 
vector field X  is called a homothetic vector field if α  is constant and a proper 
homothetic vector field if 0constant ≠=α . If 0=α  on M  then vector field X  
is called a Killing vector field.  

2 Main Results  

 It has been shown [2,4] that much information on the solutions of (4) can 
be obtained without integrating it directly. To see this let Mp∈  and consider the 
following algebraic classification of the Weyl tensor as a linear map β  from the 
vector space of bivectors to itself; ,: ab

cd
cdab CFF →β  for any bivector abF  at .p  

The range of the Weyl tensor at p  is then the range of β  at p  and its dimension 
is the Weyl rank at .p  It follows from [4] that the rank of the 66×  Weyl matrix is 
always even i.e. 6, 4, 2 or 0. If the rank of the 66×  Weyl matrix is 6 or 4 then 
every Weyl symmetry is a conformal symmetry [2,4]. For finding proper WCS, 
we restrict attention to those cases of rank 2 or less.  
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           2.1 Proper WCS in Bianchi type III and Kantowski-Sachs space-times  
 Consider the space-times in the usual coordinate system ( )φθ ,,, rt  with 
line element [6,8]  
  ( ) ( )[ ],)( 222222 φθθ dfdtBdrtAdtds +++−=    (5) 
where A  and B  are no where zero functions of t  only. For θθ sin)( =f  or 

θθ sinh)( =f  the above space-time (5) become Kantowski-Sachs or Bianchi type 
III space-times, respectively. The above space-time admits four independent 
Killing fields which are  

,
r∂
∂  ,

φ∂
∂  ,sincos

φ
φ

θ
φ

∂
∂′

−
∂
∂

f
f  ,cossin

φ
φ

θ
φ

∂
∂′

+
∂
∂

f
f   

where prime denotes the derivative with respect to .θ  The non-zero independent 
components of Weyl tensor are  
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θθ

θ   (6) 

where )4)(2)2(()( 22222 BABBBABAABAAABtK +−+++−=  and dot denotes 
the derivative with respect to .t  The Weyl tensor of M  can be described by 
components abcdC  written in a well known way [7]  
  ).6,5,4,3,2,1( FFFFFFdiagCabcd =   
We restrict attention to those cases of rank 2 or less, since by theorem [4] no 
proper WCS can exist when the rank of the 66×  Weyl matrix is .2>  For the rank 
less or equal to two one may set four components of Weyl tensor in (6) to be zero. 
One gets A  and B  to be zero which gives contradiction to our assumption that A  
and B  are no where zero functions on M  this implies that there exists no such 
possibility when the rank of the 66×  Weyl matrix is less or equal to zero. Hence 
no proper Weyl collineations exist in the above space-time (5).  
 

3. Summary 
 

 In this paper a study of proper Weyl collineations in Kantowski-Sachs and 
Bianchi type III space-times is given by using the rank of the 66×  Weyl matrix 
and direct integration techniques and the theorem given in [4]. Studying proper 
Weyl collineations in the Kantowski-Sachs and Bianchi type III space-times, it is 
shown that the above space-times do not admit proper Weyl collineations.  
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