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Abstract

Recently R.Diaz and E.Pariguan introduced [2] the k-generalized
Gamma function Γk(x), Beta function Bk(x, y) and Zeta function ζk(x, s)
and gave some identities which they satisfy. We give some more prop-
erties and inequalities for the above k-generalized functions.
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1 Introduction

In [2] the authors introduced the generalized k-Gamma function Γk(x) as

Γk(x) = lim
n→∞

n!kn(nk)x/k−1

(x)n,k

, k > 0, x ∈ C − kZ−, (1.1)

where (x)n,k is the k-Pochhammer symbol and is given by

(x)n,k = x(x+ k)(x+ 2k)...(x+ (n− 1)k), x ∈ C, k ∈ R, n ∈ N+. (1.2)

It is obvious that Γk(x) → Γ(x), for k → 1, where Γ(x) is the known Gamma

function. Also, for Re(x) > 0, it holds

Γk(x) =

∫ ∞

0

tx−1e−tk/kdt (1.3)
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and it follows easily that

Γk(x) = k
x
k
−1Γ(

x

k
). (1.4)

In the same paper they introduced the k-Beta function Bk(x, y) as

Bk(x, y) =
Γk(x)Γk(y)

Γk(x+ y)
, Re(x) > 0, Re(y) > 0, (1.5)

and k-Zeta function as

ζk(x, s) =
∞∑

ν=0

1

(x+ νk)s
, k, x > 0, s > 1. (1.6)

The function Bk(x, y) satisfies the equality

Bk(x, y) =
1

k

∫ 1

0

t
x
k
−1(1 − t)

y
k
−1dt, (1.7)

from which follows

Bk(x, y) =
1

k
B(

x

k
,
y

k
). (1.8)

We mention that limk→1Bk(x, y) → B(x, y) and k-Zeta function is a general-

ization of Hurwitz Zeta function ζ(x, s) =
∑∞

ν=0
1

(x+ν)s which is a generalization

of the Riemann Zeta function ζ(s) =
∑∞

ν=1
1
νs .

The motivation to study properties of generalized k-Gamma and k-Beta

functions is the fact that (x)n,k appears in the combinatorics of creation and

annihilation operators [3 and refs there in].

Recently M.Mansour [4] determined the k-generalized Gamma function by

a combination of some functional equations.

In this paper we use the definitions of the above generalized functions to

prove a formula for Γk(2x) which is a generalization of the Legendre duplica-

tion formula for Γ(x) and to prove inequalities for the function Bk(x, y) , for

x, y, k > 0 and x + y �= k and the product Γk(x)Γk(1 − x), for 0 < x, k < 1.

We also give monotonicity properties for ψk(x) = ∂xψ(k, x) where ψ(k, x) =

log Γk(x) and ζk(x, s) for s ∈ N and s ≥ 2.

We mention that using (1.4) the following equalities hold:

Γk(ak) = ka−1Γ(a), k > 0, a ∈ R (1.9)

Γk(nk) = kn−1(n− 1)!, k > 0, n ∈ N (1.10)

Γk(k) = 1 k > 0, (1.11)
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and

Γk((2n+ 1)
k

2
) = k

2n−1
2

(2n)!
√
π

2nn!
, k > 0, n ∈ N. (1.12)

Also, using (1.5) and (1.8) the following equalities hold:

Bk(x+ k, y) =
x

x+ y
Bk(x, y), Bk(x, y + k) =

y

x+ y
Bk(x, y), x, y, k > 0

(1.13)

Bk(x, k) =
1

x
, Bk(k, y) =

1

y
x, y, k > 0 (1.14)

Bk(ak, bk) =
1

k
B(a, b), a, b, k > 0, (1.15)

and

Bk(nk, nk) =
[(n− 1)!]2

k(2n− 1)!
, k > 0, n ∈ N. (1.16)

2 The function Γk(x)

Theorem 2.1 Let x, k > 0 and ψk(x) be the logarithmic derivative of Γk(x).

Then the function ψ′
k(x) is completely monotonic.

Proof From (1.4) we get

log Γk(x) = (
x

k
− 1) log k + log Γ(

x

k
)

or by setting ψ(k, x) = log Γk(x) we obtain

ψ(k, x) = (
x

k
− 1) log k + log Γ(

x

k
). (2.1)

From (2.1) we get

∂xψ(k, x) =
1

k
log k + ψ(

x

k
) (2.2)

We remind that ψ(x
k
) = ∂x(log Γ(x

k
)). From (2.2) taking the derivative with

respect to x we have

∂2
xψ(k, x) =

1

k
ψ′(

x

k
) (2.3)

∂3
xψ(k, x) =

1

k2
ψ(2)(

x

k
)

and by induction we obtain

∂n+1
x ψ(k, x) =

1

kn
ψ(n)(

x

k
)
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or if we call ψk(x) = ∂xψ(k, x), then the equation

ψ
(n)
k (x) =

1

kn
ψ(n)(

x

k
) (2.4)

holds. It is known [1] that ψ′(x) is completely monotonic for x > 0, so from

(2.4) it follows the desired result.

Remark 2.1 (i) From (2.3) it follows that Γk(x) is logarithmic convex on

(0,∞) which is proved in [2].

(ii) Theorem 2.1 is a generalization of the known [1] result that the function

ψ′(x) = d
dx

Γ′(x)
Γ(x)

is completely monotonic.

Proposition 2.1 For x > 0 the function ψ(k, x) = log Γk(x) satisfies the

partial differential equation:

−x2k∂2
xψ(k, x) + 2k2∂kψ(k, x) + k3∂kψ(k, x) = −x− k. (2.5)

Proof From (2.1) taking the first and second derivatives of ψ(k, x) with

respect to k we obtain

∂kψ(k, x) = − x

k2
log k +

x

k2
− 1

k
− x

k
ψ(
x

k
) (2.6)

and

∂2
kψ(k, x) =

2x

k3
log k − 3x

k3
+

1

k2
+

x

k2
ψ(
x

k
) +

x2

k3
ψ′(

x

k
) (2.7)

From (2.3), (2.6) and (2.7) we get (2.5).

Remark 2.2 Theorem 11 of [2, page 6] has a mistake in the right hand side

of the same partial differential equation.

Theorem 2.2 The function Γk(x) satisfies the equality

Γk(2x) =

√
k

π
22x

k
−1Γk(x)Γk(x+

k

2
) (2.8)

for x ∈ C with Re(x) > 0.

Proof From (1.7) it follows that

Bk(x, x) =
1

k

∫ 1

0

t
x
k
−1(1 − t)

x
k
−1dt

or by setting t = 1+r
2

Bk(x, x) =
2

k22x
k
−1

∫ 1

0

(1 − r2)
x
k
−1dr
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or by setting r2 = u we obtain

Bk(x, x) =
1

k22x
k
−1

∫ 1

0

u
1
2
−1(1 − u)

x
k
−1du =

1

k22x
k
−1
B(

x

k
,
y

k
) =

1

22x
k
−1
Bk(x,

k

2
)

or

Bk(x, x) =
1

22x
k
−1

Γk(x)Γk(k/2)

Γk(x+ k/2)
. (2.9)

From (1.9) for a = 1/2 we get Γk(k/2) =
√

π
k
, since Γ(1/2) =

√
π, so from

(2.9) and (1.5) we get the equality (2.8).

Remark 2.3 Theorem 2.2 is a generalization of the Legendre duplication

formula of Γ(x) [1].

3 The function ζk(x, s)

Theorem 3.1 (i) Let x, k > 0 and s > 1. Then the positive function ζk(x, s)

decreases with respect to x and also decreases with respect to k.

(ii) Let x > 0 and s > 1. Then the positive function ζk(x, s) decreases with

respect to s for x > 1, and k > 0, ν ≥ 0 and increases with respect to s for

ν > 0, 0 < k < 1
ν

and 0 < x < 1 − νk.

Proof From (1.6) we obtain

∂xζk(x, s) =

∞∑
ν=0

−s
(x+ νk)s+1

, k, x > 0, s > 1

or

∂xζk(x, s) = −sζk(x, s+ 1) (3.1)

and

∂kζk(x, s) =

∞∑
ν=0

−νs
(x+ νk)s+1

= −s
∞∑

ν=1

ν

(x+ νk)s+1
, k, x > 0, s > 1. (3.2)

So (3.1)and (3.2) prove theorem 3.1 (i).

Also, the definition (1.6) gives

∂sζk(x, s) = −
∞∑

ν=0

ln(x+ νk)

(x+ νk)s
(3.3)

If x > 1 then x > 1 − νk, for ν, k > 0 thus ln(x + νk) > 0, so from (3.3) it

follows that the function ζk(x, s) decreases with s > 1 and if 0 < k < 1
ν

and
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0 < x < 1 − νk then ln(x+ νk) < 0 so from (3.3) it follows that the function

ζk(x, s) increases with s > 1.

Proposition 3.1 Let x > 0, k > 0 and s > 1. Then the function ζk(x, s)

satisfies the identities:

∂n
x ζk(x, s) = (−1)n(s)n,1ζk(x, s+ n) (3.4)

ζk(x, n) = (−1)n∂
n
xψ(k, x)

(n− 1)!
, n ≥ 2 (3.5)

and

ζk(x+ k, s) = ζk(x, s) − 1

xs
. (3.6)

Proof From (3.1) we obtain

∂2
xζk(x, s) = −s∂xζk(x, s + 1) = (−1)2s(s+ 1)ζk(x, s+ 2)

and repeating the same procedure we get (3.4) since s(s+1)...(s+n−1) = (s)n,1.

In [2] it was proved that

∂2
xψ(k, x) =

∞∑
ν=0

1

(x+ νk)2
, (3.7)

so, from (1.6) for s = 2 and (3.7) we get

∂2
xψ(k, x) = ζk(x, 2). (3.8)

Differentiating (3.7) with respect to x and using (3.1) for s = 2 we get

∂3
xψ(k, x) = (−1)2ζk(x, 3),

∂4
xψ(k, x) = (−1)23!ζk(x, 4)

and by induction we obtain (3.5).

The equation (3.6) follows from the definition (1.6) since

ζk(x, s) =
1

xs
+

∞∑
k=0

1

(x+ k + νk)s
=

1

xs
+ ζk(x+ k, s).
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4 Inequalities for Bk(x, y) and Γk(x)Γk(1 − x)

Theorem 4.1 Let x, y, k > 0 and x + y �= k. Then the function Bk(x, y)

satisfies the inequalities:

22−x+y
k

x+ y − k
< Bk(x, y) <

1 − 22−x+y
k

x+ y − k
. (4.1)

Lemma 4.1 The function B(x, y) satisfies the inequalities

22−(x+y)

x+ y − 1
< B(x, y) <

1 − 22−(x+y)

x+ y − 1
, x, y > 0, x+ y �= 1. (4.2)

Proof of Lemma 4.1 The function B(x, y) is defined [1] by the integral

B(x, y) =

∫ 1

0

tx−1(1 − t)y−1dt

which it can be written as

B(x, y) =

∫ 1/2

0

tx−1(1 − t)y−1dt+

∫ 1

1/2

tx−1(1 − t)y−1dt (4.3)

If 0 < t < 1/2 then t < 1 − t, so the following inequalities hold

∫ 1/2

0

tx+y−2dt <

∫ 1/2

0

tx−1(1 − t)y−1dt <

∫ 1/2

0

(1 − t)x+y−2dt (4.4)

and if 1/2 < t < 1 then 1 − t < t, so the following inequalities hold

∫ 1

1/2

(1 − t)x+y−2dt <

∫ 1

1/2

tx−1(1 − t)y−1dt <

∫ 1

1/2

tx+y−2dt. (4.5)

From (4.3), using the inequalities (4.4) and (4.5) and evaluating the integrals

on the left and right side of the above inequalities we obtain the inequalities

(4.2).

Proof of theorem 4.1 By setting x
k

and y
k
, instead of x and y respectively

in (4.2) and taking in account the relation (1.8) we get the inequalities (4.1).

Corollary 4.1 Let x, y, k > 0. Then the function Bk(x, y) satisfies the

inequalities:

21−x+y
k

x
< Bk(x, y) <

1 − 21−x+y
k

x
. (4.6)

or
21−x+y

k

y
< Bk(x, y) <

1 − 21−x+y
k

y
. (4.7)
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Proof The above inequalities follow from (4.1) by setting x+ k (or y + k)

instead of x (or y) and taking in account relations (1.13).

Corollary 4.2 Let 0 < x < 1 and 0 < k < 1. Then the following inequali-

ties for the product Γk(x)Γk(1 − x) hold

( 2
k
)1− 1

k Γ(1/k)

1 − x
< Γk(x)Γk(1 − x) <

( 2
k
)1− 1

k Γ(1/k)(2
1
k
−1 − 1)

1 − x
. (4.8)

Proof By setting y = k + 1 − x instead of y in (4.1) we obtain

21− 1
k < Bk(x, k + 1 − x) < 1 − 21− 1

k . (4.9)

Using (1.5) the inequalities (4.9) become

21− 1
k <

Γk(x)Γk(k + 1 − x)

Γk(k + 1)
< 1 − 21− 1

k . (4.10)

From (1.4) we obtain easily

Γk(k + 1 − x) = (1 − x)Γk(1 − x)

and

Γk(k + 1) = Γk(1) = k
1
k
−1Γ(

1

k
).

From (4.10) using the above equalities we obtain the inequalities (4.8).

References

[1]M. Abramowitz, I.A.Stegun (Eds) Handbook opf Mathematiccal Func-

tions with formulas and Mathematical Tables, Applied Math. Series, Vol. 55,

4th edition with corrections. Nat. Ber. of Standards, Washington (1965).

[2] R. Diaz and E. Pariguan, On Hypergeometric functions and k-Pochhammer

symbol, arXiv:math.CA/0405596v2 (2005).

[3] R. Diaz and E. Pariguan, Quantum symmetric functions, arXiv: math.QA/

0312494 (2003).

[4] M. Mansour, Determiming the k-generalized Gamma function Γk(x) by

functional equations, Int. J. Contemp. Math. Sciences, 4, (2009), 1037-1042.

Received: August, 2009


