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Abstract

The authors introduce the concepts of m-invex set, generalized (s,m)-preinvex function, and explicitly
(s,m)-preinvex function, provide some properties for the newly introduced functions, and establish new
Hadamard-Simpson type integral inequalities for a function of which the power of the absolute of the first
derivative is generalized (s,m)-preinvex function. By taking different values of the parameters, Hadamard-
type and Simpson-type integral inequalities can be deduced. Furthermore, inequalities obtained in special
case present a refinement and improvement of previously known results. c©2016 All rights reserved.
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1. Introduction and Preliminaries

The following notation is used throughout this paper. We use I to denote an interval on the real line
R = (−∞,∞), and I◦ to denote the interior of I. For any subset K ⊆ Rn, K◦ is used to denote the
interior of K. Rn is used to denote a generic n-dimensional vector space and Rn+ denotes an n-dimensional
nonnegative vector space. The nonnegative real numbers are denoted by R0 = [0,∞). The set of integrable
functions on the interval [a, b] is denoted by L1[a, b]. Let us firstly recall some definitions of various convex
functions.
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Definition 1.1 ([7]). A function f : I ⊆ R→ R0 is said to be a Godunova-Levin function if f is nonnegative
and for all x, y ∈ I, λ ∈ (0, 1) we have that

f
(
λx+ (1− λ)y

)
≤ f(x)

λ
+

f(y)

1− λ
.

Definition 1.2 ([6]). For some (s,m) ∈ (0, 1]2, a function f : [0, b] → R is said to be (s,m)-convex in the
second sense if for every x, y ∈ [0, b] and λ ∈ (0, 1] we have that

f
(
λx+m(1− λ)y

)
≤ λsf(x) +m(1− λ)sf(y).

Definition 1.3 ([1]). A set K ⊆ Rn is said to be invex with respect to the mapping η : K ×K → Rn, if
x+ tη(y, x) ∈ K for every x, y ∈ K and t ∈ [0, 1].

Notice that every convex set is invex with respect to the mapping η(y, x) = y − x, but the converse is
not necessarily true. For more details please see [1, 33] and the references therein.

Definition 1.4 ([1]). Let K ⊆ Rn be an invex set with respect to η : K ×K → Rn, for every x, y ∈ K, the
η-path Pxν joining the points x and ν = x+ η(y, x) is defined by

Pxν =
{
z|z = x+ tη(y, x), t ∈ [0, 1]

}
.

Definition 1.5 ([22]). The function f defined on the invex set K ⊆ Rn is said to be preinvex with respect
to η if for every x, y ∈ K and t ∈ [0, 1] we have that

f
(
x+ tη(y, x)

)
≤ (1− t)f(x) + tf(y).

The concept of preinvexity is more general than convexity since every convex function is preinvex with
respect to the mapping η(y, x) = y − x, but the converse is not true.

Definition 1.6 ([13]). Let K ⊆ R0 be an invex set with respect to η. A function f : K → R is said to be
s-preinvex with respect to η, if for all x, y ∈ K, t ∈ [0, 1] and some fixed s ∈ (0, 1] we have that

f
(
x+ tη(y, x)

)
≤ (1− t)sf(x) + tsf(y).

The following inequality is remarkable in the literature as Simpson type inequality, which plays a fun-
damental and important role in analysis. In particular, it is well applied in numerical integration.

Theorem 1.7 ([5]). Let f : [a, b] → R be a four-times continuously differentiable mapping on (a, b) with
||f (4)||∞ = supx∈(a,b) |f (4)(x)| <∞. Then the following inequality holds:∣∣∣∣13

[
f(a) + f(b)

2
+ 2f(

a+ b

2
)

]
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣ ≤ 1

2880
||f (4)||∞(b− a)4. (1.1)

Now it is time to recall some inequalities of Hadamard type and Simpson type for the kinds of convex
functions mentioned above that have been developed in recent decades.

Theorem 1.8 ([26]). Let f : I ⊆ R0 → R be a differentiable mapping on I◦ such that f ′ ∈ L1[a, b], where
a, b ∈ I◦ with a < b. If |f ′| is s-convex on [a, b], for some fixed s ∈ (0, 1], then∣∣∣∣16

[
f(a) + f(b) + 4f

(a+ b

2

)]
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣
≤ (s− 4)6s+1 + 2× 5s+2 − 2× 3s+2 + 2

6s+2(s+ 1)(s+ 2)
(b− a)

[
|f ′(a)|+ |f ′(b)|

]
.

(1.2)



T.-S. Du, J.-G. Liao, Y.-J. Li, J. Nonlinear Sci. Appl. 9 (2016), 3112–3126 3114

Theorem 1.9 ([4, 10]). Let f : I◦ ⊆ R→ R be a differentiable mapping on I◦, and let a, b ∈ I◦ with a < b.
If |f ′(x)| is convex on [a, b], then∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣ ≤ b− a
8

(
|f ′(a)|+ |f ′(b)|

)
(1.3)

and ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣ ≤ (b− a)

8

(
|f ′(a)|+ |f ′(b)|

)
. (1.4)

Theorem 1.10 ([5]). Let f : [a, b]→ R is a differentiable mapping whose derivative is continuous on (a, b)

and ||f ′||1 =
∫ b
a |f

′(x)|dx <∞, then we have the inequality∣∣∣∣ ∫ b

a
f(x)dx− b− a

3

[f(a) + f(b)

2
+ 2f

(a+ b

2

)]∣∣∣∣ ≤ 1

3
||f ′||1(b− a)2. (1.5)

Theorem 1.11 ([2, 25]). Let K ⊆ R be an open invex subset with respect to η : K ×K → R. Suppose that
f : K → R is a differentiable function. If |f ′| is preinvex on K then for every a, b ∈ K with η(b, a) 6= 0 we
have that ∣∣∣∣f(a) + f

(
a+ η(b, a)

)
2

− 1

η(b, a)

∫ a+η(b,a)

a
f(x)dx

∣∣∣∣ ≤ |η(b, a)|
8

(
|f ′(a)|+ |f ′(b)|

)
(1.6)

and ∣∣∣∣f(2a+ η(b, a)

2

)
− 1

η(b, a)

∫ a+η(b,a)

a
f(x)dx

∣∣∣∣ ≤ |η(b, a)|
8

(
|f ′(a)|+ |f ′(b)|

)
. (1.7)

Theorem 1.12 ([28]). Let A ⊆ R be an open invex subset with respect to η : A × A → R. Suppose that
f : A → R is a differentiable function. If q > 1, q ≥ r, s ≥ 0 and |f ′| is preinvex on A, then for every
a, b ∈ A with η(a, b) 6= 0, we have that∣∣∣∣f(2b+ η(a, b)

2

)
− 1

η(a, b)

∫ b+η(a,b)

b
f(x)dx

∣∣∣∣
≤ |η(a, b)|

4

{(
1

r + 1

) 1
q
(

q − 1

2q − r − 1

)1− 1
q
[

(r + 1)|f ′(a)|q + (r + 3)|f ′(b)|q

2(r + 2)

] 1
q

+

(
1

s+ 1

) 1
q
(

q − 1

2q − s− 1

)1− 1
q
[

(s+ 3)|f ′(a)|q + (s+ 1)|f ′(b)|q

2(s+ 2)

] 1
q

}
.

Corollary 1.13 ([28]). Under the conditions of Theorem 1.12, when r = s = 0, the following inequality
holds ∣∣∣∣f(2b+ η(a, b)

2

)
− 1

η(a, b)

∫ b+η(a,b)

b
f(x)dx

∣∣∣∣
≤
(
q − 1

2q − 1

)1− 1
q |η(a, b)|

4

[(
1

4
|f ′(a)|q +

3

4
|f ′(b)|q

) 1
q

+

(
3

4
|f ′(a)|q +

1

4
|f ′(b)|q

) 1
q
]
.

(1.8)

Currently, Hadamard-type and Simpson-type inequalities concerning different kinds of convex functions
remain attractive topics for many scholars in the field of convex analysis. For further information about this
topic, the reader may refer to [3, 8, 9, 11, 16, 17, 18, 19, 20, 21, 23, 24, 27, 29, 30, 31] and references cited
therein.

In the recently published articles[12] by Latif et al., based on the differentiable (α,m)-preinvex functions,
they established Hadamard-type integral inequalities, and in the paper [23] Qaisar et al. also found some
Simpson-type inequality for differentiable (α,m)-convex functions. Motivated by this idea and based on
our previous works [14, 15, 32], in the present paper, the next section we introduce new concepts, to be
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referred as the m-invex, the generalized (s,m)-preinvex function, and the explicitly (s,m)-preinvex function
respectively, and then we give some interesting properties for the newly introduced functions. Section 3 will
derive an integral identity with two parameters for a differentiable mapping, then explore new Hadamard-
Simpson-type integral inequalities for generalized (s,m)-preinvex functions. Some inequalities obtained in
special case present a refinement and improvement of previously known results.

2. New definitions and properties

As one can see, the definitions of the (s,m)-convex, s-preinvex, Godunova-Levin functions have similar
forms. This observation leads us to generalize these varieties of convexity. Firstly, the so-called ‘m-invex ’,
may be introduced as follows.

Definition 2.1. A set K ⊆ Rn is said to be m-invex with respect to the mapping η : K ×K × (0, 1]→ Rn
for some fixed m ∈ (0, 1], if mx+ λη(y, x,m) ∈ K holds for each x, y ∈ K and any λ ∈ [0, 1].

Example 2.2. Let m = 1
4 and X = [−π/2, 0)

⋃
(0, π/2]

η(y, x,m) =


m cos(y − x), if x ∈ (0, π/2], y ∈ (0, π/2];
−m cos(y − x), if x ∈ [−π/2, 0), y ∈ [−π/2, 0);
m cos(x), if x ∈ (0, π/2], y ∈ [−π/2, 0);
−m cos(x), if x ∈ [−π/2, 0), y ∈ (0, π/2],

then X is an m-invex set with respect to η for λ ∈ [0, 1] and m = 1
4 . It is obvious that X is not a convex

set.

Remark 2.3. In Definition 2.1, under certain conditions, the mapping η(y, x,m) could reduce to η(y, x). For
example, in the above Example 2.2, when m = 1, then the m-invex set degenerates an invex set on X.

We next give new definitions, to be referred to as generalized (s,m)-preinvex function and explicitly
(s,m)-preinvex function respectively.

Definition 2.4. Let K ⊆ Rn be an open m-invex set with respect to η : K×K×(0, 1]→ Rn. For f : K → R
and some fixed s,m ∈ (0, 1], if

f
(
mx+ λη(y, x,m)

)
≤ m(1− λ)sf(x) + λsf(y) (2.1)

is valid for all x, y ∈ K, λ ∈ [0, 1], then we say that f(x) is a generalized (s,m)-preinvex function with
respect to η.

The function f(x) is said to be strictly generalized (s,m)-preinvex function on K with respect to η, if a
strict inequality holds on (2.1) for any x, y ∈ K and x 6= y.

Remark 2.5. In Definition 2.4, it is worthwhile to note that generalized (s,m)-preinvex function is an (s,m)-
convex function on K with respect to η(y, x,m) = y −mx.

Definition 2.6. Let K ⊆ Rn be an open m-invex set with respect to η : K×K×(0, 1]→ Rn. For f : K → R
and some fixed s,m ∈ (0, 1], if ∀λ ∈ (0, 1), ∀x, y ∈ K and f(x) 6= f(y), we have

f
(
mx+ λη(y, x,m)

)
< m(1− λ)sf(x) + λsf(y), (2.2)

then we say that f(x) is an explicitly (s,m)-preinvex function with respect to η.
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Example 2.7. Let f(x) = −|x|, s = 1, and

η(y, x,m) =


y −mx, if x ≥ 0, y ≥ 0;
y −mx, if x ≤ 0, y ≤ 0;
mx− y, if x ≥ 0, y ≤ 0;
mx− y, if x ≤ 0, y ≥ 0.

Then f(x) is a generalized (1,m)-preinvex function with respect to η : R × R × (0, 1] → R and some
fixed m ∈ (0, 1]. However, it is obvious that f(x) = −|x| is not a convex function on R. By letting
x = 1, y = 2, λ = 1

2 , we have f(x) = −1 6= −2 = f(y) and

f
(
mx+ λη(y, x,m)

)
= f

(
m+

1

2
η(2, 1,m)

)
= −(

1

2
m+ 1) = m(1− λ)sf(x) + λsf(y).

Thus, f is not also an explicitly (s,m)-preinvex function on R with respect to η for s = 1 and some fixed
m ∈ (0, 1].

According to the above definitions, we now derive some interesting properties of the generalized (s,m)-
preinvex function and the explicitly (s,m)-preinvex function as follows.

The proof of propositions 2.8, 2.9, and 2.10 are straightforward.

Proposition 2.8. If Ki, i ∈ I = {1, 2, · · · , n} is a family of m-invex sets in Rn with respect to the same
η : Rn × Rn × (0, 1]→ R for same fixed m ∈ (0, 1], then the intersection

⋂
i∈I Xi is an m-invex set.

Proposition 2.9. If fi : K ⊆ Rn → R (i = 1, 2, · · · , n) are generalized (s,m)-preinvex (explicitly (s,m)-
preinvex) functions with respect to the same η : K ×K × (0, 1] → R for same fixed s,m ∈ (0, 1], then the
function

f =
n∑
i=1

aifi, ai ≥ 0, (i = 1, 2, · · · , n)

is also a generalized (s,m)-preinvex (explicitly (s,m)-preinvex) functions on K with respect to the same η
for fixed s,m ∈ (0, 1].

Proposition 2.10. If fi : K ⊆ Rn → R (i = 1, 2, · · · , n) are generalized (s,m)-preinvex (explicitly (s,m)-
preinvex) functions and with respect to η : K × K × (0, 1] → R for same fixed s,m ∈ (0, 1], then the
function

f = max{fi, i = 1, 2, · · · , n}

is also a generalized (s,m)-preinvex (explicitly (s,m)-preinvex) function on K with respect to the η for fixed
s,m ∈ (0, 1].

In Proposition 2.11 we prove that combination of a generalized (s,m)-preinvex function with a positively
homogenous and nondecreasing function is generalized (s,m)-preinvex with respect to η on K for fixed
s,m ∈ (0, 1].

Proposition 2.11. Let K be a nonempty m-invex set in Rn with respect to η : K × K × (0, 1] → Rn,
f : K → R be a generalized (s,m)-preinvex function with respect to η for some fixed s,m ∈ (0, 1], and
let g : W → R (W ⊆ R) be a positively homogenous and nondecreasing function, where rang(f) ⊆ W .
Then the composite function g(f) is a generalized (s,m)-preinvex function with respect to η on K for fixed
s,m ∈ (0, 1].
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Proof. Since f is a generalized (s,m)-preinvex function, then for all x, y ∈ K

f
(
mx+ λη(y, x,m)

)
≤ m(1− λ)sf(x) + λsf(y)

holds for any λ ∈ [0, 1]. Since g is a positively homogenous and nondecreasing function, then

g
(
f
(
mx+ λη(y, x,m)

))
≤ g
(
m(1− λ)sf(x) + λsf(y)

)
= m(1− λ)sg

(
f(x)

)
+ λsg

(
f(y)

)
,

which follows that g(f) is a generalized (s,m)-preinvex function with respect to η on K for some fixed
s,m ∈ (0, 1].

Proposition 2.12. If gi : Rn → R (i = 1, 2, · · · , n) are generalized (s,m)-preinvex functions with respect to
η for same fixed m, s ∈ (0, 1], then the set M = {x ∈ Rn : gi(x) ≤ 0, i = 1, 2, · · · , n} is an m-invex set.

Proof. Since gi(x), (i = 1, 2, · · · , n) are generalized (s,m)-preinvex functions, then for all x, y ∈ Rn

gi

(
mx+ λη(y, x,m)

)
≤ m(1− λ)sgi(y) + λsgi(x), i = 1, 2, · · · , n

holds for any λ ∈ [0, 1]. When x, y ∈ M , we know gi(x) ≤ 0 and gi(y) ≤ 0, from the above inequality, it
yields that

gi

(
mx+ λη(y, x,m)

)
≤ 0, i = 1, 2, · · · , n.

That is, mx+ λη(y, x,m) ∈M . Hence, M is an m-invex set.

Proposition 2.13. Let f : R+ → R+ is a generalized (s,m)-preinvex function with respect to η : R+×R+×
(0, 1] → R+ for some fixed m, s ∈ (0, 1]. Assume that f is monotone decreasing, η is monotone increasing
regarding m for fixed x, y ∈ R+, and m1 ≤ m2(m1,m2 ∈ (0, 1]). If f is a generalized (s,m1)-preinvex
function on R+ with respect to η, then f is a generalized (s,m2)-preinvex function on R+ with respect to η.

Proof. Since f is a generalized (s,m1)-preinvex function, then for all x, y ∈ R+

f
(
m1x+ λη(y, x,m1)

)
≤ m1(1− λ)sf(x) + λsf(y).

Combining the conditions f is monotone decreasing, η is monotone increasing regarding m for fixed x, y ∈
R+, and m1 ≤ m2, it follows that

f
(
m2x+ λη(y, x,m2)

)
≤ f

(
m1x+ λη(y, x,m1)

)
and

m1(1− λ)sf(x) + λsf(y) ≤ m2(1− λ)sf(x) + λsf(y).

Following the above two inequalities, we have that

f
(
m2x+ λη(y, x,m2)

)
≤ m2(1− λ)sf(x) + λsf(y).

Hence, f is also a generalized (s,m2)-preinvex function on R+ with respect to η for fixed s ∈ (0, 1], which
completes the proof.

Proposition 2.14. Let K be a nonempty m-invex set in Rn with respect to η : K ×K × (0, 1] → Rn, and
fi : K → R(i ∈ I = {1, 2, · · · , n}) be a family of real-valued functions which are explicitly (s,m)-preinvex
functions with respect to the same η for same fixed s,m ∈ (0, 1] and bounded from above on K. Then the
function f(x) = sup{fi(x), i ∈ I} is also an explicitly (s,m)-preinvex function on K with respect to the same
η for fixed s,m ∈ (0, 1].



T.-S. Du, J.-G. Liao, Y.-J. Li, J. Nonlinear Sci. Appl. 9 (2016), 3112–3126 3118

Proof. Since each fi(x)(i ∈ I) is an explicitly (s,m)-preinvex function with respect to the same η for some
fixed s,m ∈ (0, 1], we have for each i ∈ I

fi

(
mx+ λη(y, x,m)

)
< m(1− λ)sfi(x) + λsfi(y),∀x, y ∈ K,λ ∈ (0, 1).

Therefore, for each i ∈ I,

fi

(
mx+ λη(y, x,m)

)
< m(1− λ)s sup

i∈I
fi(x) + λs sup

i∈I
fi(y),∀x, y ∈ K,λ ∈ (0, 1).

Taking sup of the left-hand side of the above equation, we obtain

sup
i∈I

fi

(
mx+ λη(y, x,m)

)
< m(1− λ)s sup

i∈I
fi(x) + λs sup

i∈I
fi(y),∀x, y ∈ K,λ ∈ (0, 1).

That is, f(x) = sup{fi(x), i ∈ I} is also an explicitly (s,m)-preinvex function on K with respect to the
same η for fixed s,m ∈ (0, 1].

Proposition 2.15 shows that a local minimum of an explicitly (s,m)-preinvex function over an m-invex
set is a global one under some conditions.

Proposition 2.15. Let K be a nonempty m-invex set in Rn with respect to η : K ×K × (0, 1] → Rn, and
f : K → R be an explicitly (s,m)-preinvex function with respect to η for some fixed s,m ∈ (0, 1]. And let
fixed s,m ∈ (0, 1] satisfy m(1− λ)s + λs ≤ 1 for ∀λ ∈ (0, 1). If x̄ ∈ K is a local minimum to the problem of
minimizing f(x) subject to x ∈ K, then x̄ is a global one.

Proof. Suppose that x̄ ∈ K is a local minimum to the problem of minimizing f(x) subject to x ∈ K. Then
there is an ε-neighborhood Nε(x̄) around x̄ such that

f(x̄) ≤ f(x),∀x ∈ K ∩Nε(x̄). (2.3)

If x̄ is not global minimum of f(x) on K, then there exists an x∗ ∈ K such that

f(x∗) < f(x̄).

By the explicit (s,m)-preinvexly of f(x) and the condition m(1− λ)s + λs ≤ 1,

f
(
mx̄+ λη(x∗, x̄,m)

)
< m(1− λ)sf(x̄) + λsf(x∗) < [m(1− λ)s + λs]f(x̄) < f(x̄)

for all 0 < λ < 1. For a sufficiently small λ > 0, it follows that

mx̄+ λη(x∗, x̄,m) ∈ K ∩Nε(x̄),

which is a contradiction to (2.3). This completes the proof.

By Proposition 2.15, we can conclude that explicitly (s,m)-preinvex functions constitute an important
class of generalized convex functions in mathematical programming. The function in Example 2.7 is not an
explicitly (s,m)-preinvex function with respect to η based on Proposition 2.15.

3. Hadamard-Simpson type integral inequalities

For establishing our new integral inequalities of Hadamard-Simpson type for generalized (s,m)-preinvex
function, we need the following key integral identity, which will be used in the sequel.
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Lemma 3.1. Let K ⊆ R be an open m-invex subset with respect to η : K ×K × (0, 1] → R for some fixed
m ∈ (0, 1] and let a, b ∈ K, a < b with ma < ma + η(b, a,m). Assume that f : K → R is a differentiable
function, f ′ is integrable on [ma,ma+ η(b, a,m)], and k, t ∈ R, then for each x ∈ [ma,ma+ η(b, a,m)] we
have that

tf(ma) + (1− k)f
(
ma+ η(b, a,m)

)
+ (k − t)f

(
ma+

η(b, a,m)

2

)
− 1

η(b, a,m)

∫ ma+η(b,a,m)

ma
f(x)dx

= η(b, a,m)

[ ∫ 1
2

0
(λ− t)f ′

(
ma+ λη(b, a,m)

)
dλ+

∫ 1

1
2

(λ− k)f ′
(
ma+ λη(b, a,m)

)
dλ

]
.

(3.1)

Proof. Set

J = η(b, a,m)

[ ∫ 1
2

0
(λ− t)f ′

(
ma+ λη(b, a,m)

)
dλ+

∫ 1

1
2

(λ− k)f ′
(
ma+ λη(b, a,m)

)
dλ

]
.

Since a, b ∈ K and K is an m-invex set with respect to η, for every λ ∈ [0, 1] and some fixed m ∈ (0, 1], we
have ma+ λη(b, a,m) ∈ K. Integrating by parts yields

J = η(b, a,m)

{
1

η(b, a,m)

[
(λ− t)f

(
ma+ λη(b, a,m)

)∣∣∣ 12
0
−
∫ 1

2

0
f
(
ma+ λη(b, a,m)

)
dλ

]

+
1

η(b, a,m)

[
(λ− k)f

(
ma+ λη(b, a,m)

)∣∣∣1
1
2

−
∫ 1

1
2

f
(
ma+ λη(b, a,m)

)
dλ

]}

=
(1

2
− t
)
f

(
ma+

η(b, a,m)

2

)
+ tf(ma)−

∫ 1
2

0
f
(
ma+ λη(b, a,m)

)
dλ

+ (1− k)f
(
ma+ η(b, a,m)

)
−
(1

2
− k
)
f

(
ma+

η(b, a,m)

2

)
−
∫ 1

1
2

f
(
ma+ λη(b, a,m)

)
dλ

= tf(ma) + (1− k)f
(
ma+ η(b, a,m)

)
+ (k − t)f

(
ma+

η(b, a,m)

2

)
−
∫ 1

0
f
(
ma+ λη(b, a,m)

)
dλ.

Let x = ma+ λη(b, a,m), then dx = η(b, a,m)dλ and we have

J = tf(ma) + (1− k)f
(
ma+ η(b, a,m)

)
+ (k − t)f

(
ma+

η(b, a,m)

2

)
− 1

η(b, a,m)

∫ ma+η(b,a,m)

ma
f(x)dx,

which is required.

Remark 3.2. clearly, if m = 1, η(b, a, 1) = b − a and applying t =
1

6
, k =

5

6
in Lemma 3.1, then we obtain

Lemma 2.1 in [23].

In what follows, we establish another refinement of the Simpson’s inequality for generalized (s,m)-
preinvex functions in the second sense.

Theorem 3.3. Let A ⊆ R0 be an open m-invex subset with respect to η : A×A× (0, 1]→ R0 for some fixed
m ∈ (0, 1] and let a, b ∈ A, a < b with ma < ma + η(b, a,m). Suppose that f : A → R is a differentiable
function, |f ′| is a generalized (s,m)-preinvex function on A for some fixed s,m ∈ (0, 1], and let k, t ∈ R,
then for each x ∈ [ma,ma+ η(b, a,m)] the following inequality holds:∣∣∣∣∣tf(ma) + (1− k)f

(
ma+ η(b, a,m)

)
+ (k − t)f

(
ma+

η(b, a,m)

2

)
− 1

η(b, a,m)

∫ ma+η(b,a,m)

ma
f(x)dx

∣∣∣∣∣
≤
∣∣η(b, a,m)

∣∣[mν1|f ′(a)|+ ν2|f ′(b)|
]
,

(3.2)
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where

v1 =
2(1− t)s+2 + 2(1− k)s+2 +

[
2(k + t)(s+ 2)− 2(s+ 3)

] 1

2s+2
+ (ts+ 2t− 1)

(s+ 1)(s+ 2)

and

v2 =
2ts+2 + 2ks+2 +

[
2(s+ 1)− 2(s+ 2)(k + t)

] 1

2s+2
+ (s+ 1− ks− 2k)

(s+ 1)(s+ 2)
.

Proof. Since ma + λη(b, a,m) ∈ A for every λ ∈ [0, 1] and some fixed m ∈ (0, 1], by Lemma 3.1 and the
generalized (s,m)-preinvexity of |f ′| on A, we have∣∣∣∣∣tf(ma) + (1− k)f

(
ma+ η(b, a,m)

)
+ (k − t)f

(
ma+

η(b, a,m)

2

)
− 1

η(b, a,m)

∫ ma+η(b,a,m)

ma
f(x)dx

∣∣∣∣∣
≤
∣∣η(b, a,m)

∣∣[ ∫ 1
2

0
|λ− t|

∣∣∣f ′(ma+ λη(b, a,m)
)∣∣∣dλ+

∫ 1

1
2

|λ− k|
∣∣∣f ′(ma+ λη(b, a,m)

)∣∣∣dλ]

≤
∣∣η(b, a,m)

∣∣{m ∫ 1
2

0
|λ− t|(1− λ)s|f ′(a)|dλ+

∫ 1
2

0
|λ− t|λs|f ′(b)|dλ

+m

∫ 1

1
2

|λ− k|(1− λ)s|f ′(a)|dλ+

∫ 1

1
2

|λ− k|λs|f ′(b)|dλ

}

=
∣∣η(b, a,m)

∣∣{m[ ∫ 1
2

0
|λ− t|(1− λ)sdλ+

∫ 1

1
2

|λ− k|(1− λ)sdλ

]∣∣f ′(a)
∣∣

+

[ ∫ 1
2

0
|λ− t|λsdλ+

∫ 1

1
2

|λ− k|λsdλ
]
|f ′(b)|

}
.

Using the fact that∫ 1
2

0
|λ− t|(1− λ)sdλ+

∫ 1

1
2

|λ− k|(1− λ)sdλ

=
2(1− t)s+2 + 2(1− k)s+2 +

[
2(k + t)(s+ 2)− 2(s+ 3)

] 1

2s+2
+ (ts+ 2t− 1)

(s+ 1)(s+ 2)

and ∫ 1
2

0
|λ− t|λsdλ+

∫ 1

1
2

|λ− k|λsdλ

=
2ts+2 + 2ks+2 +

[
2(s+ 1)− 2(s+ 2)(k + t)

] 1

2s+2
+ (s+ 1− ks− 2k)

(s+ 1)(s+ 2)
,

the desired inequality (3.2) is established.

Direct computation yields the following corollaries.

Corollary 3.4. Under the conditions of Theorem 3.3,

(1) if η(b, a,m) = b−ma, m = 1, t =
1

6
, and let k =

5

6
, we have∣∣∣∣16

[
f(a) + f(b) + 4f

(a+ b

2

)]
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣
≤ (s− 4)6s+1 + 2× 5s+2 − 2× 3s+2 + 2

6s+2(s+ 1)(s+ 2)
(b− a)

[
|f ′(a)|+ |f ′(b)|

]
;

(3.3)
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(2) If η(b, a,m) = b−ma, s = m = 1 , and let t = k =
1

2
, we have∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣ ≤ b− a
8

(
|f ′(a)|+ |f ′(b)|

)
. (3.4)

(3) Let m = 1, if η(b, a, 1) degenerates η(b, a), s = 1, and let t = k =
1

2
, we have∣∣∣∣f(a) + f

(
a+ η(b, a)

)
2

− 1

η(b, a)

∫ a+η(b,a)

a
f(x)dx

∣∣∣∣ ≤ |η(b, a)|
8

(
|f ′(a)|+ |f ′(b)|

)
. (3.5)

Remark 3.5. Inequality (3.3) is the same as inequality of (1.2) presented by Sarikaya in [26]. Inequality
(3.4) is the same as inequality of (1.3) established by Dragomir in [4]. Inequality (3.5) is the same as
inequality of (1.6) given by Barani in [2]. Thus, inequality (3.2) is a generalization of these Simpson-type
and Hadamard-type inequalities.

Corollary 3.6. The upper bound of the midpoint inequality for the first derivative is developed as follows:

(1) By putting f(ma) = f
(
ma+ η(b, a,m)

)
= f

(
ma+ η(b,a,m)

2

)
in inequality (3.2), we have∣∣∣∣∣f

(
ma+

η(b, a,m)

2

)
− 1

η(b, a,m)

∫ ma+η(b,a,m)

ma
f(x)dx

∣∣∣∣∣ ≤ ∣∣η(b, a,m)
∣∣[mν1|f ′(a)|+ ν2|f ′(b)|

]
, (3.6)

where v1 and v2 are defined in Theorem 3.3.

(2) If η(b, a,m) = b−ma, m = s = 1, t =
1

6
, and let k =

5

6
in the above inequality (3.6), it yields that∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣ ≤ 5(b− a)

72

[
|f ′(a)|+ |f ′(b)|

]
. (3.7)

(3) Let m = 1, if η(b, a, 1) degenerates η(b, a), s = 1, t =
1

6
, and let k =

5

6
in the above inequality (3.6),

we have ∣∣∣∣f(2a+ η(b, a)

2

)
− 1

η(b, a)

∫ a+η(b,a)

a
f(x)dx

∣∣∣∣ ≤ 5|η(b, a)|
72

(
|f ′(a)|+ |f ′(b)|

)
. (3.8)

Remark 3.7. It is noted that the above midpoint inequality (3.7) is better than the inequality (1.4) presented
by Kirmaci in [10]; Apparently, the result of inequality (3.8) also has a better result compared with inequality
(1.7) presented by Sarikaya in [25].

We continue with

Theorem 3.8. Let f be defined as in Theorem 3.3 with 1
p + 1

q = 1, p > 1. If |f ′|q is a generalized (s,m)-
preinvex function on A for some fixed s,m ∈ (0, 1] and let k, t ∈ R, then for each x ∈ [ma,ma+ η(b, a,m)]
the following inequality holds:∣∣∣∣∣tf(ma) + (1− k)f

(
ma+ η(b, a,m)

)
+ (k − t)f

(
ma+

η(b, a,m)

2

)
− 1

η(b, a,m)

∫ ma+η(b,a,m)

ma
f(x)dx

∣∣∣∣∣
≤ |η(b, a,m)|

(p+ 1)
1
p (s+ 1)

1
q

{[
tp+1 + (

1

2
− t)p+1

] 1
p

[
m

(
1−
(

1
2

)s+1
)∣∣∣f ′(a)∣∣∣q

+
(1

2

)s+1
∣∣∣f ′(b)∣∣∣q] 1

q

+

[
(k − 1

2
)p+1 + (1− k)p+1

] 1
p
[
m
(1

2

)s+1
∣∣∣f ′(a)

∣∣∣q +
(

1−
(1

2

)s+1
)∣∣∣f ′(b)∣∣∣q] 1

q

}
.

(3.9)
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Proof. Since ma + λη(b, a,m) ∈ A for every λ ∈ [0, 1] and some fixed m ∈ (0, 1], by Lemma 3.1 and the
famous Hölder’s integral inequality, we have∣∣∣∣∣tf(ma) + (1− k)f

(
ma+ η(b, a,m)

)
+ (k − t)f

(
ma+

η(b, a,m)

2

)
− 1

η(b, a,m)

∫ ma+η(b,a,m)

ma
f(x)dx

∣∣∣∣∣
≤
∣∣η(b, a,m)

∣∣[ ∫ 1
2

0
|λ− t|

∣∣∣f ′(ma+ λη(b, a,m)
)∣∣∣dλ+

∫ 1

1
2

|λ− k|
∣∣∣f ′(ma+ λη(b, a,m)

)∣∣∣dλ]

≤
∣∣η(b, a,m)

∣∣{(∫ 1
2

0
|λ− t|pdλ

) 1
p
[ ∫ 1

2

0

∣∣∣f ′(ma+ λη(b, a,m)
)∣∣∣qdλ] 1

q

+

(∫ 1

1
2

|λ− k|pdλ
) 1

p
[ ∫ 1

1
2

∣∣∣f ′(ma+ λη(b, a,m)
)∣∣∣qdλ] 1

q

}
.

Also, making use of the generalized (s,m)-preinvexity of |f ′|q, it follows that∣∣∣∣∣tf(ma) + (1− k)f
(
ma+ η(b, a,m)

)
+ (k − t)f

(
ma+

η(b, a,m)

2

)
− 1

η(b, a,m)

∫ ma+η(b,a,m)

ma
f(x)dx

∣∣∣∣∣
≤
∣∣η(b, a,m)

∣∣{(∫ 1
2

0
|λ− t|pdλ

) 1
p
[ ∫ 1

2

0

(
m(1− λ)s

∣∣f ′(a)
∣∣q + λs

∣∣f ′(b)∣∣q)dλ

] 1
q

+

(∫ 1

1
2

|λ− k|pdλ
) 1

p
[ ∫ 1

1
2

(
m(1− λ)s

∣∣f ′(a)
∣∣q + λs

∣∣f ′(b)∣∣q)dλ

] 1
q

}
.

Direct calculation yields that∫ 1
2

0
|λ− t|pdλ =

tp+1 +
(
1
2 − t

)p+1

p+ 1
and

∫ 1

1
2

|λ− k|pdλ =

(
k − 1

2

)p+1
+ (1− k)p+1

p+ 1
.

Similarly, we have∫ 1
2

0
(1− λ)sdλ =

∫ 1

1
2

λsdλ =
1−

(
1
2

)s+1

s+ 1
and

∫ 1
2

0
λsdλ =

∫ 1

1
2

(1− λ)sdλ =

(
1
2

)s+1

s+ 1
.

Therefore, combining the above four equalities, this leads to the desired result. The statement in Theorem
3.8 is proved.

Corollary 3.9. Under the condition of Theorem 3.8,

(1) when s = 1, we have∣∣∣∣∣tf(ma) + (1− k)f
(
ma+ η(b, a,m)

)
+ (k − t)f

(
ma+

η(b, a,m)

2

)
− 1

η(b, a,m)

∫ ma+η(b,a,m)

ma
f(x)dx

∣∣∣∣∣
≤ |η(b, a,m)|

2
1
q (p+ 1)

1
p

{[
tp+1 + (

1

2
− t)p+1

] 1
p
[

3m|f ′(a)|q

4
+
|f ′(b)|q

4

] 1
q

+

[
(k − 1

2
)p+1 + (1− k)p+1

] 1
p
[
m|f ′(a)|q

4
+

3|f ′(b)|q

4

] 1
q

}
;

(3.10)
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(2) Let m = 1, if η(b, a, 1) degenerates η(b, a), k = 1, and let t = 0 in inequality (3.10), we can get∣∣∣∣∣f
(
a+

η(b, a)

2

)
− 1

η(b, a)

∫ a+η(b,a)

a
f(x)dx

∣∣∣∣∣
≤
(

1

p+ 1

) 1
p |η(b, a)|

4

[(
3

4
|f ′(a)|q +

1

4
|f ′(b)|q

) 1
q

+

(
1

4
|f ′(a)|q +

3

4
|f ′(b)|q

) 1
q
]
.

(3.11)

Remark 3.10. By substituting p =
q

q − 1
into inequality (3.11) and exchanging a and b , we can deduce the

inequality (1.8).

In the following corollary, we have the midpoint inequality for powers in terms of the first derivative.

Corollary 3.11. By substituting f(ma) = f
(
ma+ η(b, a,m)

)
= f

(
ma+ η(b,a,m)

2

)
, t =

1

6
, and k =

5

6
into

inequality (3.9), we have∣∣∣∣ 1

η(b, a,m)

∫ ma+η(b,a,m)

ma
f(x)dx− f

(
ma+

η(b, a,m)

2

)∣∣∣∣∣
≤ |η(b, a,m)|

2
1
q (p+ 1)

1
p

[(1

6

)p+1
+
(1

3

)p+1
] 1

p

×

{[
3m|f ′(a)|q

4
+
|f ′(b)|q

4

] 1
q

+

[
m|f ′(a)|q

4
+

3|f ′(b)|q

4

] 1
q

}
.

(3.12)

In the following theorem, we obtain another form of Simpson type inequality for powers in term of the
first derivative.

Theorem 3.12. Let f be defined as in Theorem 3.3. If the mapping |f ′|q for q ≥ 1 is generalized (s,m)-
preinvex on A for some fixed s,m ∈ (0, 1] and let k, t ∈ R, then for each x ∈ [ma,ma + η(b, a,m)] the
following inequality holds:∣∣∣∣∣tf(ma) + (1− k)f

(
ma+ η(b, a,m)

)
+ (k − t)f

(
ma+

η(b, a,m)

2

)
− 1

η(b, a,m)

∫ ma+η(b,a,m)

ma
f(x)dx

∣∣∣∣∣
≤
∣∣η(b, a,m)

∣∣{(t2 − 1

2
t+

1

8

)1− 1
q
[
mξ1|f ′(a)|q + ξ2|f ′(b)|q

] 1
q

+

(
k2 − 3

2
k +

5

8

)1− 1
q
[
mξ3|f ′(a)|q + ξ4|f ′(b)

∣∣∣q] 1
q

}
,

(3.13)
where

ξ1 =
t(s+ 2)− 1 + 2(1− t)s+2 + (2ts+ 4t− s− 3)

1

2s+2

(s+ 1)(s+ 2)
,

ξ2 =
2ts+2 + (s+ 1− 2ts− 4t)

1

2s+2

(s+ 1)(s+ 2)
,

ξ3 =
2(1− k)s+2 + (2ks+ 4k − s− 3)

1

2s+2

(s+ 1)(s+ 2)
,
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and

ξ4 =
2ks+2 + (s+ 1− 2ks− 4k)

1

2s+2
+ (s+ 1− ks− 2k)

(s+ 1)(s+ 2)
.

Proof. Since ma + λη(b, a,m) ∈ A for every λ ∈ [0, 1] and some fixed m ∈ (0, 1], by Lemma 3.1 and
power-mean integral inequality, it follows that∣∣∣∣∣tf(ma) + (1− k)f

(
ma+ η(b, a,m)

)
+ (k − t)f

(
ma+

η(b, a,m)

2

)
− 1

η(b, a,m)

∫ ma+η(b,a,m)

ma
f(x)dx

∣∣∣∣∣
≤
∣∣η(b, a,m)

∣∣[ ∫ 1
2

0
|λ− t|

∣∣∣f ′(ma+ λη(b, a,m)
)∣∣∣dλ+

∫ 1

1
2

|λ− k|
∣∣∣f ′(ma+ λη(b, a,m)

)∣∣∣dλ]

≤
∣∣η(b, a,m)

∣∣{(∫ 1
2

0
|λ− t|dλ

)1− 1
q
[ ∫ 1

2

0
|λ− t|

∣∣∣f ′(ma+ λη(b, a,m)
)∣∣∣qdλ] 1

q

+

(∫ 1

1
2

|λ− k|dλ
)1− 1

q
[ ∫ 1

1
2

|λ− k|
∣∣∣f ′(ma+ λη(b, a,m)

)∣∣∣qdλ] 1
q

}
.

Using the generalized (s,m)-preinvexity of |f ′|q, we have that∣∣∣∣∣tf(ma) + (1− k)f
(
ma+ η(b, a,m)

)
+ (k − t)f

(
ma+

η(b, a,m)

2

)
− 1

η(b, a,m)

∫ ma+η(b,a,m)

ma
f(x)dx

∣∣∣∣∣
≤
∣∣η(b, a,m)

∣∣{(∫ 1
2

0
|λ− t|dλ

)1− 1
q
[ ∫ 1

2

0
|λ− t|

(
m(1− λ)s

∣∣f ′(a)
∣∣q + λs

∣∣f ′(b)∣∣q)dλ

] 1
q

+

(∫ 1

1
2

|λ− k|dλ
)1− 1

q
[ ∫ 1

1
2

|λ− k|
(
m(1− λ)s

∣∣f ′(a)
∣∣q + λs

∣∣f ′(b)∣∣q)dλ

] 1
q

}
.

By simple calculations, we can get∫ 1
2

0
|λ− t|dλ = t2 − 1

2
t+

1

8
,

∫ 1

1
2

|λ− k|dλ = k2 − 3

2
k +

5

8
, (3.14)

∫ 1
2

0
|λ− t|(1− λ)sdλ =

t(s+ 2)− 1 + 2(1− t)s+2 + (2ts+ 4t− s− 3)
1

2s+2

(s+ 1)(s+ 2)
, (3.15)

∫ 1
2

0
|λ− t|λsdλ =

2ts+2 + (s+ 1− 2ts− 4t)
1

2s+2

(s+ 1)(s+ 2)
, (3.16)

∫ 1

1
2

|λ− k|(1− λ)sdλ =
2(1− k)s+2 + (2ks+ 4k − s− 3)

1

2s+2

(s+ 1)(s+ 2)
, (3.17)

and ∫ 1

1
2

|λ− k|λsdλ =
2ks+2 + (s+ 1− 2ks− 4k)

1

2s+2
+ (s+ 1− ks− 2k)

(s+ 1)(s+ 2)
. (3.18)

Thus, our desired result can be obtained by combining equalities (3.14)-(3.18), and the proof is completed.
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Corollary 3.13. Let f be defined as in Theorem 3.12, if s = 1, t =
1

6
, and k =

5

6
, the inequality holds for

extended m-preinvex functions:∣∣∣∣16
[
f(ma) + 4f

(
ma+

η(b, a,m)

2

)
+ f

(
ma+ η(b, a,m)

)]
− 1

η(b, a,m)

∫ ma+η(b,a,m)

ma
f(x)dx

∣∣∣∣
≤
∣∣η(b, a,m)

∣∣( 5

72

)1− 1
q

[( 61m

1296
|f ′(a)|q +

29

1296
|f ′(b)|q

) 1
q

+
( 29m

1296
|f ′(a)|q +

61

1296
|f ′(b)|q

) 1
q

]
.

(3.19)

In particular, let m = 1, if η(b, a, 1) degenerates η(b, a) in inequality (3.19), the inequality holds for convex
function. If |f ′(x)| ≤ Q, ∀x ∈ I, we can deduce that∣∣∣∣b− a3

[
f(a) + f(b)

2
+ 2f

(a+ b

2

)]
−
∫ b

a
f(x)dx

∣∣∣∣ ≤ 5(b− a)2

36
Q. (3.20)

Remark 3.14. It is observed that the inequality (3.20) gives an improvement for the inequality (1.3) with
the integral interval length b− a ≥ 1

2 . Thus, Theorem 3.12 and its consequences generalize the main results
in [5].
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[9] İ. İşcan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals,

Appl. Math. Comput., 238 (2014), 237–244.1
[10] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to

midpoint formula, Appl. Math. Comput., 147 (2004), 137–146.1.9, 3.7
[11] M. A. Latif, S. S. Dragomir, Some weighted integral inequalities for differentiable preinvex and prequasiinvex

functions with applications, J. Inequal. Appl., 2013 (2013), 19 pages.1
[12] M. A. Latif, M. Shoaib, Hermite-Hadamard type integral inequalities for differentiable m-preinvex and (α,m)-

preinvex functions, J. Egyptian Math. Soc., 23 (2015), 236–241.1
[13] J. Y. Li, On Hadamard-type inequalities for s-preinvex functions, J. Chongqing Norm. Univ. (Natural Science)

China, 27 (2010), 5–8.1.6
[14] Y. J. Li, T. S. Du, On Simpson type inequalities for functions whose derivatives are extended (s,m)-GA-convex

functions, Pure. Appl. Math. China, 31 (2015), 487–497.1
[15] Y. J. Li, T. S. Du, Some Simpson type integral inequalities for functions whose third derivatives are (α,m)-GA-

convex functions, J. Egyptian Math. Soc., 24 (2016), 175–180.1
[16] T. Y. Li, G. H. Hu, On the strictly G-preinvex function, J. Inequal. Appl., 2014 (2014), 9 pages.1
[17] M. Mat loka, On some Hadamard-type inequalities for (h1, h2)-preinvex functions on the co-ordinates, J. Inequal.

Appl., 227 (2013), 12 pages.1



T.-S. Du, J.-G. Liao, Y.-J. Li, J. Nonlinear Sci. Appl. 9 (2016), 3112–3126 3126

[18] M. Mat loka, Inequalities for h-preinvex functions, Appl. Math. Comput., 234 (2014), 52–57.1
[19] M. A. Noor, Hadamard integral inequalities for product of two preinvex functions, Nonlinear Anal. Forum, 14

(2009), 167–173.1
[20] J. Park, Simpson-like and Hermite-Hadamard-like type integral inequalities for twice differentiable preinvex func-

tions, Inter. J. Pure. Appl. Math., 79 (2012), 623–640.1
[21] J. Park, Hermite-Hadamard-like type integral inequalities for functions whose derivatives of n-th order are prein-

vex, Appl. Math. Sci., 7 (2013), 6637–6650.1
[22] R. Pini, Invexity and generalized convexity, Optimization, 22 (1991), 513–525.1.5
[23] S. Qaisar, C. J. He, S. Hussain, A generalizations of Simpson’s type inequality for differentiable functions using

(α,m)-convex functions and applications, J. Inequal. Appl., 2013 (2013), 13 pages.1, 3.2
[24] M. H. Qu, W. J. Liu, J. Park, Some new Hermite-Hadamard-type inequalities for geometric-arithmetically s-

convex functions, WSEAS Trans. Math., 13 (2014), 452–461.1
[25] M. Z. Sarikaya, N. Alp, H. Bozkurt, On Hermite-Hadamard type integral inequalities for preinvex and log-preinvex

functions, Contemporary Anal. Appl. Math., 1 (2013), 237–252.1.11, 3.7
[26] M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson’s type for s-convex functions, Comput.

Math. Appl., 60 (2010), 2191–2199.1.8, 3.5
[27] S. H. Wang, X. M. Liu, Hermite-Hadamard type inequalities for operator s-preinvex functions, J. Nonlinear Sci.

Appl., 8 (2015), 1070–1081.1
[28] Y. Wang, B. Y. Xi, F. Qi, Hermite-Hadamard type integral inequalities when the power of the absolute value of

the first derivative of the integrand is preinvex, Matematiche (Catania), 69 (2014), 89–96. 1.12, 1.13
[29] S. Wu, On the weighted generalization of the Hermite-Hadamard inequality and its applications, Rocky Mountain

J. Math., 39 (2009), 1741–1749.1
[30] S. Wu, L. Debnath, Inequalities for convex sequences and their applications, Comput. Math. Appl., 54 (2007),

525–534.1
[31] S. H. Wu, B. Sroysang, J. S. Xie, Y. M. Chu, Parametrized inequality of Hermite-Hadamard type for functions

whose third derivative absolute values are quasi-convex, SpringerPlus, 2015 (2015), 9 pages.1
[32] Z. Q. Yang, Y. J. Li, T. S. Du, A generalization of Simpson type inequality via differentiable functions using

(s,m)-convex functions, Italian J. Pure. Appl. Math., 35 (2015), 327–338.1
[33] X. M. Yang, X. Q. Yang, K. L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optim.

Theory Appl., 117 (2003), 607–625.1


	1 Introduction and Preliminaries
	2 New definitions and properties
	3 Hadamard-Simpson type integral inequalities

