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1 Introduction

Flows in field space are an interesting tool that may allow new insights to be gained into the

physical mechanisms described by highly non-linear quantum field theories such as QCD.

The flow Bµ(t, x) of SU(3) gauge fields studied in this paper is defined by the equations

Ḃµ = DνGνµ, Bµ|t=0 = Aµ, (1.1)

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ], Dµ = ∂µ + [Bµ, · ], (1.2)
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where Aµ is the fundamental gauge field in QCD (see appendix A for unexplained notation;

differentiation with respect to the “flow time” t is abbreviated by a dot). Evidently, for

increasing t and as long as no singularities develop, the flow equation (1.1) drives the

gauge field along the direction of steepest descent towards the stationary points of the

Yang-Mills action.

In lattice QCD, the simplest choice of the action of the gauge field U(x, µ) is the Wilson

action [1]

Sw(U) =
1

g2
0

∑

p

Re tr{1 − U(p)}, (1.3)

where g0 is the bare coupling, p runs over all oriented plaquettes on the lattice and U(p)

denotes the product of the link variables around p. The associated flow Vt(x, µ) of lattice

gauge fields (the “Wilson flow”) is defined by the equations

V̇t(x, µ) = −g2
0 {∂x,µSw(Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ), (1.4)

in which ∂x,µ stands for the natural su(3)-valued differential operator with respect to the

link variable Vt(x, µ) (see appendix A). The existence, uniqueness and smoothness of the

Wilson flow at all positive and negative times t is rigorously guaranteed on a finite lat-

tice [2]. Moreover, from eq. (1.4) one immediately concludes that the action Sw(Vt) is a

monotonically decreasing function of t. The flow therefore tends to have a smoothing effect

on the field and it is, in fact, generated by infinitesimal “stout link smearing” steps [3].

The Wilson flow previously appeared in ref. [4] in the context of trivializing maps of

field space. Familiarity with this paper is not assumed, but some mathematical results

obtained there will be used here again. An important goal in the following is to find out

whether the expectation values of local observables constructed from the gauge field at

positive flow time can be expected to have a well-defined continuum limit. Evidence for

the existence of the limit is provided by performing a sample calculation to one-loop order

of perturbation theory directly in the continuum theory, using dimensional regularization,

and through a numerical study of the SU(3) gauge theory at three values of the lattice

spacing. Two applications of the Wilson flow are then discussed, one concerning the scale-

setting in lattice QCD and the other the question of how exactly the topological (instanton)

sectors emerge when the lattice spacing goes to zero.

2 Properties of the Wilson flow at small coupling

The aim in this section partly is to show that the Wilson flow can be studied straight-

forwardly in perturbation theory and partly to check that the expectation values of local

gauge-invariant observables calculated at positive flow time are renormalized quantities.

For simplicity the perturbation expansion is discussed in the continuum theory using

dimensional regularization. The gauge group is taken to be SU(N) and it is assumed that

there are Nf flavours of massless quarks. As a representative case, the observable

E =
1

4
Ga

µνGa
µν (2.1)
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is considered and its expectation value is worked out to next-to-leading order in the

gauge coupling.

2.1 Gauge fixing

The flow equation (1.1) is invariant under t-independent gauge transformations. E is

therefore a gauge-invariant function of the fundamental field Aµ and its expectation value

can consequently be calculated in any gauge.

In perturbation theory, the gauge invariance of the flow equation leads to some tech-

nical complications that are better avoided by considering the modified equation

Ḃµ = DνGνµ + λDµ∂νBν . (2.2)

For any given value of the gauge parameter λ, the solution of eq. (2.2) is related to the one

at λ = 0 through

Bµ = ΛBµ|λ=0 Λ−1 + Λ∂µΛ−1, (2.3)

where the gauge transformation Λ(t, x) is determined by

Λ̇ = −λ∂νBνΛ, Λ|t=0 = 1. (2.4)

The expectation value of E can thus be computed using the modified flow equation. More-

over, one is free to set λ = 1, which turns out to be a particularly convenient choice.

Note that the use of the modified flow equation does not interfere with the fixing of

the gauge of the fundamental field, since E is unchanged and therefore remains a gauge-

invariant function of the latter.

2.2 Solution of the modified flow equation

In perturbation theory the gauge potential is scaled by the bare coupling,

Aµ → g0Aµ, (2.5)

and the functional integral is then expanded in powers of g0. The flow Bµ(t, x) thus becomes

a function of the coupling with an asymptotic expansion of the form

Bµ =
∞
∑

k=1

gk
0Bµ,k, Bµ,k|t=0 = δk1Aµ. (2.6)

When this series is inserted in eq. (2.2), and if one sets λ = 1, a tower of equations

Ḃµ,k − ∂ν∂νBµ,k = Rµ,k, k = 1, 2, . . . , (2.7)

is obtained, where the expressions on the right are given by

Rµ,1 = 0, (2.8)

Rµ,2 = 2[Bν,1, ∂νBµ,1] − [Bν,1, ∂µBν,1], (2.9)

Rµ,3 = 2[Bν,2, ∂νBµ,1] + 2[Bν,1, ∂νBµ,2]

− [Bν,2, ∂µBν,1] − [Bν,1, ∂µBν,2] + [Bν,1, [Bν,1, Bµ,1]], (2.10)
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and so on. In particular, in D dimensions the leading-order equation implies

Bµ,1(t, x) =

∫

dDy Kt(x − y)Aµ(y), (2.11)

Kt(z) =

∫

dDp

(2π)D
eipze−tp2

=
e−z2/4t

(4πt)D/2
, (2.12)

which shows explicitly that the flow is a smoothing operation. More precisely, the gauge

potential is averaged over a spherical range in space whose mean-square radius in four

dimensions is equal to
√

8t.

The higher-order equations (2.7) can be solved one after another by noting that

Bµ,k(t, x) =

∫ t

0
ds

∫

dDy Kt−s(x − y)Rµ,k(s, y). (2.13)

Recalling eqs. (2.9),(2.10), it is clear that this formula generates tree-like expressions, where

the fundamental field Aµ is attached to the endpoints of the trees.

2.3 Expansion of 〈E〉

When the series (2.6) is inserted in

〈E〉 =
1

2
〈∂µBa

ν∂µBa
ν − ∂µBa

ν∂νBa
µ〉 + fabc〈∂µBa

νBb
µBc

ν〉 +
1

4
fabef cde〈Ba

µBb
νB

c
µBd

ν〉, (2.14)

a sequence of terms of increasing order in g0 is obtained. The lowest-order term is

E0 =
1

2
g2
0〈∂µBa

ν,1∂µBa
ν,1 − ∂µBa

ν,1∂νB
a
µ,1〉 (2.15)

and the terms at the next order are

E1 = g3
0f

abc〈∂µBa
ν,1B

b
µ,1B

c
ν,1〉, (2.16)

E2 = g3
0〈∂µBa

ν,2∂µBa
ν,1 − ∂µBa

ν,2∂νB
a
µ,1〉. (2.17)

Each of these terms is a power series in the gauge coupling, which may be worked out by

expressing the coefficients Bµ,k(t, x) through the fundamental field Aµ(x) and by expanding

the correlation functions of the latter using the standard Feynman rules.

In practice it is advantageous to pass to momentum space by inserting the Fourier

representations

Ba
µ,1(t, x) =

∫

p
eipxe−tp2

Ãa
µ(p), (2.18)

Ba
µ,2(t, x) = ifabc

∫ t

0
ds

∫

q,r
ei(q+r)xe−s(q2+r2)−(t−s)(q+r)2

×
{

δµλrσ − δµσqλ +
1

2
δσλ(q − r)µ

}

Ãb
σ(q)Ãc

λ(r), (2.19)
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and the corresponding expressions for the higher-order fields Bµ,k(t, x). The shorthand

∫

p
=

∫

dDp

(2π)D
(2.20)

has been introduced here in order to simplify the notation.

Note that the flow-time integral in eq. (2.19) is similar to a Feynman parameter inte-

gral. In particular, if Feynman parameters are used for the diagrams contributing to the

gluon correlation functions, one ends up with gaussian momentum integrals that can be

easily evaluated in any dimension D. The integrals over the parameters then look very

much the same as the ones usually encountered, except for the fact that the flow-time

parameters are integrated up to t rather than infinity.

2.4 Computation of E0

In the case of the lowest-order term (2.15), the steps sketched in the previous subsection

lead to the formula

E0 =
1

2
g2
0(N

2 − 1)

∫

p
e−2tp2

(p2δµν − pµpν)D(p)µν , (2.21)

where D(p)µν denotes the unrenormalized full gluon propagator. Setting D = 4 − 2ǫ and

choosing the Feynman gauge, the propagator assumes the form

D(p)µν =
1

(p2)2
{

(p2δµν − pµpν)(1 − ω(p))−1 + pµpν

}

, (2.22)

ω(p) =
∞

∑

k=1

g2k
0 (p2)−kǫωk, (2.23)

from which one infers that

E0 =
1

2
g2
0

N2 − 1

(8πt)D/2
(D − 1)

{

1 + g2
0(2t)

ǫ Γ(2 − 2ǫ)

Γ(2 − ǫ)
ω1 + . . .

}

. (2.24)

To this order, the computation is then easily completed by quoting the known result

ω1 =
1

16π2
(4πe−γE)ǫ

{

N

(

5

3ǫ
+

31

9

)

− Nf

(

2

3ǫ
− 10

9

)

+ O(ǫ)

}

(2.25)

for the gluon self-energy, γE = 0.577 . . . being Euler’s constant.

2.5 Computation of 〈E〉 to order g4
0

At the next-to-leading order, the expectation value of E receives contributions from E0

and the terms E1, E2, . . . up to order g4
0 generated by the expansion of the flow equation

(cf. subsection 2.3). Some of the latter involve the 3-point gluon vertex, but in all cases

only the leading-order gluon correlation functions are required.
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In the case of the term E2, for example, the purely algebraic part of the calculation

leads to the integral

E2 = N(N2 − 1)g4
0

∫ t

0
ds

∫

q,r

e−(2t−s)p2
−s(q2+r2)

p2q2r2

×
{

(D − 1)p2(p2 + q2 + r2) + 2(D − 2)(q2r2 − (qr)2)

}

+ O(g6
0) (2.26)

where p = q + r. This integral appears to be quite complicated, but the polynomial in

the numerator of the integrand allows the expression to be simplified and eventually to be

evaluated analytically (see appendix B for further details). The result of the computation,

E2 = N(N2 − 1)
g4
0

(4π)D(2t)D−2

{

9

2ǫ
− 3

2
+ 45 ln 2 − 45

2
ln 3 + O(ǫ)

}

+ O(g6
0), (2.27)

shows that these contributions are not free of ultra-violet singularities.

The computation of the other terms follows the same pattern and does not present

any additional difficulties. Collecting all contributions, the result

〈E〉 =
1

2
g2
0

N2 − 1

(8πt)D/2
(D − 1)

{

1 + c1g
2
0 + O(g4

0)

}

, (2.28)

c1 =
1

16π2
(4π)ǫ(8t)ǫ

{

N

(

11

3ǫ
+

52

9
− 3 ln 3

)

− Nf

(

2

3ǫ
+

4

9
− 4

3
ln 2

)

+ O(ǫ)

}

, (2.29)

is then obtained.

2.6 Renormalization

The bare coupling g0 is related to the renormalized coupling g in the MS scheme and the

associated normalization mass µ according to [5]

g2
0 = g2µ2ǫ(4πe−γE)−ǫ

{

1 − 1

ǫ
b0g

2 + O(g4)

}

, (2.30)

b0 =
1

16π2

{

11

3
N − 2

3
Nf

}

. (2.31)

Now if eq. (2.28) is written as an expansion in the renormalized coupling, the terms pro-

portional to 1/ǫ cancel and one obtains

〈E〉 =
3(N2 − 1)g2

128π2t2

{

1 + c̄1g
2 + O(g4)

}

, (2.32)

c̄1 =
1

16π2

{

N

(

11

3
L +

52

9
− 3 ln 3

)

− Nf

(

2

3
L +

4

9
− 4

3
ln 2

)}

, (2.33)

at ǫ = 0, where L = ln(8µ2t)+ γE. To this order in the gauge coupling, 〈E〉 thus turns out

to be a quantity that does not need to be renormalized and which therefore encodes some

physical property of the theory.
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Lattice β a [fm] Ncnfg t0/a
2

48 × 243 5.96 0.0999(4) 100 2.8449(64)

64 × 323 6.17 0.0710(3) 100 5.579(14)

96 × 483 6.42 0.0498(3) 100 11.364(24)

Table 1. Lattice parameters, statistics and reference flow time.

In terms of the running coupling α(q) at scale q = (8t)−1/2, the expansion (2.32)

assumes the form

〈E〉 =
3(N2 − 1)

32πt2
α(q)

{

1 + k1α(q) + O(α2)

}

, (2.34)

k1 =
1

4π

{

N

(

11

3
γE +

52

9
− 3 ln 3

)

− Nf

(

2

3
γE +

4

9
− 4

3
ln 2

)}

. (2.35)

In particular, for N = 3 one obtains

〈E〉 =
3

4πt2
α(q)

{

1 + k1α(q) + O(α2)

}

, k1 = 1.0978 + 0.0075 × Nf . (2.36)

The next-to-leading order correction is reasonably small in this case and corresponds to a

change in the momentum q by a factor 2 or so if Nf ≤ 3.

3 Lattice studies of the Wilson flow

In QCD the perturbation expansion (2.36) is expected to be applicable at small flow times

only, where the smoothing range
√

8t is at most 0.3 fm or so. The properties of the Wil-

son flow at larger values of t can however be studied straightforwardly using the lattice

formulation of the theory and numerical simulations.

The simulations of the SU(3) gauge theory reported in this section mainly serve to

clarify whether 〈E〉 scales to the continuum limit as suggested by perturbation theory.

Along the way, a new scale-setting method will be proposed based on the observed prop-

erties of 〈E〉.

3.1 Simulation parameters

Ensembles of representative gauge fields were generated on three lattices, using the Wilson

gauge action and a combination of the well-known link-update algorithms. The values of

the lattice spacing quoted in table 1 derive from the results in lattice units for the Sommer

reference scale r0 = 0.5 fm [6] published by Guagnelli et al. [7]. At the chosen couplings

β = 6/g2
0 , the spacings of the three lattices thus decrease from roughly 0.1 to 0.05 fm by

factors of 1/
√

2. Moreover, the lattice sizes in physical units are approximately constant.

In order to safely suppress any residual statistical correlations of the Ncnfg generated

fields, the separation in simulation time of the fields was taken to be at least 10 times the

integrated autocorrelation time of the topological charge. The definition of the latter on

the lattice is ambiguous to some extent, but its autocorrelation time is largely independent

– 7 –
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x

xµ

ν

Figure 1. The anti-hermitian traceless part of the average of the four plaquette Wilson loops

shown in this figure can be taken as the definition of the field tensor a2Gµν(x) on the lattice. All

loops are in the (µ, ν)-plane, have the same orientation and start and end at the point x.

of the choices one makes and is known to increase very rapidly when the lattice spacing is

reduced [8, 9]. In particular, already at a = 0.07 fm all other usual quantities of interest

tend to be far less correlated in simulation time.

3.2 Observables

For any given gauge field configuration U(x, µ), the flow equation (1.4) can be integrated

numerically up to the desired flow time and one may then construct gauge-invariant local

observables from the gauge field at this time. In particular,

E = 2
∑

p∈Px

Re tr{1 − Vt(p)} (3.1)

is a possible definition of the density E on the lattice, Px being the set of unoriented

plaquettes with lower-left corner x.

Another more symmetric definition of E is obtained by introducing a lattice version

of the field tensor Gµν(x) (see figure 1). E is then simply given by the continuum for-

mula (2.1). Both definitions are equally acceptable at this point, since they respect all

formal requirements (locality and gauge invariance in particular) and since they converge

to the correct expression in the classical continuum limit.

For the numerical integration of the flow equation (1.4), any of the widely known inte-

gration schemes can in principle be used (see ref. [10], for example). The Euler integrators

previously discussed in ref. [4] are particularly simple but also the least efficient ones. Ev-

idently, the integration errors should be much smaller than the statistical errors of the

calculated quantities. A fairly simple and numerically stable integrator that allows this

condition to be easily met is described in appendix C.

3.3 Time dependence of 〈E〉
To leading-order perturbation theory, the dimensionless combination t2〈E〉 is a constant

proportional to the gauge coupling. At the next order, the scale invariance of the theory

is broken and t2〈E〉 develops a non-trivial dependence on the flow time t. Asymptotic

freedom actually implies that the combination slowly goes to zero in the limit t → 0.

Recalling the result

Λ|Nf=0 = 0.602(48)/r0 (3.2)

– 8 –
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t /r0
2

0

0.1

0.2

0.3

0.4

0.5

t2〈E〉

t0

√   8t = 0.2 fm √   8t = 0.5 fm

Figure 2. Simulation data obtained at a = 0.05 fm for t2〈E〉 as a function of the flow time t (black

line). Statistical errors are smaller than 0.3% and therefore invisible on the scale of the figure. The

curve predicted by the perturbation series (2.36) and the known value (3.2) of the Λ-parameter is

also shown (grey band).

for the Λ-parameter in the MS scheme obtained by the ALPHA collaboration [11], and

using the four-loop evolution equation for the running coupling α(q) [12], the perturbation

series (2.36) can be evaluated at any value of the flow time given in units of r0. The curve

obtained in this way is shown in figure 2 together with the error band that derives from

the error of Λ quoted in eq. (3.2).

Perhaps somewhat fortuitously, the simulation results obtained at a = 0.05 fm accu-

rately match the perturbative curve over a significant range of t. The symmetric definition

of E has here been used and for clarity the data from only one lattice are shown (as

discussed below, the lattice-spacing effects are small and the data from the other lattices

would therefore lie nearly on top of the line plotted in figure 2).

Beyond the perturbative regime, t2〈E〉 grows roughly linearly with t, at least so within

the range covered by the simulation data. The slowdown of the density 〈E〉 from the

perturbative 1/t2 to a smoother 1/t behaviour may perhaps be explained by noting that the

Wilson flow tends to drive the gauge field towards the stationary points of the gauge action.

In the vicinity of these points of field space, the right-hand side of the flow equation (1.4)

is small and E consequently changes only little with time.

3.4 Lattice-spacing effects

Perturbation theory suggests that the density 〈E〉 scales to the continuum limit like a phys-

ical quantity of dimension 4. The scaling behaviour of 〈E〉 can be checked by introducing

a reference scale t0 through the implicit equation

{

t2〈E〉
}

t=t0
= 0.3 (3.3)

– 9 –
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0 0.01 0.02 0.03 0.04

(a/r0)2

0.90

0.92

0.94

0.96
√     8t0

       r0

a = 0.05 fm 0.07 fm 0.1 fm

Figure 3. Extrapolation of the dimensionless ratio
√

8t0/r0 of reference scales to the continuum

limit (open data points). The black data points were obtained using the symmetric definition of E

and the grey ones using the expression (3.1).

(see figure 2). If 〈E〉 is physical, the dimensionless ratio t0/r
2
0 must be independent of the

lattice spacing, up to corrections vanishing proportionally to a power of a.

The data plotted in figure 3 clearly show that the ratio of reference scales smoothly

extrapolates to the continuum limit. As may have been suspected, the lattice effects appear

to be of order a2. They are at most a few percent on the lattices considered and particularly

small if the symmetric definition of E is employed. At other points in time, the scaling

violations behave similarly, but tend to increase towards small t, where the smoothing

range
√

8t is only 2 or 3 times larger than the lattice spacing.

3.5 Synthesis

(a) Continuum limit. The numerical studies of the Wilson flow strongly support the con-

jecture that the gauge fields generated at positive flow time are smooth renormalized fields

(except for their gauge degrees of freedom). In the case of QCD with a non-zero num-

ber of sea quarks, similar studies however still need to be performed. Additional con-

firmation in perturbation theory and through the consideration of further observables is

evidently desirable.

(b) Scale setting. The time t0 defined through eq. (3.3) may serve as a reference scale

similar to the Sommer radius r0. With respect to the latter, t0 has the advantage that its

computation does not require any fits or extrapolations. Moreover, an ensemble of only 100

independent representative field configurations allows t0 to be obtained with a statistical

precision of a small fraction of a percent (for illustration, the values of t0/a
2 computed

using the symmetric definition of E are listed in table 1).

(c) Universality. On the lattice the definition of local gauge-invariant quantities like E is

not unique, but the results obtained in this section indicate that the differences become

irrelevant in the continuum limit (see figure 3). This kind of universality is a consequence of

– 10 –
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the fact, further elucidated in section 4, that the gauge fields generated by the Wilson flow

are smooth on the scale of the lattice spacing. The universality classes of the local fields

composed from the gauge field at fixed t/t0 are therefore determined by the asymptotic

behaviour of the fields in the classical continuum limit.

4 Functional integral and topological sectors

In lattice gauge theory, the space of gauge fields is connected and the concept of a topolog-

ical sector has therefore no a priori well-defined meaning. However, one also knows since

a long time that any classical continuous gauge field (including multi-instanton configura-

tions) can be approximated arbitrarily well by lattice fields. The sectors are hence included

in the field space but are not separated from one another.

An understanding of how exactly the sectors get divided when the lattice spacing is

taken to zero can now be achieved using the Wilson flow. The existence of the topolog-

ical sectors thus turns out to be a dynamical property of the theory rather than being a

consequence of an assumed or imposed continuity of the fields.

4.1 Field transformation

On a finite lattice, however large, the transformation

U → V = Vt0 (4.1)

is invertible and actually a diffeomorphism of the field space [4]. One can therefore perform

a change of integration variables in the QCD functional integral from the fundamental field

to the field at flow time t0. As already noted in ref. [4], the associated Jacobian can be

worked out analytically and be expressed through the Wilson action along the flow. The

expectation value of any observable O(V ) is then given by

〈O〉 =
1

Z

∫

D[V ]O(V ) e−S̃(V ), (4.2)

S̃(V ) = S(U) +
16g2

0

3a2

∫ t0

0
dt Sw(Vt), D[V ] =

∏

x,µ

dV (x, µ), (4.3)

where S(U) denotes the total action (including the quark determinants) of the theory

before the transformation.

Evidently, the functional integral may be rewritten in this way as an integral over the

gauge field at any flow time t. Setting t to the reference time t0 is however an interesting and

natural choice. In particular, the fields that dominate the transformed integral then have a

characteristic wavelength on the order of the fundamental low-energy scales of the theory.

4.2 Smoothness of the dominant fields

A quantitative measure for the smoothness of a given lattice gauge field V is

h = max
p

sp, sp = Re tr{1 − V (p)}, (4.4)

– 11 –
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Figure 4. Plot of the probability for sp [eq. (4.4)] on a given plaquette p to be above some specified

value s. From top to bottom, the three curves shown correspond to the values a = 0.1, 0.07 and

0.05 fm of the lattice spacing. The calculation was performed in the SU(3) gauge theory using the

ensembles of fields described in subsection 3.1.

the maximum being taken over all plaquettes p (as before, V (p) denotes the product of the

link variables around p). In the functional integral (4.2), all possible values of h occur, but

large values are expected to be unlikely in view of the fact that the expectation value 〈sp〉
scales proportionally to a4.

Since all terms in the action (4.3) have the same sign and favour smooth configurations,

it is certainly plausible that large plaquette values sp are strongly suppressed. The proba-

bility for sp on a given plaquette p to be larger than some specified value s in fact decreases

roughly like a10 when the lattice spacing is reduced (see figure 4). In a finite volume of

fixed physical size, the statistical weight of the field configurations with values of h beyond

a given threshold is therefore rapidly going to zero in the continuum limit, while the fields

that dominate the transformed functional integral become uniformly smooth in space.

4.3 Dynamical separation of the topological sectors

Many years ago, the space of lattice gauge fields was shown to divide into disconnected

sectors if only fields satisfying a certain smoothness condition are admitted [13, 14]. The

proof is based on a geometrical construction of a local lattice expression for the topological

charge which assumes integer values and which has the correct classical continuum limit.

In the case of QCD, the fields satisfying1

h < 0.067 (4.5)

are included in the subspace covered by the geometrical construction and thus fall into

topological sectors very much like the continuous gauge fields in the continuum the-

1The theorems proved by Phillips and Stone [14] assume a simplicial lattice. To be able to apply them

in the present context, the hypercubic cells of the lattice must be divided into simplices. An interpolation

of the gauge field to the added links is then required and can easily be accomplished using the same

interpolation methods as the ones applied elsewhere in refs. [13, 14].

– 12 –
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ory. The space of fields “between the sectors” may accordingly be characterized by the

inequality h ≥ 0.067.

Recalling the discussion in subsection 4.2 of the smoothness properties of the fields

that dominate the functional integral (4.2), the topological sectors are now seen to emerge

as a consequence of the fact that the fields with large values of h have a rapidly decreasing

weight in the integral when the lattice spacing is taken zero. In the case of the simula-

tions reported in section 3, for example, the fraction of representative fields satisfying the

bound (4.5) increases from 0% at a = 0.1 fm to 8% and 70% at a = 0.07 and 0.05 fm, re-

spectively. The asymptotic behaviour of the weight of the fields between the sectors cannot

be safely determined from these data, but the curves shown in figure 4 suggest that the

probability of finding such a configuration on lattices of a given physical size goes to zero

proportionally to a6.

4.4 Topological susceptibility

Once the functional integral (4.2) splits into a sum of integrals over effectively disconnected

sectors, the assignment of the topological charge Q to the field configurations in a represen-

tative ensemble of fields becomes unambiguous. The geometrical construction mentioned

before could be used to compute the charge, but in view of the universality property dis-

cussed at the end of section 3, a straightforward discretization of the topological density,

using the symmetric lattice expression for the field tensor Gµν , is expected to give the same

results for the moments 〈Qn〉 in the continuum limit.

On the lattices listed in table 1, the second moment 〈Q2〉 computed along these lines

is about 50 and the topological susceptibility χt turns out to be independent of the lattice

spacing within statistical errors. A fit by a constant then gives the result

χ
1/4
t = 187.4(3.9)MeV, (4.6)

which differs by less than two standard deviations from the value 194.5(2.4) MeV [16]

obtained at flow time t = 0 using a chiral lattice Dirac operator and the index theorem [15].

Moreover, as shown in a forthcoming publication, the ratios of the fourth root of the second

moments computed here and through a variant [18] of the universal formula proposed in [17]

extrapolate to 1 in the continuum limit to within a statistical uncertainty of 3%.

All these empirical results support the conjecture that the moments of the charge

distribution in the functional integral (4.2) coincide with those obtained from the index

theorem [15]–[18] and thus the ones appearing in the chiral Ward identities [19, 20]. How-

ever, while highly plausible, the equality remains to be theoretically established.

5 Concluding remarks

The results reported in this paper shed some new light on the nature of non-abelian gauge

theories and the continuum limit in lattice QCD. They are obviously incomplete in several

respects and give rise to some interesting questions. In particular, an all-order analysis

of the Wilson flow in perturbation theory will probably be required in order to achieve a

structural understanding of its renormalization properties.
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The one-loop calculation in section 2 suggests that the fields obtained at positive flow

time are renormalized fields for any number of quark flavours. So far the question was

studied numerically only in the pure gauge theory, but it may be encouraging to note that

the conjecture is true in QED, for any charged matter multiplet, as a consequence of the

gauge Ward identity.

An intriguing aspect of the transformed functional integral (4.2) is the fact that it is

dominated by smooth fields. Since the field transformation (4.1) is invertible, the integral

nevertheless encodes all the physics described by the theory. Some properties (the division

into topological sectors, for example) however become particularly transparent in this for-

mulation of the theory, while its behaviour at high energies is better discussed in terms of

the fundamental gauge field.
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A Notational conventions

The Lie algebra su(N) of SU(N) may be identified with the linear space of all anti-hermitian

traceless N ×N matrices. With respect to a basis T a, a = 1, . . . , N2 − 1, of such matrices,

the elements X ∈ su(N) are given by X = XaT a with real components Xa (repeated group

indices are automatically summed over). The structure constants fabc in the commuta-

tor relation

[T a, T b] = fabcT c (A.1)

are real and totally anti-symmetric in the indices if the normalization condition

tr{T aT b} = −1

2
δab (A.2)

is imposed. Moreover, facdf bcd = Nδab.

Gauge fields in the continuum theory take values in the Lie algebra of the gauge group.

Their normalization is usually such that gauge transformations and covariant derivatives

do not involve the gauge coupling (see, however, subsection 2.2). Lorentz indices µ, ν, . . .

in D dimensions range from 0 to D − 1 and are automatically summed over when they

occur in matching pairs. The space-time metric is assumed to be Euclidian. In particular,

p2 = pµpµ for any momentum p.

The lattice theories considered in this paper are set up as usual on a four-dimensional

hyper-cubic lattice with spacing a. In particular, lattice gauge fields U(x, µ) reside on the

links (x, µ) of the lattice and take values in the gauge group. The link differential operators
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acting on functions f(U) of the gauge field are

∂a
x,µf(U) =

d

ds
f(esXU)

∣

∣

∣

s=0
, X(y, ν) =

{

T a if (y, ν) = (x, µ),

0 otherwise.
(A.3)

While these depend on the choice of the generators T a, the combination

∂x,µf(U) = T a∂a
x,µf(U) (A.4)

can be shown to be basis-independent.

B One-loop integrals

The Feynman integrals other than E0 which contribute to 〈E〉 at order g4
0 involve an

integration over two momenta, q and r, and over at most two flow-time parameters. In all

cases the integrand is of the form

e−sq2
−ur2

−v(q+r)2 P (q, r)

q2r2(q + r)2
(B.1)

where P (q, r) is a Lorentz-invariant polynomial and s, u, v are linear combinations of the

flow-time parameters.

As already mentioned, these integrals can in principle be evaluated by substituting the

Feynman parameter representation for the propagators 1/q2, 1/r2 and 1/(q + r)2. A more

economic computation is, however, always possible using the basic integrals
∫

q
e−sq2

(q2)−α =
sα

(4πs)D/2

Γ(D/2 − α)

Γ(D/2)
, (B.2)

∫

q,r

e−sq2
−ur2

−v(q+r)2

q2
=

2

(4π)D(D − 2)(u + v)
(su + uv + vs)1−D/2. (B.3)

The second formula, for example, allows the integral

∫

q,r

e−t(q2+r2+(q+r)2)

q2r2
=

1

(4π)4(2t)2

{

8 ln 2 − 4 ln 3 + O(ǫ)

}

(B.4)

to be quickly evaluated once the propagator 1/r2 is replaced by its Feynman parameter

representation.

A special case are integrals like

∫ t

0
ds

∫

q,r

e−(t+s)(q2+r2)−(t−s)(q+r)2

q2r2
qr =

1

(4π)4(2t)2

{

1

2
− 4 ln 2 + 2 ln 3 + O(ǫ)

}

, (B.5)

whose integrand is proportional to qr. Noting

qr =
1

2

{

(q + r)2 − q2 − r2
}

, (B.6)

the factor can be traded for a differentiation with respect to the flow-time parameters.

Most of the time, this allows one integral over these parameters to be performed right

away and thus leads to simpler integrals without factors of qr.
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C Numerical integration of the Wilson flow

On a finite lattice, the space G of all gauge fields is a finite power of the gauge group and

thus itself a Lie group. The associated Lie algebra g coincides with the linear space of all

link fields with values in the Lie algebra of the gauge group. From this abstract point of

view, the flow equation (1.4) is an ordinary first-order differential equation of the form

V̇t = Z(Vt)Vt, (C.1)

where Vt ∈ G and Z(Vt) ∈ g.

The Runge-Kutta scheme described in this appendix obtains the solution of the flow

equation at times t = nǫ, n = 1, 2, 3, . . ., recursively, starting from the initial configuration

at t = 0. The rule for the integration from time t to t + ǫ is

W0 = Vt,

W1 = exp

{

1

4
Z0

}

W0,

W2 = exp

{

8

9
Z1 −

17

36
Z0

}

W1,

Vt+ǫ = exp

{

3

4
Z2 −

8

9
Z1 +

17

36
Z0

}

W2, (C.2)

where

Zi = ǫZ(Wi), i = 0, 1, 2. (C.3)

Note that this rule is fully explicit. Moreover, since the gauge field can be overwritten from

one equation to the next, and since Z0 can be overwritten by 8
9Z1 − 17

36Z0, intermediate

storage space for only one of these latter fields is required.

A straightforward calculation shows that the integration scheme (C.2) is accurate up

to errors of order ǫ4 per step. The total error of the integration up to a specified flow

time thus scales like ǫ3. Empirically one finds that the integration is numerically stable in

the direction of positive flow time, the integration errors in the link variables being on the

order of 10−6 if ǫ = 0.01.
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[13] M. Lüscher, Topology of lattice gauge fields, Commun. Math. Phys. 85 (1982) 39 [SPIRES].

[14] A. Phillips and D. Stone, Lattice gauge fields, principal bundles and the calculation of

topological charge, Commun. Math. Phys. 103 (1986) 599 [SPIRES].

[15] P. Hasenfratz, V. Laliena and F. Niedermayer, The index theorem in QCD with a finite

cut-off, Phys. Lett. B 427 (1998) 125 [hep-lat/9801021] [SPIRES].

[16] L. Del Debbio, L. Giusti and C. Pica, Topological susceptibility in the SU(3) gauge theory,

Phys. Rev. Lett. 94 (2005) 032003 [hep-th/0407052] [SPIRES].
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