Properties of 2:2 Chalcogenide Crystals with Sodium Chloride Structure

K. P. Thakur

Department of Physics, S.P. College, Dumka (S.P.), Bihar, India; present address: Department of Physics, T.N.B. College, Bhagalpur University, Bhagalpur 812007, India.

Abstract

Values of the compressibility, cohesive energy, atomization energy, force constant, i.r. absorption frequency, Debye temperature, Grüneisen parameter, Anderson–Grüneisen parameter and Moelwyn–Hughes parameter for 45 chalcogenide crystals with sodium chloride structure are reported here. These have been obtained using a logarithmic interaction potential energy function. A new method of calculation, derived on the basis of the Moelwyn–Hughes parameter, has been employed for the computation of the potential parameters, since previous methods cannot be applied to these crystals in the absence of compressibility data. The results obtained are encouraging.

Introduction and Theory

In a recent paper (Thakur 1976a) the author has reported the results of calculations of the Moelwyn-Hughes parameter and its various applications to some ionic crystals. The present communication gives the results of an extensive application of the calculated Moelwyn-Hughes parameter to 45 chalcogenide crystals having f.c.c. lattices. Values of the compressibility β_0 , force constant f, i.r. absorption frequency v_0 , Debye temperature Θ_D , cohesive energy W, atomization energy E_a , Grüneisen parameter γ , Anderson-Grüneisen parameter δ and Moelwyn-Hughes parameter C_1 of these crystals are derived on the basis of the rigid ion core interaction model. So far, only some of these properties for 15 alkaline earth chalcogenides have been reported (Mayer and Mc. Maltibie 1932; Huggins and Sakamoto 1957; Mathur et al. 1965; Gohel and Trivedi 1967; Thakur 1974a; Pandey and Pant 1975; Thakur and Pandey 1975). Because of this lack of compressibility data it is not possible to apply crystal stability and compressibility conditions to an interaction potential energy function in order to compute the various properties of these crystals. However, this difficulty has been removed recently by the introduction of a new method of calculation which does not require these data (Thakur 1976a).

In the past, many interaction potential models have been suggested with repulsive parts that are either inverse power functions or exponential functions. These earlier models have been discredited by Dobbs and Jones (1957) and recently by Thakur (1973). Ree and Holt (1973) have shown that the semi-empirical effective pair potentials of Tosi and Fumi (1964) are too 'soft' and require deeper minima when the elastic constants of the crystals are considered, while the recent perburbation calculation by Brumer and Karplus (1973) has shown that the use of only an exponential form for the overlap repulsion is an inadequate representation. Woodcock (1974) has used a generalized three-term potential corresponding to a simple polarizable ion model, which includes both an inverse power function due to Born and Landé

Chalcogenide crystal	r_0 (10 ⁻¹ nm)	$\beta_0 (10^{-12} \mathrm{Pa}^{-1})$		n	р	
		HS	Present	index	$(r_0^n \text{ units})$	
Oxides						
BaO	2.910	$12 \cdot 4$	15.03	6	0.04964	
CaO	$2 \cdot 405$	8.6	8.64	5	0.06061	
CdO	2.350		8.08	5	0.04120	
CoO	$2 \cdot 135$		$6 \cdot 11$	4	0.16562	
FeO	$2 \cdot 147$		6.22	4	0.16904	
MgO	2.105	$6 \cdot 1$	$5 \cdot 87$	4	0.15518	
MnO	2.225		6.90	4	0.18802	
NbO	$2 \cdot 105$		$5 \cdot 87$	4	0.15492	
NiO	2.085		5.71	4	0.14798	
SrO	$2 \cdot 580$	10.3	10.60	5	0.12134	
TaO	$2 \cdot 215$		6.81	4	0.19178	
TiO	2.090		5.75	4	0.14635	
UO	$2 \cdot 460$		9.23	5	0.07959	
ZrO	2.310		7.68	5	0.02768	
Selenides						
BaSe	3.300	20.7	21.71	7	0.01436	
CaSe	$2 \cdot 955$	$15 \cdot 5$	$15 \cdot 90$	6	0.06657	
CeSe	2.990		$16 \cdot 26$	6	0.07552	
LaSe	3.030		16.91	6	0.08672	
MgSe	2.725	12.0	12.43	5	0.16037	
MnSe	2.725		12.43	5	0.16037	
PbSe	3.060		17.46	8	0.00744	
SnSe	3.010		16.59	6	0.08053	
SrSe	3.115	$17 \cdot 8$	18.32	6	0.10931	
ThSe	2.935		$15 \cdot 42$	6	0.05839	
USe	$2 \cdot 875$		14.52	6	0.04124	
Sulphides						
BaS	3.195	$18 \cdot 8$	19.72	6	0.13036	
CaS	$2 \cdot 845$	13.9	14.07	6	0.03196	
CeS	2.890		14.74	6	0.04664	
LeS	2.920		15.19	6	0.05418	
MgS	$2 \cdot 600$	10.7	10.84	5	0.12396	
MnS	2.225		6.90	4	0.19426	
PbS	2.970		15.97	5	0.06043	
SrS	3.010	16.1	16.59	6	0.08053	
ThS	$2 \cdot 840$		14.01	6	0.02997	
US	2.740		12.63	5	0.16449	
ZrS	2.625		$11 \cdot 15$	5	0.13217	
Tellurides						
BaTe	3 · 495	$24 \cdot 6$	25.60	7	0.06802	
BiTe	3.235		20.45	6	0.14029	
СаТе	3.170	18.7	19.27	6	0.12439	
CeTe	3.175		19.36	5	0.11569	
LaTe	3.205		19.90	6	0.13304	
PbTe	3.225		20.28	6	0.13742	
SnTe	3.155		19.00	6	0.12044	
SrTe	3.235	21.4	20.44	7	0.00149	
UTe	3.080		17.73	6	0.09997	

Table 1. Potential parameters used in calculationsThe values of the interionic distance r_0 are taken from Kelly and Groves (1970),

(1918) and an exponential function due to Born and Mayer (1932). The repulsive core potential proposed by Woodcock is 'harder' than the inverse power and exponential functions.

In order to remove many of the criticisms levelled at the earlier potential models (Thakur 1973, 1976b), a new logarithmic potential function has recently been suggested. This model is 'harder' than that proposed by Woodcock (1974) and has been found to give reliable values for the observed properties of ionic compounds (Thakur 1973, 1974a, 1974b, 1975a, 1975b, 1975c, 1976a, 1976b; Thakur and Pandey 1974, 1975). In this model the potential energy $\phi(r)$ of an ion pair interacting with each other and with the rest of the lattice is given by (Thakur 1976b)

$$\phi(r) = -AZ_1 Z_2 e^2 r^{-1} + P \operatorname{colog}(1 - pr^{-n}), \qquad (1)$$

where A is the Madelung constant, e is the electronic charge, P and p are potential parameters, Z_1 and Z_2 are the charges on the ions with r the distance between them, and n is the greatest positive integer for which p is positive, i.e. which satisfies

$$n < H/(AZ_1 Z_2 e^2 r_0^{m-3}) + 1.$$
⁽²⁾

Here *H* and *m* are constants to be discussed in the next section and r_0 is the equilibrium interionic distance. The values of *n* thus obtained vary between 4 and 8, and are listed in Table 1 for different chalcogenide crystals. Also included in this table are the values of the parameters r_0 (from Kelly and Groves 1970) and β_0 used in the calculations.

Method of Calculation

The following relations (Thakur 1976a) have been suggested to correlate the compressibility β_0 and interionic distance r_0 for a particular group of ionic crystals:

$$C'_{1} = \frac{1}{3} [d(\ln \beta_{0})/d(\ln r_{0})]_{T}, \qquad K'\beta_{0} = r^{3C_{1}},$$
 (3a,b)

where C'_1 is the Moelwyn-Hughes parameter for the group and K' is a constant. In order to obtain the values of C'_1 and K', log β_0 has been plotted in Fig. 1 against log r_0 , from the available data of Huggins and Sakamoto (1957) for 20 crystals. It is found that points for crystals with the same structure tend to fall on a straight line, similar to the result for alkali halides (Thakur 1976a). The values of C'_1 and K' obtained from the slope and intercept of this line respectively are, for β_0 in units of 10^{-12} Pa⁻¹ and r_0 in 10^{-1} nm:

$$C'_1 = 0.968$$
, $K' = 1.4791$ for f.c.c. structure;
 $C'_1 = 0.85$, $K' = 1/1.4125$ for zinc blende structure.

From the general regularity of the curves in Fig. 1 it is assumed that the same values of C_1 and K' hold for all 45 chalcogenide crystals considered here.

From the above results for C'_1 and K', values of β_0 were computed for all the crystals from equation (3b) using the known accurate values of r_0 given by Kelly and Groves (1970). The resulting values of β_0 are compared in Table 1 with data of Huggins and Sakamoto (1957), where available.

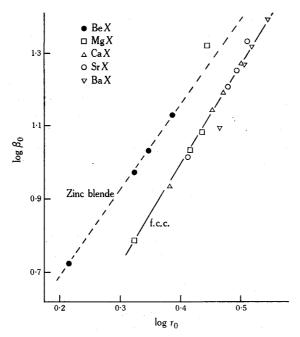


Fig. 1. Plot of $\log \beta_0$ against $\log r_0$ for alkaline earth chalcogenide crystals with f.c.c. and zinc blende structures.

In order to calculate the values of the potential parameters P and p, the following conditions (Thakur 1976*a*) were imposed on equation (1)

$$\phi'(r_0) = 0, \qquad \phi''(r_0) = Hr_0^{-m}.$$
 (4)

In these equations the primes denote derivatives with respect to r, $H = 9k_1K'$ and $m = 3C'_1 - 1$, k_1 being the crystal structure constant, which is 2 for f.c.c. lattices. Application of the conditions (4) to equation (1) yields the following expressions for the potential parameters

$$P = \frac{AZ_1 Z_2 e^2}{r_0} \frac{(r_0^n + p)}{np}, \qquad p = \frac{r_0^n \{Hr_0^{3-m} - (n-1)AZ_1 Z_2 e^2\}}{Hr_0^{3-m} + AZ_1 Z_2 e^2}.$$
 (5)

The values of p thus obtained are listed in Table 1 in units of r_0^n . The physical significance of p has been discussed in an earlier paper (Thakur 1976b).

Thus having defined the potential completely we can now proceed to compute the properties of all 45 chalcogenide crystals.

Results

Force Constant, I. R. Absorption Frequency and Debye Temperature

١

Following Krishnan and Roy (1951), the force constant f is defined as

$$f = \frac{1}{3} \left(\psi''(r_0) + 2r_0^{-1} \psi'(r_0) \right), \tag{6}$$

where $\psi(r)$ is the non-Coulombic part of $\phi(r)$. The i.r. absorption frequency v_0 is given by

$$\nu_0 = \frac{1}{2}\pi^{-1}(f/m)^{\frac{1}{2}}, \tag{7}$$

where *m* is the reduced mass. Once a value of v_0 is known, it is possible to compute the values of the Debye temperature Θ_D from the relation

$$\Theta_{\rm D} = h v_0 / k \,, \tag{8}$$

where h is Planck's constant and k Boltzmann's constant. The values of f, v_0 and Θ_D so obtained are reported in Table 2a together with the values derived by Thakur (1974a), Thakur and Pandey (1975) and Huggins and Sakamoto (1957) for comparison.

Crystal Energies

The cohesive energy W per mole is related to the potential function $\phi(r)$ by

$$W = -(N\phi(r_0) + \varepsilon), \qquad (9)$$

where N is Avogadro's number and ε is the zero-point energy. The values obtained for W using equations (1) and (9) are given in Table 2b. Experimental data for these crystals are not available, but the cyclic values compiled by Rossini *et al.* (1952) and Waddington (1959) are included in Table 2b for comparison. The values of the zeropoint energy ε used in the calculation of W were obtained from the Debye temperature data of Table 2a by the relation

$$\varepsilon = \frac{9}{8}k\Theta_{\rm D}.\tag{10}$$

The atomization energy E_a of ionic crystals is of much interest, since it gives a better idea of the stability of the crystals than the cohesive energy. Only a few theoretical and experimental attempts have been made to estimate E_a for some of these crystals (Sanderson 1967; Sinha and Thakur 1974; Thakur 1974*a*; Thakur and Pandey 1975). Values of E_a for a particular ionic crystal *AB* may also be computed from the interaction potential energy functions by the relation

$$E_{a} = W - E - I, \tag{11}$$

where E is the electron affinity for forming B^{2^-} ions and I is the ionization energy to produce A^{2^+} ions. In the present calculations the values of I have been taken from Massey (1972) and those of E from Ladd and Lee (1963, 1965); the values of E in kJ mol⁻¹ are: $O^{2^-} = 715 \cdot 5$, $S^{2^-} = 418$, $Se^{2^-} = 490$ and $Te^{2^-} = 406$.

The computed values of E_a from equation (11) are listed in Table 2b together with the available data of Sanderson (1967) and Thakur and Pandey (1975).

Grüneisen, Anderson-Grüneisen and Moelwyn-Hughes Parameters

The Gruneisen parameter γ is related to $\phi(r)$ by

$$\gamma = -\frac{1}{6}r_0 \phi'''(r_0) / \phi''(r_0), \qquad (12)$$

and the present computed values of γ from equations (1) and (12) are given in Table 2b. The Anderson-Grüneisen parameter δ was calculated using Chang's (1967) expression connecting γ and δ , which was derived on the basis of Dugdale and Macdonald's (1953) formula relating γ to the change of compressibility with volume. The results are also given in Table 2b.

Chalcogenide crystal	$f (10_4 \mathrm{N}\mathrm{m}^{-1})$		$v_0 (10^{12} \text{ Hz})$			$\Theta_{\mathrm{D}}\left(\mathrm{K}\right)$	
	Present	Calc. ^A	Present	Calc. ^A	Est. ^B	Present	Calc. ^A
Oxides							
BaO	11.6	12.0	12.5	11.6	7	599	555
CaO	16.7	$16 \cdot 5$	14.9	14.9	12	716	713
CdO	17.5		$13 \cdot 8$			662	
CoO	21.0		16.1			775	
FeO	20.7		15.9			765	
MgO	$21 \cdot 5$	21.4	18.4	18.4	16	886	882
MnO	19.3		15.4			741	
NbO	$21 \cdot 5$		15.6			746	
NiO	21.9		15.6			751	
SrO	14.6	18.7	12.8	14.5	9	616	696
TaO	19.5		14.7			707	
TiO	$21 \cdot 8$		16.7			800	
UO	16.0		$12 \cdot 8$			612	
ZrO	$18 \cdot 1$		14.2			683	
Selenides							
BaSe	9.1	6.8	5.3	4.6	4	253	219
CaSe	11.2	8 · 1	8.0	$6 \cdot 8$	7	385	327
CeSe	11.0		$5 \cdot 8$			277	
LaSe	$11 \cdot 0$		5.7			274	
MgSe	$13 \cdot 2$	18.4	10.4	12.3	10	499	590
MnSe	13.2		7.9			378	
PbSe	10.5		5.3			254	
SnSe	10.9		5.1			246	
SrSe	10.2	7.5	$6 \cdot 1$	$5 \cdot 2$	5	294	252
ThSe	$11 \cdot 4$		$5 \cdot 4$			261	
USe	11.9		5.5			265	
Sulphides							
BaS	9.7	6.6	7.4	6.2	5	355	299
CaS	12.1	15.7	6.4	11.6	8	309	556
CeS	11.8		8.3		-	398	
LaS	11.5		8.2			394	
MgS	14.4	19.0	12.6	14.5	13	605	696
MnS	19.3		12.1			579	
PbS	11.2		6.8			327	
SrS	10.9	14 · 1	$8 \cdot 4$	9.6	7	404	459
ThS	12.2		8 · 1			390	
US	13.0		$8 \cdot 4$			402	
ZrS	14 · 1		9.5			457	
Tellurides							
ВаТе	8.2	6.4	4.4	4.8	4	209	184
BiTe	9·5		4.3			205	
CaTe	9.9	9.9	6.3	6.3	6	301	303
CeTe	9.8		4.7			227	
LaTe	9.7		4.7			226	
PbTe	9.5		4.3			206	
SnTe	10.0		5.0	6.3	4	239	209
SrTe	9.5	6.4	5.3	6.3	4	253	209
UTe	10.4		4.4			210	

Table 2. Calculated properties of chalcogenide crystals

^A Calculated results from Thakur (1974a) for the oxides and from Thakur and Pandey (1975) for the other compounds.

^B Estimated values from Huggins and Sakamoto (1957).

 $E_{\rm a}$ (kJ mol⁻¹) δ C_1 W (kJ mol⁻¹) γ Chalcogenide Exp.^D Cyclic^c Present Present Present work crystal Oxides $3 \cdot 56$ 4.56976 979° 1.78BaO 3160 3.24 $4 \cdot 24$ 1.62CaO 3360 907 1060° $3 \cdot 16$ $4 \cdot 16$ 3780^a 210 1.58CdO 3420 $3 \cdot 26$ $4 \cdot 26$ 3990ª 495 1.63CoO 3610 $3 \cdot 28$ $4 \cdot 28$ 1.643920^a 560 FeO 3600 3.22 $4 \cdot 22$ 753 996° $1 \cdot 61$ MgO 3660 912° 1.683.36 $4 \cdot 36$ 545 MnO 3490 3810^a 3.22 $4 \cdot 22$ $1 \cdot 61$ NbO 3660 896 $3 \cdot 20$ $4 \cdot 20$ 4080^a 483 1.60NiO 3690 $4 \cdot 52$ 1000° 1.76 $3 \cdot 52$ 831 SrO 3160 3.38 $4 \cdot 38$ 464 1.693500 TaO $1 \cdot 59$ 3.18 $4 \cdot 18$ TiO 3880^a 995 3670 1.663.32 $4 \cdot 32$ UO 3290 3.10 $4 \cdot 10$ 3480 837 1.55ZrO Selenides 2760^b 668 690° 1.873.744.742630 BaSe $1 \cdot 82$ 3.64 $4 \cdot 64$ CaSe 2860 3030^b 636 1.85 $3 \cdot 70$ $4 \cdot 70$ 524 CeSe 2830 2800 662 1.873.744.74LaSe 1.85 $3 \cdot 70$ $4 \cdot 70$ 552° MgSe 3010 3340^b 334 $3 \cdot 70$ 4.70 $1 \cdot 85$ 3010 3300^a 297 MnSe 224 $2 \cdot 02$ $4 \cdot 04$ $5 \cdot 04$ PbSe 2880 3.72 4.72202 1.86SnSe 2810 644^d 1.93 3.86 $4 \cdot 86$ 625 2900ь SrSe 2730 3170 $1 \cdot 80$ 3.60 4.60ThSe 1.763.52 $4 \cdot 52$ USe 2930 Sulphides 1.993.984.98782 714^d 2670 BaS 4·48 2950 1.743.48 802 895 CaS 1.773.544.542910 662 CeS $3 \cdot 58$ 4.58825 1.79LaS 2890 715^d 1.76 $3 \cdot 52$ $4 \cdot 52$ 3140 531 MgS $4 \cdot 40$ $1 \cdot 69$ $3 \cdot 40$ MnS 3390 3350^a 746 761° $3 \cdot 24$ $4 \cdot 24$ 3090^a 153 1.62PbS 2740 837^d 1.863.724.72SrS 2810 780 $4 \cdot 46$ 1.73 $3 \cdot 46$ ThS 2960 3.724.721.863000 US 1.78 $3 \cdot 56$ 4.56770 ZrS 3110 Tellurides 554^d $2 \cdot 02$ $4 \cdot 04$ 5.04622 BaTe 2500 2640 $2 \cdot 02$ $4 \cdot 04$ $5 \cdot 04$ BiTe 1.983.96 4.96664^d 2690 547 CaTe 1.74 $3 \cdot 48$ $4 \cdot 48$ 364 CeTe 2580 3.99 4.99610 $2 \cdot 00$ LaTe 2660 $4 \cdot 02$ $5 \cdot 02$ 79 $2 \cdot 01$ PbTe 2650 3.92 $4 \cdot 92$ 1.962700 173 SnTe 621^d 653 $1 \cdot 84$ 3.684.68SrTe 2670 $4 \cdot 82$ 1.94 $3 \cdot 82$ 2760

Table 2 (Continued)

(b) Cohesive Energy W, Atomization Energy E_a, Grüneisen Parameter y, Anderson-Grüneisen parameter δ and Moelwyn–Hughes parameter C_1

^c Cyclic results from (a) Wadington (1959) and (b) Rossini et al. (1952).

UTe

^D Experimental results from (c) Sanderson (1967) and (d) Thakur and Pandey (1975).

The values of the Moelwyn-Hughes parameter C_1 have been calculated for the potential (1) using the relation (Thakur 1975d)

$$C_1 = 1 - (r_0^3 \beta_0 / 27V) \phi^{\prime\prime\prime}(r_0).$$
⁽¹³⁾

(It should be noted that the Moelwyn-Hughes parameter C_1 was previously referred to as the Rao-Keer constant.)

Unfortunately there are no experimental data for γ , δ or C_1 available in the literature with which the results in Table 2b can be compared.

Discussion

The presently available information on chalcogenide crystals is far from complete, but this paper adds a little to the physics of these crystals by predicting the values of the parameters β_0 , f, v_0 , Θ_D , W, E_a , γ , δ and C_1 . Where comparisons can be made, the computed values are found to be in fair agreement with the previous data.

Many previous workers have made attempts to obtain values of β_0 both theoretically and experimentally, but their results are conflicting (Huggins and Sakamoto 1957) and, moreover, are only available for some of the alkaline earth chalcogenides. The present computed values of β_0 are in satisfactory agreement with the few results of Huggins and Sakamoto (1957) and it is expected that the remaining values should be a reliable guide in the absence of further data.

Since experimental values of f, v_0 and Θ_D are not available, the present results have been compared here with the theoretical values of Thakur (1974*a*) and Thakur and Pandey (1975) and the estimated values of Huggins and Sakamoto (1957). The overall agreement is reasonable. Because the frequency spectrum and consequently the Debye temperature of a solid is dependent upon the relative masses of the vibrating ions, the Θ_D values for these crystals have been plotted against their reduced masses in Fig. 2. The compounds have been grouped on the basis of their anions. The nature of the plot is similar to that for the alkali metal halides (Thakur and Thakur 1976). It is found that all members of a group tend to fall on a straight line, this regularity being most pronounced for the telluride group; the crystal groups in order of regularity are ATe, AO, ASe and AS. It is seen that the effect of the reduced mass on the Θ_D value is more pronounced for the lighter chalcogenide ions (O²⁻, S²⁻) as the mass of the cation increases, and thus the absolute value of the slope decreases as we pass from oxide to telluride group. These curves may be useful for checking Θ_D data where other information is not available.

The computed values of W listed in Table 2b are about 10% smaller than the cyclic values of Waddington (1959) and Rossini *et al.* (1952), except for MnS. This probably indicates that van der Waals terms should be included in equation (1). It is found that the cohesive energy of a particular cation A varies in general as AO > AS > ASe > ATe. There is only one exception to this: the value of W for PbSe is greater than that for PbS.

The present values of E_a compare satisfactorily with the experimental data although, except for BaS, BaTe and SrTe, the calculated results are smaller. This further suggests that inclusion of van der Waals terms in equation (1) would improve the agreement. Indeed the van der Waals energy is important for heavier crystals, but because of the lack of data for the relevant constants it was not possible to include them in the present calculations. However, a rough estimate of the van der Waals energy can probably be made from the differences between the cyclic and calculated values of W in Table 2b or from the differences between the experimental and calculated values of E_a . These differences suggest that the contribution of the van der Waals energy could be about 10% of the total value of W.

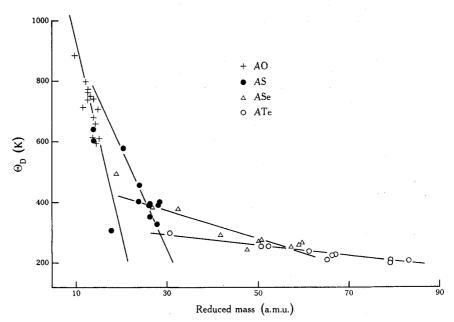


Fig. 2. Plot of the Debye temperature Θ_D against reduced mass for the chalcogenide crystals considered.

The calculated values of the Grüneisen parameter in Table 2b are seen to lie in a narrow band about $\gamma = 1.7$. There are no experimental data with which to draw comparison, but the present results indicate that γ depends upon the specific volume since the values tend to increase as we move from oxides to tellurides.

To summarize, the well-tested logarithmic potential energy model, when used with a method of calculation based on the Moelwyn–Hughes parameter, has been shown to yield encouraging results for chalcogenide crystals. Since previous methods cannot be applied in the absence of compressibility data, this model is expected to be useful for calculating the properties of a large number of such crystals.

Acknowledgment

The author thanks Sri Phul Chandra Thakur for his help in typing the manuscript.

References

Born, M., and Landé, A. (1918). Verh. Dtsch. Phys. Ges. 20, 210.
Born, M., and Mayer, J. E. (1932). Z. Phys. 75, 1.
Brumer, P., and Karplus, M. (1973). J. Chem. Phys. 58, 3903.
Chang, Y. A. (1967). J. Phys. Chem. Solids 28, 697-701.
Dobbs, E. R., and Jones, G. O. (1957). Rep. Prog. Phys. 20, 516-22.
Dugdale, J. S., and Macdonald, D. K. C. (1953). Phys. Rev. 89, 832-4.
Gohel, V. B., and Trivedi, M. D. (1967). Indian J. Pure Appl. Phys. 5, 265.

- Huggins, M. L., and Sakamoto, Y. (1957). J. Phys. Soc. Jpn 12, 241-51.
- Kelly, A., and Groves, G. W. (1970). 'Crystallography and Crystal Defects' (Longmans: London).
- Krishnan, K. S., and Roy, S. K. (1951). Proc. R. Soc. London A 207, 447.
- Ladd, M. F. C., and Lee, W. H. (1963). Prog. Solid State Chem. 1, 37.
- Ladd, M. F. C., and Lee, W. H. (1965). Prog. Solid State Chem. 2, 378.
- Massey, A. G. (1972). 'The Typical Elements' (Penguin: Middlesex).
- Mathur, S., Saxena, S. C., and Kachhava, C. M. (1965). Proc. Nat. Inst. Sci. India A 31, 354.
- Mayer, J. E., and Mc. Maltbie, M. (1932). Z. Phys. 75, 748.
- Pandey, J. D., and Pant, U. R. (1975). Vijnana Parishad Anusandhan Patrika 18, 81-3.
- Ree, F. H., and Holt, A. C. (1973). Phys. Rev. B 8, 826.
- Rossini, F. D., Wagman, D. D., Evans, W. H., Levina, S., and Jaffe, I. (1952). 'Selected Values of Chemical Thermodynamic Properties' Circ. Natl Bur. Stand: No. 500 (U.S. Govt. Printing Office: Washington, D.C.)
- Sanderson, R. T. (1967). 'Inorganic Chemistry' (Reinhold: New York).
- Sinha, S. P., and Thakur, K. P. (1974). Indian J. Pure Appl. Phys. 12, 387-9.
- Thakur, K. P. (1973). Indian J. Pure Appl. Phys. 11, 549-51.
- Thakur, K. P. (1974a). J. Inorg. Nucl. Chem. 36, 2171-3.
- Thakur, K. P. (1974b). Indian J. Chem. 12, 376-8.
- Thakur, K. P. (1975a). Acta Crystallogr. A 31, 540-2.
- Thakur, K. P. (1975b). Curr. Sci. India. 44, 45-6.
- Thakur, K. P. (1975c). Acta Phys. Pol. A 48, 419-21.
- Thakur, K. P. (1975d). Z. Phys. Chem. 256, 529-30.
- Thakur, K. P. (1976a). Acta Crystallogr. A 32, 363-7.
- Thakur, K. P. (1976b). Aust. J. Phys. 29, 39-50.
- Thakur, K. P., and Pandey, J. D. (1974). J. Chim. Phys. Phys. Chim. Biol. 71, 850-3.
- Thakur, K. P., and Pandey, J. D. (1975). J. Inorg. Nucl. Chem. 37, 645-9.
- Thakur, K. P., and Thakur, L. (1976). Indian J. Chem. A 14, 97-9.
- Tosi, M. P., and Fumi, F. G. (1964). J. Phys. Chem. Solids 25, 31-43, 45.
- Waddington, T. C. (1959). Adv. Inorg. Chem. Radio Chem. 1, 158.
- Woodcock, L. V. (1974). J. Chem. Soc. Faraday Trans. (2) 70, 1405-10.

Manuscript received 24 August 1976