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A b s t r a c t

Finite version of Random Domino Automaton – a recently proposed

toy model of earthquakes – is investigated in detail. Respective set of equa-

tions describing stationary state of the FRDA is derived and compared with

infinite case. It is shown that for a system of large size, these equations

are coincident with RDA equations. We demonstrate a non-existence of ex-

act equations for size N ≥ 5 and propose appropriate approximations, the

quality of which is studied in examples obtained within the framework of

Markov chains.

We derive several exact formulas describing properties of the automa-

ton, including time aspects. In particular, a way to achieve a quasi-periodic

like behaviour of RDA is presented. Thus, based on the same microscopic

rule – which produces exponential and inverse-power like distributions – we

extend applicability of the model to quasi-periodic phenomena.

Key words: stochastic cellular automaton, avalanches, cellular automata –
exact solutions, toy model of earthquakes, Markov chains.

1. INTRODUCTION

The Random Domino Automaton (Białecki and Czechowski 2013, 2014) is a
stochastic cellular automaton with avalanches. It was introduced as a toy model
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of earthquakes, but can be also regarded as an substantial extension of 1-D
forest-fire model proposed by Drossel and Schwabl (1992), see also Drossel
et al. (1993) and Malamud et al. (1998).

A remarkable feature of the RDA is the explicit one-to-one relation be-
tween details of the dynamical rules of the automaton (represented by rebound
parameters μi/ν defined in cited article and also below) and the produced
stationary distribution ni of clusters of size i, which implies a distribution of
avalanches. It has already been shown how to reconstruct details of the “micro-
scopic” dynamics from the observed “macroscopic” behaviour of the system
(Białecki and Czechowski 2013, Białecki 2013).

As a field of application of RDA we studied a possibility of constructing
the Ito equation from a given time series and – in a broader sense – applicabil-
ity of Ito equation as a model of natural phenomena. For RDA – which plays
a role of a fully controlled stochastic natural phenomenon – the relevant Ito
equation can be constructed in two ways: derived directly from equations of
RDA and by a histogram method from time series generated by RDA. Then
these two results are compared and investigated in Czechowski and Białecki
(2012a,b).

Note that the set of equations of the RDA in a special limit case reduces to
the recurrence, which leads to known integer sequence – the Motzkin numbers,
which establishes a new, remarkable link between the combinatorial object and
the stochastic cellular automaton (Białecki 2012).

In the present paper a finite version of Random Domino Automaton is
investigated. The mathematical formulation in finite case is precise and the
presented results clarify which formulas are exact and allow to estimate ap-
proximations we impose in infinite case presented in Białecki and Czechowski
(2013). We also show, that equations of finite RDA can reproduce results
of Białecki and Czechowski (2013), when the size N of the system is in-
creasing and distributions satisfy an additional assumption ( ni → 0 for
large i).

On the other hand, a time evolution of Finite RDA can exhibit a periodic-
like behaviour (the assumption ni → 0 for large i is violated), which is a novel
property. Thus, based on the same microscopic rules, depending on a choice of
parameters of the model, a wide range of properties is possible to obtain. In
particular, such behaviour is interesting in the context of recurrence parame-
ters of earthquakes, see, e.g., Weatherley (2006) and Parsons (2008). For other
simple periodic-like models, see Tejedor et al. (2008) and Vazquez-Prada et al.
(2002).

The finite case makes an opportunity to employ Markov chains techniques
to analyse RDA. Investigating the automaton in Markov chains framework we
arrive at several novel conclusions, in particular related to expected waiting
times for some specified behaviour.
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This article completes and substantially extends previous studies of RDA
on the level of mathematical structure. We analyse properties of the automaton,
including those related to time evolution, as a preparation for further prospective
comparisons with natural phenomena, including earthquakes. An application of
the model to the universal distribution of recurrence time for earthquakes is the
topic of the forthcoming paper.

The plan of the article is as follows. In Section 2 we define the finite RDA
and in Section 3 we present respective equations for finite RDA. In Section 4 we
will specify them for some chosen cases. In Section 5 we will shortly describe
Markov chains setting and describe time aspects of FRDA. Several examples are
presented in Section 6. The last Section 7 contains conclusions and remarks.
In the Appendix we show non existence of exact equations for RDA of size
N ≥ 5.

2. FINITE RDA

The rules for Finite Random Domino Automaton (Białecki and Czechowski
2013) are as follows. We assume:
• space is 1-dimensional and discrete – consists of N cells;
• periodic boundary conditions (the last cell is adjacent to the first one);
• cell may be in one of two states: empty or occupied by a single ball;
• time is discrete and in each time step an incoming ball hits one arbitrarily
chosen cell (each cell is equally probable).

The state of the automaton changes according to the following rule:
• if the chosen cell is empty, it becomes occupied with probability ν; with
probability (1 − ν) the incoming ball is rebounded and the state remains un-
changed;
• if the chosen cell is occupied, the incoming ball provokes an avalanche with
probability μ (it removes balls from hit cell and from all adjacent cells); with
probability (1 − μ) the incoming ball is rebounded and the state remains un-
changed.

The parameter ν is assumed to be a constant but the parameter μ is al-
lowed to be a function of size of the hit cluster. The way in which the prob-
ability of removing a cluster depends on its size strongly influences evolution
of the system and leads to various interesting properties, as presented in the
following sections. We note in advance that in fact there is only one effective
parameter μ/ν which affects properties of the automaton. Changing of μ and
ν proportionally in a sense corresponds to a rescaling of time unit.

A diagram shown below presents an automaton of size N = 12, with
three clusters (of size 1, 2, and 4) in time t. An incoming ball provokes an
relaxation of the size 2 – the size of an avalanche is equal to the number of cells
changing their state. Thus in time t+1 there are two clusters (of size 1 and 4).
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↓•
time = t ↪→ • • • • • • • ←↩

time = t+ 1 ↪→ • • • ↓ ↓ • • ←↩
• •

Denote by ni, i = 1, . . . , N, the number of clusters of length i, and by n0
i ,

i = 1, . . . , N the number of empty clusters of length i. Due to periodic bound-
ary conditions, the number of clusters is equal to the number of empty clusters
in the lattice if two cases are excluded – when the lattice is full (single cluster of
size N) and when the lattice is empty (single empty cluster of size N). Hence
for

nR =

N−1∑
i=1

ni , and n0
R =

N−1∑
i=1

n0
i (1)

we have
nR = n0

R . (2)

The density ρ of the system is defined as

ρ =
1

N

N∑
i=1

nii . (3)

In this article we investigate a stationary state of the automaton and hence the
variables ni, nR, ρ and others are expected values and do not depend on time.

3. EQUATIONS FOR FINITE RDA

In this section we derive equations describing stationary state of finite RDA.
The general idea of the reasoning presented below is: the gain and loss terms
balance one another.

3.1 Balance of density ρ

The density ρ may increase only if an empty cell becomes occupied, and the
gain per one time step is 1/N. It happens with probability ∼ ν(1−ρ). Density
losses are realized by avalanches and may be of various size. The effective loss
is a product of the size i of the avalanche and probability of its appearance
μi(nii)/N. Any size i contribute, hence the balance of ρ reads

ν(1− ρ) =
1

N

N∑
i=1

μinii
2 . (4)
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We emphasise, the above result is exact – no correlations were neglected. Its
form is directly analogous to the respective formula in Białecki and Czechowski
(2013).

3.2 Balance of the total number of clusters
Gain. A new cluster (can be of size 1 only) can be created in the interior of
empty cluster of size ≥ 3.

↪→ · · · | • | |
(i−2) cells = interior︷ ︸︸ ︷

| · · · · · · | |︸ ︷︷ ︸
i

| • | · · · ←↩

If the empty cluster is of size N, then each cell is in interior. Summing up
contributions for all empty clusters, the probability is

∼
N−1∑
i=3

ν

(
i− 2

i

)
n0
i i

N
+ νn0

N , (5)

which can take a form (for N ≥ 3 )

∼ ν(1− ρ)− 2ν
nR

N
+ ν

n0
1

N
. (6)

Loss. Two ways contribute: joining a cluster with another one and removing a
cluster due to avalanche.

Joining of two clusters can occur if there exists an empty cluster of length 1
between them. The exception is when the empty 1-cluster is the only one empty
cluster, and the system consists of a single cluster of length N − 1. Hence, the
probability of joining two clusters is

∼ ν

(
n0
1

N
− nN−1

)
. (7)

The probability of avalanche is just

∼
N∑
i=1

μi
nii

N
. (8)

By gathering these terms one obtains equation for the balance of the total
number of clusters n

N(1− ρ)−
N∑
i=1

μi

ν
nii+ nN−1 = 2nR . (9)

Again we emphasise that the above result is exact – no correlations were
neglected. The finite size of the system is reflected by the appearance of
(2nR − nN−1) instead of 2n in the respective formula in Białecki and
Czechowski (2013).
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3.3 Balance of ni s
Loss. There are two modes.
(a) Enlarging – an empty cluster on the edge of an i-cluster becomes occupied.
There are two such empty clusters except for the case when system contains a
single cluster of length N − 1. Hence, the respective rates are

∼2ν
ni

N
i = 1, . . . , N − 2 , (10)

∼ν
nN−1

N
i = N − 1 . (11)

(b) Relaxation rate for any i = 1, . . . , N is given by

∼ μi
ini

N
. (12)

Gain. Again, there are two modes.
(a) Enlarging. For N ≥ 3, there are the following rates depending on the size
i of the cluster

∼ν(1− ρ)− 2ν
nR

N
+ ν

n0
1

N , i = 1 , (13)

∼ 2ν
ni−1

N
αE
i−1 , 2 ≤ i ≤ N − 1 , (14)

∼ν
nN−1

N
, i = N , (15)

where αE(i) is a probability that the size of empty cluster adjacent to the
i-cluster is bigger than 1. It is clear that

αE
N−2 = 1 and αE

N−1 = 0 . (16)

Formula 15 does not have a factor 2, because there is only one empty cluster
(of size 1).
(b) Merger of two clusters up to the cluster of size i. Two clusters: one of size
k ∈ {1, 2, . . . , (i − 2)} and the other of size ((i − 1) − k) will be combined
if the ball fills an empty cell between them.

↪→ · · · | |
k︷ ︸︸ ︷

• | · · · | • | |
(i−1−k)︷ ︸︸ ︷

• | • | · · · | •︸ ︷︷ ︸
i

| | · · · ←↩

The probability is proportional to the number of empty 1-clusters between
k-cluster and (i− 1− k)-cluster,

∼ ν
n0
1

N
γE
i 3 ≤ i ≤ N − 1 , (17)
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where γEi is a probability of such merger. For i = N there is a single cluster
in the lattice (there are no two clusters to merge) – filling the gap between ends
of (N − 1)-cluster is already considered in (a).

By gathering the terms, one obtains

n1 =
1

μ1

ν + 2

(
N(1− ρ)− 2nR + n0

1

)
, (18)

n2 =
1

2μ2

ν + 2
2n1α

E
1 , (19)

ni =
1

μi

ν i+ 2

(
2ni−1α

E
i−1 + n0

1γ
E
i

)
, (20)

nN−1 =
1

μN−1

ν (N − 1) + 1

(
2nN−2 + n0

1γ
E
N−1

)
, (21)

nN =
1

μN

ν N
nN−1 , (22)

where 3 ≤ i ≤ (N − 2).
The last Eq. 22 has a simple explanation. The state with all cells being

occupied (corresponding to nN ) can be achieved only from the state with a
single empty cell (corresponding to nN−1) with probability ν(1/N). On the
other hand, the automaton leaves the state with all cells being occupied with
probability μN .

Note that Eqs. 18 and 22 are exact. Correlations in the systems reflect an
appearence of multipliers αE

i and γEi . Their values depend on possible con-
figurations of states of the automaton. As shown in the Appendix, for N ≥ 5
exact formulas for αE

i and γEi as functions of ni s do not exist. Hence, it is
necessary to propose approximated formulas.

A mean field type approximation for αE
i is

αE
i ≈ αA

i =

(
1− n0

1∑N−i
k=1 n0

k

)
. (23)

For a given cluster of size i, the probability of the appearance of an empty
cluster of size 1 is calculated as proportional to the number of empty 1-clusters
divided by the sum of the numbers of all empty clusters with size not exceeding
N − 1, because there is no room for larger.

When merger of two clusters up to a cluster of size i is considered, the
room denoted by A is of size (N − 2− (i− 1− k)) and the room denoted by
B is of size (N − 2− k) – see a diagram below.

↪→
A︷ ︸︸ ︷

· · · |︸︷︷︸
B

| • | · · · | •︸ ︷︷ ︸
k

| |
(i−1−k)︷ ︸︸ ︷

• | • | · · · | • |
A︷︸︸︷

| · · ·︸ ︷︷ ︸
B

←↩
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Hence a mean field type approximation for γEi is of the form

γE
i ≈ γA

i =

i−2∑
k=1

(
nk∑N−(i−1−k+2)

j=1 nj

· ni−1−k∑N−(k+2)
j=1 nj

)
. (24)

It is also instructive to consider another approximation

γE
i ≈ γAR

i =

i−2∑
k=1

(
nk

nR
· ni−1−k

nR

)
. (25)

Section 6 contains quantitative estimation of proposed approximations. Com-
parison of this approximation with exact results for small sizes N is discussed
in Section 7.

3.4 Correspondence to a limit N −→ ∞
In the paper Białecki and Czechowski (2013) an assumption of independence
of clusters was considered. To have it adequate, it is required that there are
no limitations in space, like those encountered when formulas 23 and 24 were
considered. For systems that are large enough, i.e., when N −→ ∞, an empty
cluster adjacent to a given i-cluster can be of any size, and thus

αE
i ≈ α =

(
1− n0

1∑∞
k=1 n

0
k

)
=

(
1− n0

1

n

)
. (26)

This is consistent with the requirement that ni −→ 0 when i −→ ∞, which
is required to have moments of the ni s convergent. Similarly,

γE
i ≈ γ(i) =

i−2∑
k=1

(nk

n
· ni−1−k

n

)
. (27)

These formulas substituted into 18-20 give the respective set of equations con-
sidered in Białecki and Czechowski (2013). The same reasoning can be applied
to balance equations. The form of Eq. 4 is left unchanged under the limit. For
Eq. 9, (2nR−nN−1) −→ 2n, and it becomes of the form presented in Białecki
and Czechowski (2013).

4. SPECIAL CASES

For a fixed form of the rebound parameters the equations describing the au-
tomaton can be written in more specific form, in particular the balance Eqs. 4
and 9, as well as formulas for average cluster size

〈i〉 =
∑N

i=1 nii∑N
i=1 ni

=
Nρ

nR + nN
(28)



PROPERTIES OF A CA MODEL OF EARTHQUAKES 931

and average avalanche size

〈w〉 =
∑N

i=1 μinii
2∑N

i=1 μinii
. (29)

We emphasize, these formulas are exact – correlations are encountered. We
consider three special cases investigated in detail and illustrated by examples
below.

� μ = const.

For μ = const. and ν = const. Eq. 4 is of the form

(1− ρ) =
1

N

μ

ν

N∑
i=1

nii
2. (30)

and Eq. 9

N(1− ρ(1 +
μ

ν
)) + nN−1 = 2nR. (31)

Also formulas for 〈i〉 and 〈w〉 are simplified only a little.

� μ(i) = δ/i where θ = δ/ν = const.

Equation 4 is of the form
(1− ρ) = θρ, (32)

hence the density is given by remarkably neat (end exact) formula

ρ =
1

1 + θ
. (33)

Note that there is no dependence on the size of the system N ; for N −→ ∞
it remains the same.

Equation 9 can be written as

N
θ

1 + θ
= (2 + θ)nR, (34)

where we use Eqs. 22 and 33. Hence the formula for nR is of the form

nR = N
θ

(θ + 1)(θ + 2)
(35)

in direct analogy with n in N −→ ∞ case (Białecki and Czechowski 2013).
Thus, nR plays the role of n, as indicated also in balance of n1 Eq. 18. The
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formula for n is

n = nR + nN = N
θ(1 + ε)

(θ + 1)(θ + 2)
where ε =

nN

nR
. (36)

The average cluster size is given by

〈i〉 = 1

1 + ε

(
1 +

2

θ

)
. (37)

The average avalanche size is equal to the average cluster size

〈w〉 = 〈i〉 , (38)

because each cluster has the same probability to be removed from the lattice.
The above formulas are exact (include correlations) and posses well defined

limit when N −→ ∞ (which imply ε −→ 0). Note also that variables ρ and
nR depend on single parameter θ. Formulas with dependence on θ can be
rewritten as functions of density ρ.

� μ(i) = η/i2 and χ = σ/ν = const.

Equation 4 is of the form

N(1− ρ) = χ(nR + nN ) . (39)

Equation 9 can be written as

N(1− ρ) = 2nR − χ
1

N
nN + χ

N∑
i=1

ni

i
(40)

where Eq. 22 is used, namely nN−1 = χ 1
N nN .

The average cluster size is

〈i〉 = χ
ρ

1− ρ
, (41)

and the average avalanche size is

〈w〉 = 1(
1 + σ

N

)− (1− σ) 2χ
, (42)

where
σ =

nN

nR + nN
=

ε

ε+ 1
. (43)

Note that also these formulas are exact.
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5. FINITE RDA AS A MARKOV CHAIN

5.1 General settings
Finite Random Domino Automaton is a Markov chain, hence we use the re-
spective framework to compute examples in an exact way and derive several
important formulas for time aspects of the evolution of the system.

In general, for the lattice of size N there are 2N states, because each of
N cells may be empty or occupied. For N = 4, an exemplary state is

↪→ | | • | | • | ←↩

where the assumed periodic boundary conditions are depicted by hook-arrows.
For periodic boundary conditions it is irrelevant to distinguish between

states which differ by a translation only. Hence, for example, we consider the
following states equivalent:

↪→ | | • | | • | • | ←↩ ≡ ↪→ | • | | • | | • | ←↩

Thus the states ai are defined up to translational equivalence (see Tables 1
and 2). The label numbers are assigned to the states, as shown in tables. Further
reduction of the number of states using reflections can be done, but it is not very
efficient procedure. We do not perform it, keeping symmetrical states separate.
They deliver a simple computational check – their probabilities are necessarily
equal.

Such space of states for the finite random domino automaton is irreducible,
aperiodic and recurrent. The transition matrix P is defined by

[P]ij = probability of transition ai −→ aj (44)

For N = 3 the transition matrix is of the form

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

1− ν ν 0 0
μ1

3
1− μ1

3
− 2ν

3

2ν

3
0

2μ2

3
0 1− 2μ2

3
− ν

3

ν

3

μ3 0 0 1− μ3

⎞
⎟⎟⎟⎟⎟⎟⎠ (45)

T a b l e 1

States for the size of the lattice N = 3

State number Example Multiplicity Contributing to

1 ↪→ | | | | ←↩ 1 n0
3

2 ↪→ | | | • | ←↩ 3 n1, n
0
2

3 ↪→ | | • | • | ←↩ 3 n2, n
0
1

4 ↪→ | • | • | • | ←↩ 1 n3
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T a b l e 2

States for the size of the lattice N = 5

State number Example Multiplicity Contributing to

1 ↪→ | | | | | | ←↩ 1 n0
5

2 ↪→ | | | | | • | ←↩ 5 n1, n
0
4

3 ↪→ | | | | • | • | ←↩ 5 n2, n
0
3

4 ↪→ | | | • | | • | ←↩ 5 n1, n
0
1, n

0
2

5 ↪→ | | | • | • | • | ←↩ 5 n2, n
0
2

6 ↪→ | | • | | • | • | ←↩ 5 n1, n2, n
0
1

7 ↪→ | | • | • | • | • | ←↩ 5 n4, n
0
1

8 ↪→ | • | • | • | • | • | ←↩ 1 n5

where entries are found from analysis of transition probability of all possible
states ai (see Table 1).

For N = 5 the transition matrix P is

1

5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5−5ν 5ν 0 0 0 0 0 0

μ1 5−μ1−4ν 2ν 2ν 0 0 0 0

2μ2 0 5−2μ2−3ν 0 2ν ν 0 0

0 2μ1 0 5−2μ1−3ν ν 2ν 0 0

3μ3 0 0 0 5−3μ3−2ν 0 2ν 0

0 2μ2 μ1 0 0 5−2μ2−μ1−2ν 2ν 0

4μ4 0 0 0 0 0 5−4μ4−ν ν

5μ5 0 0 0 0 0 0 5−5μ5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(46)

The stationary distribution is given by

v · P = v. (47)

The number of states increase rapidly with N : for N = 6 there are 14
states, for N = 7 there are 20 states, and for N = 10 there are 108 states.
The number of states for any N is bigger than 2N/N, because translational
symmetry of states is at most N, but there are always states with smaller sym-
metry, like empty state and fully occupied state. Thus practical usage of Markov
chain settings for calculations is rather limited without a systematic procedure
of obtaining a transition matrix P, which is generally nontrivial. This is one of
the reasons for developing more handy framework presented in Białecki and
Czechowski (2013) and here. On the other hand, the framework of Markov
chains is very handy in order to investigate various properties of the system,
as presented below.
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5.2 Expected time of return
As the system evolves, it hits a given state many times. Here we consider ex-
pected value of the time of return from state with density ρ = 0 to itself and
next from the state with ρ = 1 to itself. Starting from state 1 (state with ρ = 0)
the next state (different from state 1) contains a single 1-cluster only. This state
– denoted by label 2 – has density ρ = 1/N. Expected time for this change is
1/ν.

Let τi be the expected time to hit state 1 starting in state i. Then τ1 = 0
and for i = 1

τi = E(time to hit 1 | start in i)

= 1 +
∑
k

pikE(1|k) = 1 +
∑
k

pikτk , (48)

where E(1|k) = E(time to hit 1 | start in k). After solving this system of equa-
tions, the return time is

t1→1 = 1/ν + τ2. (49)

Similarly, for state with ρ = 1 (state L) the next state (different from
state L) is the empty state (with ρ = 0) and

tL→L = 1/μN + τ̂1 , (50)

where τ̂1 is the expected time to hit state L starting in state 1. The respective
equation to determine τ̂i for i = L reads

τ̂i = 1 +
∑
k

pik τ̂k , (51)

and obviously τ̂L = 0. Note that the expected time tL→L is equal to expected
time of return from state 1 to state 1 through state L :

tL→L = t1→L→1 . (52)

The expected time between two consecutive avalanches is

tav =
〈w〉+ 1

1− Pr
, (53)

where Pr is the probability that the incoming ball is rebounded both form
empty or occupied cell (see Table 3):

Pr = (1− ρ)(1− ν) +
1

N

N∑
i=1

nii(1− μi) . (54)
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Note that (1 − Pr) is equal to the sum of the probabilities of triggering an
avalanche and the probability that an empty cell becomes occupied, hence

Pr +
1

N

N∑
i=1

μinii+ (1− ρ)ν = 1 . (55)

Formula 53 can be derived as follows. In time between two consecutive
avalanches, on average, (tav(1−Pr)−1) cells become occupied in the system
– it receives one ball per a time step, part of them are rebounded and one ball
triggers the avalanche. An avalanche is reducing the number of occupied cells
by 〈w〉 . These two quantities compensate for each other, giving 53.

On the other hand, the expected time between two consecutive avalanches
is equal to the inverse of the probability of triggering an avalanche

tav =

(
1

N

N∑
i=1

μinii

)−1

. (56)

Both expressions given in 53 and 56 are equal to each other.

5.3 Frequency distribution of avalanches
The probability of states obtained from condition 47 allows to determine the
distribution of frequency of avalanches. The frequency fi of the avalanche of
size i is given by the sum of products of probabilities vk of state k and re-
spective transition probability pkj to the appropriate states j for all states that
transition k −→ j produce the avalanche of size i.

For example, for N = 5, as can be seen in Table 2, transitions 2 −→ 1,
4 −→ 2, and 6 −→ 3 result in an avalanche of size 1, transitions 3 −→ 1 and
6 −→ 2 give an avalanche of size 2, transition 5 −→ 1 of size 3, 7 −→ 1

T a b l e 3

Probabilities of all four possibilities occurring

in a single time step during evolution of the automaton

Probability of Value

rebound – occupied cell 1
N

∑N
i=1 nii(1− μi)

rebound – empty cell (1− ρ)(1− ν)

occupation of empty cell (1− ρ)ν

trigerring an avalanche 1
N

∑N
i=1 μinii
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of size 4, and 8 −→ 1 of size 5. Hence

f1 = v2μ1/5 + v42μ1/5 + v6μ1/5 , (57)

f2 = v32μ2/5 + v62μ2/5 , (58)

f3 = v53μ3/5 , (59)

f4 = v74μ4/5 , (60)

f5 = v8μ5 , (61)

where respective pkj are taken from transition matrix 46.
The average time ti between two avalanches of size i is given by

ti = 1/fi , (62)

in particular, for a maximum size N

tL→L = tN . (63)

The average time between (any) consecutive avalanches given by formula
56 may be also calculated as

tav =

(
N∑
i=1

t−1
i

)−1

, (64)

because the probability of an avalanche of any size is just a sum of probabili-
ties of all possible avalanches. In this way one can calculate also average time
between any two consecutive avalanches of prescribed size – for example, size
4 and 5 (or any other subset of possible sizes).

6. EXAMPLES

Below we present several examples to illustrate properties of finite RDA as well
as to demonstrate application of the schemes outlined above.

� N = 3

This is the simplest non-trivial, warm-up example. For N = 3 the general re-
sults – i.e., for arbitrary μ1, μ2, μ3, and ν – can be calculated explicitly. Us-
age of equations 18-22 leads to exact results as presented below (see Appendix).
The same can be also obtained from Markov chains framework. Equations 4, 9,
and 22 give

n1 = 3

(
μ2

ν
+

1

2

)
/D , (65)

n2 = 3/D , (66)

n3 =

(
ν

μ3

)
/D , (67)
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where

D =
11

2
+

μ1

2ν
+ 5

μ2

ν
+

μ1μ2

ν2
+

ν

μ3
.

From inspecting of Table 1 it is evident that n0
1 = n2, n0

2 = n1, and n0
3 =

1− n1 − n2 − n3 (all posibilities sum up to 1), hence

n0
3 =

(
1 +

μ1

2ν
+ 2

μ2

ν
+

μ1μ2

ν2

)
/D. (68)

General formulas for expected times of return are

t1→1 =
1

ν

(
1 +

2ν2 + 9μ3ν + 6μ2μ3

μ3(μ1 + 2ν)(2μ2 + ν)

)
, (69)

tL→L =
1

ν

(
ν

μ3
+

11

2
+

μ1

2ν
+ 5

μ2

ν
+

μ1μ2

ν2

)
. (70)

The ratio tL→L/t1→1 is

tL→L/t1→1 =
1

2

(μ1

ν
+ 2

)(
2μ2

ν
+ 1

)
. (71)

Note that it does not depend on μ3. If the probability of triggering an avalanche
of size 1 and 2 is small comparing to the probability of occupation of an empty
cell (i.e., μ1/ν ≈ 0 and μ2/ν ≈ 0) then tL→L ≈ t1→1. The next stage af-
ter the lattice is fully occupied is the empty state; hence, if these two average
waiting times are comparable, then they occur with comparable frequency. That
means quasi-periodic like behaviour of the system: within average time 11/2ν
the lattice become fully occupied, then the triggering of an avalanche of maxi-
mal size N occurs with average waiting time 1/μ3. The same can be observed
for bigger sizes N.

Figure 1 and Table 4 present examples of three types of dependence of re-
bound parameters on size i of clusters considered in Section 4, each having the
same density ρ = 1/2 (with 8 digits accuracy). To obtain this density we put for
these three cases μ/ν = 0.444118 ( μ = 0.444118, ν = 1 ), θ = 1 ( δ = 1,
ν = 1), and χ = 2.113440690 ( η = 1, ν = 1/2.113440690), respectively.
As seen from Fig. 1 it is possible to obtain flat distribution for μi = δ/i – on
that background, differences between the cases are clearly visible: μi = const.
discriminate the existence of large clusters fostering large avalanches; the op-
posite is for μi = σ/i2. Average cluster size and avalanche size data presented
in Table 4 confirms this conclusion.

� N = 5

For N = 5 it is impossible to write down exact equations 18-22 depending
on values of ni s only – see Appendix for details. The case can be solved as a
Markov process, but obtained general formulas are relatively complicated.
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−0.66
−0.64
−0.62
−0.60
−0.58
−0.56
−0.54

Fig. 1. Plot of the Log10 of ni s (left) and n0
i s (right) versus i for N = 3 in three

cases: μi = const. (dashed line), μi = δ/i (solid line), and μi = σ/i2 (dotted line).

Rebound parameters are chosen to have density ρ = 1/2 in all cases (see main text for

respective values).

T a b l e 4

Average cluster size 〈i〉 and average avalanche size 〈w〉
for three different rebound parameters

μi = const. μi = δ/i μi = σ/i2

〈i〉 1.9281668 2 2.1134407

〈w〉 2.2516538 2 1.7226121

Note: density ρ = 1/2, the size of the lattice N = 3.

In this example we investigate properties of the system with density ρ =
1/4. Figure 2 and Table 5 compare results in three cases: μ/ν = 16257/10000
the density ρ = 0.2500003184, for θ = 3 the density ρ = 0.25 exactly, and
χ = 5.95682 gives the density ρ = 0.2500004527.

General expressions for return times t1→1 and tL→L as well as their ratio
are relatively complex. Note that the return times – except of the dependence on

1 2 3 4 5

−2

−1

1 2 3 4 5
−1.0
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4

Fig. 2. Plot of the Log10 of ni s (left) and n0
i s (right) versus i for N = 5 in three

cases: μi = const. (dashed line), μi = δ/i (solid line), and μi = σ/i2 (dotted line).

Rebound parameters are chosen to have density ρ = 1/4 in all cases (see main text for

respective values).
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T a b l e 5

Average cluster size 〈i〉 and average avalanche size 〈w〉
for three different rebound parameters

μi = const. μi = δ/i μi = σ/i2

〈i〉 1.427017126 1.632218845 1.985611461

〈w〉 1.845355789 1.632218845 1.41360643

Note: density ρ = 1/4, the size of the lattice N = 5.

t – are proportional to 1/ν. Below we specify the ratio tL→L/t1→1 in three
cases: for μi = const., where t = μ/ν, it is equal to

24t6 + 154t5 + 413t4 + 586t3 + 467t2 + 182t+ 24

24t2 + 54t+ 24
, (72)

for μi = δ/i, where δ = const. and t = δ/ν, it is equal to

4t6 + 40t5 + 169t4 + 395t3 + 550t2 + 432t+ 144

56t2 + 192t+ 144
, (73)

and for μi = σ/i2, where σ = const. and t = σ/ν, is

2t6 + 39t5 + 304t4 + 1232t3 + 2840t2 + 3744t+ 2304

496t2 + 2208t+ 2304
. (74)

In each case the ratio is a rational function of t, which is equal to 1 for t = 0
and asymptotically ∼ t4 for t −→ ∞. A generalisation of this observation is
a conjecture formulated in Section 7. A comparison of these ratios is presented
in left part of Fig. 3.

0 2 4 6 8 10
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0 2 4 6 8 10

1
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1e+5
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Fig. 3. Ratio of return times tL→L/t1→1 for N = 5 (left) and N = 7 (right) for

three cases: μi = const. (blue line on the top), μi = δ/i (red line in the middle), and

μi = η/i2 (green line on the bottom). Parameter t is equal to μ/ν, δ/ν , and η/ν ,

respectively.
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T a b l e 6

Coefficient R = tL→L/t1→1

for three different rebound parameters (see main text for details)

μi = const. μi = δ/i μi = σ/i2

R = tL→L/t1→1 ≈ 52.212 ≈ 35.441 ≈ 34.801

Note: density for all cases ρ = 1/4, the size of the lattice N = 5.

Table 6 shows that for the cases discussed above with average density ρ =
1/4 the highest value of R is for μi = const. and the smallest for μi = σ/i2

(not much different from the value for μi = δ/i).
Average waiting times ti for an avalanche of size i can be also found, but

are long. The average time between any two consecutive avalanches is

tav =
4t5 + 48t4 + 237t3 + 603t2 + 762t+ 360

νt(4t4 + 36t3 + 121t2 + 168t+ 72)
, (75)

where t = δ/ν. All these quantities are proportional to 1/ν. Figure 4 in the
left panel presents waiting times ti in for fixed density ρ = 1/4 in three cases
mentioned above. There are no big differences both in character of dependence
of ti on i and also values of tav do not differ much: for μi = const. average
time is tav ≈ 24.60, for μi = δ/i it is ≈ 21.76 , and for μi = σ/i2 it is
≈ 18.85. (Choosing parameters to have density ρ = 1/4 we put ν = 1/10
for all cases.)

Average waiting times ti, i = 1, . . . , 5 in the case μi = δ/i for various
densities are shown in the right panel of Fig. 4. For small densities the maximal
waiting time ti is for i = 5, while for larger densities the maximum is for

1 2 3 4 5
1.5

2.0

2.5

3.0

1 2 3 4 5

2

3

4

Fig. 4: (left) Plot of Log10 of ti s versus i for three rebound parameters for fixed

density ρ = 1/4 for N = 5. Three cases: μi = const. (dashed line), μi = δ/i
(solid line), and μi = σ/i2 (dotted line). Rebound parameters are chosen to have

density ρ = 1/4 in all cases (see main text for respective values); (right) plot of Log10
of ti s versus i for various densities for rebound parameter of the form μi = δ/i for

N = 5. Densities are chosen as 1
10 ,

1
4 ,

1
2 ,

3
4 ,

9
10 ; thinner line corresponds to smaller

density.



M. BIAŁECKI942

i = 3. Average waiting times range from ≈ 13.57 for ρ = 1/10 through
≈ 21.76, ≈ 50.22, ≈ 145.01 for densities 1/4, 1/2, 3/4 , respectively, up
to ≈ 441.60 for density ρ = 9/10. (Again ν = 1/10 for all cases.)

� N = 7

For N = 7 we investigate properties of the system with the density ρ = 3/4.
Parameters are chosen as follows: μ = 1, ν = 173024/10000 gives the den-
sity ρ = 0.7500001621, θ = 1/3 gives ρ = 3/4 exactly, and μ = 1,
ν := 1000000/1578886 gives ρ = 0.7500002817. Distributions of clusters
are presented in Fig. 5 and average cluster and avalanche sizes in Table 7. Again
differences in distributions ni are not big, but average avalanche size differs
significantly between considered cases.

The novel property visible in the figure is that the highest probability is for
the cluster of maximal size i = N. Thus, the system prefers merging clusters
for high density.

A comparison of the ratios of return times R = tL→L/t1→1 is presented
in the right panel of Fig. 3, while formulas are presented in the Appendix. In
each case the ratio is a rational function of t, which is equal to 1 for t = 0 and

1 2 3 4 5 6 7

−1.0

−0.5

1 2 3 4 5 6 7

−1.6
−1.4
−1.2
−1.0
−0.8
−0.6
−0.4

Fig. 5. Plot of the Log10 of ni s (left) and n0
i s (right) versus i for N = 7 in three

cases: μi = const. (dashed line), μi = δ/i (solid line), and μi = σ/i2 (dotted line).

Rebound parameters are chosen to have density ρ = 3/4 in all cases (see main text for

respective values).

T a b l e 7

Average cluster size 〈i〉 and average avalanche size 〈w〉
for three different rebound parameters

μi = const. μi = δ/i μi = σ/i2

〈i〉 4.274328495 4.385371765 4.736665115

〈w〉 5.767461682 4.385371765 2.671314107

Note: density ρ = 3/4, the size of the lattice N = 7.
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T a b l e 8

Coefficient R = tL→L/t1→1

for three different rebound parameters (see main text for details)

μi = const. μi = δ/i μi = σ/i2

R = tL→L/t1→1 ≈ 1.4844 ≈ 1.6887 ≈ 2.7001

Note: density for all cases ρ = 3/4, the size of the lattice N = 7.

asymptotically ∼ t6 for t −→ ∞, which supports a conjecture formulated in
Section 7. Table 8 shows that for the cases discussed above, with average density
ρ = 3/4, the highest value of the ratio R is for μi = δ/i and the smallest for
μi = const. (which does not differ much from the value for μi = δ/i). This
is an opposite order comparing to the case with ρ = 1/5 for N = 5 consid-
ered above. Thus, for higher densities the automaton prefers more periodic-like
behaviour when it is relatively easier to trigger large avalanches.

The size N = 7 is big enough to notice how the actual density of the sys-
tem (possible values are 0, 17 ,

2
7 ,

3
7 ,

4
7 ,

5
7 ,

6
7 , 1) is distributed for various average

densities. Results are shown in Fig. 6. For small densities, like ρ = 0.2, the
maximum is for small i, that means that large densities and large avalanches
are rare. Then, when the density increases, the bell-like shape distribution ap-
pears and its maximum is shifted to the bigger values. Next, for densities like

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

Fig. 6. Probability distributions of actual density of the system for the case μi/ν =
θ/i for various average densities of 0.2 (dashed line), 0.4 (solid line), 0.5 (thick

dashed line), 0.6 (solid line), 0.8 (dashed line) – the respective parameters are

θ = 4, 3
2 , 1,

2
3 ,

1
4 . Smaller average density corresponds to the higher probability rate for

density equal to 0, i.e., starts from the top on the left side (and to the lower probability

rate for density equal to 1). The size of the system is N = 7.



M. BIAŁECKI944

0.6 or bigger, the maximum probability is for biggest possible size i = N and
the most probable state is that with ρ = 1. To achieve large average density,
the system must spend a substantial time being fully occupied. The evolution
of such a system consists of two phases: filing up and waiting for avalanche
of maximal size, as is described above while discussing the times of return for
N = 3.

For N = 500 and constant parameters μ = ν = 1, numerical experiments
show that the density fits a Gaussian distribution Białecki and Czechowski
(2010).

� N = 10

In the example with the biggest N presented here we investigate in several
cases an influence of correlations and compare exact results with proposed ap-
proximations for αA

i , γAi and γAR
i . On the other hand, size N = 10 requires

relatively complex calculations – the transition matrix is of size 108×108 and
has about 1000 non-zero entries.

The size N = 10 is the smallest with states which consist of the same
clusters, but in essentially different order. (For smaller N states with different
order of clusters were equivalent with respect to reflections.) Namely, the state

↪→ | | • | | • | | • | • | | • | • | ←↩

and the state

↪→ | | • | | • | • | | • | | • | • | ←↩

In this subsection we consider also the relative difference between probabili-
ties of these two states, namely Δ = (p88 − 2p89)/p88 for various rebound
parameters as a measure of adequacy of independence of clusters assumption.
The multiplier 2 in the above formula is necessary because the multiplicity of
state 89 is equal to five, and the multiplicity of the state 88 is equal to ten. This
quantity reflects the dependence of respective probabilities on specific order of
clusters in the system. We assume there is no such dependence in order to write
down approximations αA

i , γAi and γAR
i .

Other quantities analysed in examples below are
αE

1 −αA
1

αE
1

, αE
4 −αA

4

αE
4

, γE
5 −γA

5

γE
5

,
γE
5 −γAR

5

γE
5

, γE
9 −γA

9

γE
9

and
γE
9 −γAR

9

γE
9

. These quantities measure the quality of approx-

imation formulas for i = 1 and 4 for α coefficients, and for i = 5 and 9
for γ coefficients – just to test approximations for n2 – the first approximate
equation, n5 – the middle one, and n9 the last one (those for n1 and n10

are exact). A formula for exact value of αE
4 , obtained from detailed analysis of

states of the automaton, is presented in Appendix.
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Cases with constants equal to 1

As a first set we consider three cases with the minimal possible rebounds factors,
i.e., we put all constants equal to 1. Cases with μi = 1, μi = 1/i and μi =
1/i2 with ν = 1 are presented in Fig. 7 and Table 9.

2 4 6 8 10

−3

−2

−1

0

2 4 6 8 10
−2.25
−2.00
−1.75
−1.50
−1.25
−1.00
−0.75
−0.50
−0.25

Fig. 7. Plot of the Log10 of ni s (left) and n0
i (right) for N = 10 in three cases:

μi = const. (dashed line), μi = δ/i (solid line), and μi = σ/i2 (dotted line).

T a b l e 9

Three cases: μ = 1, δ = 1, and σ = 1 (and always ν = 1)
for the size of the lattice N = 10

μi = 1 μi = 1/i μi = 1/i2

ρ 0.3076370614 0.5 0.8822697788

〈i〉 1.5985438 2.872872532 7.493995763

〈w〉 2.250583644 2.872872532 3.725820785
p88 − 2p89

p88
0.00865 0.01899 0.01868

αE
1 − αA

1

αE
1

0.00909 0.066784 0.19468

αE
4 − αA

4

αE
4

0.08795 0.07428 0.09239

γE
5 − γA

5

γE
5

−0.01141 −0.28676 −0.89662

γE
5 − γAR

5

γE
5

−0.00110 −0.06842 −0.13292

γE
9 − γA

9

γE
9

0.35717 0.29878 0.17045

γE
9 − γAR

9

γE
9

0.48970 0.62573 0.71428

t1→1 18.51 25.59 96.28

tL→L/t1→1 379.61 5.2988 1.4606
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Three different rebound parameter types result in various average den-
sity values, and hence different distributions. In all cases, the assumption of
independence of clusters is well satisfied; the respective error Δ does not
exceed 2%. An approximation for αE

4 is less than 10% for all cases, but
αE
1 strongly depends on the case (in fact it depends on density, as will be

seen below). Approximation formulas for γE perform in diversified way –
γAR is better for mid i terms, while γA is better for big i terms. Never-
theless, both cases provide rather roughly appropriate values. These exam-
ples also suggest that for higher densities the system exhibits a periodic-like
evolution.

Large densities
In order to investigate evolution of the system with high average density (and
strong deviations in actual density) we consider case μ = const. with μ1 =
1/100 and ν = 1, which gives the density ρ ≈ 0.91, and case δ/i with
μ1 = 4673077001/5 ∗ 1010 ≈ 0.093 and ν = 1 to obtain the same density
(with 10 digits accuracy) for comparison. Also we consider case of σ/i2 with
μ1 = 1/10 and ν = 1 which gives the density ρ ≈ 0.99. The results are
presented in Fig. 8 and Table 10.

Plots of respective distributions for μi ∼ 1/i and μi ∼ 1 are overlap-
ping each other. For relatively small size N = 10, fixing the average density
of the system strongly determines distributions, making the dependence on re-
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Fig. 8. Plot of the Log10 of ni s and n0
i versus Log10(i) for N = 10 in two cases:

μi = const. (solid line) and μi = δ/i (dashed line) – upper panels, and in case

μi = δ/i2 – lower panels.
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T a b l e 10

Three cases with “large” ρ for the size of the lattice N = 10
(see main text for details)

μi ∼ 1 μi ∼ 1/i μi ∼ 1/i2

ρ 0.9145269069 0.9145269069 0.9897960692

〈i〉 7.764600567 7.805017612 9.700144892

〈w〉 9.346154002 7.805017612 8.33021261
p88 − 2p89

p88
0.00161 0.00464 0.00191

αE
1 − αA

1

αE
1

0.30898 0.28421 0.31377

αE
4 − αA

4

αE
4

−0.01511 0.01520 0.00330

γE
5 − γA

5

γE
5

−0.96763 −0.93825 −1.05131

γE
5 − γAR

5

γE
5

−0.15298 −0.14354 −0.14789

γE
9 − γA

9

γE
9

0.42749 0.39218 0.38965

γE
9 − γAR

9

γE
9

0.80211 0.78888 0.80019

t1→1 119.18 123.60a 1002.44

tL→L/t1→1 1.1066 1.1339 1.0277

a) The system stays in fully occupied state 1/μ10 ≈ 107, 5, which is

longer than 100 as in μ = const. case (previous column). The re-

spective average times for filling up the lattice are ≈ 19 and ≈ 16.

bound parameters not essential. Their influence becomes more visible for larger
sizes N of the lattice. In the case of high densities, the system just spend much
of it’s time being fully occupied.

For high densities, the assumption of independence of clusters is well satis-
fied; the respective error Δ does not exceed 0.5%. An approximation for αE

4
is fairly good (≈ 1.5% or less), but αE

1 has only accuracy ≈ 30%. Approx-
imation formula for γAR is much better for mid i terms (though giving only
≈ 15% accuracy), while γA is better for large i terms (≈ 40%). Thus, for
high density cases the proposed set of equations for ni s does not reproduce
actual distribution. Note, however, that there are other exact equations valid for
any density.
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Fig. 9. Plot of the Log10 of ni s and n0
i for N = 10 in case μi = const. – upper

line, and in two cases: μi = δ/i (solid line), and μi = δ/i2 (dashed line) – lower line.

The parameter tL→L/t1→1 for μi ∼ 1/i case is bigger than for μi ∼ 1
case (both cases have the same “big” density), which agrees with the results for
N = 7 with ρ = 3/4 presented in Table 8.

Small densities
To present system behaviour in small average density we choose μ1 = 1 and
ν = 1/10 for case μ = const. – it gives density ρ ≈ 0.08. Then for the
remaining two cases we have the same density ρ ≈ 0.01 (with 10 digits accu-
racy), with the following parameters: μ1 = 1 and ν = 50000000/4798952601
≈ 0.01 – for case δ/i, and μ1 = 1 and ν = 1/100 for case σ/i2. The results
are presented in Fig. 9 and Table 11.

For small densities assumption of independence of clusters is well satisfied.
In general, all proposed approximations are fairly good. An approximation for
αE
4 is the worst; its accuracy is only ≈ 15%. As previously, approximation

formula for γA is better than γAR for large i terms, but it appears that for
mid i terms both formulas give almost the same values (because ni s decrease
rapidly). Thus, for small densities the set of equations for ni s can be used to
reproduce the actual distribution.

It is very improbable to find the lattice fully occupied for small average
densities, which is reflected in high values of the parameter R = tL→L/t1→1.
The parameter R for μi ∼ 1/i case is bigger than its for μi ∼ 1/i2 case (both
cases have the same “small” density), which agrees with the results for N = 5
with ρ = 1/4 presented in Table 6.
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T a b l e 11

Three cases with “small” ρ for the size of the lattice N = 10
(see main text for details)

μi ∼ 1 μi ∼ 1/i μi ∼ 1/i2

ρ 0.0779280356 0.01031150521 0.01031150521

〈i〉 1.09149321 1.02083788 1.041894016

〈w〉 1.183235221 1.02083788 1.020408163
p88 − 2p89

p88
6.9231 ∗ 10−5 6.4609 ∗ 10−4 3.5663 ∗ 10−3

αE
1 − αA

1

αE
1

1.7483 ∗ 10−5 2.7693 ∗ 10−7 1.0585 ∗ 10−6

αE
4 − αA

4

αE
4

0.14229 0.16313 0.16274

γE
5 − γA

5

γE
5

0.0009069 0.0020519158 0.0040100

γE
5 − γAR

5

γE
5

0.0009101 0.0020519262 0.0040124

γE
9 − γA

9

γE
9

0.09615 0.01473 0.00606

γE
9 − γAR

9

γE
9

0.12138 0.02356 0.03305

t1→1 22.32 106.35 110.57

tL→L/t1→1 2220903488.0 1.666292752 · 1014 9971770329.0

∼ 2 · 1010 ∼ 2 · 1014 ∼ 1 · 1011

7. CONCLUSIONS

In this article we investigated in detail a finite version of one-dimensional non-
equilibrium dynamical system – Random Domino Automaton. It is a simple,
slowly driven system with avalanches. The advantage of RDA (comparing to
Drossel-Schwabl model) is the dependence of rebound parameters on the size
of a cluster. This crucial extension allows for producing a wider class of distribu-
tions by the automaton, as well as leads to several exact formulas. Exponential
type and inverse-power type distributions of clusters were studied in Białecki
and Czechowski (2013); the present work examines also V-shape distributions
and quasi-periodic like behavior.

Detailed analysis of finite RDA, including finite size effects, extends and
explains the previously obtained results for RDA. Moreover, we also analyzed
approximations made when deriving equations for the stationary state of the
automaton. This allows for the following conclusions.



M. BIAŁECKI950

The balance of ρ Eq. 4 and the balance of N Eq. 9 are exact – their
forms incorporate all correlations present in the system. The first one has a
form independent of the size of the lattice N, thus it is exactly the same as
for RDA. The second one contains correction for finite size effect, namely a
term (2nR − nN−1), which replaces the term 2n for RDA. When nN−1 and
nN are negligible, these two terms coincide. For finite RDA, balance of ni s
Eqs. 18-22 contains two extra equations, for i = N−1 and i = N, comparing
to the those for RDA. The first (for n1) and the last (for nN ) are exact. Note
that all those equations are written for rebound parameter μ = μ(i) being a
function of cluster size and ν being a constant.

The most remarkable special case is when μ = δ/i, when any cluster
has the same probability to be removed as an avalanche independently of its
size i. It appears that the system depends on a single parameter θ = δ/ν, or
equivalently, due to neat exact formula (Eq. 33)

ρ =
1

1 + θ
,

the properties of the system may be characterized by the value of the average
density. Note that the above expression does not depends on the size N, and is
the same as for RDA. This specialization leads to more neat formulas, like the
equation for nR (Eq. 35)

nR = N
θ

(θ + 1)(θ + 2)
.

Note again that it has the same form as for RDA, except that n is replaced by
nR ( n = nR + nN ). Summarizing, the model allows to derive a number of
explicit dependencies, as shown in Sections 3 and 4.

The Random Domino Automaton defines a discrete time Markov process
of order 1 and, in principle, may be solved exactly. However, it turns out that
computations are fairly complex and exact formulas are long. Also, the exact
numerical values are in the form of large numbers – in every considered example
(N = 3, 4, 5, 6, 7, 10) significantly large prime numbers were encountered.
For example, for the simplest possible rebound parameters ( μ = 1 and ν = 1)
the exact value of denominators of probabilities of states for N = 10 is a
65-digit integer. Its prime factorization contains a 56-digit integer, which cannot
be simplified with numerators.

Nevertheless, Markov chains framework leads to interesting results con-
cerning analysis of times of recurrence for specific states. A return time to the
state with density ρ = 1 (Eq. 50)

tL→L = 1/μN + τ̂1 ,
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consists of two parts: waiting of fully occupied lattice for triggering a maxi-
mal avalanche and “loading” time, when the lattice is filled up, respectively. If
the average density of the system is small, the second time is very long. The
formula is more interesting for systems with relatively large average density,
when the “loading” time is comparable to waiting time for triggering the largest
avalanche. Such a system exhibits a periodic like behavior. Dividing the waiting
time tL→L by the waiting time t1→1 (given by Eq. 49) one has the following
measure of quasi-periodicity

R = tL→L/t1→1 = t1→L→1/t1→1 .

If R = 1 then the system is periodic.
Several considered examples lead to the following conjecture concerning

the coefficient R.
Conjecture. The ratio of return times tL−→L/t1−→1 as a function of t being
the ratio of constants from rebound parameters ( μ/ν, δ/ν, σ/ν) are rational
functions of t, f(t) = tL−→L/t1−→1 with the following properties for any
size N of the system

f(t = 0) = 1 , (76)

lim
t→∞

f(t)

tN−1
= const . (77)

The conjecture relates the size of the system N with asymptotic behavior of
ratio of waiting times.

There are large fluctuations (variations of actual density) during the evolu-
tion of systems with relatively large average densities. If the system is likely to
achieve a fully occupied state, the next state is an empty state, and the varia-
tions in density are maximal. Nevertheless, some parameters of stationary state
(more precisely, statistically stationary state) satisfy exact equations, as shown
above. For large average densities, the system fluctuates within the whole possi-
ble range, and cannot be thought of as having approximately stationary values
during the evolution. This aspect is easy to be overlooked (see Paczuski and
Bak 1993).

It is argued in the Appendix that no exact equations for ni s exist for the
size N ≥ 5. Thus, to have compact equations for ni s, some approximation
formulas are proposed. The first general conclusion from the examples is that
the approximations are acceptable for small densities, but for large densities the
errors are substantial. The main reason is that for large densities correlations
become more important and fluctuations makes actual values of the parame-
ters substantially different from their stationary values, which are present in the
formulas. These properties are particularly severe for small sizes of the system,
where every avalanche changes the actual density considerably.
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T a b l e 12

Comparison of αE
1 with αA

1 for N = 3, 4, 5, 6, 7 and 10
for parameters μ = 1 and ν = 1

N αE
1 = 2n2

n1
αA
1 =

(
1− n0

1

nR

)
αE

1 −αA
1

αE
1

ρ

3 1.33(3) 0.6 0.55 ≈ 0.3462

4 0.66(6) ≈ 0.6316 ≈ 0.053 0.32(32)

5 ≈ 0.6829 ≈ 0.6565 ≈ 0.039 ≈ 0.3139

6 ≈ 0.685296 ≈ 0.669232 ≈ 0.023 ≈ 0.3102

7 ≈ 0.685523 ≈ 0.675066 ≈ 0.015 ≈ 0.3086

10 ≈ 0.685436 ≈ 0.679205a ≈ 0.0091 ≈ 0.3076

4000 ≈ 0.677 ≈ 0.677 – ≈ 0.3076

a) (1− n0
1/n) ≈ 0.679229

Note: The last line presents value of αA
1 for N = 4000 obtained from sim-

ulations and equations (respectively) in Białecki and Czechowski (2013).

Table 12 presents a dependence of a relative error of αE
1 with respect to

αA
1 on size N of the system. For larger N the accuracy of approximation is

growing, which corresponds well with the remark in the last paragraph.
It can be noticed from the distributions of ni s of examples presented above

that all ni s except of the last two (namely nN−1 and nN ) are placed on one
“regular” curve, while the last two deviate from it. It may be regarded as a
(correction of) finite size effect. Also in the respective set of Eqs. 18-22, the
last two (for i − N − 1 and i = N) have a form different from the previous
ones. Thus, neglecting the size restriction, which in fact ignores the last two
equations, is justified when the deviations of the last two ni s from the “regular”
curve are not big. That happens for small densities.

It appears also that for index i in his middle range of values an approxima-
tion formula γAR works better than γA, in spite of the fact that it looks to be
more rough approximation. For distribution of ni s vanishing rapidly (i.e., for
small densities) both give comparable results.

All this justifies the form of equations for ni s presented in Białecki and
Czechowski (2013) as valid for small densities. A detailed examination of the
RDA for large densities requires further investigations.

This article explores properties of FRDA in order prepare to modeling of
real data. In this context, among others, formulas for waiting times can be used.
We ephasize also a formula 53

tav =
〈w〉+ 1

1− Pr
,
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which relates the measure of scattering (dissipation) of balls Pr with the av-
erage size of avalanche 〈w〉 and average time between any two consecutive
avalanches tav, which are a priori measurable quantities.

The Random Domino Automaton proved to be a stochastic dynamical sys-
tem with interesting mathematical structure. It may be viewed as extension of
Drossel-Schwabl model, and we showed that this is a substantial generalization
with a wide range of novel properties. We expect it can also be applied to nat-
ural phenomena, including earthquakes and forest-fires. This is our aim for the
future work.

A p p e n d i x

Exact equations for N = 3, 4 and their non-existence for N ≥ 5

For arbitrary size N, there are four exact equations: balance of ρ – Eq. 4,
balance of n – Eq. 9, for n1 – Eq. 18, and for nN – Eq. 22.

Size N = 3. Equation for n2 is of the form 21, namely

n2 =
1

2μ1

ν + 1
(2n1α

E
1 + n0

1γ
E
2 ) .

In this case the only companion to single one-cluster is an empty two-cluster
(see state 2 in Table 1), hence

αE
1 = 1 and γE2 = 0 .

Thus, we arrived at the exact form of the equation for n2.
Size N = 4. All states of the automaton (other states differ by shifts are iden-
tified) and their labels are presented in Table 13. Equation for n2 is of the
form 19

n2 =
2

2μ2

ν + 2
n1α

E
1 ,

where to αE contributes only state 2, not state 4. Hence

αE
1 =

p2
p2 + 2p4

=

(
1− 2p4

n1

)
=

(
1− n0

1 − n3

n1

)
,
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T a b l e 13

States for the size of the lattice N = 4

State number Example Multiplicity Contributing to

1 ↪→ | | | | | ←↩ 1 n0
4

2 ↪→ | | | | • | ←↩ 4 n1, n
0
3

3 ↪→ | | | • | • | ←↩ 4 n3, n
0
2

4 ↪→ | | • | | • | ←↩ 2 n1, n
0
1

5 ↪→ | | • | • | • | ←↩ 4 n3, n
0
1

6 ↪→ | • | • | • | • | ←↩ 1 n4

where pi is probability of state i. Thus αE
1 is expressed as function of ni s

and n0
1. The equation for n3 is of the form 21

n3 =
1

3μ3

ν + 1

(
2n2α

E
2 + n0

1γ
E
3

)
.

In this case
αE
2 = 1,

because only state 3 contributes. The state 4 (and not state 5) contributes to
γE3 , therefore

γE3 =
2p4

2p4 + p5
=

(
1− p5

n0
1

)
=

(
1− n3

n0
1

)
.

This completes the task of writing exact equations for N = 4.
Size N = 5. States and their labels are presented in Table 2. In this case, the
coefficients are as follows

αE
2 =

p2 + p4
n1

, γE3 =
p4 − p6 − n4

n0
1

,

αE
3 =

p3
n2

, γE4 =
p6 − p4 − n4

n0
1

.

Summing up the probabilities contributing to n0
1, n1 and n2 one obtains

n0
1 = p4 + 2p6 + n4 , (78)

n1 = p2 + 2p4 + p6 , (79)

n2 = p3 + p6 . (80)
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The set cannot be solved for p2, p3, p4, p6. Since there are no more equations
for those coefficients, respective α s and γ s cannot be expressed as functions
of ni s only in an exact manner.
Sizes bigger than 5. An argument for non-existence of exact set of Eqs. 18-22,
i.e., non-existence of exact formulas for αE

i s and γEi s as functions of ni s and
n0
1 is based on the same impossibility of solving equations as presented above.

An increase of size of a grid N by 1 results in an increase of the set
of n1, n2, . . . by one and much bigger increase of the number of states.
An analog of the set of Eqs. 78-80 will contain much more probabilities of
states p1, p2, . . . , on the right hand side – there will be more states containing
1-clusters, 2-clusters and so on, and contributing to n1, n2, . . . , respectively.
Thus, it is impossible to express those probabilities of states as functions of
n0
1, n1, n2, . . . only. As a consequence, there are no general exact formulas for

αE
i s and γEi .
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