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Abstract: The gradients of a quaternion-valued function are often required for quaternionic signal processing

algorithms. The HR gradient operator provides a viable framework and has found a number of applications.

However, the applications so far have been limited to mainly real-valued quaternion functions and linear quaternion-

valued functions. To generalize the operator to nonlinear quaternion functions, we define a restricted version of the

HR operator, which comes in two versions, the left and the right ones. We then present a detailed analysis of the

properties of the operators, including several different product rules and chain rules. Using the new rules, we derive

explicit expressions for the derivatives of a class of regular nonlinear quaternion-valued functions, and prove that the

restricted HR gradients are consistent with the gradients in the real domain. As an application, the derivation of

the least mean square algorithm and a nonlinear adaptive algorithm is provided. Simulation results based on vector

sensor arrays are presented as an example to demonstrate the effectiveness of the quaternion-valued signal model

and the derived signal processing algorithm.
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1 Introduction

Quaternion calculus has been introduced in sig-

nal processing with application areas involving three-

or four-dimensional signals, such as color image pro-

cessing (Pei and Cheng, 1999; Sangwine and Ell,

2000; Parfieniuk and Petrovsky, 2010; Ell et al., 2014;

Liu et al., 2014), vector-sensor array systems (Le Bi-

han and Mars, 2004; Miron et al., 2006; Le Bihan

et al., 2007; Tao, 2013; Tao and Chang, 2014; Zhang

et al., 2014; Hawes and Liu, 2015), three-phase power

‡ Corresponding author
* Project supported by the National Grid UK
# Part of the work is available at http://arxiv.org/abs/1407.5178

(Jiang et al., 2014a)

ORCID: Wei LIU, http://orcid.org/0000-0003-2968-2888

c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

systems (Talebi and Mandic, 2015), quaternion-

valued wireless communications (Liu, 2014), and

wind profile prediction (Jiang et al., 2014b). Several

quaternion-valued adaptive filtering algorithms have

been proposed in Barthelemy et al. (2014), Jiang

et al. (2014c), Talebi et al. (2014), Tao and Chang

(2014), and Zhang et al. (2014). Notwithstanding

the advantages of the quaternionic algorithms, ex-

tra care has to be taken in their developments, in

particular when the derivatives of quaternion-valued

functions are involved, due to the fact that quater-

nion algebra is non-commutative. A so-called HR

gradient operator was proposed in Mandic et al.

(2011) and the interesting formulation appears to

provide a general and flexible framework that could

potentially have wide applications. However, it has
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been applied only to real-valued functions and linear

quaternion-valued functions. To consider more gen-

eral quaternion-valued functions, we propose a pair

of restricted HR gradient operators, the left and the

right restricted HR gradient operators, based on the

previous work on the HR gradient operator (Mandic

et al., 2011) and our recent work (Jiang et al., 2014b).

To summarize, we make the following main con-

tributions. First, we give a detailed derivation of

the relation between the gradients and the increment

of a quaternion function, highlighting the difference

between the left and the right gradients due to the

non-commutativity of quaternion algebra. Second,

we document several properties of the operators that

have not been reported before, in particular several

different versions of product rules and chain rules.

Third, we derive a general formula for the restricted

HR derivatives of a wide class of regular quaternion-

valued nonlinear functions, among which are the ex-

ponential, logarithmic, and the hyperbolic tangent

functions. Finally, we prove that the restricted HR

gradients are consistent with the usual definition for

the gradient of a real function of a real variable. Its

application to the derivation of a quaternion-valued

least mean squares (QLMS) adaptive algorithm and

a nonlinear adaptive algorithm based on the hyper-

bolic tangent function is also briefly discussed. As an

example for quaternion-valued signal processing, we

consider the reference signal based adaptive beam-

forming problem for vector sensor arrays consisting

of multiple crossed-dipoles and provide some simula-

tion results.

2 Restricted HR gradient operators

2.1 Introduction of quaternion

Quaternions are a non-commutative extension

of complex numbers. A quaternion q is composed of

four parts, i.e., q = qa + qbi + qcj + qdk, where qa is

the real part, also denoted as R(q). The other three

terms constitute the imaginary part I(q), where i, j,

and k are the three imaginary units, satisfying the

following rules: ij=k, jk=i, ki=j, i2 = j2 = k2 =

−1, and ij = −ji, ki = −ik, kj = −jk. As a result,

in general the product of two quaternions p and q

depends on the order, i.e., qp �= pq, and when one of

the factors is real, we have qp = pq.

Let v = |I(q)| and v̂ = I(q)/v. The quaternion q

can also be written as q = qa + vv̂. Here, v̂ is a pure

unit quaternion, which has the convenient property

v̂
2 := v̂v̂ = −1. The quaternionic conjugate of q is

q∗ = qa−qbi−qcj−qdk, or q∗ = qa−vv̂. It is easy to

show that qq∗ = q∗q = |q|2, and hence q−1 = q∗/|q|2.

2.2 Definition of the restricted HR gradient

operators

Let f : H → H be a quaternion-valued function

of a quaternion q, where H is the non-commutative

algebra of quaternions. We use the notation f(q) =

fa+fbi+fcj+fdk, where fa, fb, fc, fd are the compo-

nents of f . Here, f can also be viewed as a function

of the four components of q, i.e., f = f(qa, qb, qc, qd).

In this view f is a quaternion-valued function on R
4:

f : R4 → H . To express the four real components of

q, it is convenient to use its involutions qν := −νqν

where ν ∈ {i, j, k} (Ell and Sangwine, 2007). Explic-

itly, we have

qi = −iqi = qa + qbi − qcj − qdk, (1)

qj = −jqj = qa − qbi + qcj − qdk, (2)

qk = −kqk = qa − qbi − qcj + qdk, (3)

qa =
1

4
(q + qi + qj + qk), (4)

qb =
1

4i
(q + qi − qj − qk), (5)

qc =
1

4j
(q − qi + qj − qk), (6)

qd =
1

4k
(q − qi − qj + qk). (7)

Two useful relations are

{

q∗ = 1/2(qi + qj + qk − q),

q + qi + qj + qk = 4R(q).
(8)

A so-called HR gradient of f(q) was introduced in

Mandic et al. (2011), which has been applied to

real-valued functions and linear quaternion-valued

functions. To find the gradients of more general

quaternion-valued functions, we follow a similar ap-

proach to propose a ‘restricted’ HR gradient oper-

ator (some of the derivation was first presented in

Jiang et al. (2014b)). To motivate the definitions,

we consider the differential df(q) with respect to dif-

ferential dq := dqa + dqbi+ dqcj + dqdk. We observe

that df = dfa + idfb + jdfc + kdfd, where

dfa =
∂fa
∂qa

dqa +
∂fa
∂qb

dqb +
∂fa
∂qc

dqc +
∂fa
∂qd

dqd. (9)
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We have dqa = (dq+dqi +dqj +dqk)/4 according to

Eq. (4). Making use of this and similar expressions

for dqb, dqc, and dqd, we find an expression for dfa
in terms of the differentials dq, dqi, dqj, and dqk.

Repeating the calculation for idfb, jdfc, and kdfd,

we finally arrive at

df = Ddq +Didq
i +Djdq

j +Dkdq
k, (10)

where

D :=
1

4

(

∂f

∂qa
−

∂f

∂qb
i −

∂f

∂qc
j −

∂f

∂qd
k

)

, (11)

Di :=
1

4

(

∂f

∂qa
−

∂f

∂qb
i +

∂f

∂qc
j +

∂f

∂qd
k

)

, (12)

Dj :=
1

4

(

∂f

∂qa
+

∂f

∂qb
i −

∂f

∂qc
j +

∂f

∂qd
k

)

, (13)

Dk :=
1

4

(

∂f

∂qa
+

∂f

∂qb
i +

∂f

∂qc
j −

∂f

∂qd
k

)

. (14)

More details are given in Appendix A. Thus, one may

define the partial derivatives of f(q) as follows:

∂f

∂q
:= D,

∂f

∂qi
:= Di,

∂f

∂qj
:= Dj,

∂f

∂qk
:= Dk. (15)

Introducing operators

∇q := (∂/∂q, ∂/∂qi, ∂/∂qj, ∂/∂qk)

and

∇r := (∂/∂qa, ∂/∂qb, ∂/∂qc, ∂/∂qd),

Eqs. (11)–(15) can be written as

∇qf = ∇rfJ
H, (16)

where the Jacobian matrix is

J =
1

4

⎡

⎢

⎢

⎣

1 i j k

1 i −j −k

1 −i j −k

1 −i −j k

⎤

⎥

⎥

⎦

, (17)

and J
H is the Hermitian transpose of J (Mandic

et al., 2011). Using JJ
H = J

H
J = 1/4I where I is

the identity matrix, we can also write

∇qfJ =
1

4
∇rf, (18)

which is the inverse formula for the derivatives.

We call the gradient operator defined by

Eq. (16) the restricted HR gradient operator. The

operator is closely related to the HR operator in-

troduced in Mandic et al. (2011). However, in the

original definition of the HR operator, the Jacobian

J appears on the left-hand side of ∇rf , whereas in

our definition it appears on the right (as the Hermi-

tian transpose).

The differential df is related to ∇qf by

df =
∂f

∂q
dq +

∂f

∂qi
dqi +

∂f

∂qj
dqj +

∂f

∂qk
dqk. (19)

Due to the non-commutativity of quaternion prod-

ucts, the order of the factors in the products of

Eq. (19) (as well as Eqs. (11)–(14)) cannot be

swapped. In fact, one may call the above opera-

tor the left restricted HR gradient operator. As is

shown in Appendix A, one can also define a right

restricted HR gradient operator by

(∇R
q f)

T := J
∗(∇rf)

T, (20)

where

∇R
q := (∂R/∂q, ∂R/∂qi, ∂R/∂qj, ∂R/∂qk),

and

∂Rf

∂q
:=

1

4

(

∂f

∂qa
− i

∂f

∂qb
− j

∂f

∂qc
− k

∂f

∂qd

)

, (21)

∂Rf

∂qi
:=

1

4

(

∂f

∂qa
− i

∂f

∂qb
+ j

∂f

∂qc
+ k

∂f

∂qd

)

, (22)

∂Rf

∂qj
:=

1

4

(

∂f

∂qa
+ i

∂f

∂qb
− j

∂f

∂qc
+ k

∂f

∂qd

)

, (23)

∂Rf

∂qk
:=

1

4

(

∂f

∂qa
+ i

∂f

∂qb
+ j

∂f

∂qc
− k

∂f

∂qd

)

. (24)

The right restricted HR gradient operator is related

to the differential df by

df = dq
∂Rf

∂q
+ dqi ∂

Rf

∂qi
+ dqj ∂

Rf

∂qj
+ dqk ∂

Rf

∂qk
. (25)

In general, the left and right restricted HR gradients

are not the same. For example, even for the simplest

linear function f(q) = q0q with q0 ∈ H a constant,

we have

∂q0q

∂q
= q0,

∂Rq0q

∂q
= R(q0). (26)

However, we will show later that the two gradients

coincide for a class of functions. In particular, they

are the same for real-valued quaternion functions.

The relationship between the gradients and the dif-

ferential is an important ingredient of gradient-based

methods, which we will discuss further later.
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3 Properties and rules of the operator

We will now focus on the left restricted HR gra-

dient and simply call it the restricted HR gradient

unless stated otherwise. It can be easily calculated

from the definitions that

∂q

∂q
= 1,

∂qν

∂q
= 0,

∂q∗

∂q
= −

1

2
, (27)

where ν ∈ {i, j, k}. However, to find the derivatives

for more complex quaternion functions, it is useful to

first establish the rules of the gradient operators. We

will see that some of the usual rules do not apply due

to the non-commutativity of quaternion products.

1. Left-linearity: For arbitrary constant quater-

nions α and β, and functions f(q) and g(q), we have

∂(αf + βg)

∂qν
= α

∂f

∂qν
+ β

∂g

∂qν
(28)

for ν ∈ {1, i, j, k} with q1 := q. However, linearity

does not hold for right multiplications, i.e., in general

∂fα

∂q
�=

∂f

∂q
α. (29)

This is because, according to Eq. (11),

∂fα

∂q
=

1

4

(

∂f

∂qa
α−

∂f

∂qb
αi −

∂f

∂qc
αj −

∂f

∂qd
αk

)

,

(30)

where α is an arbitrary constant quaternion. How-

ever, αν �= να in general. Therefore, it is different

from (∂f/∂q)α, which is

1

4

(

∂f

∂qa
−

∂f

∂qb
i −

∂f

∂qc
j −

∂f

∂qd
k

)

α. (31)

2. The first product rule: The following product

rule holds:

∇q(fg) = f∇qg + [(∇rf)g]J
H. (32)

For example,

∂fq

∂q
= f

∂g

∂q
+
1

4

(

∂f

∂qa
g −

∂f

∂qb
gi −

∂f

∂qc
gj −

∂f

∂qd
gk

)

.

(33)

Thus, the product rule in general is different from

the usual one.

3. The second product rule: However, the usual

product rule applies to differentiation with respect

to real variables, i.e.,

∂fg

∂qφ
=

∂f

∂qφ
g + f

∂g

∂qφ
(34)

for φ = a, b, c, or d.

4. The third product rule: The usual product

rule also applies if at least one of the two functions

f(q) and g(q) is real-valued, i.e.,

∂fq

∂q
= f

∂g

∂q
+

∂f

∂q
g. (35)

5. The first chain rule: For a composite func-

tion f(g(q)), g(q) := ga + gbi + gcj + gdk being a

quaternion-valued function, we have the following

chain rule:

∇qf = (∇g
qf)M , (36)

where ∇g
q := (∂/∂g, ∂/∂gi, ∂/∂gj, ∂/∂gk) and M is

a 4 × 4 matrix with element Mµν = ∂gµ/∂qν for

µ, ν ∈ {1, i, j, k} and gµ = −µgµ (g1 is understood

the same as g). Explicitly, we can write

∂f

∂qν
=
∑

µ

∂f

∂gµ
∂gµ

∂qν
. (37)

The proof is outlined in Appendix C.

6. The second chain rule: The above chain rule

uses g and its involutions as the intermediate vari-

ables. It is sometimes convenient to use the real

components of g for that purpose instead. In this

case, the following chain rule may be used:

∇qf = (∇g
rf)O, (38)

where O is a 4×4 matrix with entry Oφν = ∂gφ/∂q
ν

with φ ∈ {a, b, c, d} and ν ∈ {1, i, j, k}, and ∇g
r :=

(∂/∂ga, ∂/∂gb, ∂/∂gc, ∂/∂gd). Explicitly, we have

∂f

∂qν
=
∑

φ

∂f

∂gφ

∂gφ
∂qν

. (39)

7. The third chain rule: If the intermediate func-

tion g(q) is real-valued, i.e., g = ga, then from the

second chain rule, we obtain

∂f

∂qν
=

∂f

∂g

∂g

∂qν
. (40)

8. f(q) is not independent of qi, qj, or qk in the

sense that, in general,

∂f(q)

∂qi
�= 0,

∂f(q)

∂qj
�= 0,

∂f(q)

∂qk
�= 0. (41)

This can be illustrated by f(q) = q2. Using the first

product rule (Eq. (32)), we have

∂q2

∂qi
= q

∂q

∂qi
+

1

4

∑

(φ,ν)

∂q

∂qφ
qν
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for (φ, ν) ∈ {(a, 1), (b, i), (c,−j), (d,−k)}. It can then

be shown that

∂q2

∂qi
= qbi,

∂q2

∂qj
= qcj,

∂q2

∂qk
= qdk. (42)

This property demonstrates the intriguing difference

between the HR derivative and the usual derivatives,

although we can indeed show that

∂q

∂qν
= 0. (43)

One implication of this observation is that, for a

nonlinear algorithm involving simultaneously more

than one gradient ∂f/∂qν, we have to take care to

include all the terms.

4 Restricted HR derivatives for a class
of regular functions

Using the above operation rules, we can find

explicit expressions for the derivatives for a whole

range of functions. We first introduce the following

lemma:

Lemma 1 The derivative of the power function

f(q) = (q−q0)
n, with integer n and constant quater-

nion q0, is

∂f(q)

∂q
=

1

2

(

nq̃n−1 +
q̃n − q̃∗n

q̃ − q̃∗

)

(44)

with q̃ = q − q0.

Remark 1 The division in (q̃n−q̃∗n)/(q̃−q̃∗) is un-

derstood as (q̃n−q̃∗n)(q̃−q̃∗)−1 or (q̃−q̃∗)−1(q̃n−q̃∗n)

which are the same since the two factors commute.

The division operations in what follows are under-

stood in the same way.

Proof The lemma is obviously true for n = 0.

Letting n ≥ 1, we apply the first product rule, and

find
∂(q − q0)

n

∂q
= q̃

∂q̃n−1

∂q
+ R(q̃n−1), (45)

where R(q̃n−1) is the real part of q̃n−1. We then

obtain by induction

∂(q − q0)
n

∂q
=

n−1
∑

m=0

q̃mR(q̃n−1−m). (46)

Using R(q̃n−1−m) = (q̃n−1−m + q̃∗(n−1−m))/2, the

summations can be evaluated explicitly, leading to

Eq. (44).

For n < 0, we use the recurrent relation

∂((q − q0)
−n)

∂q
= q̃−1

[

∂q̃−(n−1)

∂q
− R(q̃−n)

]

(47)

and the result

∂(q − q0)
−1

∂q
= −q̃−1R(q̃−1). (48)

Eq. (44) is proven by using induction as for n > 0.

More details are given in Appendix B.

Theorem 1 Assuming f : H → H admits a power

series representation f(q) := g(q̃) :=
∑∞

n=−∞ anq̃
n,

with an being a quaternion constant and q̃ = q − q0,

for R1 ≤ |q̃| ≤ R2 with R1, R2 > 0 being some

constants, then we have

∂f(q)

∂q
=

1

2

[

f ′(q) + (g(q̃)− g(q̃∗))(q̃ − q̃∗)−1
]

,

(49)

where f ′(q) is the derivative in the usual sense, i.e.,

f ′(q) :=

∞
∑

n=−∞

nanq̃
n−1 =

∞
∑

n=−∞

nan(q − q0)
n−1.

(50)

Proof Using Lemma 1 and the restricted left-

linearity of HR gradients, we have

∂f

∂q
=

1

2

∞
∑

n=−∞

an[nq̃
n−1 + (q̃n − q̃∗n)(q̃ − q̃∗)−1]

= f ′(q) +
1

2

[

∞
∑

n=∞

an(q̃
n − q̃∗n)

]

(q̃ − q̃∗)−1

=
1

2
[f ′(q) + (g(q̃)− g(q̃∗))(q̃ − q̃∗)−1],

which proves the theorem.

The functions f(q) form a class of regular func-

tions on H . A full discussion of such functions is

beyond the scope of this paper. However, we note

that a similar class of functions have been discussed

in Gentili and Struppa (2007). A parallel develop-

ment for the former is possible, and will be the topic

of a future paper. Meanwhile, we observe that many

useful elementary functions satisfy the conditions in

Theorem 1. To illustrate the application of the the-

orem, we list below the derivatives of a number of

such functions.

Example 1 Exponential function f(q) = eq has

representation

eq :=

∞
∑

n=0

qn

n!
. (51)
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Applying Theorem 1 with an = 1/n! and q0 = 0, we

have
∂eq

∂q
=

1

2

(

eq +
eq − eq∗

q − q∗

)

. (52)

Making use of eq = eqa+v̂v = eqaev̂v = eqa(cos v +

v̂ sin v) with the representation of q = qa + v̂v and

v̂
2 = −1, respectively, we have

∂eq

∂q
=

1

2

(

eq + eqav−1 sin v
)

. (53)

Example 2 The logarithmic function f(q) = ln q

has representation

ln q =

∞
∑

n=1

(−1)n−1

n
(q − 1)n, (54)

with an = (−1)n−1/n and q0 = 1. Since q0 is a real

number, g(q̃∗) = f(q∗). Therefore, from Theorem 1

we have

∂ ln q

∂q
=

1

2

(

q−1 +
ln q − ln q∗

q − q∗

)

. (55)

Using representation ln q = ln |q| + v̂ arccos(qa/|q|),

the expression can be simplified as

∂ ln q

∂q
=

1

2

(

q−1 +
1

v
arccos

qa
|q|

)

, (56)

where v = |I(q)|.

Example 3 Hyperbolic tangent function f(q) =

tanh q is defined as

tanh q :=
eq − e−q

eq + e−q
= q −

q3

3
+

2q5

15
− · · · . (57)

Therefore, Theorem 1 applies. On the other hand,

using the relation eq = eqa(cos v + v̂ sin v), we can

show that

tanh q =
1

2

sinh(2qa) + v̂ sin(2v)

sinh2 qa + cos2 v
. (58)

Then the second term in the expression given by

Theorem 1 can be simplified. The final expression

can be written as

∂ tanh q

∂q
=

1

2

(

sech2q +
v−1 sin(2v)

cosh(2qa) + cos(2v)

)

,

(59)

where sechq := 1/ cosh q is the quaternionic hyper-

bolic secant function.

Remark 2 Apparently, the derivatives for these

functions can also be found by direct calculations

without resorting to Theorem 1.

We now turn to a question of more theoreti-

cal interests. Even though it might not be obvious

from the definitions, the following theorem shows

that the restricted HR derivative is consistent with

the derivative in the real domain for a class of func-

tions, including those in the above examples:

Theorem 2 For the function f(q) in Theorem 1,

if q0 is a real number, then

∂f(q)

∂q
→ f ′(q), (60)

when q → R(q), i.e., when q approaches a real

number.

Proof Using the polar representation, we write q̃ =

|q̃| exp(v̂θ), where θ = arcsin(v/|q̃|) is the argument

of q̃ with v = |I(q̃)|. Then q̃n = |q̃|n exp(nv̂θ), and

(q̃n− q̃∗n)(q̃− q̃∗)−1 =
I(q̃n)

I(q̃)
=

|q̃|n−1 sin(nθ)

sin θ
. (61)

For real q0, q̃ → qa − q0 and v → 0 when q → R(q).

There are two possibilities. First, if qa−q0 ≥ 0, then

θ → 0 at the limit. Thus,

sin(nθ)

sin θ
∼

sin(nθ)

θ
→ n, |q̃|n−1 → (qa − q0)

n−1.

(62)

Therefore,

(q̃n − q̃∗n)(q̃ − q̃∗)−1 → nq̃n−1, (63)

[g(q̃)− g(q̃∗)](q̃ − q̃∗)−1 →

∞
∑

n=−∞

nanq̃
n−1 = f ′(q).

(64)

Thus,

∂f(q)

∂q
→

1

2
[f ′(q) + f ′(q)] = f ′(q). (65)

Second, if qa − q0 < 0, then θ → π. Thus,

sin(nθ)

sin θ
∼

sin(nθ)

π− θ
. (66)

Noting sin(nθ) = sin[nπ − n(π − θ)] =

(−1)n−1 sin[n(π− θ)], we have

sin(nθ)

sin θ
∼

(−1)n−1 sin(n(π− θ))

π− θ
→ (−1)n−1n.

(67)

On the other hand, in this case |q̃| → −(qa − q0),

and hence |q̃|n−1 → (−1)n−1(qa − q0)
n−1. Since

q̃ → qa − q0, as a consequence, we have

(q̃n − q̃∗n)(q̃ − q̃∗)−1 → nq̃n−1, (68)
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which is the same as Eq. (63). The proof then follows

from the first case.

The functions in above three examples all sat-

isfy the conditions in Theorem 2. Hence, we expect

Theorem 2 applies. One can easily verify by direct

calculations that the theorem indeed holds.

5 Right restricted HR gradients

In this section, we briefly summarize the results

for the right restricted HR gradients, and highlight

the difference from the left restricted HR gradients.

1. Right-linearity: For arbitrary quaternion con-

stants α and β, and functions f(q) and g(q), we have

∂R(fα+ gβ)

∂qν
=

∂Rf

∂qν
α+

∂Rg

∂qν
β. (69)

However, linearity does not hold for left multiplica-

tions, i.e., in general ∂Rαf/∂q �= α∂Rf/∂q.

2. The first product rule: For the right restricted

HR operator, the following product rule holds:

[∇R
q (fg)]

T = [(∇R
q f)g]

T + J
∗[f(∇rg)

T] . (70)

The second and third product rules are the same as

those of the left restricted operator.

3. The first chain rule: For the composite func-

tion f(g(q)), we have

(∇R
q f)

T = M
T(∇gR

q f)T. (71)

4. The second chain rule becomes (∇R
q f)

T =

O
T(∇g

rf)
T.

5. The third chain rule becomes ∂Rf/∂qν =

(∂g/∂qν)(∂f/∂g). Note that ∂g/∂qν = ∂Rg/∂qν

since g is real-valued. We thus have omitted the

superscript ‘R’. Also, ∂f/∂g is a real derivative,

so there is no distinction between left and right

derivatives.

We can also find the right restricted HR gradi-

ents for common quaternion functions. First of all,

Lemma 1 is also true for right derivatives.

Lemma 2 For f(q) = (q − q0)
n with n an integer

and q0 a constant quaternion, we have

∂Rf(q)

∂q
=

1

2

(

nq̃n−1 +
q̃n − q̃∗n

q̃ − q̃∗

)

, (72)

with q̃ = q − q0.

Remark 3 To prove the lemma, we use the follow-

ing recurrent relations:

∂(q − q0)
n

∂q
=

∂q̃n−1

∂q
q̃ + R(q̃n−1), (73)

∂((q − q0)
−n)

∂q
=

[

∂q̃−(n−1)

∂q
− R(q̃−n)

]

q̃−1. (74)

Using Lemma 2, We can prove the following result:

Theorem 3 Assuming f : H → H admits a power

series representation f(q) := g(q̃) :=
∑∞

n=−∞ q̃nan,

with an being a quaternion constant and q̃ = q − q0,

for R1 ≤ |q̃| ≤ R2 with R1, R2 > 0 being some

constants, then we have

∂Rf(q)

∂q
=

1

2

[

f ′(q) + (q̃ − q̃∗)−1(g(q̃)− g(q̃∗))
]

,

(75)

where f ′(q) is the derivative in the usual sense, i.e.,

f ′(q) :=

∞
∑

n=−∞

nq̃n−1an =

∞
∑

n=−∞

n(q − q0)
n−1an.

(76)

Note that, the functions f(q) in Theorem 3 in gen-

eral form a class of functions different from the one

in Theorem 1, because in the series representation an
appears on the right-hand side of the powers. How-

ever, if an is a real number, then the two classes of

functions coincide. Therefore, we have the following

result:

Theorem 4 If an is real, then the left and right

restricted HR gradients of f(q) coincide.

Remark 4 As a consequence, we can see imme-

diately that the right derivatives for the exponen-

tial, logarithmic, and hyperbolic tangent functions

are the same as the left ones.

Apparently, Theorem 2 is also true for the right

derivatives. Hence, we have:

Theorem 5 The right-restricted HR gradient is

consistent with the real gradient in the sense of The-

orem 2.

6 Increment of a quaternion function

When f(q) is a real-valued quaternion function,

both left and right restricted HR gradients are coin-

cident with the HR gradients. Besides, we have

∂Rf

∂qν
=

∂f

∂qν
=

(

∂f

∂q

)ν

, (77)

where ν ∈ {1, i, j, k}. Thus, only ∂f/∂q is inde-

pendent. As a consequence (see also Mandic et al.
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(2011)),

df =
∑

ν

∂f

∂qν
dqν =

∑

ν

(

∂f

∂q

)ν

dqν

=
∑

ν

(

∂f

∂q
dq

)ν

= 4R

(

∂f

∂q
dq

)

, (78)

where Eq. (77) has been used. Hence, −(∂f/∂q)∗

gives the steepest descent direction for f , and the

increment is determined by ∂f/∂q.

On the other hand, if f is a quaternion-valued

function, the increment will depend on all four

derivatives. Taking f(q) = q2 as an example, we

have (see Eqs. (42) and (44))

dq2 = (q + qa)dq + qbidq
i + qcjdq

j + qdkdqk, (79)

even though f(q) appears to be independent of qi, qj,

and qk. It can be verified that the above expression

is the same as the differential form given in terms of

dqa, dqb, dqc, and dqd. Thus, it is essential to include

the contributions from ∂f/∂qi, etc.

We also note that, if the right gradient is used

consistently, the same increment would be produced,

since the basis of the definitions is the same, namely,

the differential form in terms of dqa, dqb, dqc, and

dqd.

6.1 Quaternion-valued LMS algorithm

As an application, we now apply the quaternion-

valued restricted HR gradient operator to develop

the QLMS algorithm. Different versions of the

QLMS algorithm have been derived in Barthelemy

et al. (2014), Jiang et al. (2014b), and Tao and Chang

(2014). However, with the rules we have derived

that, some of the calculations can be simplified, as

we will show below.

In terms of a standard adaptive filter, the output

y[n] and error e[n] can be expressed as

y[n] = w
T[n]x[n], e[n] = d[n]−w

T[n]x[n], (80)

where w[n] is the adaptive weight coefficient vector,

d[n] the reference signal, and x[n] the input sample

vector. The conjugate e∗[n] of the error signal e[n] is

e∗[n] = d∗[n]− x
H[n]w∗[n]. (81)

The cost function is defined as J [n] = e[n]e∗[n],

which is real-valued. According to the discussion

above and Brandwood (1983) and Mandic et al.

(2011), the conjugate gradient (∇wJ [n])∗ gives the

maximum steepness direction for the optimization

surface. Therefore, it is used to update the weight

vector. Specifically,

w[n+ 1] = w[n]− µ(∇wJ [n])∗, (82)

where µ is the step size. To find ∇wJ , we use the

first product rule:

∇wJ =
∂e[n]e∗[n]

∂w

= e[n]
∂e∗[n]

∂w
+

1

4

(

∂e[n]

∂wa

e∗[n]−
∂e[n]

∂wb

e∗[n]i

−
∂e[n]

∂wc

e∗[n]j −
∂e[n]

∂wd

e∗[n]k

)

.

(83)

After some algebra, we find ∇wJ [n] =

−x[n]e∗[n]/2, which leads to the following update

equation for the QLMS algorithm:

w[n+ 1] = w[n] + µ(e[n]x∗[n]). (84)

6.2 Quaternion-valued nonlinear adaptive

algorithm

Another application is the derivation of

quaternion-valued adaptive filtering algorithms. We

use the quaternion-valued hyperbolic tangent func-

tion as an example (Roberts and Jayabalan, 2015),

so that the output s[n] of the adaptive filter can

be given by s[n] = tanh(y[n]) = tanh(wT[n]x[n]).

The cost function is given by J [n] = e[n]e∗[n], with

e[n] = d[n]− tanh(wT[n]x[n]).

Using the product rules in Eq. (83) and chain

rules, and letting y[n] = w
T[n]x[n], we have

∂e∗[n]

∂w[n]
= −

(

∂ tanh(y∗[n])

∂(y∗[n])a

∂(y∗[n])a
∂w[n]

+
∂ tanh(y∗[n])

∂(y∗[n])b

∂(y∗[n])b
∂w[n]

+
∂ tanh(y∗[n])

∂(y∗[n])c

∂(y∗[n])c
∂w[n]

+
∂ tanh(y∗[n])

∂(y∗[n])d

∂(y∗[n])d
∂w[n]

)

.

(85)

Let u = |I(y)| and û = I(y)/u. Then the quaternion

y = ya+I(y) can also be written as y = ya+uû. Here,

û is a pure unit quaternion. Finally, the gradient can
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be expressed as follows by using Eq. (58):

∇wJ [n] =
1

4(sinh2 ya + cos2 u)2

·

[

(

2 sin(2u)(ea sin
2 ya + sin(2u)(eû)a)

+ (cosu−
sinu

u
)(sinh2 ya + cos2 u)(eû)a

)

xû

+ ea

(

(sinh2 ya + cos2 u)(
sinu

u
− 4 cosh(2ya))

+ sinh(2ya)(sinh
2 ya − sin(2u)(eû)a)

)

x

+ 2
sinu

u
(sinh2 ya + cos2 u)(exa + e∗x)a)

]

.

(86)

Substituting the above result into Eq. (82) we can

then obtain the update equation for the nonlinear

adaptive algorithm.

On the other hand, if we use the series repre-

sentation of tanh q, we can obtain another form of

the gradient function and the corresponding update

equation becomes

w[n+ 1]

= w[n] +
1

2
µ

∞
∑

m=0

m−1
∑

r=0

am(xH[n]w∗[n])m−1−r

· e[n](xH[n]w∗[n])rx∗[n], (87)

where am is the coefficient in the series rep-

resentation of tanh(y[n]), i.e., tanh(y[n]) =
∑∞

m=0 am(y[n])m. It can be shown that if the items

in the gradient part of the above expression are com-

mutative, it will be reduced to the same form as in

the real or complex domain.

7 Application to adaptive beamform-
ing based on vector sensor arrays

As an example for the application of quaternion-

valued signal processing, we here consider the refer-

ence signal based adaptive beamforming problem for

vector sensor arrays consisting of multiple crossed-

dipoles, where the earlier derived QLMS algorithm

can be employed for beamforming.

7.1 Vector sensor arrays with a quaternion

model

A general structure for a uniform linear ar-

ray (ULA) with M crossed-dipole pairs is shown in

Fig. 1, where these pairs are located along the y-axis

with an adjacent distance d, and at each location the

two crossed components are parallel to the x-axis

and y-axis, respectively. For a far-field incident sig-

nal with a direction of arrival (DOA) defined by the

angles θ and φ, its spatial steering vector is given by

Sc(θ, φ) =

⎡

⎢

⎢

⎢

⎣

1

exp(−j2πd sin θ sinφ/λ)
...

exp(−j2π(M − 1)d sin θ sinφ/λ)

⎤

⎥

⎥

⎥

⎦

,

(88)

where λ is the wavelength of the incident signal.

For a crossed-dipole the spatial-polarization coher-

ent vector can be given by Compton (1981), Li and

Compton (1991), Zhang et al. (2014), and Hawes and

Liu (2015):

Sp(θ, φ, γ, η) =

⎧

⎨

⎩

[− cos γ, cos θ sin γejη], φ =
π

2
,

[cos γ,− cos θ sin γejη], φ = −
π

2
,

(89)

where γ is the auxiliary polarization angle with γ ∈

[0,π/2], and η ∈ [−π,π] is the polarization phase

difference.

d

 ...

θ

y

z

x

ϕ

Fig. 1 A uniform linear array (ULA) with crossed-

dipoles

The array structure can be divided into two sub-

arrays: one parallel to the x-axis and one to the

y-axis. The complex-valued steering vector of the

x-axis sub-array is given by

Sx(θ, φ, γ, η) =

⎧

⎨

⎩

− cosγSc(θ, φ), φ =
π

2
,

cos γSc(θ, φ), φ =
−π

2
,

(90)

and for the y-axis it is expressed as

Sy(θ, φ, γ, η) =

⎧

⎨

⎩

cos θ sin γejη
Sc(θ, φ), φ =

π

2
,

− cos θ sin γejη
Sc(θ, φ), φ =

−π

2
.

(91)
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Combining the two complex-valued subarray

steering vectors together, an overall quaternion-

valued steering vector with one real part and three

imaginary parts can be constructed as

Sq(θ, φ, γ, η)

= ℜ{Sx(θ, φ, γ, η)}+ iℜ{Sy(θ, φ, γ, η)}

+ jℑ{Sx(θ, φ, γ, η)} + kℑ{Sy(θ, φ, γ, η)},

(92)

whereℜ{·} andℑ{·} are the real and imaginary parts

of a complex number/vector, respectively. Given a

set of coefficients, the response of the array is given

by

r(θ, φ, γ, η) = w
H
Sq(θ, φ, γ, η), (93)

where w is the quaternion-valued weight vector.

7.2 Reference signal based adaptive beam-

forming

Suppose one of the incident signals to the ar-

ray is the desired one and the remaining signals are

interferences. Then the aim of beamforming is to re-

ceive the desired signal while suppressing the inter-

ferences at the output of the beamformer (Liu and

Weiss, 2010). When a reference signal d[n] is avail-

able, adaptive beamforming can be implemented by

the standard adaptive filtering structure (Fig. 2),

where xm[n] (m = 1, 2, · · · ,M) are the received

quaternion-valued input signals through the M pairs

of crossed dipoles, and wm[n] (m = 1, 2, · · · ,M) the

corresponding quaternion-valued weight coefficients.

The beamformer output y[n] and the error signal e[n]

are
{

y[n] = w
T[n]x[n],

e[n] = d[n]−w
T[n]x[n],

(94)

where
{

w[n] = [w1[n], w2[n], . . . , wM [n]]
T
,

x[n] = [x1[n], x2[n], . . . , xM [n]]
T
.

(95)

Simulations are performed based on such an ar-

ray with 16 crossed dipoles and half-wavelength spac-

ing using the QLMS algorithm in Eq. (84). The

stepsize µ is set to 2× 10−4. A desired signal with a

20 dB signal-to-noise ratio (SNR) impinges from the

broadside of the array (θ = 15◦) and two interfer-

ing signals with a signal-to-interference ratio (SIR)

of −10 dB arrive from the directions (30◦, 90◦) and

(15◦,−90◦), respectively. All the signals have the

same polarisation of (γ, η) = (30◦, 0). The learning

curve obtained by averaging results from 200 simu-

lation runs is shown in Fig. 3 and the resultant beam

pattern is shown in Fig. 4, where for convenience

positive values of θ indicate the value range θ ∈

[0◦, 90◦] for φ = 90◦, while negative values of

θ ∈ [−90◦, 0◦] indicate an equivalent range of

θ ∈ [0◦, 90◦] with φ = −90◦. We can see that

the ensemble mean square error has reached almost

−30 dB and two nulls have been formed successfully

in the two interference directions, demonstrating the

effectiveness of the quaternion-valued signal model

and the derived QLMS algorithm.
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Fig. 2 Reference signal based adaptive beamforming

structure
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8 Conclusions

We have proposed a restricted HR gradient op-

erator and discussed its properties, in particular,

several different versions of product rules and chain

rules. Using the rules that we have established, we

derived a general formula for the derivative of a large

class of nonlinear quaternion-valued functions. The

class includes the common elementary functions such

as the exponential function and the logarithmic func-

tion. We also proved that, for a wide class of func-

tions, the restricted HR gradient becomes the usual

derivatives for real functions with respect to real

variables, when the independent quaternion variable

tends to the real axis, thus showing the consistency

of the definition. Both linear and nonlinear adap-

tive filtering algorithms are derived to show the ap-

plications of the operator. An adaptive beamform-

ing example based on vector sensor arrays has also

been provided to demonstrate the effectiveness of the

quaternion-valued signal model and the derived sig-

nal processing algorithm.
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Appendix A:Definition of the operators

We consider df = dfa + idfb + jdfc + kdfd. By

definition, we have dfγ =
∑

φ(∂fγ/∂qφ)dqφ, with

γ, φ ∈ {a, b, c, d}. Using the relations

dqa =
1

4

(

dq + dqi + dqj + dqk
)

, (A1)

dqb =
1

4i

(

dq + dqi − dqj − dqk
)

, (A2)

dqc =
1

4j

(

dq − dqi + dqj − dqk
)

, (A3)

dqd =
1

4k

(

dq − dqi − dqj + dqk
)

, (A4)

we can rewrite dfγ as follows:

dfγ =
1

4

(

∂fγ
∂qa

− i
∂fγ
∂qb

− j
∂fγ
∂qc

− k
∂fγ
∂qd

)

dq

+
1

4

(

∂fγ
∂qa

− i
∂fγ
∂qb

+ j
∂fγ
∂qc

+ k
∂fγ
∂qd

)

dqi

+
1

4

(

∂fγ
∂qa

+ i
∂fγ
∂qb

− j
∂fγ
∂qc

+ k
∂fγ
∂qd

)

dqj

+
1

4

(

∂fγ
∂qa

+ i
∂fγ
∂qb

+ j
∂fγ
∂qc

− k
∂fγ
∂qd

)

dqk,

which can be written as

dfγ =
1

4

∑

ν

⎛

⎝

∑

(φ,µ)

∂fγ
∂qφ

µν

⎞

⎠ dqν , (A5)

where (φ, µ) ∈ {(a, 1), (b,−i), (c,−j), (d,−k)}, ν ∈

{1, i, j, k}, and µν is the ν-involution of µ. Therefore,

df = dfa + idfb + jdfc + kdfd

=
1

4

∑

ν

⎛

⎝

∑

(φ,µ)

∂(fa + ifb + jfc + kfd)

∂qφ
µν

⎞

⎠dqν

=
1

4

∑

ν

⎛

⎝

∑

(φ,µ)

∂f

∂qφ
µν

⎞

⎠ dqν , (A6)

which leads to Eqs. (11)–(19) in the main text. Note

that, because µν and dqν are quaternions, to obtain

the last equation, we need to multiply dfb, dfc, and

dfd by i, j, and k from the left.

On the other hand, we notice that the prefactors

in Eqs. (A2)–(A4) can be moved to the right-hand

side of the other factors; i.e., we can write

dqa = (dq + dqi + dqj + dqk)
1

4
, (A7)

dqb = (dq + dqi − dqj − dqk)
1

4i
, (A8)

dqc = (dq − dqi + dqj − dqk)
1

4j
, (A9)

dqd = (dq − dqi − dqj + dqk)
1

4k
. (A10)

Using these relations, we can find another expression

for dfγ following the procedure above:

dfγ =
1

4

∑

ν

dqν

⎛

⎝

∑

(φ,µ)

µν ∂fγ
∂qφ

⎞

⎠ . (A11)

The expression is different from Eq. (A5), in that the

differentials dqν are on the left of µν . Therefore, we

derive

df = dfa + dfbi + dfcj + dfdk

=
1

4

∑

ν

dqν

⎛

⎝

∑

(φ,µ)

µν ∂(fa + fbi + fcj + fdk)

∂qφ

⎞

⎠

=
1

4

∑

ν

dqν

⎛

⎝

∑

(φ,µ)

µν ∂f

∂qφ

⎞

⎠ , (A12)

which is the basis for the definitions for the right

restricted HR derivatives as given in the main text.
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Appendix B: Additional details for the
proof of Lemma 1

To prove Lemma 1, we have used the following

relation:

∂q−1

∂q
= −q−1R(q−1). (B1)

To show this result, we note ∂(qq−1)/∂q = ∂1/∂q =

0. Thus,

0 = q
∂q−1

∂q
+

1

4

(

q−1 − iq−1i − jq−1j − kq−1k
)

= q
∂q−1

∂q
+ R(q−1), (B2)

from which the result follows. We have used Eq. (11)

and the fact that

∂q

∂qa
= 1,

∂q

∂qb
= i,

∂q

∂qc
= j,

∂q

∂qd
= k. (B3)

The proof also uses the following recurrent relation:

∂q−n

∂q
= q−1

[

∂q−(n−1)

∂q
− R(q−n)

]

, (B4)

which can be shown as follows. By using the first

product rule, we have

∂q−n

∂q
= q−1 ∂q

−(n−1)

∂q
+

1

4

(

∂q−1

∂qa
q−(n−1)

−
∂q−1

∂qb
q−(n−1)i −

∂q−1

∂qc
q−(n−1)j −

∂q−1

∂qd
q−(n−1)k

)

.

(B5)

Using the fact ∂qq−1/∂qφ = 0 for φ ∈ {a, b, c, d}, and

the second product rule, we find

∂q−1

∂qφ
= −q−1 ∂q

∂qφ
q−1. (B6)

Thus,

∂q−n

∂q
= q−1 ∂q

−(n−1)

∂q

−
q−1

4

(

q−n − iq−ni − jq−nj − kq−nk
)

= q−1 ∂q
−(n−1)

∂q
− q−1R(q−n). (B7)

Appendix C: Derivations of the first
chain rule

The function f(g(q)) can be viewed as a function

of intermediate variables ga, gb, gc, and gd. Using the

usual chain rule, we have

∂f

∂qβ
=
∑

φ

∂f

∂gφ

∂gφ
∂qβ

, (C1)

with β ∈ {a, b, c, d}, which gives ∇rf = (∇g
rf)P ,

where P is a 4 × 4 matrix with Pφβ = ∂gφ/∂qβ.

With (∇rf)J
H = ∇qf and ∇g

rf = 4(∇g
qf)J , the

above equation leads to

∇qf = 4(∇g
qf)JPJ

H, (C2)

where it is easy to show that 4JPJ
H = M .
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