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FOREWORD 

This paper is an expanded version of Off ice of Naval Research 
(ONR) Memorandum 91 (Technological Institute, Northwestern 
University, Evanston, 111.), which the authors wrote in November 
1963. Most of the material in Sees 6 through 8 is also in the orig- 
inal research report. Professor Charnes's work was supported 
in part by ONR [Research Contract Nonr-1228(10), Project NR 
047-021] and the National Institutes of Health (Projects EF 00355- 
01 and WP 00019-04). Dr. Kirby's work has been conducted in the 
research program of RAC's Advanced Research Division, under 
Department of Army sponsorship. 

It is hoped that this paper will present an introduction to 
generalized inverses and some of their applications that will be 
understandable toany reader with a knowledge of elementary linear 
algebra. For this reason all theorems in the paper will be proved 
by using only the basic concepts of linear algebra. In addition, for 
the sake of completeness, all concepts required in the proofs will 
be defined and cross-referenced to standard texts. 

Nicholas M. Smith 
Chief, Advanced Research 
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ABSTRACT 

In the first five sections of this paper various properties of a Rao 
generalized inverse of a matrix are established. A method of computing 
such an inverse is also given. In order to illustrate the differences be- 
tween the Rao and other generalized inverses, a survey of results on 
Penrose-Moore inverses is included. 

The last three sections are devoted to showing how a generalized 
inverse can be used in the theoretical development of the simplex and 
modified simplex methods of linear programming. In particular, it is 
shown that the fundamental equations and iteration formulas of these meth- 
ods can be derived using matrix notation without requiring the assumption 
that the linear programming problem has no redundant constraints. 



1.   INTRODUCTION 

This paper presents some properties and applications of a Rao general- 
ized inverse A" of an arbitrary matrix A.   After both V and the better-known 
Penrose-Moore inverse A1 have been defined and the mail- results and refer- 
ences on Penrose-Moore inverses have been summarized briefly, A* is shown 
to be just one of, in general, an infinite number of ¥. With several important 
properties of A" established, the computational aspect   of both the Rao and 
Penrose-Moore inverses is discussed, and a numerical example shows how 
much easier it is to compute A1* than Af. 

Some uses of A" in linear programming theory will then be considered. 
Throughout the literature on linear programming, e.g., in the development of 
the simplex and modified simplex methods, theorems are proved by using the 
inverse of a basis matrix for the space spanned by the activity vectors P (, 
j =1, . . . ,« and the stipulations vector  P0.  In general, however, such an 
inverse need not exist.  In the distribution and network problems, for example, 
a basis is not square and hence has no inverse.  In fact, for any problem in 
which redundant constraints exist, a basis matrix will not be square. 

Here it is shown that linear programming theorems can be proved just as 
easily by using a left inverse of a basis matrix as by using the ordinary inverse. 
It will be shown that such a left inverse always exists and reduces to the regular 
inverse in the event that the basis matrix is square.  It will also be proved that 
even though the left inverse is not unique it can still be used to give a unique 
expression for any Pj in terms of the basis.   Thus matrix equations of the form 
BXj   Pj, where B is a basis, can be solved without considering whether B is 
square. 

2.  RAO AND PENROSE-MOORE INVERSES 

In 1962, C. R. Rao, an Indian statistician, published a paper1 in which he 
defined a generalized inverse (g.i.) of a matrix as follows. 

Definition 1—A Rao g.i. of an mxn matrix A is any n>m matrix A1* such 
that for any b, for which AX - b is consistent, X   AHb is a solution. 

Rao defined such a g.i. in order to be able to use matrix notation and theory 
in solving systems of linear equations of the form AX = b in cases where A is 
rectangular or square and singular.'   The question of how to define and use a 
g.i. for such problems has received attention from time to time in the literature. 
In particular, attempts have been made to define a g.i. with properties similar 

tRao was particularly interested in using a g.i. for applications to least-squares 
theory. 



to those of an inverse of a nonsingular matrix.  The first such attempt was made 
by Moore.2'3 The essence of his definition of a g.i. is as follows: 

Definition 2—An n xm matrix A+ is a g.i. of an m xn matrix A if AA+ = pro- 
jection on the range of A and A+A = projection on the range of A+. 

Moore established the existence and uniquenesst of A+ for any A and gave 
an explicit form for A+ in terms of the subdeterminants of A and  AT, the trans- 
pose of A.  Various properties of A^ and relations between A, A^, and A+ were 
presented by Moore.3 At the same time a variant of these results was obtained 
and given an algebraic basis by von Neumann.4 

Tseng5»6 extended Moore's results to closed linear operators on a Hilbert 
space.   Further extensions of the work of both von Neumann and Tseng were 
obtained by Ben-Israel and Charnes.7»8 

Because the unique notations employed by Moore were not adopted by other 
mathematicians, his work remained virtually unknown.  As a result, other vari- 
ants of a g.i. were discovered independently by Bjerhammar9»10 and Penrose.11'12 

The former constructed A+ by identifying it with a submatrix of the inverse of 
a particular square nonsingular matrix.  He also showed that the general solu- 
tion of the matrix equation AX = b , when consistent, is X = A+b + fl - A+A) Y, where 
Y is an arbitrary nxl vector. Thus when Y is chosen to be the null vector, it is 
seen that A* also satisfies Definition 1.   Hence A+ is also an At 

Meanwhile Penrose defined a g.i. in a manner that can be shown to be 
equivalent to Definition 2.   His definition is stated as follows. 

Definition 3—A-+ is the solution of the equations 

AXA =A 

XAX - X 

fAX)r=AX 

fXA)T=XA. 

Penrose's proof of the existence and uniqueness of A+ is based on the 
vanishing of a finite polynomial in ATA.  An extension of his results to the case 
of infinite matrices was obtained by Ben-Israel and Charnes, as is noted in Ben- 
Israel and Wersan.13 

Some other results obtained by Penrose are summarized below. 

Theorem 1 
(a) fA+)+ = A. 
(b) fAT)^fA*)T. 

(c) det fA) i 0 implies A+ = A- \ the inverse of A. 
(d) fATA)+= A+fAT)+  even though in general fAB)+^ B+A+. 
(e) The ranks of A, A^A, A+, A+A are all equal to the trace of A+A. 

Theorem 2 

A necessary and sufficient condition for the solvability of AXB = C, is that 

AA+c:B+B = (', 

tUniqueness is the property of A+ that makes it much more difficult to compute 
than AM. 



in which case the general solution of A.XB = C is 

\ - A»( nf ♦ (v - A'AVDBM 

where Y is an arbitrary matrix of the same size as X. 
Theorem 2 is valid for any A+, B+ that satisfy AA+A = A and BB+B - B, 

respectively. It will be shown subsequently that the condition that A+ satisfy 
AA+A = A is equivalent to Definition 1, so that AA**A = A for any Rao g.i. AH. Thus 
Theorem 2 will be seen to hold for any Rao g.i.'s A1*,  B^. 

Moreover it is worth noting that there is a direct relation between the prop- 
erty AAWA = A and the work of von Neumann4 on regular rings.   In this work, von 
Neumann defined a ring R as a regular ring if and only if for each element a of 
R there exists an element x of R such that axa = a.  An excellent summary of 
von Neumann's work appears in McCoy (Ref 14, pp 147-49). 

Penrose12 suggested applications of the g.i. in least-squares solutions to 
inconsistent linear equations.  This idea was also used by Tseng,5'6 whose re- 
sults suggest the following definition of a g.i.: This definition, also suggested 
by Penrose (Ref 12, p 18), rests on the least-square character of solutions to 
linear equations obtained by using A+. 

Definition 4—Consider the system of linear equations AX - b .where A is 
mx n.  Among all virtual solutions Xb of AX = b, defined by 

| lAXb-b| 1- inf | I AX-bl |, 

XfEn 

where E" is n-dimensional Euclidean space, there is a unique extremal virtual 
solution Xg , defined by 11 Xg 11 a inf { j |Xb 11    : Xb satisfies the above relation]. 
The g.i. A+ of A is the matrix corresponding to the linear transformation of b 
into Xg as b varies in Em . 

This least-square property of Afb was used by Bjerhammar9'10 in geodetic 
applications. In particular he used it in adjusting observations that gave rise 
to singular or ill-conditioned matrices. 

Penrose also gave two methods for computing A+, one of which is based 
on a partition of A that gives an expression for A+ in terms of the regular in- 
verses of the partitioned submatrices.  The other method is an iterative pro- 
cedure involving the subdeterminants of A^A.  Improved methods for computing 
A+ can be found in Ben-Israel and Wer sen.13 

Den Broeder and Charnes15 gave the following explicit expressions for A+ 

as a limit of a sequence of matrices. 

Theorem 3 
  n 

For any square matrix A, lim   £   ATfl + AAT)~,!  exists and 
M -» nc    k - 1 

A+=   S    A1 (I 4 AA')-''", 

where AT may not be removed from the series as a factor. 



Theorem 4 

For any square matrix A, 

A' = lim A' (AÄI ( W')-1. 

A.() 

Without loss of generality, only square matrices A need be considered in 
Theorems 3 and 4.   For any m x n matrix B can be written as a square matrix A 
by adding the right number of zero rows or columns.   Then the « v m g.i.  B+ is 
obtained from the corresponding submatrix of A+. 

Results relating A+ to the principal idempotents of A and the spectral de- 
composition of A have been obtained by Penrose11'12 and also by Wedderburn.16 

Hestenes17'18 also developed a spectral theory for arbitrary m ^n matrices.  In 
aoing so, he used A+ to obtain theorems on structure and some properties of 
matrices relative to "elementary matrices" and the relations of "*-orthogonality" 
and a*-commutativity." 

Greville19 gave an iterative procedure for calculating A4 using successive 
partitions of A.   Moreover (see Ref 20) he gave a very outstanding account of 
some of Moore's results, following the original Moore approach.  Greville also 
used the least-squares properties of A+ in regression analysis. 

A review of some definitions and applications of A+ in explicit solutions 
of systems of linear equations was given by Bjerhammar21 with numerical ex- 
amples and statistical applications. 

Pyle22 and Clire23 considered applications of A+ to systems of linear equa- 
tions.   Their work in this field originated in Charnes' seminar course at Purdue 
University in 1955.   Pyle used the projections AA+ and A+A   in a gradient method 
for solving linear programming problems.   These projections were also used 
by Rosen24'25 in his conjugate gradient method for solving linear and nonlinear 
problems. 

Bott and Duffin26 defined an interesting g.i. that is closely related to the 
von Neumann definition of regularity in a ring.4   They used their g.i. in the 
analysis of electrical networks by Maxwell's method. 

Ben-Israel and Charnes,27 following on Bott and Duffin, have used the 
Penrose-Moore g.i. in the analysis of electrical networks and obtained the ex- 
plicit solution of a network in terms of its topological and dynamical character- 
istics.   They also pointed out the partially nonoverlapping character of the Bott- 
Duffin and Penrose-Moore g.i.'s. 

Further applications of A+ have been found by Kaiman28'29 and Florentin30 

in control theory by using its least-squares properties in the mean square error 
analysis. 

More recently A+ has been used by Charnes, Cooper, and Thompson31 to 
resolve questions of the scope and validity of so-called "linear programming 
under uncertainty" and to characterize optimal stochastic decision rules for 
«-period problems.   Charnes and Kirby32 use the Rao g.i. in a discussion of the 
consistency of the constraints of certain chance-constrained programming 
problems 

This completes the brief summary of work done on Penrose-Moore inverses. 
For a more complete survey of the field the reader is referred to Ben-Israel 
and Charnes.8 



3.   SOME PROPERTIES OF Att 

Now that a brief resume'of the major properties of A+ has been presented 
tue derivation of many corresponding properties for the Rao g.i. A" will be 
considered.   For the sake of completeness the concepts of elementary linear 
algebra needed in the proofs of the theorems are defined, t 

Definition 5—A vector space V is a set of elements called "vectors" sat- 
isfying the following axioms. 

1. To every pair u and v of vectors of the set there corresponds a vector 
i' + u in such a way that 

(a) v + u = u + v, i.e., addition is commutative. 
(b) v + (u + w) = (v + u) + it', i.e., addition is associative. 
(c) A unique vector 0 exists such that r + 0 = r for every t   in V. 
(d) To every vector v a unique vector -v corresponds such that 

v+ (- v) =0. 

2. For every scalar a and vector v in the set a vector a v corresponds 
such that 

(a) oi(ßv) = (a8) v for any scalar 8, i.e., multiplication by scalars is 
associative. 

(b) 1 x i; = i» for every v. 

3. (a)  a(i' + u) = oti' + OH, i.e., multiplication by scalars is distributive 
with respect to addition of vectors. 

(b)   (a+ B)v = ai' + jar, i.e., multiplication by vectors is distributive 
with respect to scalar addition. 

Definition 6—A vector subspace L of a vector space V is a collection of 
vectors in V  such that 

(a) If i1 cL then so is av for any real scalar a. 

(b) If r, u e L , then so is (« + r) e L. 
It follows that if i'i, i'o, .  . . ,i'|,   eL then so is every linear combination 

of these vectors, i.e., £[''.!  OLV   d for any set of scalars o (, i = 1, . . . , fe. 
Definition 7—A collection of vectors i'|, . . . , i,,  eL  is said to "span" 

(generate) the subspace L if for every vector iu L there exists a set of scalars 
a !, . . • , 0(|, such that u = E['  ,   a, i, • 

Definition 8—A set of vectors i|, . . . , vk   c L is said to be "linearly 
independent" if E'I   \ a.v.   = 0 implies «j a 0 for all /. 

Definition 9—A basis B for a vector subspace L is a set of linearly inde- 
pendent vectors in L that also spans L. 

It is clear that the number of vectors in any basis of I  is unique.  It also 
follows that if B = {i' j, .  . . , i).] is a basis for I- and if u is any vector in I., 
then u has a unique expression u = L\   a  r  as a linear combination of V: , 
1 = 1,.  .  . , k, i.e., the values of »j, j = 1, . . . , fe are unique. 

Definition 10—Let A be an m ■ n matrix.   The "range" of A, RfA), is the set 
of all m xl vectors  b such that there exists a solution \ to the system of linear 
equations AX - b, i.e., be RfA)xa XJ   \\ - b. 

Definition 11—Let A be an m ■ n matrix.   The null space of A, N'fA), is the 
set of all n x 1 vectors \ such that AX = 0, i.e., \ f \f A) =s AX = 0. 

tAll theorems will be proved using techniques of elementary linear algebra.  Al- 
though shorter and more sophisticated proofs are possible, it is more appealing to derive 
our results from first principles. 



It is easy to show that RfA) is a vector subspace of m-dimensional Euclid- 
ean  space  E

m
, and NlfA) is a subsprce of n-dimensional Euclidean space  E", 

where Ek is defined, for any integer k, by 

E        IX :Xr - (l, ife) , i    a real number I . 

Definition 12—The rank of a matrix A, written "rank fA)," is the number 
of vectors in any basis of RfA). 

Definition 13—The nullity of a matrix A, written "nullity f A)," is the num- 
ber of vectors in any basis of \fA). 

By Definition 10, bf RfA) if and only if b can be expressed as a linear com- 
bination of the columns of A.   Hence it is seen that a definition of rank that 
is equivalent to Definition 12 is that the rank of A is the maximum number of 
linearly independent columns of A.  This can also be shown to be equal to the 
maximum number of linearly independent rows of A (Ref 33, p 56). 

Theorem 5 

Assume that the system of linear equations AX - b is consistent. 
Then A"  is a Rao g.i. of A if and only if AAWA = A. 
Proof:  Suppose AA**A = A. 
Then AX = b implies AA«b . AA»AX = AX - b. 
Hence X = A^b  is a solution of AX « b , so A* is a Rao g.i. by Definition 1. 
Conversely suppose A**  is a Rao g.i. of A. 
Let b = a|, the jth r-'umn of A. 
ThenAX = b = a. is consistent, hence   X = A*aj is a solution. 
Therefore flj -AX-AA*«,. 
Since this must hold for all a, , I  = 1 «, A = AAWA. 
Using this theorem, it can be seen that the following definition is equivalent 

to Definition 1. 
Definition 14—An nxm matrix Aw  is a Rao g.i. of an m><ri matrix A if and 

only if AA«A - A. 
From this definition and Definition 3, it can be seen that A+ is also a Rao 

g.i.   Thus all the properties of A8 that will be established for A
n
 will also hold 

for A+. 
The follov/ing is required. 
Lemma l.t  Let A be an m v n matrix. 
Then n = rank fA) + nullity fA). 
If A is nxn then RTA) and NfA) are both vector subspaces of E".  Moreover 

it can be seen from Definitions 10 and 11 that the null vector is the only vector 
common to R'A) and NfA); yet, every vector XeE" must be in one of these two 
subspaces, as either AX - b   /0 or AX = 0.   Hence, except for the 0 vector, R^A) 
and \'A) partition E" when A is n*n.   This fact will be used below. 

In proving Theorem 6 the following will be used. 
Definition 15—An n > n matrix 11 is said to be "idempotent" if II2 = H. 
Lemma 2.   Let the n - n matrix II be idempotent. 
Then nullity fll)  = rank fi -II), where I is the n > n identity matrix (i.e., 

IX = Xfor every Xe E"). 

tA proof of this lemma can be found in Perlis (Ref 33, p 54). 



Proof:   Let YeRfl -II). 
Then there exists X such that fl -ll)\   Y. 
Hence MY    Hfl-ll).>Ufll-H-).\    0, soYcN'fll). 

Conversely, let YeNfll) and Y i 0. 
Suppose Yf\fl -II). Then f| -||)Y = 0 Y- IIY= Y as YcVfll) . Therefore 

Y  = 0 and a contradiction exists. 
But, by the remark following Lemma 1, Rfj -II) and \fl -II)  partition I"; 

hence, if YfNfll), Y / 0 then Yf Rfl -II)     Since it has been shown that every 
vector in \(ll) is also in Rfl -II),  and vice versa, the lemma is proved. 

Theorem 6 

The general solution of the system of homogeneous linear equations W = 0, 
where A is m • n, is 

\ - (i - \"m. 

where Y is an arbitrary n . 1 vector and I is the n   n identity matrix. 
Proof:   Let II - A«A. 
Since A   AAHA ^ All, rank fA) •: min Lrank fA), rank fll)] (Ref 34, p 75). 
Therefore rank fA) <; rank fll). 
Similarly, rank fll)  s rank f A) as II - A"A. 
Therefore rank fA) = rank fll). 
Also H2= fA«A) fA«A) = AHfAA"A)= \ti

\ = II; hence II is idempotent and 
consequently Lemma 2 implies that nullity fll) = rank fl -II). Moreover A is 
in   n; hence, by Lemma 1, n = rank fA) + nullity fA), so that 

nullilv   (A) »    tank ( \) 

H- r.ink (II) 

lUlllllN   (||). 

Therefore 

nulliH  ( \) - runk (I -II). (1) 

But -VI-II) - A-AAttA - 0. Hence all the columns of fl-II) areinNfA). More- 
over Eq 1 implies that fl - II) has the same number of linearly independent col- 
umns as any basis for \!fA). Hence the columns of fl-ll) span \fA). Therefore 
for any vector We \fA)   there exists some vector Y such that H    fl -ll)Y. 

Conversely any vector of the form (I -My Y   is in \fA), as Afl - II) Y   = 
fA - AA"A) Y  = 0.   Thus it has been shown that any vector \ is in \fA) (i.e., sat- 
isfies  AX = 0) if and only if there exists some Y such that X = fl - A"A)Y, and 
so the theorem is proved. 

Moreover as X = A^b is by Definition 1 a particular solution of AX = b, 
whenever AX    b is consistent the following applies: 

Theorem 7 

The general solution of AX « b, when consistent, is 

\ -   \"l) . (I - \S\)V, 

where Y is an arbitrary  IIAI rratrix. 



In most of the preceding results it hrs been assumed that the system of 
linear equations AX - b is consistent.  The following theorem tells us when this 
assumption is valid. 

Theorem 8 

The system of linear equations AX = b is consistent if and only if AA#b - b. 
Proof:  If  AA"b - b, then X ■= A"b is a solution of AX = b implying consistency. 
Conversely, if AX - b is consistent then AA^b   AAWAX •= AX - b. 
Some special cases of A

n
 are now considered, beginning with the following: 

Definition lb—A" will be called a "right inverse" of A if AAW = I, the rn^m 

identity matrix. 
Definition 17— A' will be called a "left inverse" of A if A"A  = I, the n*n 

identity matrix. 
It is clear from Definition 14 that any right or left inverse is also a g.i. 

In Theorem 10 it is proved that the converse is also true; i.e., any g.i. is also 
a right or left inverse if such an inverse exists. 

Theorem 9 

Let A be an in • n matrix with m ^ n. 
Then A has a right inverse if and only if rank (A)  = m. 
In other words, A must have full row rank in order to have a right inverse. 
Proof:   Suppose  there exists an A" such that AA" = I.   Then rank fAA") = 

rank fl) - m.   But rank fVV) = m     min [rank fA), rankfA")]. 
Therefore m s rank fA). 
But m a rank fA) as A is m    n; so rank fA)  = m. 

Conversely, if rank fA)   = m, then fAA1)- ' exists (Ref 35, p 29) and so 
A" = A' fAA')- ' is a right inverse of A. 

Corollary.   A necessary and sufficient condition for a matrix to have a 
left inverse is that it have full column rank. 

The remark made following Definition 17 will now be proved. 

Theorem 10 

Let A be m   n witi; rank m. 
Then AA" = I for any g.i. A«   of A. 
Proof:   Let A"  be a g.i. of A. 
Then X - A''b is a solution of AX    b whenever the system is consistent. 
But rank fA) = >n implies that AX    b is consistent for any be Em.t 
Hence   AA b-b for all be Em. 
Consequently AA '    I, the identity matrix, by definition of I. 
Therefore A" is a right inverse of A. 
Corollary.   If A has full column rank, then A"  is a g.i. of A if and only 

if A"   is a left inverse of A. 

Theorem 11 

Let A be an m    u matrix of rank m. 

tRank fA) = m means that A has m linearly independent columns and so some subset 
of the columns of  \ forms a basis for   Em.   Hence RfA) is equal to Cm. 

10 



Then a necessary and sufficient condition for a g.i. V   of A to be unique 
is that in - n. 

Proof:   Let the columns of \,; be a , j = 1, . . . , «. 
Then \V:    I implies that \a. = f., wnere e. is the  m ^ 1 vector with unity 

in the ith row and zeros elsewhere. 
But the general solution of the system   Aa. = c   is, by Theorem 7,   ßj = 

A" C;  + ( where f is an arbitrary vector in \f A), and A    is any g.i. of A. 
Hence a} will be unique only if f is unique. 
But if f is unique and feN'fA), nullity fA) = 0. 
Since n = rank f A)  + nullity fA) by Lemma 1, ran!:    M = n. 

But, by assumption, rank f A) = m. 
Therefore a , and hence  A", being unique, implies m - n. 

Conversely, if m = n, then rank fA) = n = m.   By the previous theorem and 
its corollary, this means that A has both a left and a right inverse; hence V    A*1 

is the unique right inverse of A. 
'LTo see this, let A"   and A",   be left and right inverses, respectively, of A 

Then 
\J \ \'; -i\'\ \) \:; -1 \'', - \:; 

and 
\" \ \:i    v;;t\ O - \|l    v, ■ 

Therefore 
v;   \: 

and the right and left inverses are equal. Since this must hold for all right and 
left inverses of A, these inverses must be unique. The regular inverse A-1 of 
A is defined as this unique right and left inverse.., 

Corollary.  If the right inverse of A is unique, then A" = A-1. 
Next, the theorem showing how to generate all right inverses of a matrix 

from any given one is proved. 

Theorem 12 

Let A be an m   M matrix with rank m. 
Let AA«   I. 
Then AA"  = I if and only if there exists an n ■ IM matrix f such that V    A  • 

where each column  f     j = 1, .  . . , m, of (  is in VA) 
Proof:   Let ( = f ( i, . . . , ftM) be an n -m matrix such that f|CNfA) , i = 1, 

. .  . , m. 
Let Ä" - A" . f. 
Then 

n' - M v^ n -1 ■ \i 

I -"Mi MJ 

I, 

as Afj = 0 for all I because f, c^fA). 
Conversely, if AA"   = I, then we can define I    A" - A" and A( = AA" - AA" 

1-1=0.  So each column of I is in \fA). 

11 



Corollary. 
Then /PÄ 

in \fAT). 

Let A«A.I. 
I if and only if A" = A"   + f, where earn row of I  ia a vector 

Theorem 13 

Let A be an m > n matrix of rank n. 
Then A\ -b, b / 0, has either 

(a) no solution if b<,R'A), or 
(b) the unique solution X    AMb if b ■ R'A) and A "   is any left inverse of A. 

Proof:   (a)   This follows directly from the definition of R(A). 
(b)   Because A has rank n, the system AX = b is a system of m equations ex- 

actly n of which are linearly independent.   Thus A.X = b has a set of n independent 
equations in n unknowns and so has a unique solution.   Since X = A*b is a solu- 
tion of AX = b, the theorem is proved. 

The fact that A"b is  unique regardless of what A" is chosen can also be 
seen, as follows:  It is known that the general solution of AX - b is X = A^b » 
'I -A#A) Y , where Y is arbitrary.   But rank f.\) = n so that A"  is a left inverse, 
by the corollary to Theorem 10; hence I - AHA = 0, and the general solution of 
AX = b is \ = A«b. 

Let A" be any other left inverse of A. 
Then, by the corollary to Theorem  12, A" = A" ¥ f, where each row f, of 

f is in XfA7).    Therefore 

\'i> \:,f. •/^M 

U- 
But f.- \'AT) and b. R'\) ; hence f.b  = 0, i = 1, M.t 
Therefore A"b - A"b    X  is unique as   As was any other left inverse of A. 

Theorem 14 

Let A be an m • n matrix. 
Let rank An.   Then (a) the equation to fA -c7 has the solution co '    c'A", 

where A" is any left inverse of A ; and (b) u; r is unique if and only if n    m. 

Proof:   (a)   If OJ 
r = c rA#, then w rA = c' A * A = c' .   Hence co r = c' \ * is a 

solution of coTA = cr. 
(b)   The general solution of u,1'A = c'  is co' =crA* + f, where f f N(AT). 

Therefore ccr is unique if and only if f is unique. 
But f is unique if and only if nullity ^ A ') =0, and nullity ' A ') = 0 if and 

only if rank f
 \)    m. 

Therefore co ' is unique if and only if « - m. 

tThis follows from the fact that bfRfA)-^3\i   VX - b and   (.rVfA) 
I, h - f, A \ - 0 \ - 0. 

fi A   '0; hence 
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4.   COMPUTATION OF  A" 

In order to avoid unnecessary complications in the algebraic treatment 
in this section, A will be made a square matrix by adding rows or columns of 
zeros, whichever is necessary.   The necessary change in the system of linear 
equation AX -b is to extend b by a number of zeros if rows of zeros are added 
to  A, and to extend ,\ by a number of variables if columns of zeros are added 
to A.  These changes do not in any way alter the given system of equations since 
adding rows results in adding the identity 0 = 0 to the given system, whereas 
adding columns always makes the new variables in \ appear in the system with 
the coefficient 0. 

Moreover the g.i. for the original matrix can always be obtained from the 
g.i. of the extended square matrix by dropping some rows or columns.  For if 
A , the original matrix, has m<.n , and 

' C) 
is the extended matrix, where 0A is the (n - m) * n matrix of zeros, then 
A A "A - A means that 

(o\)^)(Q'V2)(o\) (:N?o(o\Hor), 
where A" MQ], Q2KQ1   is n^ m, Qi is n -'n -m), and 0i and O2 are matrices 
all the elements of which are 0. 

But 

V'J  vV  ) • V 

means that A = AQjA.    Hence Qi is a g.i. of A and is obtained from $M   by 
dropping Q,, the lastn-m columns of A". 

Similarly, if A has m >n, m -n  columns of zeros are added to A to get the 
extended matrix ^ and A" is obtained by dropping the lastm-n rows from A". 

Thus the system AX - b where A is square will be considered without loss 
of generality. 

Definition 18—The following matrix operations are called "eletientary 
row operations": 

(a) interchange of two rows; 
(b) multiplication of a row by a non-zero scalar; and 
(c) replacement of the 1 th row by the sum of the i th row and b times 

the jth row, where i / j and k is any scalar. 
Definition 19—A matrix H is said to be "row-equivalent" to a matrix A 

if II can be obtained by performing a succession of elementary row operations 
on A, 

From Perils (Ref 33, p 42) we have the result that for any square matrix 
A there exists a matrix H that is row-equivalent to A and such that: 

(a) all diagonal elements of II are zeros or ones; 
(b) when the 1 th diagonal element is 0, all elements in the ith row 

are 0 and all elements in the ith column below the diagonal element are 0; and 
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(c)   when the ith diagonal element is 1, the ith column is a unit vector 
and all elements preceding the ith in the ith row are 0. 

Moreover, since each elementary row operation is the result of premulti- 
plying A by a nonsingular matrix, it follows from Perils that there exists an 
n xfi nonsingular matrix Q such that H = QA (see also Ref 36, p 24).  This leads 
to the following theorem: 

Theorem 15 

Let A, H, 0 be as defined above. 
Then (i)     H is idempotent. 

(ii)   AH - A. 
(iii)   AQA    A. 

Hence Q is a Rao g.i. of A. 
Proof:  (i) This follows directly from properties a, b, and c following 

Definition 19.   For if hj , the ith row of H, has 0 as its diagonal element, then 
the matrix D = HH = (dl})   has h/hi   = d,,   = 0, | = 1, . . . , n, since h, is a zero 
vector where hi is the jth column of H.  If hi has 1 as its diagonal element it 
is a unit vector; hence hthi   = d^  = h|., 1 = 1,. . . , n, the  jjth element of H. 
Since, by a, every diagonal element of H is 0 or 1, D = H and so i is proved. 

(ii)   Let H = QA where Q is nonsingular. 
Hence 

so that 

\ -Q"1 II 

All -(T1 II2 -Q-1 II bv i 

- A. 

(iii)   Since QA = fi, AQA = AH = A by ii. 
Thus by Definition 14, Q is a Rao g.i. of A. 

Since Q is the product of all the matrices that give the elementary row 
operations involved in the reduction of A to H, Q can be found by performing, 
in turn, exactly the same elementary row operations on the n  n identity matrix 
I that we perform on A in reducing it to H.  In other words, beginning with A 
and I, and applying the method of sweep-out and interchange of rows, if nec- 
essary, to bring unities to the diagonal, to reduce A to H, (i.e., using the Gaus- 
sian elimination technique) Q will be the matrix obtained by performing in order 
exactly the same operations on I  that are performed on A.   Thus a g.i. con- 
sidered above is computed in the same way as a regular inverse when it exists. 

5.   EXAMPLE OF A"    AND   A* 

The technique for computing A", discussed in the preceding section, is 
illustrated here.   The computation may be abridged to a large extent by omitting 
some intermediate steps, but it is presented here in full to illustrate the method. 
Let 
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Then 
E xtendec matri X Identity mofrix 

© 1 -1 1 0 0       (1 

1 1) -1 1 1 0       0 

1 1 0 0 0 1       0 
0 0 0 0 0 0       1 

1 i 
l -'2 '2 0 0      0 

0 

0 (a) 1 
2 

'2 

2 

"■ 2 1 
0 

0 0 
1 0 

0 n 0 0 0 0       1 

1 0 -1 1 0 -1       0 
(I 0 0 0 -1 1 1       0 
( i 1 -1 -1 1) 2      0 
(1 0 0 0 0 0       1 

1 0 -1 1 0 -1       0 

0 1 1 -1 -1 1) 2      0 
0 0 0 0 -I 1 1       0 
0 0 (I 0 1) 0 0       1 

Matrix II Matrix Q 

So that 
1 0 
1 0 

-1 1 
0 0 

In these computations the second block was obtained by taking the 2 (circled 
in the first block) as a pivot and then, by successive subtraction, sweeping out 
the first column.   The third block was obtained by pivoting on the Va (circled in 
the second block) and sweeping out the second column.   The last block is obtained 
simply by interchanging third-block rows 2 and 3. 

It is easily verified that A" given above is a g.i. inverse of A.  AM  is not, 
however, unique.   For example, another g.i. of A is 

The computation of A+ is presented below in order to show the increased 
computation required in such an operation. This method of finding A^ is con- 
tained in Ref 13. 

The formula for A+ is 

>'(';,) (('..-TV.)-1 

O2 X2 is ^e 2x2 null matrix.  A and E are defined by Ben-Israel and Wersan.13 

\l\ (' 
! - 1 i 

1 * 
) -1 1 

-' -1 ) _   > 

\    ! 1 _   1 1 
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Sweep-out techniques are then used on ATA  and AT to get 

A
T

A A7 

© 
3 2 

-3 
-1 

3 
1 

2 
1 

1 
0 

1 
1 

-1 -1 2 -2 -1 -1 0 
■\ 1 -2 2 1 1 0 

1 
0 
0 f i 

i 

1 
( 

0 
0 

0 - i —   2 2 0 2 -'2 

1 0 -1 1 I 

1 '^ 
1 

- 1 

0 1 1 -1 0 -1 1 
0 0 0 0 0 0 0 
0 0 0 0 (1 0 0 

The second block was obtained by pivoting on the 6 (circled) and then sweeping 
out the first column.  The last block was obtained by pivoting on the V2 (circled) 
and sweeping out the second column. 

Then, by the definitions of A and EAT in the Ben-Israel and Wersan paper,13 

'i -1 
1 

Hence 

and 

Therefore 

and v 

It can be verified that A+ does indeed satisfy Definition 3.  Thus the great 
increase in computation that results when A4 is computed instead of Aw can be 
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seen.   Since the linear-programming results developed below hold for AH as 
well as Af, it will be more efficient to use A" in solving linear programming 
problems. 

6.   THE SIMPLEX ALGORITHM 

Consider the following linear programming problem: 
maximize 

r'A 

subject to 
('A-l'(), 

A  ■ 0 

where P is an m vn matrix and the columns of P are Pl, i = I, . . . ,n. 
Let L be the subspace of Em that is spanned by the vectors fP ] PM). 

Thus L is the set of all linear combinations of P j, j = 1, . . . , n. 
Let B be a basis for L.   Then each vector in B is in L; and B has, at 

most, m elements, as L is subspace of Em.  It will be assumed that B has s 
elements.   Thus B is an m * s matrix with s ^ m, and because of the linear in- 
dependence of the vectors in a basis, rank fB) - s. 

Let B s [Pj : i eI ] and renumber P,, j « 1, . . . , n so that B = (P|, . . . , Ps). 
Then, by definition of a basis, any P , 1 = 1,. . . ,n can be expressed 

uniquely as a linear combination of the basis vectors as follows: 

if i 

where 

'V - 'V.)   "V (2) 

*] ■<*„ **?■ 

Suppose the basis is changed by removing Pr from B and inserting P|j in 
its place.  Then, provided xrk t 0, the set of vectors [P,   : i cl , i ^ r ] and Pj, 
will form another basis for L. 

This follows from the easily proved Lemma 3. 
Lemma 3.   Let L be the vector space spanned by [uj, uo, . . . , u,,]. 
Let tt i eL be given by 

ii 

H'l » AJMJ + 2     A^! with A| 4: Ü. 

Then (a)  the space spanned by [Wj, U2, . . . , «n3 is L and 
(b)   if {uj, «2» • • • > un] are linearly independent (i.e., form a basis 

for L) then so are t^i, uo, • . . , un] (i.e., the latter set is also a basis for L ). 
1 ., 3 new basis wilfbe denoted by B.   That is, B = fP , Pr _ ,, P,., Pr. , 

.  .  . ,     ). 
Dei ne 

'/ X
 -\-^\yJhJ ~(lr-l.l./jrrk)' 1/3trk.-(xr+l.fc'W -('sfc xr^l 
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From Eq 2 we have 

l\ *   1 \\ixlk) . Pr(xrfeJ. 
J 11 

Hence 

•\     S  P.   . *.k\ .i' 

i < r 

or, in matrix notation 

and 

Pr   n„ (3) 

Pi - iir,,ifl, i / r, (4) 

where c,  is the s x 1 vector with + 1 in the ith row and zeros elsewhere. 
Let E be the s> s matrix defined by E H (ej, . . . , cr_ j, 77,cr 4 | , . . . , es). 

Then E is nonsingular, from the definitions of TJ and e,.! 
Also from Eqs 3 and 4 

It   (P, Pr PJ    (Ik, Tin ßcs) -BE. 

But B has full column rank and hence, by the corollary to Theorem 10, B** 
is a left inverse. 
Therefore 

H"»    I     lt"|)C 

or 

Hence 

IE-'     E-1     D^EE-' -  U"f?. 

EE"1 -| - Eli"l) 

so that a left inverse of the new basis B is given by EBH, i.e., 

B"     ED". (5) 

Definition 20—Given the system AX = b, where A is m-n  and rank fA) - s , 
and any m>s basis B whose columns are columns of A, then the solution Xn of 
the system  B.\,j = b is called the "basic feasible solution" for the system AX - h 

with basis B. 
Now suppose that the basic feasible solution corresponding to the basis 

B isX„.   Then BX(j = P(); hence 

V'i"',„ (6) 

and, by Theorem 13, A,,  is unique. 

tThis is true because the rth diagonal element of E is lArk / 0, and all columns 
of E other than the rth are unit vectors. 
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Also because B is a basis, it is known from Eq 2 that HX,   -   P., j = 1, 
. . . , n, and hence 

X,     H;,l,|. f     I       ■  ..-.. (7) 

Furthermore the ,\. are unique. 
Then for the new basis ß it follows t^hat ^)t = f}"!',, and \.   = BT, , | = 1, 

. . . ,n are the unique valuet of An and Xj.   Hence, using Eq 5. 

A,,      tU-P,,        (A,, (8) 

and 

\l   Cli"!',    (A,, i    I..    ..n. (9) 

Equations 8 and 9 represent the simplex iteration formula of linear programming 
theory because, if Eq 9 is put in component form, 

\.     f:\, N 

or 

'.      '.      l-^)(^,' 

Therefore 

x
,kl       I I. 

which is the ordinary equation used in the simplex algorithm (Ref 37, Vol I, 
p 142). 

Similarly 
/  A. \ 

I      I. 

Thus it has been shown that given any basis B and the corresponding 
simplex tableau, whose columns are given by Eqs 6 and 7, all succeeding 
tableaus computed using the simplex algorithm will be the same as those ob- 
tained by computing W at each iteration.   Hence the simplex algorithm works 
perfectly well when the basis is not square. 

From simplex theory it is also known that for an optimal basis 15 the »i / 1 
vector of dual variables a; is the solution of the system of equations 

J I)    ./..uhn.. ./,    K,   I-,, HI. (10) 

This is true because, from Eq 10, a;' HX„ = t/i^it = optimal value of objective 
function = :, where X|) is the optimal basic feasible solution.   From the fact 
that BXH = I',,, uJP,) = z which, by the dual theorem (Ref 37, Vol I, Chap.VI), 
means that a) is optimal for the dual of our given problem. 

But Eq 10 says that w ' = cl B", which, by Theorem 14, is unique if and 
only if B is square.   Thus it has been shown that   in a distribution model  the 
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optimal solution of the dual is not unique, since the model has one redundant 
constraint; hence   B is not square. 

7.   THE MODIFIED SIMPLEX METHOD 

The linear programming problem given at the start of Section 6 will be 
reconsidered here.   The fundamental equation of the modified simplex method 
(Ref 37, Vol II, pp 471-74) is 

II o 

m ■ s     »i • I 

I. 1 

(ID 

where P, is any column of P, ß is a basis for the space spanned by the columns 
of P, Xj is the expression of P, in terms of the basis, c^ is the vector of costs 
of the Pj f B, and :,   is defined by z,  = c,', X.. 

Let B" be any left inverse of B.  Then if the mxl vector co is defined by 
a;TB scj (i.e., CD r = cjB«) 

D"     Ü n     o 

" "-'it 

0 
1 

S y S 

0 
s-l 

1 0 1 
_ls l-l_ 

Using Eq 11 the following is obtained: 

u"    o 

_-fl_ 

(12) 

where u; T =  cT B". 
The fundamental Eq 11 can be generalized to the whole tableau by defining 

XQ = X and z0 - c{) = : = value of objective function and c0 = 0. 
Thus the entire (s + l) x (n + 1) simplex tableau, where the Zj - Cj appear 

in the s + 1st row, can be generated by Eq 13: 

w- • .\ 
~ li" 

s ■ »1 

0 
s-l l'n, Pp. • • • f% 

•   ■  • :
M" 

c
n 

c'tt" ' ll" 
1 ■ 1 

1 

1 ■ 1 
O.-c,.. 

_ _ _ 

(13) 

Consequently   given any m>s matrix B, which is a basis for the space 
spanned by the columns of P, B" can be computed and hence the entire simplex 
tableau, including the z} - c,  row, by using Eq 13.   Since it has already been 
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shown that the calculation of U" from li" can be done by using the usual simplex 
formulas, it can be concluded that the modified simplex method will work for 
any basis, regardless of whether the basis is square. 

8.   EXAMPLE 

To illustrate the theory the following network problem will be solved. An 
arbitrary basis I) will be selected and computed and Eq 12 will be used to gen- 
erate the initial simplex tableau.   The simplex algorithm is then used until an 
optimal solution is reached.   Finally  a left inverse of the optimal basis is com- 
puted and used to find the optimal vector of dual variables and hence the optimal 
value of the dual objective function.   Diagrammatically the network is as shown 
in Fig. 1. 

■&'. 

i 1 

20 

10 

fTV 20 
 t 

0* \Lr * ~* ** ^\ 

\ 
20 * * 

X 0 \ * \        * 
J L. 
\ 30 

,* \ * k c (■'— 

30 

— ^D r'"' 

Fig. 1—Diagram of the Network Problem 

Arrow shows direction of link; number beside 

arrow is the C;, of the link.   Dotted arrow in- 

dicates link used to form initial basis. 

The problem to be solved is: 
maximize 

I0x01 t J()x()2 i  Wv,, . 20x,4 • TOx23 t 20x24 . 20x:)() t M)x45 i 20i.6 

subject to 

■
x()'. 1()2 

*()1 

\vi I'X 24 

II l23 

14 '24 

'36 

36 

-1 

-    0 

0 

-    0 

x45 0 

x45 " H^-  
0 

♦ ^     l 

Xx   > 0, all i, 

where x,. is the amount programmed to flow from node i to node j 

(14) 
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In the incidence matrix for the problem, "+" and "-" are used to denote 
"+1'' and "-l" and all blanks represent 0. 

c
./ 

Node 

10 20 30 30 20 
^ ■ 

I J 20 40 20 

Links 

0-1 0-2 1-3 2-3 1-4 2-4 3-6 4-5 5-6 

0 

I 

2 

% 

I 

'. 
h 

P. 

i i 

p       n ii p p 

3 

I' P 

The initial basis matrix is B = (P, , p^,, p.,, P-, P7, P8). B"   is computed as 
follows: 

Column 

I 2 \ \        ")        6 

Column 

2        .1 I        .') 6 
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Column 

1 2        :! I ".        6 

Column 

2 :? I 

l!:: 

From this choice of B, 

'M    Su.'oiv^v'lV-u,.'^    (10.20.30.20.20. 10). 

Thus 

i    .. in" 
ii 

D"    (_(,(), _,-(), -K). -20. -.10, 10, 0). 

Equation 13 is then used to generate the initial simplex tableau as follows: 

0 

lit 1 

P P V 

1 ■   •   ■    "> 
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Basis    \ 

vector   I 

c 

c » 
0 10 20 30 30 20 20 20 40 20 

^ 
X 

/ 

X0 
x, x2 *3 X4 X5 X6 *7 X8 X, 

10 ''l 4 * ♦ ♦ 

20 1'., + - - 

30 ',1 
t i t +        i 

20 P5 t + - 

JO P7 t i + 

K) 

60 -10 -10 

i 

-,10 

These simplex iterations then lead to the following optimal tableau: 
First iteration:  Insert Pg into the basis and remove P:. 
Second iteration:  Insert P i into the basis and remove P^. 
Third iteration:  Insert P() into the basis and remove P5. 
Optimal tableau: 

> 
Basis    1 
vector •-ß 

xo x
1 

x2 X3 X4 X5 X6 X7 X8 x9 

10 P] 
1- 

1 - - 
-| 

20 I'o f 4 f + 

30 ''4 + + - 

20 'V, + i t t- 

20 P9 + + f 

K) + 

100 10 10 

t 

30 

i 

Thus the optimal solution is: x0., = + 1, x.,j  = + 1, x^  = + 1,  x% = + 1; 
and z = 100 is the optimal vnlue of the objective function.   Since the optimal 
basis B*  =(?,, Po, Pt, Pr,, PQ, PR) 

we find that 

3      i 
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so that co *T, the optimal dual solution, is given by 

.*'   c,',* B**   (io. 20,30,20, ?o, wm*" 
(_|00, -90, -K0, -^0, -60, -20, 0). 

Hence a;*' P() = 100 = optimal value of dual objective function.   Thus the values 
of the objective functions of the primal and dual problems are equal at the 
optimum. 
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