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In radiation penetration theory , infinite medium flux distributions have for so me years been 
calculated using biorthogonal fun ctions called U~(z). In this paper the spaces spanned by these fun c
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1. Introduction 

The biorthogonal (BON) sys tem discussed in thi s paper was encountered in 1950 during at

te mpts to construct spatial di stribution s of the gamma-ray flu x from the valu es of the firs t few 

even moments . The desired distributions appeared to depend on JzJ, rather than z2, so that it did 

not seem reasonable to represent the distribution s with polynomials whic h utilized powers of Z2 , 

as would have been the case for an orthogonal polynomial representation. In discussing thi s basic 

asymmetry with Spencer, U. Fano sugges ted thilt perhaps one should approximate with fun c tions 

whose Laplace transforms were even functions of the transform parameter , but otherwise wi th 

the right kind of singularity , properly located. 

This suggestion led to stud y of a set of fu nctions which qu ic kly were shown to have bi

orthogonality properties; and their use has made possible the calculation of large quantities of 

radiation data [1- 2),1 Reference 3 contains a brief disc ussion of this and related BON sys tems, 

together with some elementary properties easily derived , including the differential equations 

(3d order) satisfied by the functions. In this connection, it has since been proven by S. Preiser that 

the relevant differential equations are the only 3d order differential equations whose solutions are 

polynomials and have the biorthogonality property [4]. 

During the past two years, further properties of these sets of functions have been studied ; 

and this manuscript summarizes the most important results. The investigations have been ex

tended into the approximation theory appropriate to these biorthogonal sets, and beyond this, 

some results have been obtained for related ("function fitting") types of approximations which 

have been extensively used in calc ulations of radiation data and other applications [5 , 6]. 

The work has been largely s timulated by the intrinsic beauty of the mathematics, although the 

practical and theoretical importance of these sets of functions is considerable. And because there 

appears to be a lack of practi cal information about biorthogonal functions , a corresponding effort 

has been made to be reasonably complete in this presentation. 

2. General Structure 

BON "Bridges." BON systems such as those on which our attention is focused, are derivable 

from, and relatable to well-known orthogonal systems. To exhibit this clearly, we make use of 

*An in vited pape r. Work supported by the Office of CiviJ Defense and the Defense Atomic Support Agency. 
**Present add ress. Ottawa Univers it y, Ott awa, Kansas 66067. 

I Figures in brackets indicate the literature references at the end of this paper. 
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A 

math~matical structures called pairings [7]. A pairing is an ordered tripl~ (W, W, (,», with W 

and W vector spaces over the same field F, and (,) a functional on W X W which is linear in the 

first coordinate and antilinear in the second. The functional (,) is also frequently referred to as a 

pairing. A A A A A 

Let (W, W, (,» and (fl, fl , [,]) be two pairings. A linear transformation, B: W~fl, will 

be called adjoint if there exists another transformation, B : fl ~ W such that 

A 

[1T, Bp] = (B1T, p) , (1) 

for all functions 1TEfl and pEW. A linear transformation. e : n ~ fl , will be called selfadjoint 

if and only if 

(2) 

for every pair of elements,;;' T in n. 
, , A 

In what follows we assume that in addition to the two pairings mentioned, (W, W, (,» and 

(fl, fl , [,]), we have a linear transformation" B: fl ~ W , its adjoint linear transformation, 

S : IV ~ fl, and a self-adjoint transformation, e : fl ~ fl. We define 

T= B8B. (3) 

The situation is illustrated in figure l. 
A 'I 
W ~w 

A 

B B 
FIGURE I 

n -----------+~ n 

~ A 

Clearly, if 8 is self-adjoint, so is T. For let 5, tEW; then 

(rS, t) = (B8Es. t) = [8Es, Bt] = [8Et , Es]* = (B8Et, s)* = (Tt , s)*. 

Two systems of vectors {Ui} C W , {u;} c TV will be called biorthogon'al if and only if 

(4) 

Now, assume that the elements {ail c IF have the property 

A 

B · . 
Uj=1Tj (5) 

and assume that {1Ti} C fl is BON to {ni} c n. Further, assume that 

(6) 

and let 

Tu;=u;. (7) 

2 The aste ri s k in (2) and subsequent expressions will indicate complex conjugate. 
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Then {Ui} is BON to {Ui}. For 

(8) 

Note that in the calculation (8) it was not necessary to assume that 19 is self-adjoint; but this will 

be so for all cases of interest to us. 

We will refer to the structure of figure 1 as a " bridge." And we will refer to Band B as "bridge" 

operators. The terminology is not in use, to our knowledge; but it is convenient here. 

Operators, Spaces, and Norms. In what follows we shall make the following assumptions: 

Sa) The q,perators B, B, and 9 are one-to-one and onto, and their domains are the whole spaces 

11, W, and 11, ~ es pe c tively. 

(b) Band B are adjoint, and 9 is positive definite and self-adjoint, as already indicated. 

(c) {7T;} C 11 and {1r;} en are biorthogonal , and 91r;=7T; for all i. 

(d) Without loss of generality we may assume that the space [i is complete in the weak topol

ogy 3 (Ten, 11), for if it is not, we may consider its abstract completion. We a Iso assume that the 

set of all finite linear combinations of the TI-j, designated by (TI-;), is dense in n. 
(e) The {7T;} are linearly independe nt. 

A 

We now define a norm on 11 as follows: 

(9) 
A 

It can be shown that (9) does indeed define a norm on 11. Further, if 

It 

(TA =" a .;'. 
L.J 1 " 

;= 0 

the n 

n 

= 'Ll a iI2 • 

;.=0 

We can thus map {TI-i} by means of an isometric isomorphism onto the set of all finite sequences 

with square norm, E ~ . Extending this mapping by continuity we find that n is isomorphic to [ 2. 

Thus we obtain the following results: 

(a) n = {~aiTI-; I ~ la;12 < oo}. 

(b) o-En =) 110-112 = ~ I ad 2. 
;= 0 

A 

(c) The set {;'J is a Schauder basis for 11. 

3This is the notat ion used. e.g., by Witans k y, ref. [8], p. 235. 
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(d) The spaces W, IF, and D are all isometrically isomorphic to l2 and if a-=ils , a-=ea-, 

s = Ba-= IS , then 

(10) 

(e) The sets {Ui}, {ad, and {7Td identified by (5), (6), and (7) are all Schauder bases for their 

respective spaces. A 

While the operator T has been identified by (3) in terms of the (D, D, [, ]) pairing, this operator 

may be de fined independently; in this case (10) relates the norm based on T to the norm of the 

other pairing of the bridge. 

This highly structured "bridge," illustrated in figure 1, is now seen to be an isometric isomor· 

phism between pairings. It enables us to move with confidence in de veloping and using BON 

systems. 

A 

Kernels and Their Series Representations. In what follows, Wand W will consist of functions 

defined on domains D and 8, respectively, of the complex plane. The pairing (,) will be defined by 

(s, t) = J Zdwst*, (11) 

where Z is a suitable subset of D n D and dw will in general include a weight function. Likewise, 

D and n will be spaces of functions defined on domains ~ and :i, respectively, of the complex 

plane. The pairing [, ] will be given by 

A 

[a-, T] =J dwa-~*, 
I' 

(11') 

where f ~ ~ n ~ and dw will similarly include a weight function. 

The operators Band B are defined using a kernel function k, which is integrable on the domain 

(D U D) X (~ U :i) as follows: 

(12) 

and 

(13) 

A A 

where Z' and f ' are in D n D and ~ n ~ , respectively. The operator e:fl ~ D is of the type 

(14) 

where 7J, which is integrable on the domain (~ U :i), is symmetric in Yj and Yj', and f" is in ~ n Ii. 
From (12)--{14) it is clear that the operator T: W ~ W has the form 

IS(z)= Jz dw(y)t(z, y)s(y*) 

where t(z, y) is a kernel function having the form 

t(z ,y)= II" dw(Yj) Ir" dW(Yj')k(z, Yj*)7J(Yj , Yj ')k(y, Yj' *) . 
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Because the set {rri} is a basis in n, we can write, for z fixed in D, 

k(z, Y/) =2. k;i(Y/). (17) 
i 

The functions {Uj} already mentioned are given by 

(18) 

and it is clear from the series rep resentation (17) for k(z, Y/) that 

so that k(z, Y/) must be given by 

k(z, Y/) = 2. Ui(Z)n-i(Y/). (17') 
i 

Likewise , from (16) and (17'), the series form for t (z, y) is given by 

t(z, y)= 2. ui(y)B87r i= 2. Ui(Z)Ui(y), (19) 
i i 

where z, y€Z. 

~ 

3. The U ~, U ~ BON System 

Reference BON System. We wish to consider functions ir Il( Y/) given by 

(20) 

together with another set, {7T ,JY/)}, given by 

(20') 

where Y/ is complex. These two sets of func tions are BON for integration along a contour c parallel 

to the imaginary axis, and cross ing the real axis between 0 and 1/V2: 

(21) 

Here {I! Y/2} plays the role of a weight function . To see that (21) holds, we note that for n > m, 

the integrand has the form 

(n - t~l . 
~ aiy/ - 3- 2!, 

( = 0 

which has no residue. Further , for (m - n) = j ;:?; 1, the integrand c an be written in partial fraction 

form, 
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where the sums begin with i = 2 because (a) the integrand is odd in YJ, and (b) for large YJ the inte

grand must be of order YJ - 3. From this form it is obvious that the integral again vanishes; there are 

no residues at 'the poles at YJ = ± 1. Lastly, a simple residue calculation establishes the result 

for m= n. 

~ 

The Spaces n and f). If, now, in accordance with our discussion in section 2 we define n to be 

the set of all functions <I> satisfying 

<l>(YJ) = ! (Xn~n(YJ) (22) 
n=O 

with 

(23) 

and n to be the space of all functions <I> satisfying 

'" 
<I>(YJ) = L (Xn7T,,(YJ) , (24) 

n= O 

we obtain the following results: 

The elements of n are essentially power series in (YJ
2
YJ-: 1 )*. The magnitude of this variable 

will be unity on the equilateral hyperbola give n by 

1 
cos 28." = 2iYJi 2 ' (25) 

which is shown in figure 2. For values of YJ in the two regions designated I, to the right and left of 

the hyperbola , IYJ
2

YJ--:-ll < 1. Thus the series (22) will converge for all <i> and all YJ in regions I; and 

]I 

FIG URE 2. The hyperbola intersects the real ax is at ± 1/V2. 
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<1>(->7) can accordingly have no singularity in regions 1. Any singularity must either be in region II 

or on the hyperbola. 

From (20') and (23) it is obvious that the series (24) for <P will converge for all TJ in region U. 

The transformation YJ ' = Vl- YJ *2 c hanges ~(TJ') into ~ <P(TJ) and maps each s ingul arity 
1- TJ2 

of <1> in II into a corresponding singularity of <P in I. It is possible for ¢(TJ') to have singu larities on 

the hyperbola. Clearly these are mapped into singularities of <P(TJ) at the same locations on the 

'hyperbola, since ITJ2TJ~ 11 = 1 implies that 

(TJ' *)2 - 1 _ ~ _ 1/*2 -1 
(TJ'*)2 -TJ2 -1- TJ*2 . 

Referring back to (19), we identify the BON-system kernel by 

(26) 

The series converges for TJ and TJ' both in region II. From a simple res idue calculation we confirm 

that 

(26') 

A 

If <P(TJ) is given as in (22) , then 

[e<1>] (TJ) = <P(TJ) = f c¥neii-" = f C¥n7T ,,(TJ), 
n=O Il = O 

where the kernel of e is given in (26). Likewise, in agreement with (9) a nd (10) we write 

(27) 

It is clear that the sets {7T,,}, {n-,,} are Schauder bases for n , a, respectivel y, and that e is 

one-to-one onto. The inverse operator, e- I is easy to write down explicitly. 

" The U~ and U~ Functions. We shall now complete the struc ture outlined in section 2. 

For every nonnegative integer k we shall define an operator B" on n generating a sequence 

of functions which we will call {U~J ~ = o 

u~~ = B I, 7T". 

These operators Bk will" turn out to have adjoints (in a sense to be defined presently) and we shall 

then defi ne a system {Uf,}~ = o BON to {U/{}~ = o by solving the integral equations 

n = 0 , 1, . . .. 

" "" 
The spaces Wk and W" will the n be constructed around the {U~J and {U~} exac tly as nand n 

were constructed around the {7T,,} and {n-,,}. We shall then obtain a BON bridge for every non

negative integer k. 
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To carry out this program, we identify the "bridge" kernel function as {1)*i."e - 1)*z+lzl}, which 

we may also write in the form e IZI ( - Y-(:~;, e- 1)*z} and we apply this kernel to the 7Tn(1)) . For z 0/= O. 

(28) 

where 0 < Co < 1/v2. The Fourier integral may be evaluated as follows: 

(28') 

where K,, + I/Z is the Hankel function. To this point we have not defined Uli(z) at z = o. An examina· 

(a )211 
tion of the structure of (28 ' ) reveals the reason. The operation az can be applied to the quantity 

in braces in (28 ') without difficulty , due to an interesting property of the functions Zll + 1/2K,, + I/Z(Z): 

they lack the first n odd powers in the MacLauren expansion. But the next derivative (k = 1) not 

only generates a function odd in z , it produces a discontinuity at z = O. The second derivative 

(k = 2) produces an even function ; and the derivative of the discontinuity generates a delta function 

at z = O. Higher derivatives produce functions of parity k and singular features of the same and 

higher orders at z = O. 

The singular features at z= 0 are not, in general, characteristic of the functions to be repre· 

sented by the U~; and they contribute to none of the relevant integrals over the U~. Hence we 

remove them by the simple expedient of defining 

U~;CO)= lim U:;(z). 
z --+ 0+ (29) 

Equation (41) gives these values for k = O; for k = l , U,:(0) = 1 for all n. 

We now turn to the problem of determining the functions [;~; which are BON to the U~. To 

derive these we solve the integral equation BkD~ = 7r~, where Bk is given by 

This expression simplifies to the complex conjugate form 

f 00 - 1)Z k k' _ (1)2 - 1)" _1_ 
o dze {z Dn(z)} - 1)2 1)k+l' 

From the binomial expansion of the term on the right it is clear that 

(30) 

(30 ') 

Finally, we write the BON property of these two sets of functions explicitly to exhibit the 

pairing integral, and the weight function, clearly: 
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(31) 

A A 

The Spaces W k and Wk. The spaces Wk and Wk can now be constructed as outlined in the 

previous sections. We define 

00 

Fk(z) € Wk (=) Fk(Z) = 2:, CXi U7; 2:, ICXil2 < 00 

1= 0 

and 

Fk(z) € Wk (= ) Fk(z) = ~ cxlI 'f; 2:, ICXil 2 < 00. 

1= 0 

It is clear that the elements F k(Z) of the space Wk will consist of the functions Bkif> , where if> I € n. 
That is, for Z .,t 0, 

(32) 

Note that h(z) has parity (- )k. If lim F k(Z) exists, we define Fk(O) to have this value. 
z~o -+ 

The function F k(Z) , which is given by 

Fk(z) = 2: cxnU~(Z), (33) 
n = O 

exis ts and is bounded for all k, all if> € 'n and all z.,t O. This is partly because of (23) and partly 

because of the fact ye t to be s hown that 

I U~(z)1 = O(n - 1/2). 

The inverse operator , Bkl, is easy to write down and can be useful in identifying elements 

of Wk : 

(34) 

We recall that if> (1]) has singularities in region I , and that the power series which co mprise the 

elements of n can quite generally represent functions with singularities in this region or on the 

hyperbola. Accordingly, we identify the elements of W k by parity, by the feasibility of performing 

k integrations by parts on e-1zlF k(Z) , and by the location of the singularities of the Fourier transform 

after this modification of the integrand. 

To identify the space Wk, we first observe that we can write the operator ih in the form of a 

Laplace transformation. Referring to (30), we should have, for each F k € W k , 

(35) 

or, eliminating the factor 1]*k by successive integrations by parts, 

(35') 

205 



---I 

If the function Fk has even parity, and if 

has a Laplace transform whose singularities are confined to region II, then surely F k E Wk. 
Further, since the operators Bk, 8, and Bk are all clearly one-to-one, the function F k = (Bk8Bk)Fk 

is then an element of Wk. 
~ ~ 

The Norm and BON-System Kernel/or W k and Wk' We define a norm on both W k and W k as 

already indicated: 

(36) 

~ ~ 

It is obvious that the {U~} and {U~} constitute Schauder bases for Wk and Wk , respectively. 
~ 

The operator Tk, with the property TkFk =Fk, together with the BON-syste m kernel tk(Z , y) 

are easily identified_ If Z 0/= 0, we have 

From this it is clear that for Z 0/= 0, 

(37) 

where Ko is the Hankel function , and the term in braces is the kernel function. 

The behavior of the kernel for higher k values can to some extent be inferred from the k = 1 

case : 

(L) ~ K (' ~+ ",.2)-~ yz K (' ~) 
ayaz 1T 0 V z· --t- y - 1T <T + Z2) 2 V Y + z.. , (37') 

which. for small values of the argument , is proportional to yz/ (y2 + z2)2. 

4. Properties and Expansions 

Recursion Relations which Connect Systems with Different k Values. If we differentiate (28') 

with respect to z we can show that for Z 0/= 0, 

Analogously, inspection of (30 ') shows that 

1z ~ ~ 
d ' 'kUk( ') = k+1Uk+1( ) ZZ nZ Z n Z. 

o 
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A more elaborate recursion relation, which likewise connects systems with different values 

of k, can be obtained from (28) by integration by parts. We write 4 

Integration by parts k times gives 

zke -lzIU~( z) = - dsr'SZ - . ' 1 J'" . ( d)'" { s2n+k } 
7T _00 ds (l + S2)'l+l 

(40) 

Carrying out one of the indicated differentiations, we obtain 

zke-lzIUMz) =.!. J'" dse- isz (!L)k'-1 (k s_2_n+_(_"'-_I_)_ 
7T -00 ds (1 + s2)11+ 1 

= zk - le -l z l {kU~ - l(Z ) - 2U~ + I(z ) + 2n[U~; - I (Z) - U~; + l(z)]} (40') 

Some recursion relations which connect different functions for the same value of k will be 

included in a report to follow. 

The Trend of the U~ for Large VaLues of n. We now wish to examine lim U:\(z). We begin by 

considering the case k = 0, for which we write fI- OJ 

I 2 J 'YO ( S2)" 1 I 1e- lzI U?,(z)l= -; 0 ds cos SZ 1+s2 1+s2 

U9,(O). (41) 

Next, we change the variable of integration in (40) to u = s/Vn+l and rewrite in the following 

form: 

zke -l z I U~(z) = - du cos (uz V n + 1) - kllk - 2 {e- 1/ It + R (n, u)} 1 2J oo , ;--:-:; (d) 2 

Vn+T 7T 0 du 
(42) 

where R(n, u) =exp{-(n + l)10g[1 + u- 2 (n + 1)- IJ}-exp(- 1/u2 ). Th e R (n , u) gives a correction 

with trend approaching proportionality to (n + 1 )- 3/2 for large n. 

We now observe that the main part of the integrand has the form 

where h is finite and akO is zero for k > 1. Then 

- du cos (uz Vn+l) - (U"' - 2e - l/It) 2J OO (d)k 2 

7T 0 du 

where C", is a positive constant which, for k = 0, has the value ! v7r, in agreement with (41). 

4 This integrand has a nonconvergent component which contributes only 10 the (irrelevant) singularities at z = 0, and which does not invalidate the res ult s of this 

argument. The integra l on the right of (40) lacks this component. 
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We conclude that 

I U~(z)1 < ~ Izl-keizi. 
n+1 

and it is evident from this that for large values of n, for z =;f 0, and for any k, 

U~(z) = O(n - I / 2 ) . 

" 

(43) 

(43 ' ) 

Generating Functions. Useful generating functions for both U~ and U~ are easily derived. 

First, consider the sum 

(44) 

The singularities for this function are located at 'Y/ = ~, and will be located in regions I for 
1-u 

lui < 1. Fourier inversion of both sides gives (for z =;f 0) 

( iJ)k 1 -~ x . . 
-- e vT=U = 2: ulle-1zlU,Hz) . 

iJz ~ n= O 

This may be written, 

( Z )k ( 1 )"+1 -~ "'. - e vT=U= 2: une -lzI U~,(z); 

Izl ~ n=O 

and it is clear that for lui < 1, this function is an element of Wk. 

The convergence of (45 ' ) for lui = 1 is important for later developments; and 

this next. Note that the funGtion in (43 ' ) is not in W k if lui = 1. For z =;f 0 we write 

N . 1 J ix 2'Y/" N ('Y/2 ) 11 '" u"e-1zIUk(z) =-. d'Y/e - ~ z -- '" un --
L.. 11 27T~ _. 1-'YJ2 L.. 'YJ 2-1 

11 = 0 t oo ', n = O "' 

(45) 

(45 ') 

we establish 

The first term in braces gives the result of (45 '). The nature of the second term becomes clear if 

we write the factor outside the braces as follows: 

The term in brackets reduces to a finite sum of terms 'Y/k - 2i/(1- U)i, plus a proper fraction. The 

Fourier transformation thus yields a finite sum 2: e- 1zl(1- u) - iU~ + 7i(Z), plus a convolution over 
i 

U ! ~ + 1 (z) or U ~ + 1 (z). All of these terms tend to zero as N becomes large, because of (43). Hence (45 ' ) 

holds, for z =;f 0 and for lui = 1, so long as u =;f 1. 
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To obtain a generating function for the Of., we consider the sum 

'" '" {( l)n I} 1 1 
~o (- t )k, ~O un 1 - YJ 2 YJ k+ l = YJ + ll- u(l - 1/YJ 2) 

(46) 

It is obvious that for I u I < 1, and I tI < ~ (t real), the singularities of this function all li e in 

region II . Laplace inversion gives the result 5 

1 { u ~ ~. ~} t2e- t lzl +-- cos z ---t -- sm z --
t 2(1-u) + u l-u I-u I -u I -u 

x "' '' 

= L (-t)" L U"Zk'U~;(Z). (47) 
h- = 0 n= O 

As special cases we obtain (see footnote 5) 

1 J;;- x " 

l=- cos z "Vh= L U"U~(Z), 
u U n= O 

(48) 

1 ~ "' ~" -- sin z --= L -- unzU,\(z) ; 
1 - u 1 - u n= O 1 - u 

(48') 

and these functions, for lui < 1, are elements of Wo and WI, respectively. In combination, (48) 

and (48') give 

1 iZ ~ '" {" J;;- ,, } 
-1- e '-"= L un U~(z)+i"VhzUl'(z) . 

u 11 = 0 

(48/1) 

The U~ Polynomials and the Laguerre Polynomials. If in eq (45') we write u = (p-1)/p, 

the convergence of the series will be maintained for Re p ~ (1/2). Term-by-term Laplace inversion 

of this expression multiplied by p - l is possible, and yields the result 

'" 1 1 (z) L Ln(t )e-1zl U,Hz) =. r- (2t)h-/2 e- z2/4tHek • ~ , 
n = O V 1rt ,v 2t 

(49) 

where L" and H ek are the nth Laguerre and kth Hermite polynomials, respectively. 

Note that (49) is the kernel for a transformation Bk whic h links the spaces Wk and Wk- with 

the Hilbert space spanned by the Laguerre polynomials. 

The U~ Polynomials and Tchebycheff Polynomials. In precisely the same fashion we can 

establish bridges with other Hilbert spaces. In particular, let us write u = ei8 in (45'), which is 

permissible in view of the convergence argument of section 12. The real part of the result can be 

written in the following form , which defines a function Kk(Z, 8 ): 

:' These results , in a different series form, have bee n given by Preiser (ref. [4]). 
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x 

Kdz, (J) = L cos n(Je- 1zl Uk(z) 
n=O 

(Iz l/z)k {Izl.. } 
= k + 1Reexp - el(1T - O) / 4 + ~(k+1)(7T-(J) / 4' 

CV2 sin (J2) \12 sin (J/2 

A variant of this result is perhaps more useful in applications. Recalling that cos 

Tchebycheff polynomial T(cos (J), we write x = C + ~os 0) = cos2 «(J/2) to obtain 

T,,(2x-1) = cos n[2 cos - 1 Yx]. 

(50) 

(n(J) is the 

(51) 

This polynomial system is actually one of the Jacobi family, and v'Z,Tn(2x-1) is orthonormal on 

the interval 0 < x < 1 with respect to the weight function 1 . Writing 
7TYX(l-X) 

u= exp i[2 cos- 1 Yx] (52) 

in (45'), we obtain 

Kdz, 2 COS - I Yx) = ~ T,,(2x-1)e -l z I U~(z). (53) 
n=O 

This transformation kernel links Wk and Wk with the space spanned by these Jacobi polynomials. 

The U~ ' s and the Legendre Polynomials. A bridge for the Legendre polynomials is likewise 

useful and easy to write down. A generating function for the Legendre polynomials is 

1 00 

L snp,,(cos (J). 

"=0 

(54) 
{l - 2s cos (J + S 2 )1 /2 . 

The expression on the left has singularities for lsi = 1, so that the series converges uniformly for 

lsi < a < 1, where a is constant. 

We write rl/ ('Y1 2 - 1) in place of s in (54) to obtain 

2 00 

(1- 2) L 7Tit('Y1)P,,(cos (J). 
'Y1 n=O 

For cos (J =1= 1, this function IS in n. (because nto PH cos (J) converges) and we calculate its 

Fourier inverse to obtain 

~ -lz IUO()P ( ll)_ ~l x ~_r=====co=s=a=z=====-L.. e n Z n cos U - 1 + 2 I 
n=O 1T ° a 'V 1 - 2 C:2

( 2) cos (J+C:2a2) 

(55) 

Unlike the preceding kernels, this integral does not appear to yield an elementary quadrature in 

terms of known functions. 

Existence of Functions with Zero Alternate Moments. One question which is implicitly an· 
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swered by the preceding analysis has to do with the existenc e of functions F(z) , defined on 

o ~ z ~ 00, whic h are not identically zero but whose alternate moments Fn are all zero beyond 

some value n = k - 2. 

Let an e ven func tion F (z) have a F ourier transform <1> (7]) with singularities only at 7] = ± 7]0, 

Re 7]0 =i' O. Then one can choose a number a s uc h that F(az) has transform sin gulariti es in region I , 

and hence can be represented by a U ~ series. If all even moments on 0 ~ z ~ 00 of F (z) should be 

zero, all coefficients of this seri es must be zero also , so that F(az) must be ide ntically zero. Thus 

if F (z) is not zero identi cally, these even moments cannot all vanish. 

This argume nt can be exte nded to odd functions and their odd mome nts, and to fun ctions of 

either parity whi ch might have alternate moments zero beyond n = (k - 2), by use of expan sions 

with higher values of k. The argument then applies to some component of any fun ction whose 

Fourier transform has a s in gularity off the imaginary axis, and we conclude that only fun ctions 

with sin gularities res tri c ted to the imaginary axis , or at 00, can have zero moments beyond some 

finite value n for the moment index. 

Gamma Ray and Neutron Penetration Distributions . A series of investigations of the deep 

pene tration trends of these di stributions has shown that the Fourier transform can have singu

larities of the following types 

1 c 

e - }J. - p ' (56) 

in the important cases of isotropic or plane monodirectional sources . Here, jJ-o, jJ- , jJ-m , c, and ~ 

are all consta nts. By measuring di stances in units of jJ-o t, jJ-- I, or jJ-m' , all three sin gularities may 

be located at p = 1; and in eac h case the only other possible singularities are located on the real 

axis, with p > l. 
For cases of plane, slant sources, the location and nature of the singularities is not so com

pletely specifiable . .If di stances are measured in jJ-;/, where jJ-m is the smallest attenuation co

e ffi cient , we can say that the singularities are again on the real axis, with p ~ 1; but we cannot 

specify them in greater detail. 

In all these cases, the eve n or odd component di stribution functions belong to Wk according 

to the value of (- )k, so that UHz ) se ri es re presentations should have square s ummable coefficients, 

and should converge to the di stribution. Most approximations of this type have implicitly used 

the norms of the m; systems; since convergence of the polynomial coeffi cients has been used 

as a criterion of validity of the approximation. 
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