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Abstract.—Consensus methods provide a useful strategy for summarizing information from a collection of gene trees. An
important application of consensus methods is to combine gene trees to estimate a species tree. To investigate the theoretical
properties of consensus trees that would be obtained from large numbers of loci evolving according to a basic evolutionary
model, we construct consensus trees from rooted gene trees that occur in proportion to gene-tree probabilities derived from
coalescent theory. We consider majority-rule, rooted triple (R∗), and greedy consensus trees obtained from known, rooted
gene trees, both in the asymptotic case as numbers of gene trees approach infinity and for finite numbers of genes. Our
results show that for some combinations of species-tree branch lengths, increasing the number of independent loci can
make the rooted majority-rule consensus tree more likely to be at least partially unresolved. However, the probability that
the R∗ consensus tree has the species-tree topology approaches 1 as the number of gene trees approaches ∞. Although
the greedy consensus algorithm can be the quickest to converge on the correct species-tree topology when increasing the
number of gene trees, it can also be positively misleading. The majority-rule consensus tree is not a misleading estimator
of the species-tree topology, and the R∗ consensus tree is a statistically consistent estimator of the species-tree topology.
Our results therefore suggest a method for using multiple loci to infer the species-tree topology, even when it is discordant
with the most likely gene tree. [Anomalous gene tree; coalescence; discordance; lineage sorting; phylogenetics; statistical
consistency.]

The goal of many phylogenetic and phylogeographic
studies is not the estimation of the individual gene
trees but rather the estimation of the species-level phy-
logeny or population history (Felsenstein 1988; Nei and
Kumar 2000). Among methods that have been used
to estimate species trees from data on multiple loci, a
popular approach has been to make use of sequences
concatenated across the loci. In essence, this approach
assumes that all loci have the same gene tree, whose es-
timate is also used as the estimated species tree. Because
gene trees vary both locally and across broad regions of
organismal genomes (Chen and Li 2001; Pollard et al.
2006; Hobolth et al. 2007), sequence data from multi-
ple genes are expected to be the result of heterogeneous
processes. Multilocus data can be regarded as mixtures
generated from different branch lengths and mutation
rates on gene trees as well as from different gene-tree
topologies that may arise from sources such as incom-
plete lineage sorting or hybridization.

As a result of these various sources of heterogene-
ity, concatenation can perform poorly when sequences
are analyzed as if they come from a single model. Infer-
ences may be inconsistent (Kolaczkowski and Thornton
2004), or the mixture generating the sequences might
not be identifiable even when sites are generated from
the same topology (Matsen and Steel 2007). Similarly,
when sites are generated from different topologies but
under the same mutation model, inferences from con-
catenated data can be misleading (Mossel and Vigoda
2005; Edwards et al. 2007; Kubatko and Degnan 2007).
It is therefore useful to examine the behavior of other
approaches in situations with a high level of gene-tree
discordance.

One strategy for estimating species trees that does not
assume that all loci reflect the same underlying gene tree
is consensus, in which trees are obtained from individ-
ual loci and are then summarized in the form of a single
tree. The consensus idea underlies such methods as con-
cordance trees (Ané et al. 2007; Baum 2007), in which
the support for each potential clade is estimated from
multiple loci, and the most strongly supported clades
are placed in a single “concordance tree,” adjusting for
a prior distribution on the number of distinct gene trees
that a sample is predicted to contain. In the absence of
processes such as horizontal gene transfer and recom-
bination within loci, the concordance tree can be con-
sidered an estimate of the species tree. The concordance
factor approach allows statistical dependence between
loci but does not assume any particular mechanism for
gene-tree conflict.

Relatively little is known about the theoretical prop-
erties of consensus algorithms applied to trees from
multiple loci. We consider a simplified setting in which
gene-tree discordance of rooted gene trees is due solely
to incomplete lineage sorting. We examine 3 consensus
algorithms applied to loci that are independent given a
fixed species tree. In particular, we ask the question: as
the number of gene trees considered from different loci
increases, what is the probability that the consensus tree
matches the species-tree topology?

We focus on majority-rule, rooted triple (R∗), and
greedy consensus trees. A survey of these and other
consensus methods can be found in Bryant (2003).
We note that because the coalescent approach that we
models probabilities of rooted trees, we consider con-
sensus algorithms applied to rooted trees only, although
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in practice, majority-rule and greedy consensus are
often applied to unrooted trees. For rooted trees, the
majority-rule consensus tree consists of those clades that
occur more than 50% of the time in the collection of trees.
(For simplicity, we always use 50% as the cutoff when re-
ferring to majority-rule consensus, although any greater
proportion could be used instead.)

The R∗ consensus tree is constructed in 2 steps. The
first step is to construct a list of “uniquely favored” roo-
ted triples. A rooted triple (AB)C on 3 taxa is said to
be uniquely favored if it appears in more trees than ei-
ther of the other 2 rooted triples, (AC)B or (BC)A, on the
same set of 3 taxa. Note that in the case of ties, there
might not be a uniquely favored triple for some sets of
taxa.

In the second step, the most resolved tree that con-
tains only uniquely favored triples is constructed, for
example, using the algorithm of Bryant and Berry (2001,
Corollary 2.2). To illustrate, consider the rules for clades
in the R∗ tree in the case of 4 taxa:

1. Clades of sizes 1 and 4 are included automatically.
2. The set {XY} is a clade exactly when (XY)Z and

(XY)W are uniquely favored.
3. The set {XYZ} is a clade exactly when (XY)W, (XZ)W,

and (YZ)W are uniquely favored.

For a tree with n taxa, these rules can be generalized.
Let S be the set of all n taxa. Let A be a subset of S where
A has at least 2 and at most n − 1 elements, and let S \ A
be the set of all taxa in S not in A.

1′. Clades of sizes 1 and n are included automatically.
2′. A is a clade exactly when for each pair of taxa,

Ai, Aj ∈ A with i �= j, for every taxon Z ∈ S \ A,
(AiAj)Z is uniquely favored.

These 2 rules determine the list of clades in the R∗ con-
sensus tree. Once the clades are determined, the tree can
be constructed from the list of clades.

Greedy consensus trees are constructed by sequentially
adding one clade at a time, the most frequently occurr-
ing clade that is compatible with clades already included
in the greedy consensus tree (breaking ties randomly).
Greedy consensus trees are also sometimes called “ma-
jority rule extended” (Felsenstein 1995), and the greedy
consensus algorithm is implemented in PHYLIP (Felsen-
stein 1995) and PAUP* (Swofford 2003). Primary concor-
dance trees (Baum 2007) can use the greedy consensus
approach, where the concordance factor of a clade (or a
split for unrooted trees) is the proportion of trees which
exhibit the clade (split). We stress, however, that we only
consider consensus algorithms applied to rooted trees.

For a given set of input trees, the greedy and R∗ con-
sensus trees are always resolutions of the majority-rule
tree (Bryant 2003), meaning that every clade on the
majority-rule consensus tree is also on the greedy and
R∗ consensus trees; however, there might be clades on
the greedy or R∗ consensus trees that are proper sub-
sets of unresolved clades on the majority-rule consensus
tree.

As an example to illustrate the 3 consensus methods,
suppose the input gene trees are (((AB)C)D), (((AD)C)B),
(((BC)A)D), and (((CD)A)B). First we determine the R∗

tree. For the taxa A, B, and C, (AC)B occurs twice, whereas
(AB)C and (BC)A each occur once. Thus, (AC)B is uniqu-
ely favored. The rooted triple (AC)D is uniquely favored
for the taxa A, C, and D. Thus, {AC} is a clade by rule 2.
However, for the taxa A, B, and D, (AB)D and (AD)B
each occur twice. Similarly (BC)D and (CD)B each occur
twice. Thus, (AC)B and (AC)D are the only uniquely fa-
vored triples. No other groups satisfy rule 2 or 3; hence
there are no other 2- or 3-taxon clades. Thus, the R∗ con-
sensus tree is the partially unresolved tree ((AC)BD). Fur-
thermore, because no clade occurs more than 50% of the
time, the majority-rule tree for this set of input trees is
a star tree. For the greedy algorithm, the 3-taxon clades
{ABC} and {ACD} each occur in 50% of the trees and
the 2-taxon clades {AB}, {AD}, {BC}, and {CD} each oc-
cur in 25% of the trees. The greedy algorithm therefore
first selects 1 of the 2 observed 3-taxon clades at ran-
dom (because they are tied for being most probable) and
then randomly selects 1 of the 2 remaining compatible
2-taxon clades (because they are also tied). The result is
that the greedy consensus algorithm returns each of the
original input trees with probability 1/4.

The previous example illustrates how the R∗ method
performs when there are ties for the most frequently oc-
curring triple. However, incompatible triples can also
arise when each set of 3 taxa has a uniquely favored
triple. Such conflicts also result in unresolved trees. Sup-
pose the input trees are (((AB)C)D), (((AB)D)C), and
((AD)(BC)). Each of the rooted triples (AB)C, (AB)D,
(AD)C, and (BC)D occurs in 2 of the 3 input trees, and
therefore each is uniquely favored. These triples are in-
compatible because any resolved tree with the triples
(AB)C and (BC)D also has (AC)D (Ranwez et al. 2007),
but the input trees have (AD)C as a uniquely favored
triple. The R∗ consensus tree is ((AB)CD) and is unre-
solved with respect to the taxa A, C, and D because {AB}
is the only 2-taxon clade which satisfies rule 2 and no
3-taxon clade satisfies rule 3. For these input trees, the
majority-rule consensus tree also is ((AB)CD) because
only the {AB} clade occurs more than 50% of the time.
The greedy consensus tree is either (((AB)C)D) or
(((AB)D)C), each with 50% probability.

The 3 consensus methods considered in this paper
exhibit different behaviors as the number of genes in-
creases. We find that when gene-tree discordance is due
to incomplete lineage sorting, adding genes can increase
the probability that the majority-rule consensus tree is
unresolved. However, this unresolved tree is compati-
ble with the species tree in the sense that one of its res-
olutions has the species-tree topology. We call sets of
species-tree branch length vectors leading to this lack of
resolution “unresolved zones.” Also, as the number of
independent, known gene trees increases, the R∗ tree is
more likely to be fully resolved and to match the species
tree, although the R∗ algorithm can be slow to converge
to the correct tree. Greedy consensus trees, which
are always resolved, often converge to the species-tree
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topology more quickly; however, they can be mislead-
ing in the sense that adding more genes can make the
greedy consensus tree less likely to match the species
tree. We use the term “too-greedy zone” to denote the
set of species-tree branch length vectors for which greedy
consensus trees constructed from infinitely many loci
disagree with the species tree. This concept is analogous
to the “anomaly zone” (Degnan and Rosenberg 2006),
the set of species-tree branch length vectors for which
the most probable gene tree does not match the species
tree. For 4-taxon asymmetric species trees, the too-greedy
zone is a subset of the anomaly zone.

To illustrate the properties of the 3 consensus algo-
rithms, we begin with 4-taxon examples of consensus
trees when the number of loci approaches infinity. This
section is followed by more general derivations for 4-
taxon trees of the unresolved zones for majority-rule
consensus trees and the too-greedy zone for greedy con-
sensus trees. We then consider the same consensus meth-
ods with finitely many loci sampled, applying them to
examples with 3 and 4 taxa. The main theoretical results
of the paper (Theorems 1–4) apply to rooted, bifurcating
species trees with any number of taxa and give differ-
ent results for the limiting behavior of the 3 consensus
methods used, assuming that gene trees are generated
under the multispecies coalescent model. Proofs of the
theorems are given in Appendices 1–3.

ASSUMPTIONS AND DEFINITIONS

We use the term “multispecies coalescent” for the
model in which coalescent processes occur in each branch
of a species tree and for which all possible coalescent
events within a branch are equally likely. This is the model
that has previously been used to calculate probabilities
of gene trees given species trees (Tajima 1983; Pamilo
and Nei 1988; Takahata 1989; Rosenberg 2002; Degnan
and Salter 2005). The model assumes that population
sizes are constant within species-tree branches (although
not necessarily across branches) and that populations
are panmictic. It also assumes that the genes from the
different species are orthologous, that natural selection
is not acting on the genes of interest, and that horizontal
gene transfer and recombination do not occur within the
genes of interest.

We use “gene tree” to refer to a gene-tree topology
and “species tree” to refer to a species-tree topology with
internal branch lengths specified. Because 2 or more lin-
eages in a population are needed for a coalescence to
occur, lengths of external branches of the species tree
(branches leading to the tips) do not affect probabilities
of gene-tree topologies when only one lineage is con-
sidered per species. Branch lengths on species trees are
measured in “coalescent units”, the number of gener-
ations divided by the effective population size (twice
the effective population size for diploids; Hein et al.
2005).

Nodes on gene trees correspond to coalescent events.
For example, if a node on a gene tree is the root of the

subtree ((AB)C), then this node corresponds to the coa-
lescent event that joins the lineage ancestral to (AB) with
the lineage ancestral to C, where (AB) itself represents
the coalesced lineage combining the lineages from taxa
A and B. Clades with only 2 taxa (on either species or
gene trees) are called “cherries.” We use the same letter
(such as A, B, etc.) to refer both to a taxon and to the
gene lineage sampled from that taxon.

We use the notation (AB)C for the 3-taxon statement
(rooted triple) that the most recent common ancestor
(MRCA) of gene lineages A and B is not an ancestor of
lineage C. This notation is similar to the notation for a
3-taxon tree but does not have the outer set of parenthe-
ses. If a given species tree (with topology and internal
branch lengths specified) is σ, then Pσ[·] indicates prob-
abilities of events for gene lineages when σ is the species
tree. For example, Pσ[(AB)C] and Pσ[((AB)C)] are used
to indicate the probabilities of the rooted triple (AB)C
and the gene tree ((AB)C), respectively. The expression
Pσ[{ABC}] is used to denote the probability that {ABC}
is a clade on the gene tree.

ASYMPTOTIC CONSENSUS TREES

Consensus trees are used to summarize a set of trees
defined on the same set of taxa. A consensus algorithm
takes the trees as input, so that the method of producing
the input trees is not part of the consensus algorithm.
Typically, the trees summarized might be estimated trees
such as those that are obtained from separate genes, dif-
ferent models, or different bootstrap resamples. In all
these cases, the consensus tree is a function of some data
set and is therefore a statistic (Casella and Berger 1990).

Using gene-tree probability distributions, we can also
compute the consensus tree that would be returned in
the limit as the number of input gene trees approaches
infinity. This calculation assumes that input gene trees
are correctly estimated, independent, and generated by
the multispecies coalescent model. In this setting, the
proportion of occurrences for a gene-tree topology
asymptotically approaches its probability under the
multispecies coalescent model as the sample size (the
number of independent loci) approaches infinity.

Consensus trees obtained from these asymptotic pro-
portions are not functions of data and are therefore not
statistics. Instead, they are properties solely of gene-tree
probability distributions. These distributions in turn are
functions of the species tree, which we can consider to
be a parameter for a gene-tree distribution (Degnan and
Salter 2005). Intuitively, we can also think of a consen-
sus tree computed from gene-tree probabilities under
the multispecies coalescent model as the consensus tree
that would be obtained from an infinite number of inde-
pendent, correctly inferred gene trees.

We define an “asymptotic consensus tree” for a species
tree to be the tree topology that would be obtained if a
consensus algorithm had considered gene trees in prop-
ortion to their probabilities (under the multispecies coa-
lescent model). Under the multispecies coalescent model,
every gene-tree topology has positive probability given
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any species tree, and therefore every gene tree is included
in the consensus algorithm. Consequently, methods such
as Adams and strict consensus (Bryant 2003; Felsenstein
2004)—which preserve information shared by all input
trees—result in star trees when probabilities under the
multispecies coalescent model are used. Similarly, meth-
ods in which a single input tree can “veto” clades on the
consensus tree (e.g., combinable component consensus;
Bremer 1990; Felsenstein 2004) would necessarily result
in star trees asymptotically. We therefore focus on 3 con-
sensus algorithms that do not require strict agreement.
Other consensus methods that can tolerate a high level
of noise in the input trees, but which we have not inves-
tigated, such as matrix representation with parsimony
(Baum 1992; Ragan 1992) could also be of interest in this
setting.

The majority-rule asymptotic consensus tree (MACT)
can be determined by listing the probability of mono-
phyly for each subset of taxa. If a subset of taxa ap-
pears on the list with probability greater than 1/2, then
that group is contained in the MACT. This is the same
method traditionally used to determine majority-rule
consensus trees, but here we use theoretical probabili-
ties rather than observed proportions.

Similarly, the R∗ asymptotic consensus tree (RACT)
for n taxa can be determined by calculating the pro-
bability of each of the 3 possible rooted triples for each
of the

(n
3

)
subsets of 3 taxa. The RACT then consists of

those rooted triples that have the highest probability for
each subset of 3 taxa. For any 3 taxa and any strictly
bifurcating species tree, the rooted triple corresponding
to the species tree is always the most probable (see Pro-
position 5 in Appendix 1)—that is, there are no ties. The
set of rooted triples for all

(n
3

)
subsets of 3 taxa uniquely

identifies the species tree (Steel 1992, Proposition 4); thus,
the RACT is always fully resolved under the multispecies
coalescent model.

The greedy asymptotic consensus tree (GACT) for n
taxa can be obtained by ranking probabilities of the 2n −
n−1 clades with 2 or more taxa. The most probable clade
is incorporated into the consensus tree, and then the list
of clade probabilities is updated by removing any clades
incompatible with those already in the tree. This pro-
cess is repeated until the tree is fully resolved, randomly
picking clades in the case of ties.

The 3 types of asymptotic consensus trees—MACT,
RACT, and GACT—are purely mathematical functions
of gene-tree probabilities. They are therefore properties
of species trees. Consensus trees constructed from finitely
many loci under different consensus algorithms are ran-
dom variables and are increasingly likely to match their
asymptotic counterparts as the number of loci approa-
ches infinity.

Examples

Examples that illustrate the construction of asymp-
totic consensus trees for the 3 methods in this paper are
shown in Table 1, which lists probabilities of each gene
tree for 4 taxa, for several sets of branch lengths on the

species tree in Figure 1a. Also listed are probabilities for
2- and 3-taxon clades and probabilities for the 12 rooted
triples. For 4 taxa, there are 6 possible cherries and 4 pos-
sible 3-taxon monophyletic groups. Note that because
some cherries are not mutually exclusive, the sum of
probabilities over all cherries is more than 1. Also, be-
cause it is possible for a tree to not have any 3-taxon
monophyletic groups, the sum of the probabilities for
subsets of 3 taxa is less than 1.

For each of the examples in Table 1, majority-rule con-
sensus returns 1 of the 4 trees illustrated in Figure 2a.
Greedy consensus returns the matching tree for all ex-
amples in the table, except when (x, y) = (0.05, 0.05),
for which it returns ((AB)(CD)). This topology is also
the most probable gene tree for those branch lengths.
R∗ consensus is the only consensus method considered
which returns the matching tree for all branch lengths
used. As we will see in Theorem 2, this result for R∗ con-
sensus is not limited to the examples chosen but applies
to any branch lengths and any binary species tree.

As an example from the table, we see that if the species
tree has topology (((AB)C)D) and has x = 0.6 and y =
0.4, then the clades {AB} and {ABC} both occur with
probability greater than 1/2 and {CD} occurs with pro-
bability less than 1/2. Thus, the MACT for this species
tree has the topology (((AB)C)D) because this is the only
4-taxon topology which has exactly the monophyletic
groups {AB} and {ABC}. Both probabilities are only
slightly larger than 1/2, however, so in a small sam-
ple of correctly inferred trees, it is possible that either
{AB} or {ABC} would occur less than 50% of the time
or that {CD} would occur more than 50% of the time. In
these cases, the majority-rule consensus tree would be
unresolved or would otherwise not match the species
tree.

For the greedy consensus algorithm, we would first
select the {AB} clade to be in the tree (because it is the
most probable clade other than {ABCD}) and we would
then eliminate all clades except {CD}, {ABC}, and {ABD}
from consideration because these other clades are in-
compatible with {AB}. From among the 3 remaining
clades, {ABC} is the most probable—hence, the GACT
has clades {AB} and{ABC}, which means that (((AB)C)D)
is the GACT. For the R∗ consensus algorithm, the most
probable rooted triples for each set of 3 taxa are (AB)C,
(AB)D, (AC)D, and (BC)D. Because (((AB)C)D) is the only
tree for taxa A, B, C, and D that is compatible with these
rooted triples, R∗ also returns the matching tree.

Choosing the branch lengths to be (x, y) = (0.4, 0.6)
(Table 1, second branch length column) illustrates that
the behavior of MACTs is sensitive to the order of the
branch lengths. Switching the lengths for x and y can
change whether the MACT is fully resolved. For this
tree, most gene trees (about 62%) are expected to have
an {AB} clade, so this clade is very likely to be in the
majority-rule consensus tree for a large enough number
of gene trees; however, less than 46% of trees are ex-
pected to have {ABC} in a monophyletic group, so the
MACT does not have {ABC} as a clade. Because no other
group is monophyletic with probability greater than 1/2,
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TABLE 1. Probabilities of 4-taxon gene-tree topologies, clades, and rooted triples for the species tree (((AB)C)D), with various sets of branch
lengths. A clade (rooted triple) probability is the sum of probabilities of gene-tree topologies which have the clade (rooted triple). Branch lengths
are as in the model species tree in Figure 1a

Branch lengths (x, y)

Gene-tree topology Probability (0.6, 0.4) (0.4, 0.6) (0.8, 0.3) (0.3, 0.3) (0.1, 0.1) (0.05, 0.05)

1. (((AB)C)D) p1 0.316 0.319 0.321 0.212 0.104 0.079
2. (((AB)D)C) p2 0.109 0.144 0.087 0.122 0.091 0.075
3. (((AC)B)D) p3 0.107 0.069 0.140 0.081 0.066 0.061
4. (((AC)D)B) p4 0.049 0.043 0.048 0.058 0.062 0.060
5. (((AD)B)C) p5 0.006 0.009 0.004 0.017 0.037 0.045
6. (((AD)C)B) p6 0.006 0.009 0.004 0.017 0.037 0.045
7. (((BC)A)D) p7 0.107 0.069 0.140 0.081 0.066 0.061
8. (((BC)D)A) p8 0.049 0.043 0.048 0.058 0.062 0.060
9. (((BD)A)C) p9 0.006 0.009 0.004 0.017 0.037 0.045

10. (((BD)C)A) p10 0.006 0.009 0.004 0.017 0.037 0.045
11. (((CD)A)B) p11 0.006 0.009 0.004 0.017 0.037 0.045
12. (((CD)B)A) p12 0.006 0.009 0.004 0.017 0.037 0.045
13. ((AB)(CD)) p13 0.115 0.153 0.094 0.139 0.128 0.121
14. ((AC)(BD)) p14 0.055 0.052 0.052 0.075 0.099 0.105
15. ((AD)(BC)) p15 0.055 0.052 0.052 0.075 0.099 0.105

Clade
{AB} p1 + p2 + p13 0.541a 0.616a 0.499 0.473 0.322 0.275
{AC} p3 + p4 + p14 0.211 0.165 0.239 0.213 0.227 0.226
{AD} p5 + p6 + p15 0.067 0.071 0.059 0.108 0.174 0.196
{BC} p7 + p8 + p15 0.211 0.165 0.239 0.213 0.227 0.226
{BD} p9 + p10 + p14 0.067 0.071 0.059 0.108 0.174 0.196
{CD} p11 + p12 + p13 0.128 0.171 0.098 0.172 0.202 0.212
{ABC} p1 + p3 + p7 0.530a 0.458 0.601a 0.373 0.236 0.201
{ABD} p2 + p5 + p9 0.121 0.162 0.094 0.155 0.165 0.166
{ACD} p4 + p6 + p11 0.061 0.061 0.055 0.091 0.136 0.151
{BCD} p8 + p10 + p12 0.061 0.061 0.055 0.091 0.136 0.151

Rooted triple
(AB)C p1 + p2 + p5 + p9 + p13 0.553 0.634 0.506 0.506 0.397 0.366
(AC)B p3 + p4 + p6 + p11 + p14 0.223 0.183 0.247 0.247 0.302 0.317
(BC)A p7 + p8 + p10 + p12 + p15 0.223 0.183 0.247 0.247 0.302 0.317
(AB)D p1 + p2 + p3 + p7 + p13 0.755 0.755 0.778 0.634 0.454 0.397
(AD)B p4 + p5 + p6 + p11 + p15 0.123 0.123 0.111 0.183 0.273 0.302
(BD)A p8 + p9 + p10 + p12 + p14 0.123 0.123 0.111 0.183 0.273 0.302
(AC)D p1 + p3 + p4 + p7 + p14 0.634 0.553 0.700 0.506 0.397 0.366
(AD)C p2 + p5 + p6 + p9 + p15 0.183 0.223 0.150 0.247 0.302 0.317
(CD)A p8 + p10 + p11 + p12 + p13 0.183 0.150 0.247 0.223 0.302 0.317
(BC)D p1 + p3 + p7 + p8 + p15 0.634 0.553 0.700 0.506 0.397 0.366
(BD)C p2 + p5 + p9 + p10 + p14 0.183 0.223 0.150 0.247 0.302 0.317
(CD)B p4 + p6 + p11 + p12 + p13 0.183 0.223 0.150 0.247 0.302 0.317

aClade has probability greater than 1/2 and would therefore be represented in the MACT.

this MACT is not fully resolved and is ((AB)CD). Note
that the lack of resolution is a theoretical limitation of
majority-rule consensus and occurs even though the
species tree and gene trees are fully resolved (there are
no “hard” polytomies). Because asymptotic consensus
trees use infinitely many resolved input trees, the lack of
resolution is also not due to insufficient information—in
other words, the lack of resolution cannot be overcome
by adding more loci (there are no “soft” polytomies).

FIGURE 1. Four-taxon species trees with internal branch lengths
x and y, measured in coalescent units.

When the branch lengths are (x, y) = (0.8, 0.3)
(Table 1, third branch length column), majority-rule
consensus returns the partially resolved tree ((ABC)D).
For the branch lengths (x, y) = (0.3, 0.3), (0.1, 0.1), (0.05,
0.05) (columns 4 through 6), because no monophyletic
subset of taxa has probability greater than 1/2, the
MACTs for these species trees are star phylogenies. When
the branch lengths are (x, y) = (0.1, 0.1) and (x, y) =
(0.05, 0.05), ((AB)(CD)) is the most probable gene tree,
although it does not match the species tree. Gene trees
that are more probable than the gene tree matching the
species tree are called “anomalous gene trees” (Degnan
and Rosenberg 2006). When (x, y) = (0.3, 0.3), no anoma-
lous gene trees occur, illustrating that unresolved
majority-rule consensus trees can arise even when there
are no anomalous gene trees. When (x, y) = (0.05, 0.05),
the most probable clade is {AB}, which has probabil-
ity 0.275, so it is included in the greedy consensus tree.
The second most probable clade compatible with {AB},
however, is {CD}, which has probability 0.212, and thus
the greedy consensus tree is ((AB)(CD)), which does not
match the species tree. However, when (x, y) = (0.1, 0.1),
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FIGURE 2. Unresolved zones for 4-taxon species trees. The shaded regions are different areas of the unresolved zones leading to different
unresolved majority-rule consensus trees. Shaded regions represent values of x and y for which one of the inequalities (1–4) is violated.
(a) The species tree is (((AB)C)D). A star tree is the limiting consensus tree for the red region, where conditions (1) and (2) both fail. The or-
ange region corresponds to the tree with the {ABC} clade unresolved, which is where condition (1) fails. In the tan area to the left of the steeper
of the 2 curves, inequality (2) is violated. For comparison, the anomaly zone is also plotted as the area under the heavy, dark curve. The anomaly
zone cuts across 2 regions of the unresolved zone, and the area under the line starting from (x, y) = (0, 0.154) which creates the approximately
triangular region is the part of the anomaly zone with 3 anomalous gene trees. (b) The species tree is ((AB)(CD)). The unresolved zone in this
case is similar in size to that of (a), but there is no anomaly zone for this species tree.

greedy consensus returns the matching tree (((AB)C)D),
even though this tree is less probable than ((AB)(CD)).
These examples show that different types of outcomes
occur for majority-rule and greedy consensus trees, de-
pending on the properties of the species tree. We now
describe asymptotic consensus trees for more general
sets of branch lengths for 3 and 4 taxa.

Majority-Rule Consensus

Three taxa.—For the case of 3-taxon trees, the MACT
is resolved if the probability of the matching tree is
greater than 1/2. The well-known probability of con-
gruence for a gene tree given a 3-taxon species tree, 1 −

(2/3)e−T (e.g., Nei 1987) , where T is the length of the
one internal branch, is greater than 1/2 if T > log(4/3) ≈
0.28768. For smaller values of T, increasing the number
of independent gene trees increases the probability that
the trees do not produce a resolved majority-rule con-
sensus tree, even though the matching gene tree is more
likely than any other gene tree.

Four taxa.—For 4-taxon trees, the branch lengths needed
for a clade to be in the MACT can be obtained by setting
the probability of the clade to be greater than 1/2 and
solving for branch length y in terms of branch length x.
Clade probabilities are functions of gene-tree probabili-
ties and are listed in Table 1. The model 4-taxon species
trees are shown in Figure 1.

Details for deriving conditions for clades to be in the
MACT are given in Appendices 4 and 5. First we
consider the species tree with topology (((AB)C)D). Fol-
lowing Figure 1, let y be the length of the branch (in co-
alescent units) ancestral to A and B, but not C, and let x

be the length of the other internal branch. Then {ABC} is
a clade in the MACT if and only if

x > log(4/3) and y > log

(
2 e2x − 1

3 e3x − 4 e2x

)
(1)

and {AB} is a clade in the MACT if and only if

y > log

(
12 e3x + 2

9 e3x

)
. (2)

These 2 conditions partition the space of branch lengths
into regions corresponding to the 4 possible MACTs for
this species tree (Fig. 2a), where x = log(4/3) ≈ 0.28768
is a vertical asymptote and y = log(4/3) is a horizontal
asymptote. The MACT is

(((AB)C)D) if (1) and (2) both hold,

((ABC)D) if (1) holds and (2) fails,

((AB)CD) if (1) fails and (2) holds,

(ABCD) if (1) and (2) both fail.

Similarly, if the species tree is ((AB)(CD)), with y denot-
ing the length of the branch ancestral to (AB) and x de-
noting the length of the other internal branch, then {AB}
is a clade in the MACT if and only if

y > log

(
12 ex + 2

9 ex

)
(3)

and {CD} is a clade in the MACT if and only if

x > log(4/3) and y > log

(
2

9 ex − 12

)
. (4)
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These 2 conditions partition the branch length space into
different regions for each of the possible MACTs (Fig. 2b),
and x = log(4/3) and y = log(4/3) are vertical and hori-
zontal asymptotes, respectively. The MACT is

((AB)(CD)) if (3) and (4) both hold,

((AB)CD) if (3) holds and (4) fails,

(AB(CD)) if (3) fails and (4) holds,

(ABCD) if (3) and (4) both fail.

Because inequalities (1–4) characterize all possible
MACTs for 4 taxa, it follows that 4-taxon MACTs are
never misleading in the sense that a 4-taxon MACT never
has a clade that is not a clade in the species tree. Due
to lack of resolution, however, the MACT may fail to
have clades that are present in the species tree. Although
we have obtained this result by explicit computation for
the 4-taxon case, we will show that the result holds for
larger trees (see Theorem 1 in Asymptotic Consensus
Trees: General Theorems).

The plots in Figure 2 depict regions of parameter space
in which MACTs are not fully resolved (and therefore do
not fully recover the species tree). For the asymmetric 4-
taxon tree, the anomaly zone from Degnan and Rosen-
berg (2006) is also depicted within the unresolved zone,
which is considerably larger than the anomaly zone. For
example, when we set x = y for the 4-taxon asymmet-
ric tree, the largest value of x that is still in the anomaly
zone is approximately 0.1568 (Degnan and Rosenberg
2006); but for majority-rule consensus, when x = y, x =
y ≈ 0.345 is the largest value for which the MACT is
fully unresolved and x = y ≈ 0.507 is the largest value
for which the MACT is partially unresolved, equaling
((AB)CD). For the symmetric 4-taxon tree, the line x = y
passes through the intersection of the 2 curves in Fig-
ure 2b and x = y = 0.394 is the largest value that results
in a star consensus tree. This is somewhat surprising be-
cause these values result in the partially resolved tree
((AB)CD) for the asymmetric species tree, and the asym-
metric species tree is typically more difficult to infer. For
the asymmetric 4-taxon species tree, the anomaly zone is
a subset of the zone in which the MACT is unresolved.
For the symmetric species tree, the MACT can be un-
resolved but there is no anomaly zone. For 4 taxa, it is
always true that if a species tree has an anomalous gene
tree, then it does not have a fully resolved MACT.

R∗ Consensus

Three taxa.—In the case of 3 taxa, we note that the
greedy and R∗ algorithms are equivalent when there are
infinitely many loci. (For finitely many loci, greedy and
R∗ consensus are not equivalent because they handle
ties differently, with the R∗ consensus tree sometimes
being unresolved.) For both algorithms, the most fre-
quently occurring clade determines a 3-taxon statement,
and in the asymptotic case, there is a uniquely occur-
ring most frequent tree. This tree has probability

1−(2/3)e−T >1/3 (where T is the internal branch length),

and the other 2 trees each have probability (1/3)e−T <
1/3. Thus, for the 3-taxon case, as the number of loci ap-
proaches ∞, the probability that the matching gene tree
is the most frequent approaches 1.

Four taxa.—We defer consideration of the case of 4 taxa
to Asymptotic Consensus Trees: General Theorems.

Greedy Consensus

Three taxa.—Under the multispecies coalescent model,
when there are 3 taxa, greedy consensus applied to gene
trees is asymptotically guaranteed to result in the species
tree as the number of gene trees increases. If the species
tree has topology ((AB)C) and the one internal branch
has length T, then a random gene tree has clade {AB}

with probability 1 − (2/3)e−T > 1/3, whereas {AC} and
{BC} each occur with probability less than 1/3. Thus,
{AB} is always the most probable cherry for this
topology and the GACT always matches the species-tree
topology.

Four taxa.—For the 4-taxon symmetric species tree and
for any choice of branch lengths, the GACT has the same
topology as the species tree (Appendix 6). However, if
the species tree is (((AB)C)D), then the GACT can be the
symmetric tree ((AB)(CD)).

To find the set of branch lengths for which the GACT
fails to match the asymmetric species-tree topology, let
x and y be the lengths of the deeper and more recent
internal branches, respectively, for the tree (((AB)C)D)
(see Fig. 1a). For this species tree, the region where the
GACT is ((AB)(CD)), the “too-greedy” zone, consists of
those values of x and y for which the clade {CD} is more
probable than the clade {ABC} (Appendix 7). The set
of values of x and y for which P({CD}) > P({ABC}) is
characterized by

y < log

[
3 e2x − 2

18(e3x − e2x)

]
. (5)

The right-hand side of this inequality is strictly less than
the boundary of the anomaly zone for the species tree
(((AB)C)D) (Degnan and Rosenberg 2006, Equation (4));
thus, for this species tree, the too-greedy zone is a subset
of the anomaly zone (Fig. 3).

FINITE NUMBERS OF LOCI

Theory

An asymptotic consensus tree occurs in the limit as
the number of loci approaches infinity. What happens
with a finite number of loci? We can examine the behav-
ior of consensus algorithms from a theoretical point of
view by considering all possible finite samples of gene
trees. The probability of a particular consensus tree is
the sum of the probabilities of the samples of gene trees
that result in that consensus tree. These probabilities can
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FIGURE 3. The too-greedy zone. The upper curve is the bound-
ary of the anomaly zone for the species tree (((AB)C)D). For points
below this curve, there is either one anomalous gene tree (AGT) or 3
AGTs. The 2 blue regions to the left of the curve that extends from
roughly (x, y) = (0.067, 0.0) to (0.0078, 2.0) constitute the too-greedy
zone, where the GACT is ((AB)(CD)).

be determined by noting that a sample of independent
loci has a multinomial distribution, where the categories
are the gene-tree topologies, and the probabilities are
given by the multispecies coalescent model (Degnan and
Salter 2005). Using this approach, at least for small num-
bers of taxa and loci, probabilities that consensus algo-
rithms return a particular topology can be determined
exactly without using simulation. Details for the method
are given in Appendix 8.

Examples

Three taxa.—We illustrate the case of finite loci using 3
(Fig. 4) and 4 taxa (Figs 5 and 6). With 3 taxa, there is
only one internal branch length, and this length deter-
mines all gene-tree probabilities, with the probability that

the gene tree matches the species tree being 1−(2/3)e−T,
where T is the length of the internal branch. We use
((AB)C) as the species tree, with branch lengths of
0.5, log(4/3) ≈ 0.288, and 0.1, corresponding to match-
ing probabilities of 0.596, 0.5, and 0.397, respectively.

For the branch length of 0.5, most loci (almost 60%)
are likely to have the matching topology; thus, given
enough loci, all 3 methods (majority rule, R∗, and greedy)
are expected to have a high probability of returning the
matching tree. The greedy consensus algorithm has the
highest probability of returning the matching tree for all
sample sizes examined (up to 50 loci). The R∗ method
has the second-best performance, although by 50 loci,
the greedy and R∗ algorithms have roughly equivalent
performance. When the branch length is chosen such
that the probability of matching is 0.5 (Fig. 4b, with the 2
nonmatching trees each having probability 0.25),
majority-rule consensus returns the correct tree at most
50% of the time (less for even sample sizes). This is not
surprising because by design ((AB)C) has probability 1/2
and therefore is not likely to occur more than 50% of
the time in a multinomial sample. For this case, as well
as for the branch length of 0.1 (Fig. 4c), greedy consen-
sus has the best performance and R∗ slowly approaches
greedy as the number of loci increases (and therefore
the probability of ties decreases). Also, for the branch
length of 0.1, no gene tree has probability greater than
50%, and therefore majority-rule consensus is increas-
ingly likely to return a star tree as the number of loci
increases.

Four taxa.—Figure 5 shows the behavior of the 3 con-
sensus methods as the number of loci increases when
the species tree is (((AB)C)D), and Figure 6 shows the
corresponding results when the species tree is ((AB)(CD)).
The 2 figures are similar, although the methods gener-
ally perform better with the symmetric species tree.

Figure 5a suggests that large numbers of loci might
be needed before one majority-rule consensus tree be-
comes the most probable. Figures 5b,c and 6b,c show that
majority-rule consensus can converge fairly quickly to
a star phylogeny even though the probability of a star
phylogeny decreases under R∗ consensus.

FIGURE 4. Species tree ((AB)C)—Probabilities of consensus trees from finite numbers of known gene trees. Each plot shows the probability
that each of the 3 consensus methods will return either the species-tree topology ((AB)C) or a star tree (R∗ and majority rule only). The legend
in (a) also applies to each of the 3 plots.
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FIGURE 5. Species tree (((AB)C)D)—Probabilities of consensus trees from finite numbers of known gene trees. One consensus algorithm
is used for each row of plots, and one set of branch lengths is used for each column. For the majority-rule and R∗ algorithms, there are 26
possible 4-taxon consensus trees, including 15 fully resolved trees and 11 trees not fully resolved. The graphs only show some of the more
frequently occurring consensus trees; consequently probabilities do not sum to 1. The legends in the left-hand column apply to the 3 plots in
their corresponding rows.

For majority-rule trees, there is also an effect of hav-
ing an odd or even sample size, where even sample sizes
tend to give higher probabilities to unresolved trees. This
occurs because even sample sizes increase the opportu-
nity for ties for 2 or more incompatible clades, in which
neither clade can be in the majority. This has the some-
what surprising consequence that a consensus tree can
be less likely to match the species tree in a sample of 2n
loci than in a sample of 2n − 1 (or even 2n − 3 or 2n − 5)
loci. In being more likely to return an unresolved tree,
however, majority-rule consensus is also less likely to
produce a resolved tree that does not match the species
tree. For the symmetric species-tree topology with branch
lengths of x = 0.6 and y = 0.4, if the sample size is odd,
then the majority-rule consensus tree is more likely to

be the species-tree topology ((AB)(CD)) than any other
topology, but for even sample sizes up to 25 loci, the
unresolved tree ((CD)AB) is roughly tied in probability
with ((AB)(CD)) (Fig. 6a). This result is consistent with
Figure 2b, in which the point (x, y) = (0.6, 0.4) is close
to the boundary between the regions for ((AB)(CD)) and
((CD)AB). However, if the number of loci is sufficiently
large, then majority-rule consensus is expected to return
the resolved tree ((AB)(CD)) that matches the species
tree because the point (x, y) = (0.6, 0.4) is slightly out-
side the MACT unresolved zone (cf. inequalities (3)
and (4)).

As the number of loci increases, the finite-sample R∗

trees (Figs 5d,e,f and 6d,e,f ) show increasing proba-
bility of matching the species-tree topology, including
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FIGURE 6. Species tree ((AB)(CD))—Probabilities of consensus trees from finite numbers of known gene trees. One consensus algorithm
is used for each row of plots, and one set of branch lengths is used for each column. For the majority-rule and R∗ algorithms, there are 26
possible 4-taxon consensus trees, including 15 fully resolved trees and 11 trees not fully resolved. The graphs only show some of the more
frequently occurring consensus trees; consequently probabilities do not sum to 1. The legends in the left-hand column apply to the 3 plots in
their corresponding rows.

for branch lengths that are in the anomaly zone,
(x, y) = (0.1, 0.1), and the too-greedy zone, (x, y) = (0.05,
0.05). As we will see, this result agrees with our theo-
retical expectations of R∗ consensus trees (Theorem 3);
however, the increase in probability is very slow. For
example, when (x, y) = (0.1, 0.1) and the species tree
is asymmetric (Fig. 5e), the 2 trees most likely to be re-
turned are (ABCD) and ((AB)CD) until there are 23 loci,
at which point the matching topology (((AB)C)D) chang-
es from being the third to the second most probable
topology. The star tree (ABCD) is the most likely tree
to be inferred for 11 and fewer loci, and the trend is
that the probability that the R* consensus tree is the star
tree decreases as the number of loci increases. The tree
((AB)CD), however, is still increasing in probability at 25

loci; thus, large numbers of loci might be needed for the
matching tree to be the most likely tree to be returned
by R∗ consensus.

Greedy consensus trees show more smoothly increas-
ing probabilities of returning the matching tree for branch
lengths outside the too-greedy zone (Figs 5g,h and
6g,h,i). When the species tree is (((AB)C)D) and (x, y) =
(0.1, 0.1) (Fig. 5h), the gene tree ((AB)(CD)) is more prob-
able than the matching tree, and greedy consensus is
slightly more likely to return this nonmatching tree for
small samples. The matching tree becomes the most prob-
able greedy consensus tree with 11 or more loci; how-
ever, for this species tree with the extreme branch lengths
of (x, y) = (0.05, 0.05), increasing the number of loci
is more likely to produce the nonmatching greedy
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consensus tree ((AB)(CD)) (Fig. 5i). These results are con-
sistent with our expectations based on the location of the
too-greedy zone (Fig. 3).

ASYMPTOTIC CONSENSUS TREES: GENERAL

THEOREMS

Thus far we have considered in detail the properties
of consensus methods with 3 and 4 taxa. It is desirable
to understand how the results we have observed with
3 and 4 taxa generalize to larger numbers of taxa. Thus,
we now provide theorems about MACTs, RACTs, and
GACTs for rooted, binary species trees with arbitrarily
many taxa. These theorems generalize the results ob-
tained earlier regarding 3- and 4-taxon asymptotic con-
sensus trees under the multispecies coalescent model.
The proofs of the theorems are found in Appendices 1
(R∗), 2 (greedy), and 3 (majority rule).

Majority-Rule Consensus

We show that all clades on the MACT are also on the
species tree and that for any species-tree topology, it is
possible that the MACT is not fully resolved.

Theorem 1. For all species-tree topologies with n ≥ 3 taxa,
(i) for all branch lengths, the MACT does not have any clades
not on the species tree, and (ii) there exist branch lengths for
which the MACT is not fully resolved.

Theorem 1(i) is a consequence of the fact that the RACT
always matches the species tree (Theorem 2). From the
calculations in Asymptotic Consensus Trees, subsection
“majority-rule consensus,” Theorem 1(i) and (ii) follow
for the 3- and 4-taxon cases. For larger trees, Theorem
1(ii) follows from the inconsistency of greedy consen-
sus (Theorem 4) and from the fact that greedy consensus
trees are resolutions of majority-rule trees.

R∗ Consensus

We show that R∗ consensus trees are consistent esti-
mators of species-tree topologies for any number of taxa.
This consistency occurs because for any set of 3 taxa, the
rooted triple in the species tree is the highest probability
rooted triple in the gene-tree distribution.

Theorem 2. For a species tree σ, the RACT has the same
topology as σ.

Theorem 2 describes the RACT, which is a mathemat-
ical function of gene-tree probabilities and therefore of
a species tree with branch lengths. When an R∗ consen-
sus tree is computed from a finite number of loci, how-
ever, it has some probability of not matching the species
tree. For an estimator of a parameter to be statistically
consistent, for any point in the parameter space, the
probability that the estimator gets arbitrarily close to the
parameter must approach 1 as the sample size app-
roaches ∞. Theorem 3 states that, regardless of the

species-tree topology and branch lengths, the probabi-
lity that the R∗ consensus tree constructed from a finite
number of loci matches the species tree approaches 1 as
the number of loci approaches ∞.

Theorem 3. R∗ consensus is statistically consistent.

Greedy Consensus

The result that greedy consensus can be misleading in
the 4-taxon asymmetric case generalizes to any species-
tree topology with more than 4 taxa. Intuitively, by
making some branches long and some short (so that coa-
lescent events occur with probability arbitrarily close to
1 or 0), trees with 5 or more taxa can be made to behave
similarly to the 4-taxon asymmetric case. The strategy of
the proof therefore uses an argument similar to that used
in proving Lemma 5 in Degnan and Rosenberg (2006).

Theorem 4. For 3-taxon species-tree topologies and for 4-
taxon symmetric species-tree topologies, the GACT matches
the species tree; for the asymmetric topology with n = 4 taxa
and for every species-tree topology with n ≥ 5 taxa, there
exist branch lengths such that the GACT does not match the
species tree.

Theorems 1–4 help to explain the behavior observed for
majority-rule, R∗, and greedy consensus in our detailed
analysis of 4 taxa under the multispecies coalescent
model. In particular, the observations that MACTs
can be unresolved, RACTs match the species tree, and
GACTs do not necessarily match the species tree, all gen-
eralize to arbitrary numbers of taxa.

DISCUSSION

Use of coalescent probabilities makes it possible to
predict which trees are likely to be constructed using
consensus of gene trees from many independent loci. We
have obtained results under the multispecies coalescent
model for 3 types of asymptotic consensus trees: major-
ity rule, R∗, and greedy. Theorems 1, 2, and 4, respec-
tively, demonstrate that with an infinite number of loci,
MACTs might be unresolved, RACTs always match the
species tree, and GACTs might be nonmatching. These
results have implications for a common goal of phylo-
genetics: the inference of species trees.

Estimating Species Trees

Although concatenation of sequences is perhaps the
most widely used method of estimating species trees,
several alternatives to concatenation currently exist for
inferring species trees. These include minimizing deep
coalescence (Maddison and Knowles 2006), finding the
joint posterior of the species tree and gene trees from
the coalescent model in a Bayesian framework (Liu and
Pearl 2007), using the most ancient speciation times com-
patible with the set of inferred coalescent times on a set
of gene trees (called the “maximum tree” by Liu and
Pearl [2007] or “GLASS tree” by Mossel and Roch [2009]),
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and using probabilities of gene-tree topologies to
approximate the species-tree likelihood (Carstens and
Knowles 2007; Carling and Brumfield 2008). These
methods are designed to estimate species trees when
gene-tree conflict results from incomplete lineage sort-
ing, and they do not assume that sequence data are gen-
erated under a single gene-tree topology.

Theorem 3 suggests a statistically consistent method
for building species-tree topologies from gene-tree topol-
ogies (assuming known gene trees). This method involves
inferring all rooted triples of the gene-tree topologies and
then determining the clades of the estimated species tree
(rules 1′ and 2′ above) to build up the tree from the

(n
3

)

rooted triples (Bryant and Berry 2001). A closely related
method that estimates species trees from rooted triples is
described by Ewing et al. (2008). In their method, quar-
tets of species are estimated at each locus, where each
quartet has the same out-group in addition to a set of 3
in-group taxa. These quartets with an out-group corre-
spond to rooted triples when the out-group is removed.
Quartet puzzling (Strimmer and von Haeseler 1996) is
then used to build the species-tree estimate. Similarly to
the justification of R∗ consensus, this quartet approach
to rooted triple consensus is also motivated by the idea
that the most probable 3-taxon statement matches the
species tree. Because quartet puzzling builds the tree
heuristically, however, we expect R∗ to be more conser-
vative for smaller numbers of loci and to be more likely
to return a partially unresolved tree.

Although the R∗ consensus algorithm does not esti-
mate species-tree branch lengths, rooted triples could
also be used to estimate internal branch lengths on the

species tree by using Pσ[(AB)C] = 1 − (2/3)e−T (Nei
1987), where T is the length separating the MRCA of
A, B, and C from the MRCA of A and B. The topologies
of the observed gene trees can be used to obtain max-
imum likelihood estimates of T. This idea has been ap-
plied to the human–chimpanzee–gorilla phylogeny (e.g.,
Wu 1991; Chen and Li 2001) to infer the time separat-
ing the gorilla divergence from the human–chimpanzee
divergence. Wakeley (2008) gives an example in which
the one internal branch length is estimated in coales-
cent units using 28 gene-tree topologies for 3 in-group
taxa of Australian grass finches analyzed by Jennings
and Edwards (2005). This approach could be extended
to trees with larger numbers of taxa. The frequency of
each rooted triple in the observed set of gene trees could
be used to estimate species divergence times, from which
the species tree (including internal branch lengths) could
be constructed. Alternatively, given a species-tree topol-
ogy, the set of branch lengths most compatible with the
observed rooted triples could be determined using a cri-
terion such as maximum likelihood or least squares.

Using majority rule to estimate species trees from fini-
tely many loci is not expected to result in many false
clades, but for some sets of branch lengths it is likely to
result in a tree that is at least partially unresolved. It is
thus expected to provide a conservative estimate of the
species tree, with little power to resolve some clades for

some sets of branch lengths. We note that R∗ consensus
appears to be more likely than majority rule to correctly
recover resolved clades, both asymptotically as well as
for finite numbers of loci (Figs 5 and 6).

Greedy consensus can be misleading in the sense that
it can be increasingly likely to return a nonmatching,
fully resolved tree as the number of loci grows. How-
ever, when there are 4 taxa, this inconsistency only oc-
curs for a relatively small portion of the parameter space
(Fig. 3), and outside this region, greedy consensus typi-
cally converges to the species-tree topology more quickly
than does either majority-rule or R∗ consensus.

Mutation and Recombination

In this paper, we have not considered the roles of mu-
tation and recombination and the resulting uncertainty
that occurs when gene trees are inferred from sequence
data. When gene trees are estimated and the underly-
ing species tree has short branches, some gene trees are
expected to not be fully resolved due to insufficient di-
vergence among sequences. Also, due to the inherent
stochasticity in sequence evolution, some gene trees are
likely to be incorrectly inferred. For finite numbers of
genes, these factors would tend to increase the probabil-
ity that majority-rule consensus trees would have some
lack of resolution, whether or not the true MACT was
fully resolved. If the MACT is a star tree, we speculate
that accounting for mutation would cause convergence
to a star tree to occur more quickly as the number of
loci is increased. If the MACT does have some resolved
clades, then uncertainty in the gene trees would be ex-
pected to increase the number of loci needed to have a
high probability that an estimated majority-rule consen-
sus tree is the same as the MACT. We expect similar ef-
fects for R∗ and greedy consensus trees; ultimately, the
effects of mutation on consensus trees could be assessed
by simulating sequence data for independent gene trees
evolving on the species tree.

When gene trees are estimated from sequence data,
they are estimated with some degree of error. Because
different gene-tree estimates may not have the same level
of certainty, it may be desirable to give gene trees dif-
ferent weights before inputting them into a consensus
algorithm or to only use gene trees with high support
(e.g., Ebersberger et al. [2007] analyze a multilocus data
set using all genes and reanalyze using only genes for
which the inferred gene tree had a high posterior pro-
bability). Using trees inferred from a Bayesian analysis,
for example, gene trees could be weighted by their pos-
terior probability, with each locus contributing one unit
of weight potentially distributed over several gene-tree
topologies. This approach is used, for example, in esti-
mating concordance trees (Ané et al. 2007).

Recombination within genes can cause segments
within a gene to have different tree topologies, thus
creating a problem similar to the one arising when con-
catenating genes that were generated under different
topologies. If recombination within genes is fairly
infrequent, then aligned sequences can be tested for
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recombination (e.g., see Wiuf et al. 2001), so that only
nonrecombining genes are used. A more sophisticated
approach is to concatenate aligned genes and then to
break up the alignments into “recombination blocks” us-
ing a hidden Markov model that treats coalescent histo-
ries of gene trees in species trees as states in the Markov
chain. This approach was used by Hobolth et al. (2007)
to analyze genomic data for the human–chimpanzee–
gorilla tree.

Methods of combining gene trees to infer species trees
often assume that gene trees are independent given the
species tree. However, this is only strictly true if genes
are unlinked, meaning that there is a high probability of
recombination between genes. When genes are tightly
linked, they may share the same evolutionary history on
a short timescale. In practice, this means that the num-
ber of independent gene trees can be smaller than the
number of genes shared by a collection of taxa, and
estimation using multiple genes should use genes suf-
ficiently far apart that they can be considered indepen-
dent. Slatkin and Pollack (2006) studied the case of 3
taxa and found that 2 gene trees are approximately in-
dependent (given the species tree) when the 2 genes are
not in linkage disequilibrium. For Drosophila, an exam-
ple for which incomplete lineage sorting is thought to
be pervasive (Pollard et al. 2006), Slatkin and Pollack
found that gene trees are approximately independent
when loci are, on average, ∼8 kb apart. Thus, it may be
feasible to find several hundreds or thousands of genes
in real genomes that can be considered independent.
Asymptotic properties of multilocus estimators of species
tree might therefore provide a basis for understanding
analyses of such large quantities of data.

CONCLUSIONS

Our results show that when there is sufficient gene-
tree discordance due to incomplete lineage sorting,
majority-rule consensus trees can have a high probabil-
ity of being at least partially unresolved, and for some
sets of branch lengths, the probability of being unresol-
ved can approach 1 as the number of genes increases
indefinitely. However, the MACT is never resolved in-
correctly; that is, it never has a clade not in the species
tree. We therefore describe the MACT as not misleading;
however, it is not consistent because for an estimator to
be statistically consistent for a parameter (e.g., a fully
resolved species tree), that estimator must produce esti-
mates arbitrarily close to the parameter with probability
approaching 1 as the sample size increases.

The fact that under the multispecies coalescent model
R∗ trees are asymptotically guaranteed to be fully re-
solved and to match the species-tree topology means
that the R∗ procedure is not only not misleading but is
also a statistically consistent estimator of the species-tree
topology. This is remarkable considering that R∗ trees
are based only minimally on a model of species tree–
gene tree relationships. The only feature of the multi-
species coalescent model used in proving the consistency
of the R∗ method is the fact that in this model, 3-taxon re-

lationships that occur in the species tree are also
expected to occur in the gene-tree distribution. Thus,
although R∗ consensus trees are consistent without ex-
plicitly incorporating gene-tree probabilities into the R∗

algorithm for constructing trees, it will be important to
examine how robust the R∗ consensus algorithm is to
violations of assumptions in the coalescent, such as the
absence of population structure along ancient internal
edges.

Finally, greedy consensus trees can be increasingly
likely (as the number of gene trees increases) to have a
topology that differs from that of the species tree. Thus,
greedy consensus trees can be misleading if used as es-
timators of species trees. However, for 4 taxa, the region
of parameter space in which greedy consensus fails to
return the true tree—the too-greedy zone—is relatively
small, smaller than the anomaly zone; hence, greedy con-
sensus offers some robustness to gene-tree discordance
that may cause other methods to fail to recover the
species tree. In addition, the greedy consensus method
outperformed our other methods for branch lengths out-
side the too-greedy zone. However, there may be a trade-
off between consistency and speed of convergence, with
greedy consensus being the quicker to converge yet sta-
tistically inconsistent and with R∗ consensus being slow
to converge yet statistically consistent. To test these con-
sensus methods in practice will require examining their
performance in the presence of mutation so that gene
trees are estimated with uncertainty rather than treated
as known.
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APPENDIX 1

R∗, Proofs of Theorems 2 and 3

For terminology in the proof of Proposition 5, we say
that (AB) is a lineage “containing” A and B. We addi-
tionally say that 2 taxa “join” or “are joined” on a branch
b if the lineages (i.e., clades) containing those taxa coa-
lesce on branch b. For example, if (AB) and C coalesce
on branch 3, then A and C “join” on branch 3.

Proposition 5. Let σ be the species tree where S is the set
of taxa on σ. For any A, B, C ∈ S, if σ has the grouping
(AB)C, then Pσ[(AB)C] > Pσ[(AC)B].

Proof. Let J be the set of branches of σ on which A and
B can join (i.e., either the lineages A and B or separate
lineages containing A and B can coalesce in J ) but on
which A and C cannot join. Note that J is nonempty
and that any branch in J is an ancestor of species A and
B and not an ancestor of species C. Let K be the set of
branches on which gene lineages A and C can join. Any
branch in K is an ancestor of species A and C. Because
(AB)C is a rooted triple in σ, any ancestor of species A
and C is also an ancestor of species B. Thus, for any
branch k ∈ K, if none of the lineages A, B, and C have
joined, then they are free to do so on k. The probability
that A and B join on a branch in J is positive. If A and
B do not join in J , then the probabilities that A and B,
A and C, and B and C are the “first” (going backwards
in time) 2 of A, B, and C to join in K are equal because
all pairs of lineages in a population are equally likely to
coalesce. Thus, Pσ[(AB)C] > Pσ[(AC)B]. �

Proof of Theorem 2. By Proposition 5, any rooted triple
in the species tree has higher probability in the gene-tree
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distribution than the other 2 rooted triples for the same
set of 3 taxa. Thus, the set of rooted triples from which
the R∗ tree is constructed is exactly the set of

(n
3

)
rooted

triples in the species tree, where n is the number of taxa.
From Steel (1992), a tree topology is uniquely specified
by its set of rooted triples, from which it follows that
the only tree topology containing the

(n
3

)
triples is the

topology of the species tree itself. �

The proof of Theorem 3 uses a generalized version of
Bonferroni’s inequality, according to which if there are k
events each with probability p = 1 − q, then the proba-
bility that they all occur is greater than or equal to 1 − kq
(Ross 1998, p. 63).

Proof of Theorem 3. It suffices to show that for any ε > 0,
there exists k such that if there are at least k independent
gene trees, the probability is greater than 1 − ε that all
rooted triples in the species tree are also the most fre-
quently occurring rooted triples for all sets of 3 taxa in
the collection of gene trees. Let σ be the species tree with
taxon set S. For n taxa, there are

(n
3

)
sets of 3 taxa in

S. Let A, B, and C be 3 distinct taxa in S. Without loss
of generality, assume that (AB)C is the jth rooted triple
on σ. From Proposition 5, Pσ[(AB)C] > Pσ[(AC)B] =
Pσ[(BC)A], where the equality holds by symmetry. Thus,
Pσ[(AB)C] = 1/3 + δ and Pσ[(AC)B] = 1/3 − δ/2 for

some δ > 0. We use P̂ to denote sample proportions of
rooted triples. For any ε > 0, because sample propor-
tions converge in probability to their parametric values
(by the weak law of large numbers) as the sample size
tends to ∞, we can choose the number of loci kj to be

large enough that with probability greater than 1−ε/
(n

3

)
,

P̂σ[(AB)C] > 1/3, P̂σ[(AC)B] < 1/3, and P̂σ[(BC)A] <
1/3. Letting k = maxj|j∈{1,2,...,(n

3)}
kj, for each set of 3 taxa

the probability that its most common rooted triple in the
gene-tree distribution matches the rooted triple in the
species tree is greater than 1 − ε/

(n
3

)
. By Bonferroni’s in-

equality, the probability that all the
(n

3

)
rooted triples in

the R∗ tree are rooted triples in the species tree is there-
fore greater than 1 − ε. �

APPENDIX 2

Greedy, Proof of Theorem 4

Lemma 6. The 4-taxon asymmetric species-tree topology
(((AB)C)D) has a set of branch lengths which makes the asymp-
totic greedy consensus tree fail to match the species tree.

This set is explicitly derived in Appendix 7 and is given
in inequality (5) and Figure 3.

Lemma 7. For every bifurcating species tree with n ≥ 5 taxa

and every k ≥ 1 with 2k+1 < n, there is a node with c terminal

descendants, where 2k < c < 2k+1 + 1.

Proof. Take any k ≥ 1. If 2k+1 + 1 ≤ n, then the root

has n ≥ 2k+1 + 1 terminal descendants. Let N0 denote
the root node, and choosing between the 2 nodes im-

mediately descended from the root, let N1 denote the
internal node with the larger number of terminal de-
scendants (choosing arbitrarily in case of a tie). Simi-
larly, letN2 be the internal node (if it exists) immediately
descended from N1 with the larger number of termi-
nal descendants. Continue this process until a node Nm

(m ≥ 0) is reached which has at least 2k+1+1 terminal de-
scendants but neither of whose immediate descendant
nodes has more than 2k+1 terminal descendants. CallNm
the “minimal node.” It follows that at least one of the
immediate descendant nodes of the minimal node has
more than 2k terminal descendants (because otherwise
the minimal node would have at most 2(2k) < 2k+1 + 1
descendants). Thus, at least one immediate descendant
of the minimal node has c terminal descendants with
2k < c < 2k+1 + 1. �

Lemma 8. If for some k ≥ 2, all species-tree topologies with

n taxa, n ∈ {2k + 1, . . . , 2k+1}, have a nonempty too-greedy

zone, then all species-tree topologies with n > 2k+1 (and thus

n ≥ 2k + 1) taxa have a nonempty too-greedy zone.

Proof. Assume there exists k ≥ 2 such that all species-

tree topologies with n ∈ {2k + 1, . . . , 2k+1} taxa have a
nonempty too-greedy zone, that is, there exist branch
lengths for which the GACT does not match the species-
tree topology. By Lemma 7, each species tree σwith more

than 2k+1 (k ≥ 1) taxa S has some node N with c termi-
nal descendants, where c ∈ {2k + 1, . . . , 2k+1}. Let σN
denote the species tree rooted at N , and let SN denote
the set of taxa labeling the tips of σN . By assumption,
the topology of σN has a nonempty too-greedy zone.

Let B be the number of branches of σ that are out-
side σN . Make the lengths of all branches outside σN
long enough that for each branch b not in σN , the prob-
ability that all lineages on b coalesce is greater than 1 −
ε/B, where ε is chosen so that 1 − ε > 1/2 and 1 − ε
is greater than the probability of each clade within σN
(i.e., each clade which is a proper subset of SN ). Because
the greedy consensus tree is a resolution of the majority-
rule consensus tree, all clades of σ which include taxa
outside SN , and the clade consisting of all taxa in SN ,
are included in the GACT. When ranking clade prob-
abilities as is required for the algorithm for construct-
ing the GACT, these clades are added before the clades
whose sets of taxa are proper subsets of SN . Thus, even-
tually the list of candidate clades consists only of proper
subsets of SN . When clades are accepted from this list,
by assumption we accept at least one clade to be in the
GACT which is not on σ. Thus, there exist branch lengths
on σ for which the GACT does not match the species
tree. �

Lemma 9. For any species-tree topology with 5, 6, 7, or 8
taxa, there exists a set of branch lengths for which the GACT
does not match the species tree.

Proof. This is shown by reduction to the 4-taxon asym-
metric case. For each species-tree topology with 5, 6, 7,
or 8 taxa, some branches can be made long and some can
be made short so as to produce the same inconsistencies
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FIGURE B1. Reduction of topologies used in the proof of Lemma 9. If 2 trees are connected by an edge, then the topology with the smaller
number of leaves is a left subtree of the larger tree.

as those seen in the 4-taxon case. Most cases are shown
in Figure B1. Here a topology with n taxa is connected
by an edge to a topology with fewer than n taxa if the
smaller topology is the left subtree—from the node which
is the immediate left descendant of the root—of the larger
topology. In this case, for any ε > 0, all branches on the
larger topology not in the left subtree can be made ar-
bitrarily long. Thus, all lineages available to coalesce on
long branches do coalesce with probability greater than
1 − ε. Remaining clades then have the same order of
probabilities as on the left subtree and thus are accepted
by the greedy algorithm in the same order as on the left
subtree.

If the greedy consensus algorithm returns a nonmatch-
ing tree for the smaller tree, then it also does so for the
larger tree because the ranking of the remaining clades
by frequencies is eventually the same (once the high-
probability clades have already been added on the larger
tree). This process of reducing trees can be repeated un-
til one of the trees colored orange (which have no edges
connecting to a smaller tree) is reached.

It then remains to be shown that the GACT does not
match the species tree for the remaining orange trees

from Figure B1. This is already shown explicitly for the
4-taxon case (Lemma 6). The other trees can again be
reduced to the 4-taxon case by choosing certain edges
to be long and others short, as shown in Figure B2. By
choosing the long, orange branches to have large branch
lengths, the probability that all available lineages coa-
lesce on a branch can be made greater than 1 − ε/(2m),
where m is the number of long branches on a tree. This
makes the probability that all available lineages on long
branches coalesce greater than 1−ε/2. Because only coun-
ter examples are needed to show that the greedy consen-
sus algorithm can return a nonmatching tree, it suffices
to note that branches can be chosen to be short enough
using inequality (5) or Figure 3 for the 4-taxon asym-
metric tree to make the greedy consensus algorithm fail
to return the tree matching the species tree with prob-
ability greater than 1 − ε/2. Making the black internal
branches sufficiently short, the probability exceeds
1 − ε that the entire tree returned by the greedy consen-
sus algorithm fails to match the species-tree topology. �

Proof of Theorem 4. The result for 3 taxa follows from
the fact that the matching gene tree has the highest

FIGURE B2. Reduction of the remaining trees from Figure B1 to the 4-taxon asymmetric case, for the proof of Lemma 9. Branches in orange
are made long enough that all lineages on these branches coalesce with probability arbitrarily close to 1.
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probability of the 3 possible gene trees. The 4-taxon
asymmetric case is covered in Lemma 6. The 4-taxon
symmetric case is treated in Appendix 6 by showing
that for all branch lengths, (AB) and (CD) are the 2 most
probable clades. We have shown that all cases with n =
5, 6, 7, or 8 taxa have too-greedy zones (Lemma 9). From
Lemma 8, this verifies by induction that all cases with
n ≥ 5 taxa have such zones. �

APPENDIX 3

Majority Rule, Proof of Theorem 1

Proof of Theorem 1(i). This result follows from Theorem 2
and Theorem 2.14 of Bryant (2003), according to which
every clade in the majority-rule consensus tree is in the
R∗ consensus tree. Because the MACT and RACT
are the majority-rule and R∗ consensus trees applied to
coalescent gene-tree probabilities, every clade in the
MACT must appear in the RACT. Because in the limit of
infinitely many gene trees, the R∗ tree is fully resolved,
it follows that if the MACT has one or more multifurca-
tions, then the R∗ tree is one of the possible resolutions
of the MACT. Because the RACT has the same topol-
ogy as the species tree (Theorem 2), the MACT either has
the species-tree topology or one of its resolutions has the
same topology as the species tree. �

Proof of Theorem 1(ii). The GACT and MACT are each
examples of greedy and majority-rule consensus trees,
respectively. It follows that if the MACT is fully resolved,
then it is the same as the GACT because greedy consen-
sus trees are resolutions of majority-rule consensus trees
(Bryant 2003). However, by Theorem 4, for any species-
tree topology with n ≥ 5 taxa, there exist branch lengths
for which the GACT has a clade not on the species tree
and therefore cannot be equivalent to the MACT (by
Theorem 1(i)). Consequently, a sufficient condition for
the MACT to be unresolved is for the GACT to not match
the species tree. Because exact conditions for the MACT
to not be fully resolved were obtained earlier for smaller
trees (the internal branch length being no greater than
log(4/3) for 3-taxon trees and one of inequalities (1–4)
being required to fail for 4-taxon trees), the result fol-
lows for any species tree with n ≥ 3 taxa. �

APPENDIX 4

Majority-Rule Unresolved Zones, Species Tree (((AB)C)D)

In this appendix, we derive conditions for which
the MACT is unresolved for the 4-taxon species tree
(((AB)C)D). This is done by finding branch lengths for
which there exist clades with probability greater than
1/2. First, the following result about cherries, which is
analogous to Proposition 5, is useful.

Proposition 10. Let σ be the species tree where S is the
set of taxa on σ. Then for any A, B, C ∈ S, if {AB} is a
cherry on σ, then Pσ[{AB}] > Pσ[{AC}].

The proof is omitted because it is very similar to the
proof of Proposition 5.

Remark 11. If {AB} is a cherry on the species tree σ, then
for any taxon C, Pσ[{AC}] = Pσ[{BC}] < 1/3.

The equality holds by symmetry; the inequality follows
from Proposition 10.

To find branch lengths for the species tree (((AB)C)D)
where the MACT is resolved, consider the probabilities
of clades {ABC} and {AB}. Table 1 lists the probability
that A, B, and C are monophyletic as p1 + p3 + p7, where
pi is the probability of gene tree i in the same table, be-
cause for gene trees 1, 3, and 7 (and only these gene
trees), these 3 taxa are monophyletic. Table D1 can be
used to compute probabilities of gene trees, clades, or
rooted triples for 4-taxon trees as linear combinations of
products of the terms gij(T), which denote the probabil-
ity that i lineages coalesce into j lineages within T coales-
cent time units, where i ≥ j ≥ 1 and T > 0. For i = 2, 3,
the gij(t) functions are (Tavaré 1984)

g21(T) = 1 − e−T, g31(T) = 1 −
3

2
e−T +

1

2
e−3T,

g22(T) = e−T, g32(T) =
3

2
e−T −

3

2
e−3T,

g33(T) = e−3T. (D.1)

For example, from Table D1, for the species tree

(((AB)C)D), the probability of clade {CD} is 1
3 g21(y)g22(x)

+ 1
9 g22(y)g32(x) + 4

18 g22(y)g33(x).

The probability of clade {ABC} is

Pσ[{ABC}] = p1 + p3 + p7

= 1 −
2

3
e−x −

1

3
e−(x+y) +

1

6
e−(3x+y). (D.2)

Setting Pσ[{ABC}] > 1/2, we obtain a condition for which
the MACT has the clade {ABC}. No other 3-taxon clade
can be on the MACT because each of the other 3-taxon
clades is incompatible with and less probable than {ABC},
and therefore each has probability less than 1/2. This
claim can be verified by checking probabilities of 3-taxon
clades from Table D1 and comparing coefficients of the
gij(T) terms. Three-taxon clades for the species tree
(((AB)C)D) have probabilities

Pσ({ABC})= g21(y)g21(x) +
1

3
g21(y)g22(x) + g22(y)g31(x)

+
3

9
g22(y)g32(x) +

3

18
g22(y)g33(x),

Pσ({ABD}) =
1

3
g21(y)g22(x) +

1

9
g22(y)g32(x)

+
3

18
g22(y)g33(x),

Pσ({ACD}) = Pσ({BCD}) =
1

9
g22(y)g32(x)

+
3

18
g22(y)g33(x).
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TABLE D1. Probabilities of 4-taxon gene-tree topologies, clades, and rooted triples as functions of terms gij(T). The branch lengths x and y

are as in Figure 1a. The probabilities of clades (rooted triples) are obtained by adding the probabilities of gene-tree topologies which have the
clade (rooted triple, see Table 1). For each entry in the table, the left and right numbers are the coefficients of the gij(T) (Equation (D.1)) terms

for the species trees (((AB)C)D) and ((AB)(CD)), respectively

Gene-tree topology g21(y)g21(x) 1
3 g21(y)g22(x) 1

3 g22(y)g21(x) 1
18 g22(y)g22(x) 1

3 g22(y)g31(x) 1
9 g22(y)g32(x) 1

18 g22(y)g33(x)

1. (((AB)C)D) 1,0 1,1 0,0 0,1 1,0 1,0 1,0
2. (((AB)D)C) 0,0 1,1 0,0 0,1 0,0 1,0 1,0
3. (((AC)B)D) 0,0 0,0 0,0 0,1 1,0 1,0 1,0
4. (((AC)D)B) 0,0 0,0 0,0 0,1 0,0 1,0 1,0
5. (((AD)B)C) 0,0 0,0 0,0 0,1 0,0 0,0 1,0
6. (((AD)C)B) 0,0 0,0 0,0 0,1 0,0 0,0 1,0
7. (((BC)A)D) 0,0 0,0 0,0 0,1 1,0 1,0 1,0
8. (((BC)D)A) 0,0 0,0 0,0 0,1 0,0 1,0 1,0
9. (((BD)A)C) 0,0 0,0 0,0 0,1 0,0 0,0 1,0

10. (((BD)C)A) 0,0 0,0 0,0 0,1 0,0 0,0 1,0
11. (((CD)A)B) 0,0 0,0 0,1 0,1 0,0 0,0 1,0
12. (((CD)B)A) 0,0 0,0 0,1 0,1 0,0 0,0 1,0
13. ((AB)(CD)) 0,1 1,1 0,1 0,2 0,0 1,0 2,0
14. ((AC)(BD)) 0,0 0,0 0,0 0,2 0,0 1,0 2,0
15. ((AD)(BC)) 0,0 0,0 0,0 0,2 0,0 1,0 2,0

Clade
{AB} 1,1 3,3 0,1 0,4 1,0 3,0 4,0
{AC} 0,0 0,0 0,0 0,4 1,0 3,0 4,0
{AD} 0,0 0,0 0,0 0,4 0,0 1,0 4,0
{BC} 0,0 0,0 0,0 0,4 1,0 3,0 4,0
{BD} 0,0 0,0 0,0 0,4 0,0 1,0 4,0
{CD} 0,1 1,1 0,3 0,4 0,0 1,0 4,0
{ABC} 1,0 1,1 0,0 0,3 3,0 3,0 3,0
{ABD} 0,0 1,1 0,0 0,3 0,0 1,0 3,0
{ACD} 0,0 0,0 0,1 0,3 0,0 1,0 3,0
{BCD} 0,0 0,0 0,1 0,3 0,0 1,0 3,0

Rooted triple
(AB)C 1,1 3,3 0,1 0,6 1,0 3,0 6,0
(AC)B 0,0 0,0 0,1 0,6 1,0 3,0 6,0
(BC)A 0,0 0,0 0,1 0,6 1,0 3,0 6,0
(AB)D 1,1 3,3 0,1 0,6 3,0 5,0 6,0
(AD)B 0,0 0,0 0,1 0,6 0,0 2,0 6,0
(BD)A 0,0 0,0 0,1 0,6 0,0 2,0 6,0
(AC)D 1,0 1,1 0,0 0,6 3,0 5,0 6,0
(AD)C 0,0 1,1 0,0 0,6 0,0 2,0 6,0
(CD)A 0,1 1,1 0,3 0,6 0,0 2,0 6,0
(BC)D 1,0 1,1 0,0 0,6 3,0 5,0 6,0
(BD)C 0,0 1,1 0,0 0,6 0,0 2,0 6,0
(CD)B 0,1 1,1 0,3 0,6 0,0 2,0 6,0

The grouping {AB} is monophyletic with probability
greater than 1/2 if p1 + p2 + p13 > 1/2. Again using
Table D1 and Equation (D.1), this occurs when

Pσ[{AB}] = 1 −
2

3
e−y −

1

9
e−(3x+y) (D.3)

is greater than one-half. Solving for y yields inequal-
ity (2).

For the species tree (((AB)C)D), the 4 trees shown in
Figure 2a are the only consensus trees possible regard-
less of the set of branch lengths. Proposition 10 guar-
antees that all cherries incompatible with {AB} (which
includes all 2-taxon clades other than {AB} and {CD})
are less probable than {AB}. Therefore, these cherries
each have probabilities lower than 1/2 and thus cannot
be on the MACT. To show that {CD} cannot occur on the
MACT for this species tree, it must be shown that this
clade has probability less than 1/2.

The probability that {CD} is monophyletic is

p11 + p12 + p13 =
1

3
e−x −

1

6
e−(x+y) +

1

18
e−(3x+y)

<
1

3
+

1

18
e−(3x+y) <

1

3
+

1

18
<

1

2
. (D.4)

APPENDIX 5

Majority-Rule Unresolved Zones, Species Tree ((AB)(CD))

Similar calculations as in Appendix 4 can be performed
when the species tree is ((AB)(CD)). For this tree, 3-taxon
groups cannot have probability greater than 1/3. For ex-
ample, the probability for monophyly of {ABC} is (from
Table D1 and Equation (D.1))

1

3
e−x −

5

18
e−(x+y) <

1

3
e−x <

1

3
. (E.1)
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Thus, the MACT for a symmetric 4-taxon species tree
cannot have a 3-taxon clade.

All cherries other than {AB} and {CD} are incompat-
ible with these 2 cherries (which occur on this species
tree), and from Remark 11, any 2-taxon clades other than
{AB} and {CD} have probability less than 1/2 and can-
not occur on the MACT. The 2 clades that can occur on
the MACT have probabilities

Pσ({AB}) = 1 −
2

3
e−y −

1

9
e−(x+y) and (E.2)

Pσ({CD}) = 1 −
2

3
e−x −

1

9
e−(x+y). (E.3)

Setting these functions to be greater than 1/2 yields in-
equalities (3) and (4).

Here the probability that {AB} is a clade cannot be
greater than 1/2 for y ≤ log(4/3) and the probability of
clade {CD} cannot be greater than 1/2 for x ≤ log(4/3).
These values form asymptotes for the unresolved zone
for the symmetric species tree (Fig. 2b).

APPENDIX 6

The Too-Greedy Zone, Species Tree ((AB)(CD))

We now show that if the species tree has topology
((AB)(CD)), then the GACT matches the species tree. First
note that for this species tree, {AB} and {CD} are always
each more probable than any 3-taxon clade. This can
be verified by comparing coefficients of the gij terms in
the clade probabilities from Table D1 and by noting that
gij(T) > 0 for T > 0:

Pσ({AB}) = g21(y)g21(x) +
3

3
g21(y)g22(x)

+
1

3
g22(y)g21(x) +

4

18
g22(y)g22(x),

Pσ({CD}) = g21(y)g21(x) +
1

3
g21(y)g22(x)

+
3

3
g22(y)g21(x) +

4

18
g22(y)g22(x),

Pσ({ABC}) =
1

3
g21(y)g22(x) +

3

18
g22(y)g22(x),

Pσ({ABD}) = Pσ({ABC}),

Pσ({ACD}) =
1

3
g22(y)g21(x) +

3

18
g22(y)g22(x),

Pσ({BCD}) = Pσ({ACD}).

Also, from Proposition 10, {AB} and {CD} are the 2 most
probable cherries. Thus, the first clade chosen in the
greedy algorithm (other than {ABCD}) is either {AB} or

{CD} because any other clade would be less probable
than one of these 2. If {AB} is most probable, then the re-
maining compatible clades are {CD}, {ABC}, and {ABD}.
Because {CD} is always more probable than {ABC} and
{ABD}, {CD} would be chosen after {AB}. Similarly, if
{CD} is chosen first, then {AB} is chosen second. Thus,
the GACT is always ((AB)(CD)) for this species tree.

APPENDIX 7

The Too-Greedy Zone, Species Tree (((AB)C)D)

In this appendix, we show that when the species tree
has topology (((AB)C)D), finding the branch lengths for
the too-greedy zone is equivalent to determining the set
of branch lengths for which {CD} is more probable than
{ABC}.

For the species tree (((AB)C)D) with any set of branch
lengths, {ABC} is the most probable 3-taxon clade and
{AB} is the most probable 2-taxon clade. These facts
can be verified by comparing clade probabilities in
Table D1.

In general, {AB} is not more probable than {ABC}, how-
ever, because the branch ancestral to A and B but not C
might be very short and the branch ancestral to A, B,
and C, but not D, might be very long. In the latter case,
{ABC} has probability near 1 and {AB} has probability
near 1/3.

To show that when the species tree has topology
(((AB)C)D), the GACT is always nonmatching if and only
if P[{CD}] > P[{ABC}], we consider cases where {ABC}
is either (i) more probable than {AB}, (ii–iv) less proba-
ble than {AB}, or (v) equally probable as {AB}. In (ii–iv),
we also consider whether {CD} is (ii) less probable than
{ABC}, (iii) more probable than {ABC}, or (iv) equally
probable as {ABC}. Because these cases exhaust all pos-
sibilities and because greedy consensus always returns a
nonmatching tree in case (iii) and returns a nonmatching
tree with probability 1/2 in case (iv), we get the desired
result.

(i) P[{ABC}] > P[{AB}]. Here {ABC} is the most prob-
able clade other than {ABCD} and is therefore in-
cluded in the GACT. The remaining compatible
clades are {AB},{AC}, and{BC}. By comparing clade
probabilities in Table 2, or by using Proposition 10,
we observe that {AB} is the most probable of these
3 clades. Thus, the GACT is (((AB)C)D).

(ii) P[{CD}] < P[{ABC}] < P[{AB}]. In this case, {AB}
is the most probable clade (other than {ABCD}) and
is therefore in the GACT. The remaining compat-
ible clades are {CD}, {ABC}, and {ABD}. Because
P[{ABD}] < P[{ABC}] (Table 2), {ABD} cannot be
in the GACT; thus the GACT is (((AB)C)D).

(iii) P[{ABC}] < P[{CD}] < P[{AB}]. In this case, the
GACT is ((AB)(CD)), so P[{ABC}] < P[{CD}] is a
sufficient condition for the GACT to be ((AB)(CD)).

(iv) P[{ABC}] = P[{CD}] < P[{AB}]. This equality only
holds when inequality (5) is an equality, which oc-
curs for points on the boundary of the too-greedy
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zone. In this case, the GACT is ((AB)(CD)) or
(((AB)C)D), each with probability 1/2.

(v) Finally, if P[{ABC}] = P[{AB}], then the GACT is
(((AB)C)D) because in this case {ABC} and {AB}
are the 2 most probable clades.

Having considered all cases, P[{ABC}] < P[{CD}] if
and only if ((AB)(CD)) is the GACT and P[{ABC}] =
P[{CD}] if and only if ((AB)(CD)) is the GACT with
probability 1/2. The probabilities of {ABC} and {CD} are
given in Equations (D.2) and (D.4), respectively, in Ap-
pendix 4. Setting P({CD}) > P({ABC}) and solving for y,
we obtain inequality (5).

APPENDIX 8

Probabilities of Consensus Trees for Finite Numbers of Loci

To compute the probability of a consensus tree given
a finite sample of � gene trees, let �i be the number of
times gene tree i is observed, where i ranges from 1 to k,∑k

i=1 �i = �, and k is the number of possible gene-tree
topologies. Let c(�1, . . . , �k) denote the consensus tree
resulting from a particular sample for a particular con-
sensus method c. The probability that a sample results
in the consensus tree having topology T is therefore

∑

�1,...,�k≥0
�1+···+�k=�

�!

�1 ! · · · �k!
p
�1
1 · · · p

�k
k I(c(�1, . . . , �k) = T ),

(H.1)
where I is an indicator that the consensus tree has
topology T , pi, i =1, . . . , k, is the probability that a ran-
dom gene tree has the ith topology, and the sum is over
all nonnegative integer solutions to �1 + · · · + �k = �.

There are
(
�+k−1

k−1

)
terms in the sum (Ross 1998, p. 13),

where k = (2n − 3) ! ! and there are n taxa (Felsenstein
2004). For 4 taxa and 25 loci, the sum has approximately

1.51 × 1010 terms.

Equation (H.1) provides a basis for evaluating proba-
bilities of majority-rule or R∗ consensus trees; however,
to compute the probabilities of finite-sample greedy con-
sensus trees, probabilities of resolutions of ties must also
be taken into account. This can be done by summing
over all possible tiebreaks and treating each possible
tiebreak as equally likely, rather than randomly break-
ing ties. The probability of the greedy consensus tree
having topology T can therefore be written as

∑

�1,...,�k≥0
�1+···+�k=�

�!

�1 ! · · · �k!
p
�1
1 · · · p

�k
k

[∑

b1∈B1

· · ·
∑

br∈Br(b1,...,br−1)

r∏

j=1

Pr(bj)I(c(�1, . . . , �k, b1, . . . , br) = T )

]
,

(H.2)

where Bj, j = 1, . . . , r, denotes the set of possible tie-
breaks in the jth round, bj denotes one way (out of |Bj|

possible ways, where |Bj| is the number of elements in
Bj) of breaking up a set of tied clade frequencies in the
jth round (out of r rounds) of choosing clades for the
greedy consensus tree, and Pr(bj) = 1/|Bj| is the proba-
bility of a particular tiebreak. In general, the set Bj is a
function of the choices b1, . . . , bj−1 in preceding rounds
of tiebreaks because the possible tiebreaks in a given
round may depend on how previous ties were broken.
Thus, the function c in Equation (H.2) has been given ad-
ditional arguments (compared with Equation (H.1)) so
that the consensus tree is a function of both the gene-tree
frequencies and the tiebreaks. For n-taxon trees, there
are n − 2 rounds of tiebreaks, assuming each case when
no tiebreaks are necessary (i.e., there is one clade on the
list which is uniquely most frequent) is treated as a triv-
ial tiebreak with |Bj| = 1.


