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Abstract. In this paper we establish the almost sure, in law, and uniform
convergence over compact subsets on R of a fuzzy set estimator of the density
function, based on n i.i.d. random variable.

1 Introduction

The theory of density estimation has developed rapidly since the second half of
the 1960s. There is an extensive reference to different techniques for nonparamet-
ric density estimation. For example, the works of Castellan (2003), Donoho et al.
(1996), Gray and Moore (2003), Katkovnik and Shmulevich (2002), López et al.
(2008), Miller and Horn (1998) and Miyoshi et al. (1999) present new nonpara-
metric density estimation methods, in which the density is estimated by means of
exponential model selection, wavelet thresholding algorithms for adaptive window
size, soft clustering, entropy maximization, and the use of kernel methods in re-
gression. The first use of wavelet bases for density estimation appears in papers by
Doukhan and León (1990), Kerkyacharian and Picard (1993) and Walter (1992).
Furthermore, Fiori and Bucciarelli (2001) addressed the problem of estimating the
density function of a quasi-stationary random process by means of neurons with
adaptive activation function, and Pelletier (2005) discussed the estimation of a
probability density on a Riemannian manifold.

In this paper we establish the almost sure, in law, and uniform convergence over
compact subsets on R of a fuzzy set estimator of the density function, based on
n i.i.d. random variables. We used Bernstein type inequalities, properties of lo-
cal asymptotic normality thinned point processes, as well as Talagrand’s inequali-
ties for empirical processes, symmetrization techniques, Rademacher average, and
Vapnik–Chervonenkis dimensions (VC dimensions) to obtain such convergence
properties.

The proposed fuzzy set estimator is a particular case of the estimator intro-
duced by Falk and Liese (1998), which is defined through thinned point processes
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(see, e.g., Reiss, 1993, Section 2.4). In Falk and Liese (1998) only the asymptotic
efficiency within the class of all estimators that are based on randomly selected
points from the sample X1, . . . ,Xn was proved. Efficiency was established using
LeCam’s LAN theory. On the other hand, it is important to emphasize that the
almost sure and in law convergence of the proposed estimator in Falk and Liese
(1998) are obtained by applying the technique implemented in this paper. How-
ever, the technique utilized to obtain the uniform convergence is nonviable since
the random variables that define it do not possess, for example, precise functional
characteristics in regards to the sample. Therefore, some part of the results ob-
tained in this paper are a consequence of the functional characteristics of the ran-
dom variables that define the proposed estimator. For example, this estimator will
facilitate the study of VC dimensions, which will allow us to find an upper bound
on the expectation for the supremum of an empirical process using symmetrization
techniques, and Rademacher averages as an important step to establish the uniform
convergence of the estimator.

The thinned point processes allow us to introduce a thinning function which can
be used to select points of the sample with different probabilities, in contrast to the
kernel estimator, which assigns equal weight to all points of the sample.

This paper is organized as follows. In Section 2, we define the fuzzy set esti-
mator of the density function. In Section 3, we present the conditions under which
the three main results are true, Theorems 1, 2, and 3. The Appendix contains the
proofs of the theorems in Section 3.

2 Fuzzy set estimator of the density function

In this section we define through thinned point processes a nonparametric and
fuzzy set estimator of the density function, obtaining a particular case of estima-
tor introduced by Falk and Liese (1998). Moreover, we postulate the pointwise
convergence in law.

For each measurable Borel function ϕ : R → [0,1] and each random variable V ,
uniformly on [0,1] distributed and independent of X, the random variable U =
1[0,ϕ(X)](V ) satisfies ϕ(x) = P(U = 1|X = x). This simple observation allows us
to construct a fuzzy set estimator of the density function f of a random variable X

that satisfies the conditions required in Falk and Liese (1998).
Let X1, . . . ,Xn be an independent random sample of a real random variable

X whose distribution L(X) has density f with respect to the Lebesgue measure.
Let V1, . . . , Vn be independent random variables uniformly on [0,1] distributed
and independent of X1, . . . ,Xn. Let f

x0 ,bn
(Xi,Vi) = 1Ii

(Vi) be random variables

where Ii = [0, ϕ(
Xi−x0

bn
)] and bn > 0 is a scaling factor (or bandwidth) such that

bn → 0 as n → ∞. For each x ∈ R, we have

ϕ

(
x − x0

bn

)
= P

(
f

x0 ,bn
(Xi,Vi) = 1|Xi = x

)
,
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then ϕn(x) = ϕ(
x−x0
bn

) is a Markov kernel (see Reiss, 1993, Section 1.4); thus, for
independent copies (Xi,Vi), 1 ≤ i ≤ n, of (X,V ), we can define the thinned point
process

Nϕn
n (·) =

n∑
i=1

f
x0 ,bn

(Xi,Vi)εXi
(·),

with underlying point process Nn(·) = ∑n
i=1 ε

Xi
(·) and a thinning function ϕn (see

Reiss, 1993, Section 2.4), where ε
X

is the random Dirac measure.

Remark 1. The events {Xi = x}, x ∈ R, can be described in a neighborhood of x0
through the thinned point process N

ϕn
n , where fx0,bn(Xi,Vi) decides, whether Xi

belongs to the neighborhood of x0 or not. Precisely, ϕn(x) is the probability that
the observation Xi = x belongs to the neighborhood of x0. Note that this neigh-
borhood is not explicitly defined, but it is actually a fuzzy set in the sense of Zadeh
(1965), given by its membership function ϕn. The thinned process N

ϕn
n is therefore

a fuzzy set representation of the data (see Falk and Liese, 1998, Section 2).

Next, we present the fuzzy set estimator of the density function, which is a
particular case of the estimator proposed by Falk and Liese (1998).

Definition 1. Let ϕ be such that 0 <
∫

ϕ(x)dx < ∞ and an = bn

∫
ϕ(x)dx. Then

the fuzzy set estimator of the density function f at the point x0 ∈ R is defined as

ϑ̂n(x0) = 1

nan

n∑
i=1

f
x0 ,bn

(Xi,Vi) = τn(x0)

nan

.

Remark 2. We observe that the random variable τn(x0) is binomial B(n,αn(x0))

distributed with

αn(x0) = E[f
x0 ,bn

(Xi,Vi)] = P
(
f

x0 ,bn
(Xi,Vi) = 1

) = E[ϕn(X)]. (2.1)

In what follows we assume that αn(x0) ∈ (0,1).

3 Main results

In this section we state our main results. Next, we shall give sufficient conditions
to assure the almost sure convergence of ϑ̂n(x0) in a neighborhood of x0.

(C1) The density function f is at least twice continuously differentiable in a
neighborhood of x0.

(C2) Sequence bn satisfies: bn → 0 and nbn

log(n)
→ ∞ as n → ∞

(C3) Function ϕ is symmetrical with respect to zero, has compact support on
[−B,B],B > 0, and it is continuous at x = 0 with ϕ(0) > 0.
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To obtain the pointwise convergence in law of ϑ̂n(x0), we need the following
condition.

(C4) nb5
n → 0 as n → ∞.

To obtain the uniform convergence of ϑ̂n over compact subsets on R, we in-
troduce a new condition for both function ϕ and the sequence bn, as well as the
uniform version of condition (C1).

(C5) Function ϕ(·) is monotone on the positives.

(C6) bn → 0 and nb2
n

log(n)
→ ∞ as n → ∞.

(C7) Density function f is at least twice continuously differentiable on the com-
pact set [−B,B].

Next, we present the three main results of our work:

Theorem 1. Under conditions (C1)–(C3), we have

ϑ̂n(x0) → f (x0) a.s.

Theorem 2. Under conditions (C1)–(C4), we have

√
nan

(
ϑ̂n(x0) − f (x0)

) L−→ N(0, f (x0)).

The “
L−→” symbol denotes convergence in law.

Remark 3. The estimator ϑ̂n has a limit distribution whose asymptotic variance
depends only at the point of estimation, this does not hold to the kernel estimator.
However, since an = o(n−1/5) we see that the same restrictions are imposed for
the smoothing parameter of the kernel estimators.

Theorem 3. Under conditions (C3) and (C5)–(C7), we have

sup
a∈[−B,B]

|ϑ̂n(a) − f (a)| = oP(1).

Appendix: Proofs

Throughout this section C represents a positive real constant, which can vary from
one line to another and Wi = (Xi,Vi), 1 ≤ i ≤ n.

Proof of Theorem 1. Let us consider the sequence of i.i.d. random variables

Hi =
f

x0 ,bn
(Wi) − E[f

x0 ,bn
(Wi)]

an

,
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1 ≤ i ≤ n. Next, we will obtain upper bounds for |Hi | and E[H 2
i ]. From (2.1) and

the fact that αn(x0) ∈ (0,1), we have that |Hi | ≤ 2
an

and E[H 2
i ] ≤ αn(x0)

a2
n

. Now,

we calculate an upper bound for E[H 2
i ], independent of x0, by upper bounding

αn(x0)/an. For it, if we combine condition (C1), which allows us to make a Tay-
lor expansion of the density function f on the neighborhood of x0, with condi-
tion (C3), we can write (2.1) as follows

αn(x0) = an

{
f (x0) + b2

n

2
∫

ϕ(x)dx

∫
u2ϕ(u)f ′′(x0 + βubn) du

}
, (A.1)

where β ∈ (0,1). Moreover, condition (C2) allows us to suppose, without loss
of generality, that bn < 1; and conditions (C3) and (C1), imply that ϕ, f and
f ′′ are bounded in a neighborhood of x0. Therefore, there exists C > 0 such
that [αn(x0)/an] < C. Then, E[H 2

i ] ≤ C
an

. On the other hand, using Bernstein’s
inequality (see, e.g., Ferraty et al., 2001, Lemma 2.3.1) for random variables
H1, . . . ,Hn, we have

P

(
1

n

∣∣∣∣∣
n∑

i=1

Hi

∣∣∣∣∣ > ε

)
= P

(|ϑ̂n(x0) − E[ϑ̂n(x0)]| > ε
) ≤ 2e−ε2nan/(4C)

for each ε ∈ (0,C). For all sufficiently large n condition (C2), implies that ε =
ε0

√
log(n)
nan

< C, for each ε0 > 0. Therefore,

P

(
|ϑ̂n(x0) − E[ϑ̂n(x0)]| > ε0

√
log(n)

nan

)
≤ 2e−Cε2

0 log(n). (A.2)

Cauchy’s integral criterion for positive term series, implies that there exists ε0 > 0
such that the term to the right of (A.2) is the general term of a sequence whose
sum is convergent. That is, there exists ε0 > 0 such that

∞∑
n=1

P

(
|ϑ̂n(x0) − E[ϑ̂n(x0)]| > ε0

√
log(n)

nan

)
< ∞. (A.3)

Since ϕ and f ′′ are bounded in a neighborhood of x0, by conditions (C3) and (C1),
we can write (A.1) as

E[ϑ̂n(x0)] − f (x0) = αn(x0)

an

− f (x0) = O(b2
n). (A.4)

Again, for all sufficiently large n condition (C2) together with (A.4) and (A.3),
imply that

∞∑
n=1

P
(|ϑ̂n(x0) − f (x0)| > ε

)
< ∞
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for a given ε > 0. The demonstration now ends by applying the Borel–Cantelli
lemma and Theorem 4.2.2 in Chung (2001). �

Proof of Theorem 2. Let us consider the following decomposition

(nan)
1/2(

ϑ̂n(x0) − f (x0)
) = Zn(x0)

[
nαn(x0)(1 − αn(x0))

nan

]1/2

+ (nan)
1/2

(
αn(x0)

an

− f (x0)

)
,

where

Zn(x0) = τn(x0) − nαn(x0)

[nαn(x0)(1 − αn(x0))]1/2

with

τn(x0) =
n∑

i=1

U
x0,bn

(Wi).

Next, we will present equivalent expressions for the different terms to Zn(x0) in
the above decomposition. The conditions (C1) and (C3) allows us to obtain (A.1),
and from (A.1) we can write

(nan)
1/2

(
αn(x0)

an

− f (x0)

)
= (na5

n)
1/2 ∫

uϕ(u)f ′′(x0 − γ ubn) du

(
∫

ϕ(u)du)2 , (A.5)

where γ ∈ (0,1). The combination of (C1) and (C3), which allows us to guarantee
that f ′′ and ϕ are bounded in neighborhood of x0, with (C4) implies

(nan)
1/2

(
αn(x0)

an

− f (x0)

)
= o(1).

On the other hand, combining (A.5) and (C1)–(C3) we obtain αn(x0)
an

→ f (x0) and
αn(x0) → 0 as n → ∞. Thus,[

nαn(x0)(1 − αn(x0))

nan

]1/2

= [f (x0)]1/2 + o(1).

Therefore,

(nan)
1/2(

ϑ̂n(x0) − f (x0)
) = [f (x0)]1/2Zn(x0) + Zn(x0)o(1) + o(1).

Since τn(x0) is binomial B(n,αn(x0)) distributed, we have E[Z2
n(x0)] = 1. Thus,

(nan)
1/2(

ϑ̂n(x0) − f (x0)
) = [f (x0)]1/2Zn(x0) + o

P
(1).

The proof now ends by combining the Moivre–Laplace theorem and Slutsky’s the-
orem. �
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We will need the following lemma. This result, which holds true in spaces
of greater dimension, establishes that the class of functions F = {f

a,b
:Z →

{0,1} : (a, b) ∈ Z}, Z = R×[0,1] and b �= 0, has finite VC dimension, V (F ) < ∞.
This will allow us to upper bound E[Q] (see (A.6)) in terms of the combinatorial
quantity V (F ) when we use symmetrization techniques and Rademacher average
as an important step to establish the uniform convergence of ϑ̂n.

Lemma 1. Under conditions (C3) and (C5), we have F is VC class.

Proof. Let T = {((a, b), (x, v)) ∈ Z2 :ϕ(x−a
b

) ≥ v}, where Z = R × [0,1] and
b �= 0. The structures of incidence on Z × Z, also called dual classes relative to T

(see Assouad, 1983, Section 2.7), are expanded next: T (Z) = {T
(a,b)

: (a, b) ∈ Z}
and T −1(Z) = {T (x,v) : (x, v) ∈ Z}, where T

(a,b)
= {(x, v) ∈ Z :ϕ(x−a

b
) ≥ v} and

T (x,v) = {(a, b) ∈ Z :ϕ(x−a
b

) ≥ v}. Furthermore, conditions (C3) and (C5) allow
us to write T (x,v) as {(a, b) ∈ Z : (x −a)2 −b2C ≥ 0}, and for fixed (x, v), we find
that the set T (x,v) represents the positiveness of a quadratic form in variables a

and b. Thus, class T −1(Z) represents the class of the quadratic forms in variables
a and b that are positive. Lema 18 in Pollard (1984) establishes that T −1(Z) is VC
class and Proposition 2.12 in Assouad (1983) allows us to assert that T (Z) is VC
class. Moreover, as class F is a set of indicators, it can be written as T (Z). Thus,
F is VC class. �

Proof of Theorem 3. Let A be a countable subset of [−B,B]. Next, we will
obtain a concentration inequality for

Q = sup
a∈A

∣∣∣∣∣
n∑

i=1

{f
a,bn

(Wi) − E[f
a,bn

(Wi)]}
∣∣∣∣∣, (A.6)

by means of Talagrand’s inequalities for empirical processes (see, e.g., Massart,
2000, Section 2.2). We observe that ‖f

a,bn
− E[f

a,bn
]‖∞ ≤ 2 = b. According to

Theorem 2.3 in Massart (2000), we have

P
(
Q > E[Q] + c1

√
Lx + c2bx

) ≤ Ke−x

for each x > 0, where K , c1 and c2 are universal positive constants, and

L = E

[
sup
a∈A

n∑
i=1

(
f

a,bn
(Wi) − E[f

a,bn
(Wi)])2

]
.

Since |f
a,bn

− E[f
a,bn

]| ≤ 2, we have L ≤ 4n. Therefore,

P
(
Q > E[Q] + c1

√
nx + c2bx

) ≤ P
(
Q > E[Q] + c1

√
Lx + c2bx

)
≤ Ke−x.
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Setting x = log(n), we obtain

P

(
sup
a∈A

|ϑ̂n(a) − E[ϑ̂n(a)]| > Sn(Q)
)

≤ Ke− log(n), (A.7)

where Sn(Q) = E[Q]
nan

+ c1

√
C

log(n)

na2
n

+ c2b log(n)
nan

. Now, we show that

P

(
sup
a∈A

|ϑ̂n(a) − E[ϑ̂n(a)]| > ε
)

≤ P

(
sup
a∈A

|ϑ̂n(a) − E[ϑ̂n(a)]| > Sn(Q)
)

for each ε > 0. In order to do that, we use symmetrization techniques (see,
e.g., Bousquet et al., 2005, Section 3) to obtain a combinatorial quantity as
an upper bound of E[Q]. Let W ′

1, . . . ,W
′
n be independent copies of random

variables W1, . . . ,Wn, and η1, . . . , ηn ∈ {−1,1} independent random variables
(Rademacher) and independent of the first two with P(ηi = −1) = P(ηi = 1) =
1/2. The properties of the conditional expectation, together with the independence
of W and W ′, and Jensen’s inequality (over supremum), allow us to obtain

E[Q] ≤ E

[
sup
a∈A

∣∣∣∣∣
n∑

i=1

(
f

a,bn
(Wi) − f

a,bn
(W ′

i )
)∣∣∣∣∣

]
.

On the other hand, since [f
a,bn

(Wi) − f
a,bn

(W ′
i )] is symmetric and independent

of ηi , we have [f
a,bn

(Wi) − f
a,bn

(W ′
i )] L= ηi[fa,bn

(Wi) − f
a,bn

(W ′
i )], where the

symbol “ L= ” denotes equality in law. Then,

E[Q] ≤ 2nE

[
sup
a∈A

1

n

∣∣∣∣∣
n∑

i=1

ηifa,bn
(Wi)

∣∣∣∣∣
]
.

To bound the right side of the above inequality, Lemma 5.2 in Massart (2000)
is applied to the finite set F (wn

1) = {(f
a,bn

(w1), . . . , fa,bn
(wn)) :f

a,bn
∈ F } ⊂ R

n,
where wn

1 = (w1, . . . ,wn). Let SF (wn
1) be cardinality or VC shatter coefficient

of F (wn
1). We observe that, SF (wn

1) ≤ 2n. Thus, we can bound the Rademacher
average Rn(F (wn

1)) associated with F (wn
1) for all wn

1 as follows:

Rn(F (wn
1)) = E

[
sup
a∈A

1

n

∣∣∣∣∣
n∑

i=1

ηifa,bn
(wi)

∣∣∣∣∣
]

≤
√

2 log(SF (wn
1))

n
,

since [∑n
i=i[fa,bn

(wi)]2]1/2 ≤ √
n. Then,

E

[
E

[
sup
a∈A

1

n

∣∣∣∣∣
n∑

i=1

ηifa,bn
(Wi)

∣∣∣∣∣
∣∣∣Wn

1 = wn
1

]]
≤ E

[√
2 log(SF (Wn

1 ))

n

]
.

According to the Cauchy–Schwarz inequality, we have

2nE

[
sup
a∈A

1

n

∣∣∣∣∣
n∑

i=1

ηifa,bn
(Wi)

∣∣∣∣∣
]

≤ 2
√

2n
√

E[log(SF (Wn
1 ))].
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Now, combining Lemma 1 and Sauer’s lemma (see, e.g., Ludeña and Ríos, 2003,
Lemma 11-(2)), we can upper bound the logarithm of the VC shatter coefficient
with the combinatorial quantity V (F ), called the VC dimension of the F class.
That is,

log(SF (Wn
1 )) ≤ V (F )

(
1 + log

(
n

V (F )

))
.

The above inequality, together with condition (C6), imply that Sn(Q) → 0 as n →
∞. Thus, from inequality (A.7) we have that for all sufficiently large n there exist
ε > 0 and δ > 0 such that

P

(
sup
a∈A

|ϑ̂n(a) − Eϑ̂n(a)| > ε
)

< δ. (A.8)

On the other hand, the approaches with O(·) carried out to obtain (A.4), which
holds true under the hypotheses of Theorem 3, are really uniform approaches for
x ∈ [−B,B] since the density f satisfies the regularity condition (C7). Then

sup
a∈A

|E[ϑ̂n(a)] − f (a)| = O(a2
n). (A.9)

Combining (A.8) and (A.9) allow us to obtain the desired result for an arbi-
trary countable set A ⊂ [−B,B]. In particular these exists a countable dense set
D ⊂ [−B,B] such that the result holds. On the other hand, to extend this re-
sult to the compact set [−B,B] it will be enough to observe that, the family
{1[0,ϕ(x)](v) : (x, v) ∈ R × [0,1]} is continuous at x under conditions that guar-
antee that [0, ϕ(x)] ⊇ [0, ϕ(x0)] or [0, ϕ(x)] ⊆ [0, ϕ(x0)] when | x − x0 |< δ. For
example: continuity of ϕ, or increasing or decreasing of ϕ. �
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