

sECUAITV CLASSITICATIOM OF Ymis PACE (mimon Dele Enicred)

20. ABSIRACT (Continued)

An interecting aspect of the reaults presented in this paper is the interplay between properties of crose-ntropy minimization as an inforence procedure and properties of cromentropy as an insormation mencure. Cromentropy's well-known and unique properties as an informetion measure In the case of arbitrary peobebility denatios are extended and atrengthened when one of the denetties involved is the recult of crowentropy minimization. For example, crose-entropy does not in general antiety a triangle rolation involving three arbitrary probability densities. But in centala tmportant cases involving denalios that reault from croseentropy minimization, crose-ntropy metisfies triangle inequalities and triangle equalities.

CONTENTS

I. INTRODUCTION 1
II. DEFINITIONS AND NOTATION 2
III. PROPERTIES GIVEN GENERAL CONSTRAINTS 5
IV. PROPERTIES GIVEN EQUALITY CONSTRAINTS 19
จ. GENERAL DISCUSSION 25
VI. ACKHOWLEDGEMERTS 25
APPEADIX A--Mathematics of Cross-Entropy Minimization 26
APPENDIX B--Remark on the Discussion of Property 12 34
REFERENCES 35

I. IATRODUCTION

The principle of minimum cross-entropy provides a general method of inference about an unknown probability density q when there exists a prior estimate of $q^{\boldsymbol{\phi}}$ and new information about $q^{\boldsymbol{\phi}}$ in the form of constraints on expected values. The principle states that, of all the densities that satisfy the constraints, one should choose the posterior q with the least cross-entropy $H[q, p]=\int d x q(x) \log (q(x) / p(x))$, where p is a prior estimate of q. Cross-entropy minimization was first introduced by Kullback [1], who called it minimum directed divergence and minimum discrimination information. The principle of maximum entropy [2],[3] is equivalent to cross-entropy minimization in the special case of discrete spaces and uniform priors.

It is useful and convenient to view cross-entropy minimization as one implementation of an abstract information operator e that takes two arguments --- a prior and new information --- and yields a posterior. Thus, we write the posterior q as $q=p \bullet I$, where I stands for the known constraints on expected values. Recent work has shown that, if the operator o is required to satisfy certain axioms of consistent inference, and if is implemented by means of functional minimization, then the principle of minimum cross-entropy follows necessarily [4].

Cross-entropy minimization satisfies a variety of interesting and useful properties beyond those expressed or implied by the axioms in [4]. Some of these just reflect well-known properties of cross-entropy [1],[5], but there are surprising differences as well. For example, cross-entropy does not in general satisfy a triangle relations involving three arbitrary probability densities. But in certain important cases involving densities that result Note: Manuscript submitted January 23, 1980.
from cross-entropy minimization, crose-entropy satisfies triangle inequalities and triangle equalities. (See Properties 10, 12, and 13.)

It is the purpose the present paper to state and prove various fundamental properties of cross-entropy minimisation. For completeness, we also restate the axioms from [4]. After introducing necessary definitions and notation in Section II, we consider first properties that are valid for both equality and inequality constraints on expected values (Section III) and then properties that are valid only for equality constraints (Section IV). We conclude with a brief discussion in Section V. We also include an Appendix in which we discuss general analytic and computational methods of finding minimum cross-entropy posteriors.

II. DEFINITIONS AND NOTATION

In this section, we introduce the same notation as in [4, Section II]. The discussion here places somewhat greater emphasis on mathematical questions relating to the existence of minimum-cross-entropy solutions. (See also the discussion following Property 1.)

We use lower-case boldface Roman letters for system states, which may be multidimensional, and upper-case boldface Roman letters for sets of system states. We use lower-case Roman letters for probability densities, and upper case script letters for sets of probability densities. Thus, let \mathbb{X} be state of some system that has a set D of possible states. Let D be the set of all probability densities q on $\underset{\sim}{D}$ such that $q(\underset{\sim}{x}) \geqslant 0$ for $x \in \underset{\sim}{D}$ and

$$
\begin{equation*}
\int_{D} d x q(x)=1 \tag{1}
\end{equation*}
$$

We use a dagger to distinguish the syatem' unknown "true" state probability
density $q^{\top} \in \mathcal{D}$. When $\underset{\sim}{S} \subseteq \mathbb{D}$ is some set of states, we write $q(\underset{\sim}{x} \in \underset{\sim}{S})$ for the set of values $q(x)$ with $x \in S$.

New information takes the form of linear equality constraints

$$
\begin{equation*}
\int_{\underset{\sim}{D}} \operatorname{dx}_{\sim} q^{+}(\underset{\sim}{x}) a_{k}(x)=\bar{a}_{k} \tag{2}
\end{equation*}
$$

and inequality constraints

$$
\begin{equation*}
\int_{\underset{\sim}{D}} d x q^{4}(x) c_{k}(x) \geqslant \bar{c}_{k} \tag{3}
\end{equation*}
$$

for known sets of functions $\mathbf{a}_{\mathbf{k}}, \mathrm{c}_{\mathbf{k}}$, and known values $\overline{\mathbf{a}}_{\mathbf{k}}, \bar{c}_{\mathbf{k}}$. The probability densities that satisfy such constraints always coaprise a convex subset of \mathcal{D}. (A set \mathcal{f} convex if, given $0 \leqslant A \leqslant 1$ and $q, r \in \mathcal{C}$, it contains the weighted average $A q+(1-A) r$.) We refer to the functions a_{k}, c_{k} as constraint functions and as a constraint set. For a given constraint set there may of course be more than one set of constraint functions in terms of which it may be defined. We frequently suppress mention of a particular set of constraint functions, using the notation $I=(\mathbb{q} \in \mathbb{V})$ to mean that q^{\dagger} is a member of the constraint set $\mathbb{G} \mathbb{D}$ and referring to I as a constraint. We use upper-case Roman letters for constraints.

Let $p \in \mathbb{D}$ be some prior density that is an estimate of $q^{\boldsymbol{+}}$ obtained, by any means, prior to learning I. We require that priors be strictly positive:

$$
\begin{equation*}
p(x \in D)>0 \tag{4}
\end{equation*}
$$

(This restriction is discussed below,) Given a prior p and new information I, the posterior density $q \in \mathbb{V}$ that results from taking I into account is chosen by minimizing the cross-entropy $\mathrm{H}[\mathrm{q}, \mathrm{p}]$ in the constraint set \mathcal{N} :

$$
\begin{equation*}
H[q, p]=\min _{q \in \mathbb{A}} H\left[q^{\prime}, p\right], \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
H[q, p]=\int_{\underset{N}{D}} d x q(x) \log (q(x) / p(x)) \tag{6}
\end{equation*}
$$

We introduce an "information operator" o that expresses (5) using the notation $q=p \neq I \quad$.

The operator 0 takes two arguments --- a prior and new information --a and yields a posterior.

For some subset $\mathbf{S N}_{\sim}^{S} \underset{\sim}{D}$ of states and $x \in S$, let

$$
\begin{equation*}
q(x \mid x \in S)=q(x) / \int_{N} d x_{N}^{\prime} q\left(x_{N}^{\prime}\right) \tag{8}
\end{equation*}
$$

be the conditional density, given $\underset{\sim}{x} \underset{\sim}{S}$, corresponding to any $q \in \mathbb{D}$. We use

$$
\begin{equation*}
q(\underset{N}{ } \mid x \in S)=q * S \tag{9}
\end{equation*}
$$

as a shorthand notation for (8).
In making the restriction (4) we assume that $\underset{\sim}{D}$ is the set of states that are possible according to prior information. We do not impose a similar restriction on the posterior $q=p \neq I$ since I may rule out states currently thought to be possible. If this happens, then $\underset{\sim}{D}$ must be redefined before q is used as a prior in a further application of \bullet. The restriction (4) does not significantly restrict our results, but it does help in avoiding certain technical problems that would otherwise result from division by $p(x)$. For more discussion, see [5].

When $\underset{\sim}{D}$ is a discrete set of system states, densities are replaced by discrete distributions and integrals by sums in the usual way. In amore general setting for the discussion than we have chosen, $\underset{\sim}{D}$ would be a measurable space, and p and q would be replaced by prior and posterior probability measures. By continuing to write in terms of probability
densities, we would then be implicitly assuming some underlying measure with respect to which the rest were absolutely continuous. Indeed such a measure certainly exists if we demand that no event with zero prior probability can have positive posterior probability, which in the present context we are in effect demanding by assuming (4).

III. PROPERTIES GIVEN GENERAL CONSTRAINTS

This Section concerns properties that apply in the case of both equality and inequality constraints (2)-(3). We follow the formal statement of each property with a brief discussion and then a proof or an appropriate reference. Throughout, we assume a system with possible states $\underset{\sim}{\mathrm{D}}$, probability density $q^{\dagger} \in \mathcal{D}$, an arbitrary prior $p \in \mathcal{D}$, and arbitrary new information $I=\left(q^{\dagger} \in \mathbb{Q}\right)$, where $\mathcal{G} \subseteq \mathcal{D}$ contains at least one density q such that $H(q, p)<\infty$.

Property 1 (Uniqueness): The posterior $q=p \neq I$ is unique.

Discussion: A solution to the cross-entropy minimization problem, if one exists, is unique provifed only that $H[q, p]$ is not identically infinite as q ranges over the constraint set . To guarantee that a solution exists, a little more is required. One condition that suffices for existence is that, in addition to containing a density q with finite cross-entropy, the constraint set be closed. (We call closed if it contains every probability density q that is a limit of densities $q_{i} \mathcal{N}$. Limits are taken in the sense that $q_{i} \rightarrow q$ means $\left.\int\left|q_{i}(x)-q(x)\right| d x \rightarrow 0.\right)$ For \mathcal{N} to be closed, it suffices in turn that the constraint functions be bounded. (And conversely, any closed convex set of probability densities can be defined by equality and inequality constraints (2), (3) with bounded constraint
functions, except that infinitely many may be required.) It is also possible to assert existence of pel under less stringent conditions, which do not imply that is closed -- see Theorem 3.3 in [6] and Appendix A. This is fortunate, since a number of examples of practical importance involve unbounded constraint functions.

Proof of 1: See [6], [4, Section IV.E].

Property 2: The posterior satisfies $q=p \oplus I=p$ if and only if the prior atisfies $p \in \mathbb{N}$.

Discussion: If one views cross-entropy minimization as an inference procedure, it makes sense that the posterior should be unchanged from the prior if the new information doesn't contradict the prior in any way. Consider the example of (A.10)-(A.12). If $a_{k}=\bar{x}_{k}$ for $k=1, \ldots, n$, then $q(\underset{\sim}{x})=p(x)$.
Proof of 2: Property 2 follows directly from the property of cross-entropy that $H[q, p] \geqslant 0$ with $H[q, p]=0$ only if $q=p([1, p .14])$.

Property 3 (idempotence): ($p \circ I$) $0 I=p \circ I$.

Discussion: Taking the same information into account twice has the same
effect as taking it into account once.
Proof of 3: Since ($\mathrm{P} \bullet \mathrm{I}$) $\in \mathcal{A}$, idempotence follows from Property 2.

Property 4: Let I_{1} be the information $I_{1}=\left(q^{t} \in \mathcal{S}_{1}\right)$ and let I_{2} be the information $I_{2}=\left(q^{+} \in \mathbb{S}_{2}\right)$, for overlapping constraint sets $d_{1} \mathscr{A}_{2} S$. If $\left(p \circ I_{1}\right) \in \mathcal{U}_{2}$ holds, then

$$
\begin{equation*}
p \bullet I_{1}=\left(p \not I_{1}\right) \bullet\left(I_{1} \wedge I_{2}\right)=\left(p \not I_{1}\right) \bullet I_{2}=p \bullet\left(I_{1} A I_{2}\right) \tag{10}
\end{equation*}
$$

holds.

Discussion: If the result of taking information I_{1} into account already satisfies constraints imposed by additional information I_{2}, taking I_{2} into account in various ways has no effect. For example, let I_{1} and I_{2} be the constraints
and

$$
\int_{0}^{\infty} d x x q^{\dagger}(x)=
$$

$$
\begin{equation*}
\int_{0}^{\infty} d x x^{2} q^{\dagger}(x)=2 a^{2} \tag{11}
\end{equation*}
$$

respectively. For an exponential prior $p(x)=r \exp (-r x)$, the posterior given I_{1} is $q-p^{0} I_{1}=(1 / a) \exp (-x / a)(s e e(A .10)-(A .12))$. The second moment of q is just $2 a^{2}$, so that q satisfies $q \in \mathcal{U}_{2}$, as well as $q=q 0\left(I_{1} \wedge I_{2}\right)$, $q=q \circ I_{2}$, and $q=p \circ\left(I_{1} \wedge I_{2}\right)$. If the right side of (11) were anything but $2 \mathrm{a}^{2}$, the result of $\mathrm{po}\left(\mathrm{I}_{1} \wedge I_{2}\right)$ would be a truncated Gaussian or undefined and not an exponential [7, pp. 133-140]
Proof of 4: Since ($\left.\mathrm{POI}_{1}\right) \in \mathcal{J}_{1}$ holds and, by assumption, $\left(p \circ I_{1}\right) \in \mathcal{J}_{2}, ~$ also holds, it follows that $\left(p \circ I_{1}\right) \in\left(\mathcal{N}_{1} \cap \mathbb{N}_{2}\right)$ holds. The first two equalities of (10) then follow directly from Properties 2 and 3. The last equality of (10) follows from $q=p o I_{1}$ having the smallest cross-entropy $\mathrm{H}[\mathrm{q}, \mathrm{p}]$ of all densities in \mathcal{A}_{1} and therefore in $\mathcal{V}_{1} \cap \mathbb{Z}_{2}$.

Property 5 (Invariance): Let \boldsymbol{T}_{\sim} be a coordinate transformation from $\underset{\sim}{x} \in \mathbb{\sim}$ to $\underset{\sim}{y \in}{\underset{\sim}{D}}^{\prime}$ with $\left({ }_{\sim} q\right)(y)=J_{\sim}^{-1} q(x)$, where J_{\sim} is the Jacobian $\underset{\sim}{J}=\partial(\underset{\sim}{y}) / \partial(\underset{\sim}{x})$. Let $\Gamma_{\sim} D$ be the set of densities $\Gamma_{\sim} q$ corresponding to densities $q \in D$. Let $(\mathbb{L} \mathbb{L}) \subseteq(\underset{\sim}{(D)}$ correspond to $\mathbb{\perp} \subseteq \mathbb{D}$. Then

$$
\begin{equation*}
(\Gamma p) \cdot(I I)=\Gamma_{\sim}(p \bullet I) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
H\left[\Gamma_{\sim}(p \circ I), \Gamma_{\sim} p\right]=H[p \circ I, p] \tag{13}
\end{equation*}
$$

hold, where $\Gamma_{\sim} I=\left(\left(\Gamma_{\sim}^{+}\right) \in(\Gamma \mathbb{Z})\right)$.

Discussion: Eq. (12) states that the same answer is obtained when one solves the inference problem in two different coordinate systems, in that the posteriors in the two systems are related by the coordinate transformation. Moreover, the cross-entropy between the posteriors and the priors has the ame value in both coordinate systems.

As an example, let y_{1} and y_{2} be the real and imaginary parts of a complex sinusoidal signal; let x_{1} be the total power $x_{1}=y_{1}^{2}+y_{2}^{2}$, and let x_{2} be the phase, so that

$$
\left(y_{1}, y_{2}\right)=\underset{\sim}{r}\left(x_{1}, x_{2}\right)=\left(x_{1}^{1 / 2} \cos \left(x_{2}\right), x_{1}^{1 / 2} \sin \left(x_{2}\right)\right)
$$

Then the Jacobian is constant:

$$
J=\operatorname{det}\left[\begin{array}{ll}
\frac{1}{2} x_{1}^{-1 / 2} \cos \left(x_{2}\right) & -x_{1}^{1 / 2} \sin \left(x_{2}\right) \\
\frac{1}{2} x_{1}^{-1 / 2} \sin \left(x_{2}\right) & x_{1}^{1 / 2} \cos \left(x_{2}\right)
\end{array}\right]=1 / 2 .
$$

Therefore, if the prior density $p(\underset{\sim}{x})$ is uniform in some region in the $\underset{\sim}{x}$ coordinate space, the transformed prior $\left(\Gamma_{\sim}\right)(\underset{\sim}{y})$ will be uniform on a corresponding region in the $\underset{\sim}{y}$ coordinate space. For example, suppose

$$
p(\underset{\sim}{x})= \begin{cases}1 / 2 \pi R^{2}, & \left(0 \leqslant x_{1} \leqslant R^{2},-\pi<x_{2} \leqslant \pi\right) \\ 0, & \text { otherwise },\end{cases}
$$

which makes p uniform in a certain rectangle. Thus, we find that

$$
\left(\Gamma_{p}\right)(y)= \begin{cases}1 / \pi R^{2}, & \left(y_{1}^{2}+y_{2}^{2} \leqslant R^{2}\right) \\ 0, & \text { otherwise }\end{cases}
$$

which makes Γ_{P} uniform on a certain disk. (Notice $1 / \operatorname{RR}^{2}=J^{-1}\left(1 / 2 \omega R^{2}\right)$.) Now, let new information I specify the expected power

$$
\int_{0}^{\infty} d x_{1} \int_{-\pi}^{\pi} d x_{2} x_{1} q^{4}(x)=P
$$

The resulting posterior $q=p \circ I$ is exponential with respect to x_{1} :

$$
q(x)= \begin{cases}A \exp \left[-\lambda x_{1}\right], & \left(0 \leqslant x_{1} \leqslant R^{2},-\pi<x_{2} \leqslant \pi\right) \\ 0 & \text { otherwise }\end{cases}
$$

for certain constants A and $\boldsymbol{\lambda}$. The new information in the transformed coordinates, \boldsymbol{T}_{\sim} I, is

$$
\int d y_{1} \int d y_{2}\left(y_{1}^{2}+y_{2}^{2}\right)^{\prime+}(\underset{\sim}{y})=P
$$

and the resulting posterior $q^{\prime}=(\underset{\sim}{p}) \bullet(\underset{\sim}{r})$ has the form of a bivariate Gaussian inside the disk:

$$
q^{\prime}(y)= \begin{cases}2 A \exp \left[-\lambda\left(y_{1}^{2}+y_{2}^{2}\right)\right], & \left(y_{1}^{2}+y_{2}^{2} \leqslant R^{2}\right) \\ 0 & , \text { otherwise }\end{cases}
$$

The two posteriors q and q^{\prime} are related by $q^{\prime}(\underset{\sim}{ })=\left(\Gamma_{\sim} q\right)(y)$, as stated in (12). Proof of 5: See [4, Section IV.E]. The proof of (12) follows directly from the fact that cross-entropy is transformation invariant. Eq. (13) is just a special case of this invariance.

Property 6 (System Independence): Let there be two systems, with sets $\underset{\sim}{D_{1}}$ and ${\underset{\sim}{D}}_{2}$ of states and probability densities of states $q_{1} \in D_{1}$ and $q_{2} \in D_{2}$. Let $p_{1} \in D_{1}$ and $p_{2} \in D_{2}$ be prior densities. Let $I_{1}=\left(q_{1}^{\dagger} \in \mathcal{U}_{1}\right)$ and $I_{2}=\left(q_{2}^{\dagger} \in \mathcal{U}_{2}\right)$ be new information about the two systems, where $\mathcal{V}_{1} \subseteq D_{1}$ and $\mathcal{V}_{2} \subseteq D_{2}$. Then

$$
\begin{equation*}
\left(p_{1} p_{2}\right) \bullet\left(I_{1} \wedge I_{2}\right)=\left(p_{1} \oplus I_{1}\right)\left(p_{2} \otimes I_{2}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
H\left[q_{1} q_{2} ; p_{1} p_{2}\right]=H\left[q_{1}, P_{1}\right]+B\left[q_{2} ; P_{2}\right], \tag{15}
\end{equation*}
$$

hold, where $q_{1}=p \oplus I_{1}$ and $q_{2}=p \circ I_{2}$.

Discussion: Property 6 states that it doesn't matter whether one accounts for independent information about two systems separately or together in tera of a joint density. Whether or not the two systems are in fact independent is irrelevant: The property applies as long as there are independent priora and independent new information. Examples can easily be generated from the multivariate exponential and multivariate Gaussian examples in the Appendix. Proof of 6: See [4, Section IV.E]

Property 7 (subset independence): Let $\mathbf{S}_{1}, \ldots, \mathbf{S}_{\mathbf{n}}$ be disjoint sets whose union is D_{\sim}. Let the new information I comprise information about the conditional densities $q^{\boldsymbol{T}} \mathbf{N}_{\boldsymbol{N}} \mathbf{i}^{\text {. Thus, }} I=I_{1} \wedge I_{2} \wedge \ldots \wedge I_{n}$, and
 densities on $\mathbf{S N}_{i}$. Let $M=\left(q^{\dagger} \epsilon M\right)$ be new information giving the probability of being in each of the n aubsets, where \mathbb{M} is the set of densities q that satisfy

$$
\int_{S_{N i}} d x q_{N}(x)=m_{i}
$$

for each subset $\mathbf{S}_{\mathbf{i}}$, where the $\boldsymbol{m}_{\boldsymbol{i}}$ are known values. Then

$$
\begin{equation*}
(p \bullet(I \wedge M)) *{\underset{\sim}{S}}_{i}=\left(p *{\underset{\sim}{S}}_{i}\right) \bullet I_{i} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
H[p \circ(I \wedge M), p]=\sum_{i} m_{i} H\left[q_{i}, p_{i}\right]+\sum_{i} m_{i} \log \frac{m_{i}}{s_{i}} \tag{17}
\end{equation*}
$$

 probabilities of being in each subset,

$$
\begin{equation*}
s_{i}=\int_{\underset{\sim}{s_{i}}} d x p(x) \tag{18}
\end{equation*}
$$

Discuasion: Tris property concerns situations in which the set of statea \mathbb{D} decomposes natwrally into disjoint subsets ${\underset{\sim}{i}}^{i}$, in which the new information $I=I_{1} \wedge I_{2} \wedge \ldots \wedge I_{n}$ comprises disjoint information about the conditional probability densities $\boldsymbol{q}^{\boldsymbol{\dagger}}{ }^{*} \mathbf{S}_{i}$ in each subset, and in which there is also new information M giving the total probability $\boldsymbol{m}_{\mathbf{i}}$ of being in each subset $\mathbf{s}_{\mathbf{i}}$. Given this information, there are two ways to obtain posterior conditional densities for each subset: One way is to obtain a conditional posterior
 posterior $q=p o(I A M)$ for the whole system and then to compute a conditional posterior $q *{\underset{N i}{i}}^{i}$. Property 7 states that the results are the same in both cases: it doesn't matter whether one treats an independent aubset of ayatem states in terms of a separate conditional density or in terms of the full system density.

To illustrate Property 7, suppose that a six-sided die was rolled a large number of times. The frequencies with which the different die faces turned up were not recorded individually, but the mean number of spots showing vas determined separately for the odd results and for the even results. There was no prior reason to expect any face of the die to turn up more often than any other. Indeed, the probability for the number of apots showing to be odd turned out to be .5. However, the sean number of spote showing, given that the number was odd, was found to be 4; the mean number of apote showing, siven
that the number was even, also was found to be 4. Given thi information, we are asked to estimate the probability for each face of the die to turn up, as well as the conditional probability given whether the face is odd or even. Let ${\underset{\sim}{S}}_{1}=\{1,3,5\}$ and ${\underset{\sim}{2}}^{S_{2}}=\{2,4,6\}$. We will first solve the problem on

In all cases, the prior is uniform. The prior P_{1} on ${\underset{N}{N}}$ is $p_{1}(1)=p_{1}(3)=p_{1}(5)=1 / 3$. The information I_{1} giving the expected value for an odd number of spots is

$$
\sum_{n \in S_{1}} n q_{1}(n)=4 ;
$$

therefore, we compute a posterior $q_{1}=P_{1} \circ I_{1}$ on S_{1} by minimizing $H\left[q_{1}, p_{1}\right]$ subject to $q_{1}(1)+3 q_{1}(3)+5 q_{1}(5)=4$. The result is

$$
\begin{equation*}
q_{1}(1)=0.1162, \quad q_{1}(3)=0.2676, \quad q_{1}(5)=0.6162 \tag{19}
\end{equation*}
$$

Similarly, the prior P_{2} on S_{2} is $P_{2}(2)=P_{2}(4)=P_{2}(6)=1 / 3$, the posterior q_{2} is subject to the constraint I_{2},

$$
2 q_{2}(2)+4 q_{2}(4)+6 q_{2}(6)=4,
$$

and the result of minimizing $K\left[q_{2}, p_{2}\right]$ is

$$
\begin{equation*}
q_{2}(2)=1 / 3, \quad q_{2}(4)=1 / 3, \quad q_{2}(6)=1 / 3 \tag{20}
\end{equation*}
$$

On $\mathbf{S}_{1} \cup \mathbf{S}_{2}$, the prior p is $p(1)=p(2)=\cdots \cdot p(6)=1 / 6$. The information I_{1}, which concerns $q^{*}{ }_{*}^{*}{\underset{N O}{1}}$, may be expressed as

$$
q^{t}(1)+3 q^{t}(3)+5 q^{t}(5)=4\left(q^{t}(1)+q^{t}(3)+q^{t}(5)\right) .
$$

We therefore subject the posterior q to the constraint

$$
\begin{equation*}
-3 q(1)-q(3)+q(5)=0 . \tag{21}
\end{equation*}
$$

Similarly, because of I_{2}, we have the constraint

$$
\begin{equation*}
-2 q(2)+2 q(6)=0 \tag{22}
\end{equation*}
$$

Finally, because of the information M, we subject q to the constraint

$$
\begin{equation*}
q(1)-q(2)+q(3)-q(4)+q(5)-q(6)=0, \tag{23}
\end{equation*}
$$

since this is equivalent to $q(1)+q(3)+q(5)=.5=q(2)+q(4)+q(6)$. Upon minimizing $H[q, p]$ subject to the constraints (21)-(23), we find that $q=p e\left(I_{1}{ }^{\wedge I_{2}}{ }^{\wedge}{ }^{n}\right)$ is given by

$$
\begin{array}{ll}
q(1)=0.0581, & q(2)=1 / 6, \\
q(3)=0.1338, & q(4)=1 / 6, \\
q(5)=0.3081, & q(6)=1 / 6 .
\end{array}
$$

To find the conditional probabilities $q * \mathbb{N}_{1}$ and $q *{\underset{\sim}{2}}_{2}$, we divide both columns in this result by .5 ; the results agree with q_{1} and q_{2} as computed above ((19), (20)), and as stated in (16).

Proof of 7: See [4, Section IV.E].

Property 8 (weak subset independence): For the same definitions and notation as Property 7,

$$
\begin{equation*}
(p \oplus I) *{\underset{\sim}{i}}_{i}=\left(p *{\underset{N}{i}}^{i}\right) \bullet I_{i} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
H[p \otimes I, p]=\sum_{i} r_{i} H\left[q_{i}, p_{i}\right]+\sum_{i} r_{i} \log \frac{r_{i}}{\varepsilon_{i}} \tag{26}
\end{equation*}
$$

probabilities of being in each subset (18), and the r_{i} are the posterior probabilities of being in each subset,

$$
\begin{equation*}
r_{i}=\int_{S_{N i}} d x_{N} q(x) \tag{27}
\end{equation*}
$$

for $q=p e r$.

Discussion: This property states that the two ways of obtaining the posterior conditional densities also lead to the same reault in the case when one does not have information giving the total probability in each subset. Results for the full system posterior, however, will not in general be the ame for the cases covered by Properties 7 and 8. That is, $q^{\circ} I$ and $\left.q^{(1 A M}\right)$ will not in general be equal.

To illustrate Property 8, we solve the example problem from Property 7, omitting the information M that the probability of an odd (or of an even) number of spots is .5 . The separate solutions on ${\underset{\sim}{\sim}}^{1}$ and ${\underset{\mathcal{N}}{2}}$ proceed exactly as before and yield the same posteriors q_{1} and q_{2}. The solution on ${\underset{\sim}{1}} \cup \mathcal{S}_{2}$ differs from the previous one only in that we minimize $\mathrm{H}[q, p]$ subject to the constraints (21) and (22), but not subject to (23). The result, $q^{\prime}=p o\left(I_{1} \wedge I_{2}\right)$, is given by

$$
\begin{array}{ll}
q^{\prime}(1)=0.0524, & q^{\prime}(2)=0.1831, \\
q^{\prime}(3)=0.1206, & q^{\prime}(4)=0.1831, \\
q^{\prime}(5)=0.2778, & q^{\prime}(6)=0.1831,
\end{array}
$$

and differs from the previous result (24). Moreover, the subset probabilities r_{1} and r_{2} do not satisfy M : summing the two colums gives $r_{1}=0.4508$ and $r_{2}=0.5492$. However, dividing the two columns respectively by r_{1} and
r_{2} gives the sane conditional probabilities as before: $q^{\prime \prime \AA_{1}}=q_{1}$ and $q^{\prime *} \mathrm{H}_{2}=q_{2}$ (sec (19), (20)).
Proof of 8: For $q=p \cdot 1$, let r_{i} be given by (27). Then let R be information $=\mathbb{q} \in R$, where R is the set of densities satisfying (27). It follows from Property 4 that $p \in I=p e(I A R)$ holds; (25) and (26) then follow from Property 7.

Property 9 (subset aggregation): Let $8_{1}, 8_{2}, \ldots,{\underset{\sim}{2}}^{\mathbf{S}_{2}}$ be disjoint sets whose union is $\underset{\sim}{D}$. Let $\mathscr{\sim}$ be a transformation such that, for any $q \in \mathbb{D}$, $q^{\prime}=\mathcal{L}^{\prime}$ is a discrete distribution with

$$
q^{\prime}\left(x_{i}\right)=\int_{S_{i}} d x_{N} q(x)
$$

where x_{i} is a discrete state corresponding to $x \in S_{i}$. Thus the transformation $\underset{\sim}{\Psi}$ aggregates the states in each subset ${\underset{\sim}{\sim}}_{\boldsymbol{i}}$. Suppose new information $I^{\prime}=\left(\left(\mathcal{N}^{\top}{ }^{\top}\right) \in \mathbb{N}^{\prime}\right)$ is obtained about the aggregate distribution $\mathcal{N a}^{\dagger}$, where \mathcal{I}^{\prime} is a convex set of discrete distributions. Then for any prior p $\in \mathcal{D}$,

$$
\begin{align*}
& p_{\sim}^{*}{\underset{N}{i}}=(p \neq I) *{\underset{N N}{ }}, \tag{28}\\
& \left(\Psi_{\sim} p\right) \circ I^{\prime}=\Psi_{N}(p \circ I), \tag{29}
\end{align*}
$$

and

$$
\begin{equation*}
H\left[\nsim(p \circ I), \psi_{\sim} p\right]=H[p \not I, p] \tag{30}
\end{equation*}
$$

all hold, where $I=\boldsymbol{\Psi}^{-1} I^{\prime}$ is the information I^{\prime} expressed in terms of $q^{\boldsymbol{\phi}}$ instead of in terms of Ψ_{\sim}^{+}. (That is, $I=\left(q^{+} \in\left(\psi^{-1} / i\right)\right)$, where $\left(\psi^{-1} / \prime\right) \subseteq D$ are the densities q such that $\left.(\$ q) \in \mathbb{l}^{\prime}.\right)$

Discussion: Note that (29) and (30), in which ψ is a my-to-one mapping, have the same form as the invariance property, which holds for one-to-one coordinate transformations F_{N} (see (12)-(13)). Indeed, both invariance and subset aggregation can be viewed as special cases of a more general, measure-theoretic invariance. In mathematical terns, the operator is functorial.

Proof of 9: Let the information I^{\prime} be a set of known expectations $\sum_{i} g_{k i} q^{\prime \prime}\left(x_{i}\right)$, for $k=1, \ldots, m$, or bounds on these expectations, where $q^{\boldsymbol{T}}=\mathbb{Y}^{\boldsymbol{q}}$. In terms of $q^{\boldsymbol{t}}$, this becomes a set of known or bounded expectations

$$
\int_{D} d x_{N} q^{T}(x) f_{k}(x)
$$

where $f_{k}(x \in{\underset{N}{i}})=\mathcal{g}_{k i}$ is constant in each subset \mathcal{S}_{i}. The posterior $q=p o l$ has the form

$$
\begin{equation*}
q(x)=p(x) \exp \left(-\lambda_{0}-\sum_{k=1}^{m} \lambda_{k} f_{k}(x)\right), \tag{31}
\end{equation*}
$$

where some of the terms in the summation over k may be omitted in the case of inequality constraints (see (A.4)). Since f_{k} is constant on each subset, (31) has the form $q\left(\underset{\sim}{x} \in{\underset{\sim}{S}}_{i}\right)=A_{i} p(x \in{\underset{\sim}{N}})$, where A_{i} is subset dependent constant. This proves (28). Now, in general for any $q, p \in D$, the cross-entropy $H[q, p]$ can be expressed [4] as

$$
\begin{equation*}
H[q, p]=\sum_{i} r_{i} H\left[q_{i}, p_{i}\right]+\sum_{i} r_{i} \log \frac{r_{i}}{\varepsilon_{i}} \tag{32}
\end{equation*}
$$

where $p_{i}=p^{* s_{i}}, q_{i}=q * \mathbf{s}_{i}$,

$$
s_{i}=\int_{\mathbb{S}_{i}} d x p(x) \text {, and } r_{i}=\int_{\underset{\sim}{s} i} d x q(x) \text {. }
$$

In the present case we have $q_{i}=p_{i}$ from (28). since $\mathbf{B}\left[q_{i}, q_{i}\right]=0$,
(32) reduces to

$$
\begin{aligned}
\mathrm{H}[q, \mathrm{p}] & =\sum_{i} r_{i} \log \frac{r_{i}}{\varepsilon_{i}} \\
& =\mathrm{H}\left[\psi_{q}, \psi p\right] .
\end{aligned}
$$

Minimizing the left side subject to I, yielding $q=p o I$, is equivalent to minimizing the right side aubject to I'. This proves (29) and (30).

Property 10 (triangle relations): For any $r \in \mathcal{W}$,
$\mathrm{H}[\mathrm{r}, \mathrm{p}] \geqslant \mathrm{B}[\mathrm{r}, \mathrm{q}]+\mathrm{H}[\mathrm{q}, \mathrm{p}]$,
where $q=p \circ I$. When I is determined by a finite set of equality constraints only, equality holde in (33).

Discussion: The triangle equality is important for applications in which cross-entropy minimization is used for purposes of classification and pattern recognition.

Proof of 10: We have

$$
\mathrm{B}[q, p]=\min _{q^{\prime} \in} H\left[q^{\prime}, p\right] .
$$

The densities $q^{\prime}=(1-t) q+t r$ belong tod for all $t \in[0,1]$ since $q \in \mathbb{d}, r \in \mathbb{X}$, and f is convex. For all such t we therefore have

$$
\begin{equation*}
\mathrm{H}[(1-t) q+t r, p] \geqslant \mathrm{n}[\mathrm{q}, \mathrm{p}], \tag{34}
\end{equation*}
$$

or $P(t) \geqslant P(0)$, where we have written $F(t)$ for the left aide of (34). It followe that $F^{\prime}(0) \geqslant 0$ (provided F is differentiable at 0). We therefore aet

$$
\left.\frac{d}{d t}\left(\int d x[(1-t) q(x)+\operatorname{tr}(x)] \log \frac{(1-t) q(x)+t r(x)}{p(x)}\right)\right|_{t=0} \geqslant 0
$$

and differentiate under the integral sign. (For justification of this step and the existence of $\mathrm{F}^{\prime}(0)$, see Csiszár [6], who gives the proof in a more general measure-theoretic setting.) The result is

$$
\begin{aligned}
& \left(\int d x \left\{[r(x)-q(x)] \log \frac{(1-t) q(x)+\operatorname{tr}(x)}{p(x)}\right.\right. \\
& \left.\left.\quad+[(1-t) q(x)+\operatorname{tr}(x)] \frac{r(x)-q(x)}{(1-t) q(x)+\operatorname{tr}(x)}\right\}\right)\left.\right|_{t=0} \geqslant 0,
\end{aligned}
$$

or

$$
\int d x[r(x)-q(x)]\left[1+\log \frac{q(x)}{p(x)}\right] \geqslant 0 .
$$

This implies

$$
\int d x \underset{\sim}{r(x)} \log \frac{q(x)}{p(x)} \geqslant \int d x q(x) \log \frac{q(x)}{p(x)}
$$

since $\int d x[r(x)-q(x)]=0$. Therefore,

$$
\int d x r(x) \log \frac{r(x)}{p(x)} \geqslant \int d x r(x) \log \frac{r(x)}{q(x)}+\int d x q(x) \log \frac{q(x)}{p(x)} \cdot
$$

Consequently $H[r, p] \geqslant H[r, q]+H[q, p]$.
Now assume I is determined by finitely many equality constraints. Since
$q=p \circ 1, \log (q(x) / p(x))$ assumes the form

$$
\log \frac{g(x)}{p(x)}=-\lambda_{0}-\sum_{k=1}^{m} \lambda_{k} f_{k}(x)
$$

(cf. (A.4)). But then

$$
\int d x_{\sim} r(x) \log \frac{q(x)}{p(x)}=-\lambda_{0}-\sum_{k=1}^{m} \lambda_{k} \bar{f}_{k}=\int d x_{\sim} q(x) \log \frac{q(x)}{p(x)}=B[q, p],
$$

since r and q both satisfy the equality constraints. The equality

$$
\int d x r(x) \log \frac{r(x)}{p(x)}=\int d x r(x) \log \frac{r(x)}{q(x)}+\int d x r(x) \log \frac{q(x)}{p(x)}
$$

then implies $\mathrm{H}[\mathrm{r}, \mathrm{p}]=\mathrm{H}[\mathrm{r}, \mathrm{q}]+\mathrm{H}[\mathrm{q}, \mathrm{p}]$.

Property 11:

$$
\begin{equation*}
H\left[q^{\dagger}, p \bullet I\right] \leqslant H\left[q^{\dagger}, p\right], \tag{35}
\end{equation*}
$$

holds with equality if and only if $p \cdot I=p$.

Discussion: This property states that the posterior $q=p \in I$ is always closer to q^{\dagger}, in the cross-entropy sense, than is the prior p . Proof of 11: Since $q^{t} \in \mathcal{H}$ holds, (35) follows directly from (33) with $r=q^{t}$.
IV. PROPERTIES GIVEN EQUALITY CONSTRAINTS

This Section concerns properties that apply when some of the new information is in the form of equality constraints (2) only. Throughout, we assume a system with possible states $\underset{\sim}{D}$ and an arbitrary prior $p \in \mathcal{D}$.

Property 12. Let the system have a probability density $q \mathcal{T} \in \mathcal{D}$, and let there be information $I=\left(q^{\dagger} \in \mathbb{V}\right)$ that is determined by a finite set of equality constraints only. Then

$$
\begin{equation*}
H\left[q^{t}, p\right]=H\left[q^{+}, q\right]+H[q, p] \tag{36}
\end{equation*}
$$

holds, where $q=p e I$.

Discussion: Since the difference $H\left[q^{\boldsymbol{p}}, p\right]-H\left[q^{\boldsymbol{p}}, q\right]$ is just $H[q, p]$, and since $H[q, p]$ is a measure [1] of the information divergence between q and p, Property 12 shows that $\mathrm{H}[\mathrm{p} \odot \mathrm{I}, \mathrm{p}]$ can be interpreted as the amount of information provided by I that was not already inherent in p. stated differently,
$H[P \circ I, P]$ is the amount of information-theoretic distortion introduced if p is used instead of poI. Since, for any prior p and any density $r \in \mathcal{D}$ with $H(r, p)<\infty$, there exists a finite set of equality constraints I_{r} such that $r=P^{\circ} I_{r}$ (see appendix B), $H[r, P]$ is in general the amount of information needed to determine r when given p, or the amount of information-theoretic distortion introduced if r is used instead of p. Proof of 12: Eq. (36) follows directly from (33), since $q \in \mathcal{T}$ holds.

Property 13: Let the system have a probability density $q \in \in \mathcal{D}$, and let there be information $I_{1}=\left(q^{\top} \in \mathcal{N}_{1}\right)$ and information $I_{2}=\left(q \in \mathcal{S}_{2}\right)$, where $d_{1} \mathbb{N}_{2} \subseteq D_{\text {are constraint sets with a non-empty intersection. }}$ Suppose that, ${ }_{1}$ is determined by a set of equality constraints (2) only. Then

$$
\begin{equation*}
\left(p \not I_{1}\right) \circ\left(I_{1} \wedge I_{2}\right)=p \circ\left(I_{1} \wedge I_{2}\right) \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
H[q, p]=H\left[q, q_{1}\right]+H\left[q_{1}, p\right] \tag{38}
\end{equation*}
$$

hold, where $q=p o\left(I_{1} \wedge I_{2}\right)$ and $q_{1}=p o I_{1}$.

Discussion: When I_{1} is determined by equality constraints, (37) holds whether or not ($p \circ I_{1}$) $\in \mathbb{V}_{2}$ (compare with Property 4). Property 13 is important for applications in which constraint information arrives piecemeal, and states that intermediate posteriors can be used as priors in computing final posteriors without affecting the results. Like (33) and (36), the triangle equality (38) is important for applications in which cross-entropy minimization is used for purposes of classification and pattern recognition.

As an example of Property 13, we consider minimum cross-entropy spectral analysis [8]. If one describes a sochastic, band-limited, discrete-spectrum
signal in terms of a probability density $q^{\boldsymbol{p}}(\underline{x})=q^{\boldsymbol{p}}\left(x_{1}, \ldots, x_{n}\right)$, where x_{k} is the energy at frequency f_{k}, known values of the autocorrelation function can be expressed as expectations of $q^{\boldsymbol{\uparrow}}$, namely,

$$
R_{r}=\int d x\left(\sum_{k} 2 x_{k} \cos \left(2 \pi t_{r} f_{k}\right)\right) q_{q}^{t}(x)
$$

where R_{r} is the autocorrelation sample at lag t_{r}. Let I_{1} be a limited set of autocorrelation R_{1}, \ldots, R_{m}. Then, for a prior P_{W} with a flat (white) power spectrum $P_{k}=\int d x_{N} x_{k} p_{W}(x)=P$, the power spectrum of the posterior $q_{L P C}=P_{W} \circ I_{1}$ is just the mch-order maximum entropy or Linear Predictive Coding (LPC) spectrum [8]. Let I_{2} be the set of autocorrelation samples R_{m+1}, R_{m+2}, \ldots that together with I_{1} fully determine the power spectrum of \mathbf{q}^{\dagger}. Then (37) yields $\mathrm{q}_{\mathrm{F}}=\mathrm{P}_{\boldsymbol{W}} 0\left(\mathrm{I}_{1} \wedge I_{2}\right)=\mathrm{q}_{\mathrm{LPC}}{ }^{\circ}\left(\mathrm{I}_{1} \wedge I_{2}\right)$. Proof of 13: The density q_{1} has the form (A.4),

$$
q_{1}(x)=p(x) \exp \left(-\lambda_{0}-\sum_{k=1}^{m} \lambda_{k} a_{k}(x)\right) .
$$

For an arbitrary density $q \in D$, the cross-entropy with respect to q_{1} satisfies

$$
\begin{aligned}
H\left[q, q_{1}\right] & =\int d x q(x) \log \frac{q(x) \exp \left[\lambda_{0}+\sum_{\sim} \lambda_{k} a_{k}(x)\right]}{p(x)} \\
& =H[q, p]+\lambda_{\sim}+\int\left(\underset{\sim}{x} q(x) \sum_{k} \lambda_{k} a_{k}(x)\right.
\end{aligned}
$$

If q satisfies $q \in \mathbb{1}_{1}$, this becomes

$$
\begin{equation*}
H\left[q, q_{1}\right]=H[q, p]+\lambda_{0}+\sum_{k} \lambda_{k} \bar{a}_{k} \tag{39}
\end{equation*}
$$

where λ_{0}, λ_{k}, and \bar{a}_{k} are constants. Since $H\left[q, q_{1}\right]$ and $H[q, p]$ differ by a constant on $\mathcal{1}_{1}$, it follows that they have the same minima on any subset
of \mathcal{l}_{1}. Since $\left(\mathcal{f}_{1} \not f_{2}\right) S \mathcal{S}_{1}$ holds, this proves (37). Moreover, (39) and (A.S) yield (38), which is also a special case of (33).

Property 14. Suppose there are two underlying probability densities q_{1}^{\dagger} and q_{2}^{t}. Let I_{1} and I_{2} stand respectively for the sets of equality constraints

$$
\begin{equation*}
\int d x f_{i}(x) q_{1}^{\dagger}(x)=F_{i}^{(1)} \quad(i=1, \ldots, m) \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\int d x f_{i}(x) q_{2}^{\dagger}(x)=F_{i}^{(2)} \quad(i=1, \ldots, s) \tag{41}
\end{equation*}
$$

where $s \geqslant m$. Then

$$
\begin{equation*}
\left(p \circ I_{1}\right) \circ\left(I_{2}\right)=p \circ I_{2} \tag{42}
\end{equation*}
$$

holds. Moreover, if $\lambda_{k}^{(1)}, \lambda_{k}^{(12)}$, and $\lambda_{k}^{(2)}$ are the Lagrangian multipliers associated with $q_{1}=p^{\circ} I_{1}, q_{12}=q_{1} \circ I_{2}$, and $q_{2}=p o I_{2}$, respectively, then

$$
\begin{array}{ll}
\lambda_{k}^{(2)}=\lambda_{k}^{(1)}+\lambda_{k}^{(12)} & (k=0,1, \ldots, m) \\
\lambda_{k}^{(2)}=\lambda_{k}^{(12)} & (k=m+1, \ldots, s) \tag{44}
\end{array}
$$

and

$$
\begin{equation*}
H\left[q_{2}, p\right]=H\left[q_{2}, q_{1}\right]+H\left[q_{1}, p\right]+\sum_{r=1}^{m} \lambda_{r}^{(1)}\left(F_{r}^{(1)}-F_{r}^{(2)}\right) \tag{45}
\end{equation*}
$$

also hold.
Discussion: Property 10 can apply to situations in which $\boldsymbol{q}_{1}^{\dagger}$ and q_{2}^{\dagger} are system probability densities at different times and in which q_{1}^{\dagger} or estimates of q_{1}^{\dagger} are considered to be good estimates of q_{2}^{\dagger}. If I_{2} is determined in
part by expectations of the same functions as I_{1}, but with different expected values, then the results of taking I_{1} into account are completely wiped out by subsequently taking I_{2} into account. As an example, consider frame-by-frame minimum cross-entropy apectral analysis in which I_{i} is determined by autocorrelation samples in frame i at a fixed aet of lags (s m m). Eq. (42) shows that the results for frame i are the same whether the assumed prior is an original prior p, the posterior from frame $i-1$, or some intermediate estimate. (However, there may be computational or bandwidth-reduction advantages to using poI ${ }_{i-1}$ as a prior in frame i.) Note that, if $s \geqslant m$ and $F_{r}^{(1)}=F_{r}^{(2)}$ for $r=1, \ldots, m$, Property 14 reduces to Property 13.

Proof of 14: From (A.4) we have

$$
q_{1}(\underset{\sim}{x})=p(x) \exp \left(-\lambda_{0}^{(1)}-\sum_{k=1}^{m} \lambda_{k}^{(1)} a_{k}^{(x)}\right),
$$

where the $\lambda_{k}^{(1)}$ are chosen to satisfy the constraints (40). Similarly,

$$
q_{12}(x)=q_{1}(x) \exp \left(-\lambda_{0}^{(12)}-\sum_{k=1}^{s} \lambda_{k}^{(12)} a_{k}(x)\right)
$$

holds. This is of the form $p(x) \exp \left[-\lambda_{0}^{(2)}-\sum_{k} \lambda_{k}^{(2)} a_{k}(x)\right]$, with $\lambda_{k}^{(2)}=\lambda_{k}^{(1)}+\lambda_{k}^{(12)}(k=1, \ldots, m)$ and $\lambda_{k}^{(2)}=\lambda_{k}^{(12)}$ ($k=m+1, \ldots, s$), and it is a probability density satisfying the constraints (41); it is therefore equal to $p \circ I_{2}=q_{2}$, which proves (43)-(44). Eq. (45) follows from straightforward applications of (A.5).

Property 15 (expected value matching): Let I be the constraints

$$
\begin{equation*}
\int_{\underset{\sim}{D}} d_{\sim}^{x} q^{\dagger}(\underset{\sim}{x}) f_{k}(x)=\bar{f}_{k} \quad(k=1, \ldots, m) \tag{46}
\end{equation*}
$$

for a fixed set of functions f_{k}, and let $q=p \circ I$ be the result of taking this information into account. Then, for an arbitrary fixed density $q^{*} \in \mathcal{D}$, the cross entropy $H\left[q^{*}, q\right]=H\left[q^{*}, p^{\circ} I\right]$ has a minimum value when the constraints (46) satisfy

$$
\bar{f}_{k}=\bar{f}_{k}^{*}=\int_{\underset{\sim}{D}} d_{\sim} q^{*}(x) f_{k}(x) .
$$

Discussion: This property states that, for a density q of the general form (A.4), $H\left[q^{*}, q\right]$ is smallest when the expectations of q match those of q^{*}. In particular, note that $q=p \circ I$ is not only the density that minimizes $\mathrm{H}[\mathrm{q}, \mathrm{p}]$, but also is the density of the form (A.4) that minimizes $H\left[q^{\dagger}, q\right]$! Property 15 is a generalization of a property of orthogonal polynomials [10] that, in the case of speech analysis, is called the "correlation matching property" [9, Chapter 2].

Proof of 15: The cross-entropy $\mathrm{H}\left[\mathrm{q}^{*}, \mathrm{q}\right]$ is given by

$$
\begin{align*}
H\left[q^{*}, q\right] & =\int_{\underset{\sim}{D}} d x q^{*}(\underset{\sim}{x}) \log (q *(x) / q(\underset{\sim}{x})) \\
& =\int_{\sim}^{d x} q^{*}(\underset{\sim}{x}) \log (q *(\underset{\sim}{x}) / p(\underset{\sim}{x}))+\int d x_{\sim}^{x} q^{*}(x)\left(\lambda_{0}+\sum_{k} \lambda_{k} f_{k}(x)\right) \\
& =\int d x \underset{\sim}{d} q_{\sim}^{*}(\underset{\sim}{x}) \log (q *(\underset{\sim}{x}) / p(\underset{\sim}{x}))+\lambda_{0}+\sum_{k} \lambda_{k} \overline{\mathcal{F}}_{k}^{*}, \tag{47}
\end{align*}
$$

where we have used (A.4). Now, since the mitipliers $\boldsymbol{\lambda}_{k}$ are functions of the expected values \vec{f}_{k}, variations in the expected values are equivalent to variations in the multipliers. Hence, to find the ainimum of $\mathrm{H}\left[\mathrm{q}^{\star}, \mathrm{q}\right]$, we solve

$$
\frac{\partial}{\partial \lambda_{k}} H\left[q^{*}, q\right]=0=\frac{\partial \lambda_{0}}{\partial \lambda_{k}}+\bar{f}_{k}^{*},
$$

where we have used (47). It follows from (A.9) that the minimum occure when $\bar{f}_{\mathbf{k}}=\overline{\mathbf{f}}_{\mathbf{k}}^{\boldsymbol{k}}$ 。

V. GENERAL DISCUSSION

Property 1 and Eqs. (12), (14), and (16) are the inference axions on which the derivation in [4] is based. It is important to recognize that it is these inference properties, and not the corresponding cross-entropy properties (Eqs. (13), (15), and (17)) that characterize cross-entropy minimization. For more information on this distinction, see [4, Section VI] and [5].

An interesting aspect of the results presented in this paper is the interplay between properties of cross-entropy minimization as an inference procedure and properties of cross-entropy as an information measure. Cross-entropy's well-known [1] and unique [5] properties as an information measure in the case of arbitrary probability densities are extended and strengthened when one of the densities involved is the result of cross-entropy minimization. (See the statement and discussion of Properties 10, 11, 12, 13, and 15.) Indeed, the resulting combined properties have led to a new information-theoretic method of pattern analysis and classification [11] that is a refinement of a method due to Kullback (1, p. 83).

VI. acknowledgerients

We thank Jacob Feldman for suggesting Property 9; we thank Bernard 0 . Koopman and a referee for drawing our attention to technical issues concerning the existence of minimum cross-entropy posteriors.

APPERDIX A

Mathematics of Crose-Entropy Minimization

We derive the general solution for cross-entropy minimisation given arbitrary constraints, and we illustrate the result with the important cases of exponential and Gaussian densities. In general, however, it is difficult or impossible to obtain a closed-form, analytic solution expressed directly in terms of the known expected values rather than in terms of the Lagrangian multipliers. We therefore discuss a numerical technique for obtaining the solution, namely the Newton-Raphson method. This method is the basis for a computer program that solves for the minimum cross-entropy posterior given an arbitrary prior and arbitrary expected-value constraints.

Given a positive prior density p and a finite set of equality constraints

$$
\begin{align*}
& \int q(x) d x_{\sim}=1, \tag{A.1}\\
& \int f_{k}(x) q(x) d \underset{\sim}{x}=\bar{f}_{k}, \quad(k=1, \ldots, m), \tag{A.2}
\end{align*}
$$

we wish to find a density q that minimizes

$$
H[q, p]=\int q(x) \log \frac{q(x)}{p(x)} d x,
$$

subject to the constraints. For conditions that imply the existence of a unique minimum, see the discussion of Property 1 (uniqueness). One standard method for seeking the minimum is to introduce Lagrangian multipliers β and $\lambda_{k}(k=1, \ldots, m)$ corresponding to the constraints, forming the expression

$$
\int q(x) \log \frac{q(x)}{p(x)} d x+\beta \int q(x) d x+\sum_{\sim}^{m} \lambda_{k} \int f_{k}(x) q(x) d x,
$$

and to equate the variation, with respect to 9 , of this quantity to sero:

$$
\begin{equation*}
\log \frac{g(x)}{p(x)}+1+\beta+\sum_{k=1}^{\sum} \lambda_{k} f_{k}(x)=0 . \tag{A.3}
\end{equation*}
$$

Solving for q leads to

$$
\begin{equation*}
q(x)=p(x) \exp \left(-\lambda_{0}-\sum_{k=1}^{m} \lambda_{k} f_{k}(x)\right), \tag{A.4}
\end{equation*}
$$

where we have introduced $\lambda_{0}=\beta+1$.
In fact, the q, if it exists, that minimises $G[q, p]$ has this form with the possible exception of aet $\underset{\sim}{S}$ of points on which the constraints imply that q vanishes. (Such a situation would arise, for instance, if we had a constraint
 Informally, we could then imagine the Lagrangian multipliers becoming infinite in such a way that the argument of exp in (A.4) becomes - when $x_{\infty} \in \mathrm{g.O}_{\mathrm{o}}$) Conversely, if density q is found that is of this form and atisfies the constraints, then the minimu-cross-entropy density exists and equals q [6], [1]. For simplicity in the following, we assume the set \mathbf{g}_{N} is empty.

The cross-entropy at the minimus can be expressed in terma of the λ_{k} and the \vec{f}_{k} by multiplying (A.3) by $q(x)$ and integrating. The result is

$$
\begin{equation*}
H[q, p]=-\lambda_{0}-\sum_{k=1}^{m} \lambda_{k} \bar{f}_{k} . \tag{A.5}
\end{equation*}
$$

It is necessary to choose λ_{0} and the λ_{k} so that the conetraints are satisfied. In the presence of the constraint (A.1) we may rewrite the remaining constraints in the form

$$
\begin{equation*}
\int\left(f_{k}(x)-\bar{f}_{k}\right) q(x) d x=0 \tag{A.6}
\end{equation*}
$$

Now, if we find values for the $\boldsymbol{\lambda}_{k}$ such that

$$
\int\left(f_{i}(x)-\bar{f}_{i}\right) p(x) \exp \left(-\sum_{k=1}^{m} \lambda_{k} f_{k}(x)\right) d x=0,(i=1, \ldots, m), \quad \text { (A.7) }
$$

we are assured of satisfying (A.6); and we can then satisfy (A.1) by setting

$$
\begin{equation*}
\lambda_{0}=10 g \int p(x) \exp \left(-\sum_{N}^{m} \lambda_{k} f_{k}(x)\right) \underset{\sim}{d x} . \tag{A.8}
\end{equation*}
$$

If the integral in (A.8) can be performed, one can sometimes find values for the λ_{k} from the relations

$$
\begin{equation*}
-\frac{\partial}{\partial \lambda_{k}} \lambda_{0}=\bar{f}_{k} \tag{A.9}
\end{equation*}
$$

The situation for inequality constraints is only slightly more complicated. Suppose we replace all the equal aigna in (A.2) by \leqslant. (We lose no generality thereby: we can change inequalities with \geqslant into inequalities with \leqslant by changing the signs of the corresponding f_{k} and \bar{f}_{k}, and any equality constraint is equivalent to a pair of inequality constraints.) The q that minimizes $H(q, p)$ subject to the resulting constraints will in general satisfy equality for certain values of k in the modified (A.2), while strict inequality will hold for the rest. We can still use the solution (A.4), subjecting the Lagrange multipliers to the conditions $\lambda_{k} \leqslant 0$ for k such that equality holds in the constraint, and $\lambda_{k}=0$ for k such that strict inequality holds in the constraint.

It unfortunately is usually impossible to solve (A.7) or (A.9) for the λ_{k} explicitly, in closed form; however, it is possible in certain important apecial cases. For example, consider the case in which the prior $p(x)$ is a multivariate exponential,

$$
\begin{equation*}
p(x)=\prod_{N=1}^{n}\left(1 / a_{k}\right) \exp \left[-x_{k} / a_{k}\right], \tag{A.10}
\end{equation*}
$$

where $\underset{\sim}{x}=\left(x_{1}, \ldots, x_{n}\right)$ and the x_{k} each range over the positive real line, and in which the constraints are

$$
\begin{equation*}
\int d x_{k} x_{k} q(x)=\bar{x}_{k}, \tag{A.11}
\end{equation*}
$$

$k=1, \ldots, n . S o l v i n g(A .9)$ in order to express the minimum cross-entropy posterior directly in terms of the known expected values \bar{x}_{k} yields

$$
\begin{equation*}
q(x)=\prod_{N}\left(1 / \bar{x}_{k}\right) \exp \left[-x_{k} / \bar{x}_{k}\right] . \tag{A.12}
\end{equation*}
$$

Thus, the density remains multivariate exponential, with the prior mean values a_{k} being replaced by the newly learned values \bar{x}_{k}.

Now consider the case in which the x_{k} range over the entire real line, and in which the prior density is Gaussian,

$$
p(x)=\prod_{k}\left(2 \pi b_{k}\right)^{-1 / 2} \exp \left[-\left(x_{k}-a_{k}\right)^{2} / 2 b_{k}\right] .
$$

Suppose that the constraints are (A.11) and

$$
\int d x_{\sim}\left(x_{k}-\bar{x}_{k}\right)^{2} q(x)=v_{k}
$$

In this case the minimum cross-entropy posterior is

$$
q(x)=\prod_{\sim}\left(2 \pi v_{k}\right)^{-1 / 2} \exp \left[-\left(x_{k}-\bar{x}_{k}\right)^{2} / 2 v_{k}\right] .
$$

Thus, the density remains multivariate Gaussian, with the prior meane and variances being replaced by the newly learned values.

Here is an example of a eimple problem for which the eolution of (A.7) cannot be expressed in closed form. Consider a discrete system with a states x_{j} and prior probabilities $p\left(x_{j}\right)=p_{j}(j=1, \ldots, n)$. The discrete form of (A.1) is

$$
\begin{equation*}
\sum_{j=1}^{n} q_{j}=1 \tag{A.13}
\end{equation*}
$$

where $q_{j}=q\left(x_{j}\right)$. Suppose the only other constraint is that the mean m of the indices j is prescribed: $f\left(x_{j}\right)=j$, and

$$
\begin{equation*}
\sum_{j=1}^{n} j q_{j}=m \tag{A.14}
\end{equation*}
$$

Then (A.4) becomes $q_{j}=p_{j} \exp \left[-\lambda_{0}-\lambda_{j}\right]$, which we write as $q_{j}=a p_{j} z^{j}$ by introducing the abbreviations $z=\exp \left[-\lambda_{0}\right]$ and $z=\exp [-\lambda]$. From (A.16) and (A.17) we then obtain

$$
a=\left(\sum_{j=1}^{n} p_{j} z^{j}\right)^{-1}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{n}(j-m)_{p_{j}} z^{j}=0 \tag{A.15}
\end{equation*}
$$

The problem then reduces to finding a positive root of the polynomial in (A.15). As in the continuous case, there are special forms for the prior that lead to important particular solutions. But when $n>5$, the roots of the polynomial (other than zero) cannot in general be written as explicit, closed-form expressions in the coefficients for arbitrary priors. Mumerical methods of solution therefore become important. Our obtaining a polynomial
equation in the present example was an accidental consequence of the fact that the values of the constraint function f formed a abset of an arithmetic progreasion ($\mathbf{j}=1,2, \ldots$). Thus, for more general typee of problean, mumerical methods are even more important.

One such method is the Newton-Raphson method, which is for finding solutions for aystems of equations that, like (A.7), are of the form

$$
\begin{equation*}
F_{i}\left(\lambda_{1}, \ldots, \lambda_{\mathbf{m}}\right)=0, \quad(i=1, \ldots, m) \tag{A.16}
\end{equation*}
$$

The method sterts with an initial guess at the solution, $\lambda^{(1)}=\left(\lambda_{1}^{(1)}, \ldots, \lambda_{m}^{(1)}\right)$, and produces further approximate solutions $\lambda^{(2)}, \lambda^{(3)}, \ldots$ in succession. If the initial guese $\lambda^{(1)}$ is close enough to a solution of (A.16), if the \mathbf{F}_{i} are continuously differentiable, and if the Jacobian $\left[\partial F_{i} / \partial \lambda_{j}\right]$ is nonsingular, then the $\lambda_{0}^{(r)}$ will converge to the solution in the limit as $r \rightarrow \infty$.

The method is based on the fact that, for amall changes $\Delta \lambda^{(x)}$ in the arguments $\lambda^{(r)}$, we have the approximate equality

$$
F_{i}\left(\lambda^{(r)}+\Delta \lambda^{(r)}\right) \approx F_{i}\left(\lambda^{(r)}\right)+\sum_{k=1}^{m} \frac{\partial F_{i}\left(\lambda^{(r)}\right)}{\partial \lambda_{k}^{(r)}} \Delta \lambda_{k}^{(r)}
$$

up to a term of order $o\left(\Delta \lambda^{(r)}\right.$). We therefore take $\Delta \lambda^{(r)}$ to be a solution of the linear equation

$$
\begin{equation*}
\sum_{k=1}^{m} \frac{\partial F_{i}\left(\lambda^{(r)}\right)}{\partial \lambda_{k}^{(r)}} \Delta \lambda_{k}^{(r)}=-F_{i}\left(\lambda_{\sim}^{(r)}\right) \tag{A.17}
\end{equation*}
$$

and set $\lambda^{(r+1)}=\lambda^{(r)}+\Delta \lambda^{(r)}$. In applying the Rewton-Raphson method to cross-entropy minimization, we let $\mathrm{F}_{\mathrm{i}}(\lambda)$ be proportional to the diacrete form of the left-hand side of (A.7); we set

$$
\begin{align*}
& {F_{i}}\left(\lambda^{(r)}\right)=\sum_{j=1}^{n} f_{i j} P_{j} \exp \left(-\sum_{u=1}^{m} \lambda_{u}^{(r)} f_{u j}\right), \tag{A.18}\\
& \frac{\partial F_{i}\left(\lambda_{\mu}^{(r)}\right)}{\partial \lambda_{k}}=-\sum_{j=1}^{n} f_{i j} f_{k j} p_{j} \exp \left(-\sum_{u=1}^{m} \lambda_{u}^{(r)} f_{u j}\right), \tag{A.19}
\end{align*}
$$

where $f_{i j}=f_{i}\left(x_{j}\right)-\bar{f}_{i}$, and we have removed a factor of $\exp \left[-\sum_{u} \lambda_{u}^{(r)}{\underset{f}{u}}\right]$. With the abbreviation

$$
g_{j}=p_{j}^{1 / 2} \exp \left(-\frac{1}{2} \sum_{u=1}^{m} \lambda_{u}^{(r)} f_{u j}\right),
$$

we express the right-hand sides of (A.18) and (A.19) in matrix notation as $[\underset{\sim}{f} \operatorname{diag}(\underset{\sim}{g}) \underset{\sim}{g}]_{i}$ and $\left[\underset{\sim}{f} \operatorname{diag}(\underset{\sim}{g})^{2}{\underset{\sim}{f}}^{t}\right]_{i k}$, respectively, where diag(g) is the diagonal matrix whose diagonal elements are the \boldsymbol{g}_{j}, and \boldsymbol{f}^{t} is the transpose of $\underset{\sim}{f}$. The solution of (A.17) is then given by

$$
\Delta \lambda^{(x)}=\left[\left(\underset{\sim}{f} \operatorname{diag}(\underset{\sim}{g})^{2}{\underset{\sim}{f}}^{t}\right)^{-1} \underset{\sim}{f} \operatorname{diag}(\underset{\sim}{g})\right] \underset{\sim}{g}
$$

We remark that the quantity in brackets is the Moore-Penrose generalized inverse [12] of the matrix $\underset{\sim}{f}$ diag(g). The approach just described has been made the basis for a computer program [13], written in APL, for solving cross-entropy minimization problems with arbitrary positive discrete priors p and equality constraints specified by matrices $\underset{\sim}{f}$. The approach ia particularly convenient for programing in APL since the generalized inverse is a built-in APL primitive function [14]. To solve a minimum-cross-entropy problem with 500 states and 10 constraints, the program typically requires 15 seconds of CPU time when running under the APL SF interpreter on a DEC-10 system with a KI central processor.

Gokhale and Kullback [15] deacribe a somewhat different algorithm, also based on the Newton-Rapheon method, that has been implemented in PL/I. Afmon, Alhassid, and levine [16],[17] describe yet another crose-entropy minimization algorithmand andran implenentation. Tribus [7] presents prograse in BABIC that compute singly and doubly trucated Gausian dietributions as maxima entropy distributions with preacribed means and variances.

APPEADIX B

Remark on the Discunaion of Property 12

In the discussion of Property 12, it was stated that for any prior p and any density $r \in D$ with $\mathrm{H}(\mathrm{r}, \mathrm{p})<\infty$, there exists a finite eet of equality constraints I_{r} uch that $r=\operatorname{poI}_{r}$. In fact, at moet two are needed. Let

$$
\begin{aligned}
& f_{1}(x)= \begin{cases}0, & r(x) \neq 0 \\
1, & r(x)=0,\end{cases} \\
& \bar{f}_{1}=0, \\
& f_{2}(x)= \begin{cases}\log (p(x) / r(x)), & r(x) \neq 0 \\
0, & r(x)=0,\end{cases} \\
& \bar{f}_{\sim}=-H(r, p),
\end{aligned}
$$

and impose constraints

$$
\begin{aligned}
& \int q(\underset{\sim}{x}) f_{1}(\underset{\sim}{x}) d x=\bar{f}_{1}, \\
& \int q(\underset{\sim}{x}) f_{2}(\underset{\sim}{x}) d x=\bar{f}_{\sim} .
\end{aligned}
$$

The first constraint implies $(p o I)(x)=0$ where $r(x)=0$. On the complementary set, where $r(x) \neq 0$, define $q(x)$ by (A.4) with all $\lambda_{j}=0$ except $\lambda_{2}=1$; this gives a function q that satisfies the second constraint as well as the first and also agrees with r. Hence $r=q$ is the result of minimizing $H(q, p)$ with respect to (B.1) and (B.2).

REFERENCES

1. S. Rullback, Information Theory and Statistics, Wiley, New York, 1959.
2. E.T. Jaynes, "Information Theory and Statistical Mechanics I", Phys. Rev. 106, 1957, Pp.620-630.
3. W.M. Elsasser, "On Quantum Measurements and the Role of the Uncertainty Relations in Statistical Mechanics," Phys. Rev. 52, (Nov. 1937), Pp. 987-999.
4. J.E. Shore and R.W. Johnson, "Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy," IEEE Trans. Inf. Theory, vol. IT-26, no. 1, Jan. 1980.
5. R.W. Johnson, "Axiomatic Characterization of the Directed Divergences and Their Linear Combinations," IEEE Trans. Inf. Theory, vol. IT-25, no. 6, pp. 709-716, Nov. 1979.
6. I. Csiszár, "I-Divergence Geometry of Probability Distributions and Minimization Problems," Ann. Prob., vol. 3, PP. 146-158, 1975.
7. M. Tribus, Rational Descriptions, Decisions, and Designs, Pergamon Press, New York, 1969.
8. J.E. Shore, "Minimum Cross-Entropy Spectral Analyais," NRL Memorandum Rept. 3921, Naval Research Laboratory, Washington, D.C. 20375, January, 1979.
9. J.D. Markel and A.H. Gray, Jr., Linear Prediction of Speech, New York, Springer-Verlag, 1976.
10. L. Geronimus, Orthogonal Polynomiale, Consultants Bureau, New York, 1961.
11. J.E. Shore and R.M. Gray, "Optimal Information-Theoretic Pattern Classification and Coding," in preparation.
12. A.E. Albert, Regression and the Moore-Penrose Pseudoinverse, Academic Press, N. Y. 1972.
13. R.W. Johnson, "Determining Probability Distributions by Maximum Entropy and Minimum Cross-Entropy," Proceedings APL79, Pp. 24-29.
14. M.A. Jenkins, "The Solution of Linear Systems of Equations and Linear Least Squares Problems in APL," Scientific Center Technical Report No. 320-2989, IBM, N.Y., June, 1970.
15. D.V. Gokhale and S. Kullback, The Information in Contingency Tables, Marcel Dekher, New York, 1978.
16. Y. Alhassid, N. Agmon, and R.D. Levine, "An Upper Bound for the Entropy and its Applications to the Maximal Entropy Problem,", Chem. Phys. Lett. 53, no. 1, 1978, pp. 22-26.
17. N. Agmon, Y. Alhassid, and R.D. Levine, "An Algorithm for Finding the Distribution of Maximal Entropy," J. Comput. Phys. 30, 1979, pp. 250-258.

