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The estimation of the total of an attribute defined over a continuous pla-
nar domain is required in many applied settings, such as the estimation of
canopy coverage in the Monterano Nature Reserve in Italy. If the design-
based approach is considered, the scheme for the placement of the sample
sites over the domain is fundamental in order to implement the survey. In
real situations, a commonly adopted scheme is based on partitioning the do-
main into suitable strata, in such a way that a single sample site is uniformly
placed (i.e., selected with uniform probability density) in each stratum and
sample sites are independently located. Under mild conditions on the func-
tion representing the target attribute, it is shown that this scheme gives rise
to an unbiased spatial total estimator which is “superefficient” with respect
to the estimator based on the uniform placement of independent sample sites
over the domain. In addition, the large-sample normality of the estimator is
proven and variance estimation issues are discussed.

1. Introduction. Applied scientists frequently deal with attributes defined on
continuous spatial domains. In this framework, if the design-based approach is
assumed, the target attribute may be expressed as a fixed bounded function y tak-
ing values on the study region A (a suitable subset of the plane). In the simplest
case, y(u) may represent the value of the attribute at u ∈ A. As an example, in
an environmental survey, y(u) could be the air-borne pollutant level at the sam-
ple site u on a landscape. In a more structured setting, y(u) may also describe
the “attribute density” arising from the selected spatial sampling design [this topic
is extensively considered and explained in Chapter 10 of Gregoire and Valentine
(2008)]. As an example, by supposing a fixed-radius circular plot sampling in a
forest survey, y(u) could represent the number of trees lying in the plot centered
at the sample site u [up to a known proportionality constant; see Gregoire and
Valentine (2008), pages 328–332]. In this case, under the design-based approach,
the population universe is constituted by a continuum (ideally by the noncountable
set of sample sites on A) and the inference is actually carried out by assuming the
so-called “continuous-population” paradigm. This approach has been extensively
considered in recent years on the basis of the seminal papers by de Gruijter and ter
Braak (1990), Cordy (1993) and Brus and de Gruijter (1997).
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In the described framework, the estimation goal is usually focused on the spatial
total, that is,

T =
∫
A

y(u)du(1.1)

[see, e.g., Stevens (1997) and Chapter 10 of Gregoire and Valentine (2008)]. In-
deed, as emphasized by Stevens (1997), the integral representation in (1.1) em-
braces a general family of population parameters, such as means, proportions or
distribution functions. In order to estimate T , the key problem of the design-based
approach is the selection of an appropriate sampling strategy. As usual, it is as-
sumed that the sampling strategy includes the joint selection of a suitable estimator
and the corresponding scheme for the placement of the n sample sites on the study
region A. Since an integral representation for T holds, it is quite evident that the
estimation problem may be rephrased in terms of the Monte Carlo integration the-
ory. Interestingly, known Monte Carlo integration strategies are equivalent to the
sampling strategies which are commonly adopted in environmental and ecological
studies [Barabesi (2003, 2007), Gregoire and Valentine (2008), page 327]. Similar
Monte Carlo integration approaches to parameter estimation occur in very differ-
ent research areas, such as in stereology [see, e.g., the monograph by Baddeley
and Jensen (2005)] or in computer graphics [see, e.g., Agarwal et al. (2003)].

The basic reference sampling scheme for selecting the sample sites is the Uni-
form Random Sampling (URS), which constitutes the continuous-population ana-
log to simple random sampling from a finite population [Cordy (1993)]. Under
URS, the n sample sites are independently and uniformly selected on A [Fig-
ure 1(a)]. Despite its simplicity, URS may be not suitable in practice since it may
produce an uneven coverage of the study region and the corresponding unbiased
estimator of T displays a variance of order n−1, that is, the variance decreases
to 0 at the rate n−1 as n → ∞. In any case, URS is often considered a helpful
benchmark to compare the performance of more refined schemes.

In order to overcome the drawbacks involved with URS, a sampling scheme
frequently adopted in environmental studies is the so-called Tessellation Stratified
Sampling (TSS) [see, e.g., Stevens (1997) and the U.S. Environmental Protection
Agency (2002), page 63]. The TSS scheme is initially implemented by superim-
posing a suitable set R onto the study region in such a way that A ⊆ R and by
introducing the analytical extension ye of y on R. Formally, the analytical exten-
sion is defined as ye(u) = y(u) if u ∈ A and ye(u) = 0 if u ∈ R \ A. Obviously, in
this setting (1.1) may be conveniently rewritten as T = ∫

R ye(u)du. Subsequently,
a regular tessellation of R is carried out and one sample site is independently and
uniformly selected in each tessellation element [Figure 1(b)]. The theoretical prop-
erties of the TSS scheme have been explained in detail [Barabesi and Marcheselli
(2003, 2005a, 2005b, 2008)]. The scheme gives rise to an unbiased estimator for
T with variance of order n−γ , where γ ∈ (1,2]. Hence, the estimator under TSS
is “superefficient” since its variance decreases to 0 faster than the variance of the
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FIG. 1. Placement of n = 25 sample sites over a study region A according to the URS scheme (a),
the TSS scheme (b), the SGS scheme (c) and the SS scheme based on equal-size strata obtained by
means of the Brus, Spätjens and de Gruijter (1999) algorithm (d). For the TSS and SGS schemes, the
set R is chosen as a rectangle and the tessellation is based on squares, while n represents the mean
number of sample sites in A.

estimator under URS as n → ∞. The parameter γ depends on the degree of regu-
larity of the analytical extension ye: for instance, it turns out that γ = 2 for smooth
functions, but it can occur that γ = 3/2 even for noncontinuous and rather irregular
functions [Barabesi and Marcheselli (2003, 2005a, 2008)]. Hence, the variance of
the estimator for T decreases to 0 faster as ye becomes more regular. In addition,
consistent variance estimation is available if ye is a differentiable function on R

[Barabesi and Marcheselli (2003, 2008)]. In order to avoid the difficulties involved
in the variance estimation, Cordy and Thompson (1995) and Stevens (1997) sug-
gest modifying the TSS scheme by randomly shifting the tessellation. The random-
ized TSS scheme does not involve extra-sampling effort and allows for unbiased
variance estimation without any restriction on the function ye [Stevens (1997)],
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even if the consistency of the variance estimator has not been proved. Barabesi
and Franceschi (2011) show that the TSS scheme and its randomized modification
produce estimators for T with identical variance convergence rates.

A further frequently-considered scheme is Systematic Grid Sampling (SGS),
which constitutes a systematic version of the TSS scheme [see, e.g., Valentine, Af-
fleck and Gregoire (2009) and the U.S. Environmental Protection Agency (2002),
page 70]. The SGS scheme provides the continuous-population analog to system-
atic sampling from a finite population as considered by Madow and Madow (1944)
[see also D’Orazio (2003), as to systematic sampling of a spatial finite population].
Similarly to TSS, the SGS scheme requires a regular tessellation of R and the ex-
tension of the function y on R. However, under SGS, a sample site is uniformly
generated in the reference tessellation element and it is systematically repeated in
the other tessellation elements [see Figure 1(c)]. The SGS scheme is commonly
adopted in stereology and gives rise to an unbiased “superefficient” estimator
for T , under certain smoothness conditions on ye [Cruz-Orive (1993), Baddeley
and Jensen (2005), page 159]. However, the variance of the estimator tends to be
extremely elevated when the periodicity in the function ye is “in phase” with the
tessellation elements [Baddeley and Jensen (2005), Chapter 13].

Even if the TSS and SGS schemes allow for an even coverage of the study
region and give rise to unbiased “superefficient” estimation for T , these schemes
suffer due to two main technical drawbacks which are related to the analytical
extension of y on R. Indeed, the sample sites are actually placed on R (not on A)
and, hence, the number of sample sites on A is a random variable, unless A is
exactly tessellated. Obviously, the tessellation may be selected in such a way that
the mean number of sample sites on A equals the prefixed sample size n [as an
example, this procedure is adopted for Figure 1(b) and (c)]. However, the task is
generally undesirable for field scientists, who usually require reproducible designs.
Moreover, even if the function y is regular on A, the function ye is likely to be
not continuous on the boundary of A (and hence on R), unless y is null on this
boundary. As previously explained, the lack of regularity considerably reduces the
efficiency of the estimators for T .

An alternative way to face the whole setting may be based on stratification meth-
ods involving the “one-per-stratum” placement of the sample sites. More precisely,
under the “one-per-stratum” Stratified Sampling (SS), the study region A is par-
titioned into n suitable strata and one sample site is independently and uniformly
selected in each stratum [Figure 1(d)]. The scheme constitutes the continuous-
population counterpart to the classic “one-per-stratum” stratified sampling in the
finite-population setting [see, e.g., Cochran (1946)]. Moreover, the SS scheme gen-
eralizes the TSS scheme when A coincides with R and the tessellation is noncon-
gruent. The scheme is commonly adopted for environmental and agricultural sur-
veys [see, e.g., Walvoort, Brus and de Gruiter (2010) and the references therein].

In this paper, it is proven that the SS scheme produces an unbiased “supereffi-
cient” estimator for T , which shares the variance properties of the estimator under
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the TSS scheme. However, in contrast with the TSS and SGS schemes, when the
SS scheme is adopted the n sample sites are exactly placed on A and no analytical
extension of y is introduced. Moreover, in real surveys spatial stratification is often
demanded in practice, owing to geographical or administrative convenience and
tessellation-based methods would not be applicable. In addition, there exist ad hoc
algorithms for partitioning the study region into strata (eventually of the same size)
with suitable geometrical and statistical properties [Brus, Spätjens and de Gruijter
(1999), Walvoort, Brus and de Gruiter (2010)]. Finally, even if schemes with more
than a single sample site per stratum may be considered, it is apparent that the ben-
efits arising from the full force of the stratification are achieved by adopting the
“one-per-stratum” allocation. In any case, the “two-per-stratum” scheme will be
briefly considered since it produces unbiased and consistent variance estimation.

Even if the achieved results may be applied to a broad range of different data sets
collected on a continuous spatial domain, the motivating practical setting of the pa-
per originates from an experiment dealing with canopy coverage estimation in the
Monterano Nature Reserve. Owing to the complex boundary mosaic of this forest,
the estimation approach based on forest polygon delineation and area mensuration
in the GIS environment may produce omission and commission errors (which tend
to be systematic) in the image interpretation. In order to overcome these short-
comings, a survey procedure based on line-intercept sampling which just involves
the measurement of the intersections of linear transects with forest patches is con-
sidered. As to the Monterano Nature Reserve, forest researchers collected data by
placing transect midpoints according to the SS scheme with equal-size strata by
means of the Brus, Spätjens and de Gruijter (1999). Hence, the results of this pa-
per may be suitably applied in order to provide point and interval estimation of
canopy coverage.

2. Spatial total estimation. As pointed out in the Introduction, the bench-
mark for comparing different schemes is the URS and, hence, spatial total estima-
tion under this scheme is briefly described. If U1,U2, . . . ,Un are n i.i.d. random
variables representing the sample-site locations, in such a way that each Ui is uni-
formly distributed on A, the usual unbiased estimator for T under URS [see, e.g.,
Cordy (1993)] is

T̃n = a(A)

n

n∑
i=1

y(Ui),(2.1)

where a(·) denotes the area of a set in R
2 (technically, a represents the Lebesgue

measure in R
2). The variance of the estimator in (2.1) is given by

Var[T̃n] = 1

n

(
a(A)S − T 2)

,

where S = ∫
A y(u)2 du, and, hence, it turns out that Var[T̃n] = O(n−1). As usual,

if {an} and {bn} represent two positive sequences, an = O(bn) means that the ratio
an/bn is bounded for all n.
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Under the SS scheme, the study region A is partitioned in n strata A1,A2, . . . ,

An, in such a way that each stratum is connected and compact (in a topologi-
cal sense), and one sample-site location is independently and uniformly selected
in each stratum. Therefore, let us suppose that the sample-site locations are rep-
resented by the random variables V1,V2, . . . , Vn. According to the continuous
Horvitz–Thompson Theorem [Cordy (1993)], an unbiased estimator for (1.1) un-
der SS is

T̂n =
n∑

i=1

a(Ai)y(Vi)(2.2)

with variance

σ 2
n = Var[T̂n] =

n∑
i=1

a(Ai)
2 Var[y(Vi)] =

n∑
i=1

a(Ai)Si −
n∑

i=1

T 2
i ,

where Ti = ∫
Ai

y(u)du and Si = ∫
Ai

y(u)2 du.
In order to assess the variance properties of the estimator in (2.2), let us assume

that y is a Hölder function on A, that is, a function satisfying the condition

|y(u) − y(v)| ≤ H‖u − v‖α,

where H < ∞, α ∈ (0,1] and u, v ∈ A, while ‖ · ‖ denotes the usual norm in R
2,

that is, ‖u − v‖ denotes the distance between the points u and v. Obviously, y re-
duces to a Lipschitz function for the special case α = 1. The family of Hölder func-
tions is very large [for more details, see, e.g., Evans (2010), page 254]. Indeed, it is
at once apparent that Hölder functions are continuous. In addition, from the above
definition, it also follows that the family of Hölder functions contains the family
of Lipschitz functions, which in turn contains the family of continuously differ-
entiable functions. Informally speaking, the Hölder condition quantifies the local
variation of the function y, in such a way that the index α may be interpreted as the
corresponding “degree of local continuity.” Hence, the family of Hölder functions
encompasses “smooth” functions, as well as functions displaying a very irregular
behavior. As a matter of fact, there exist Hölder functions which are continuous,
but nowhere differentiable.

By assuming that

diam(B) = sup
u,v∈B

‖u − v‖

represents the diameter of a given set B , that is, the largest distance between two
points in B , let

dn = max
i=1,2,...,n

diam(Ai)

be the maximum diameter of the Ai ’s. Hence, let us consider the condition

d2
n ≤ bn−1,(2.3)
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where b > 0 is a bounded constant. Since

a(Ai) ≤ diam(Ai)
2 ≤ d2

n, i = 1,2, . . . , n,

condition (2.3) implies that

a(Ai) ≤ bn−1, i = 1,2, . . . , n.

In addition, let us also consider the condition

a(Ai) ≥ cn−1, i = 1,2, . . . , n,(2.4)

where c > 0 is a bounded constant. It should be remarked that condition (2.3)
simply requires that the stratification be performed by assuming quite “homoge-
neous” strata, that is, avoiding strata having “stretched” shapes and in such a way
that no “large” strata are admitted as n → ∞. In addition, condition (2.4) actually
ensures that too “small” strata are in turn avoided as n → ∞. These requirements
are likely to hold for practical choices of A1,A2, . . . ,An. Obviously, condition
(2.4) is always satisfied with equal-size strata, that is, when a(Ai) = a(A)/n for
i = 1,2, . . . , n.

On the basis of Result 1 in the Appendix, by assuming that y is a Hölder func-
tion and that condition (2.3) holds, it turns out that

σ 2
n = O(n−1−α).

Hence, the SS scheme may lead to a noticeable estimation improvement with re-
spect to the basic URS scheme. The best variance order n−2 is achieved when y is
a Lipschitz function. In any case, the SS scheme produces more efficient estima-
tion with respect to URS for each α value as n → ∞. The gain may be remarkable
since in many real surveys α is likely to be about one—for example, as to the
canopy coverage estimation considered in Section 4; see the discussion after the
formula in (4.1).

The achieved variance properties may be extended to a larger class of functions.
More precisely, let y be a piecewise Hölder function on A, that is, there exists a
finite partition of A in such a way that y is a Hölder function on each partition
element and the partition boundary is rectifiable, that is, in practical terms the
boundary is “smooth.” This setting is of real interest, since y often belongs to
this function family when y represents the “attribute density” as defined in the
Introduction. Thus, by assuming that y is a piecewise Hölder function and that
condition (2.3) holds, on the basis of Result 2 in the Appendix, it turns out that

σ 2
n = O

(
n−min(1+α,3/2)).

Hence, even if the gain is lessened owing to the discontinuity of the function y, the
performance of the SS scheme is in turn considerable. In this case, the best variance
order n−3/2 is achieved when y is a piecewise Hölder function with α ≥ 1/2. In
turn, the SS scheme is preferable with respect to the URS scheme for each α.
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As to the large-sample normality of the estimator in (2.2), on the basis of Re-
sult 3 in the Appendix, by assuming that y is a Hölder function and that conditions
in (2.3) and in (2.4) hold, it follows that

T̂n − T

σn

L−→ N(0,1)

as n → ∞. This convergence result holds even if y is a piecewise Hölder function
(see Remark 2 in the Appendix). These findings on the variance properties and the
large-sample normality of the estimator in (2.2) are in complete agreement with
the results obtained by Barabesi and Marcheselli (2003, 2005a, 2008) and Barabesi
and Franceschi (2011) under TSS. Indeed, the TSS scheme may be considered a
special case of the SS scheme when A coincides with R and the strata correspond
to the elements of the tessellation.

It should be finally emphasized that for each n the variance of the estimator
under URS is greater than or equal to the variance of the estimator under SS when
the strata are of the same size, that is, it holds that

Var[T̃n] ≥ Var[T̂n].
Indeed, in this case the previous inequality is verified since T = ∑n

i=1 Ti and S =∑n
i=1 Si , while the inequality

n∑
i=1

T 2
i ≥ 1

n

(
n∑

i=1

Ti

)2

obviously holds.

3. Variance estimation. The estimation of σ 2
n is not a trivial task, since a

single observation per stratum is available and the strata generally do not consti-
tute a regular tessellation, that is, the strata display different sizes and shapes. In
such a setting, estimators relying on contrast-based techniques—such as the pro-
posals by Barabesi and Marcheselli (2003, 2008) under TSS or the proposal by
Stevens and Olsen (2003) under randomized TSS—seem quite difficult to imple-
ment. However, a simple estimator may be obtained by treating the sample as if it
were obtained under the URS scheme. A similar procedure is suggested by Stevens
and Olsen (2003) under the randomized TSS scheme. Hence, a naïve estimator for
σ 2

n is given by

σ̂ 2
n = n

n − 1

n∑
i=1

(
a(Ai)y(Vi) − T̂n

n

)2

.(3.1)

Since

E[σ̂ 2
n ] = σ 2

n + B[σ̂ 2
n ],
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where

B[σ̂ 2
n ] = n

n − 1

n∑
i=1

(
Ti − T

n

)2

(Result 4 in the Appendix), the estimator in (3.1) is positively biased. Moreover, if
y is a Hölder function and condition (2.3) holds, it follows that

B[σ̂ 2
n ] = O(n−1)

(Result 4 in the Appendix). Hence, even if B[σ̂ 2
n ] vanishes for large n, it might be

of a larger order than that of σ 2
n . Moreover, if condition (2.4) holds, on the basis of

Remark 1 in the Appendix, it promptly turns out that

B[σ̂ 2
n ]

σ 2
n

= O(n).

In any case, the behavior of this type of estimator seems quite stable in practice
as emphasized by Stevens and Olsen (2003), even if its use may lead to a marked
overestimation of σ 2

n .
For equal-size strata, an alternative estimator displaying more appealing fea-

tures may be proposed. The suggested estimator is given by

σ̃ 2
n = a(A)2

2n2

(
y(V1)

2 +
n−1∑
i=1

(
y(Vi) − y(Vi+1)

)2 + y(Vn)
2

)
.(3.2)

Since

E[σ̃ 2
n ] = σ 2

n + B[σ̃ 2
n ],

where

B[σ̃ 2
n ] = 1

2

(
T 2

1 +
n−1∑
i=1

(Ti − Ti+1)
2 + T 2

n

)
(Result 5 in the Appendix), the estimator in (3.2) is positively biased. By assuming
that

Dn = max
i=1,2,...,n−1

sup
u∈Ai,v∈Ai+1

‖u − v‖,

let us consider the condition

D2
n ≤ kn−1(3.3)

with k > 0 a suitable bounded constant. Condition (3.3) actually requires that the
stratification be performed by indexing the strata in such a way that Ai and Ai+1
not be “too far” with respect to each other. In practical situations, Ai and Ai+1 may
be generally chosen as “neighbors,” that is, in such a way that they share part of
their boundary. For example, in the case study contained in Section 4, the partition
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elements are equally-sized strata which are indexed in such a way that the ith and
the (i + 1)th strata have a side in common (see Figure 2). If y is a Hölder function
and conditions (2.3) and (3.3) are satisfied, it follows that

B[σ̃ 2
n ] = O(n−1−α)

and

lim sup
n

∣∣∣∣ σ̃ 2
n − E[σ̃ 2

n ]
σ 2

n

∣∣∣∣ = 0

(Result 5 in the Appendix). Hence, the bias order of the estimator in (3.2) is re-
duced with respect to the estimator in (3.1) and B[σ̃ 2

n ] is of the same order as that
of σ 2

n . Moreover, if condition (2.4) holds, and on the basis of Remark 1 in the
Appendix, it follows that

B[σ̃ 2
n ]

σ 2
n

= O(n1−α).

Hence, when y is a Lipschitz function, it turns out that

0 ≤ B[σ̃ 2
n ]

σ 2
n

≤ m,

where m > 0 is a suitable bounded constant, while

1 ≤ lim inf
n

σ̃ 2
n

σ 2
n

≤ lim sup
n

σ̃ 2
n

σ 2
n

≤ 1 + m

(Result 5 in the Appendix), that is, the estimator in (3.2) is large-sample conserva-
tive.

Finally, unbiased and consistent variance estimation is achieved if two sample
sites are placed in each stratum, that is, if the “two-per-stratum” SS scheme is ac-
tually adopted. In this case, let us assume that n is even and that a partition of the
study region into n/2 strata is carried out. Obviously, n is now required to be even
for comparison purposes with respect to the “one-per-stratum” SS scheme. More-
over, let V1,j and V2,j represent the two sample sites uniformly and independently
selected onto the j th stratum (j = 1,2, . . . , n/2). An unbiased estimator for T is
given by

T̂2,n = 1

2

n/2∑
j=1

a(Aj )
(
y(V1,j ) + y(V2,j )

)
,(3.4)

while its variance is

σ 2
2,n = Var[T̂2,n] = 1

2

n/2∑
j=1

a(Aj )
2 Var[y(V1,j )] = σ 2

n/2

2
.
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Hence, an unbiased and consistent estimator for σ 2
2,n is

σ̂ 2
2,n = 1

4

n/2∑
j=1

a(Aj )
2(

y(V1,j ) − y(V2,j )
)2

.(3.5)

Moreover, by considering Result 1 in the Appendix, when condition (2.3) holds it
turns out that

σ 2
2,n = O(n−1−α)

if y is a Hölder function on A, while

σ 2
2,n = O

(
n−min(1+α,3/2)),

if y is a piecewise Hölder function on A. However, even if the “two-per-stratum”
SS scheme provides in turn an unbiased “superefficient” estimator for T , it is at
once apparent that an efficiency loss occurs in using a stratification based on n/2
strata rather than n strata. In addition, if the n/2 strata are split in such a way that
each stratum is partitioned into two substrata of equal sizes and T̂n is computed on
the basis of this stratification, it is promptly shown that Var[T̂2,n] ≥ Var[T̂n] on the
basis of the discussion at the end of Section 2.

4. An application to canopy coverage estimation. In order to illustrate an
application of the SS scheme in an environmental survey, the estimation of the
canopy coverage in the Monterano Nature Reserve has been considered. The Mon-
terano Nature Reserve (which constitutes the study region A in this case) is located
in the central part of Italy (Lazio region) and its geographical boundary is depicted
in Figure 2. The area of the Monterano Nature Reserve is equal to a(A) = 1,045 ha.

If C ⊂ A represents the region inside A covered by vegetation, canopy coverage
is simply defined as the area of C, that is, in this case T = a(C). Canopy cover-
age constitutes a central indicator in forestry, as emphasized by Bonham (1989).
In order to estimate this quantity, replicated line-intercept sampling is commonly
adopted [Barabesi (2007), Barabesi and Marcheselli (2008)]. More precisely, the
replicated line-intercept sampling protocol is carried out by selecting n sample
sites on A and by considering n linear transects of fixed length L with the same
orientation, in such a way that the transect midpoints are centered on each sample
site. According to Barabesi and Marcheselli (2008), the canopy coverage T may
be expressed as the integral of the “attribute density,” that is,

T = a(C) = 1

L

∫
A

l
(
C ∩ t (u)

)
du,

where t (u) represents the set of points in a transect with midpoint centered at the
sample site u, while l(·) denotes the length of a set in R (technically, l represents
the Lebesgue measure in R). In this case, it follows that

y(u) = 1

L
l
(
C ∩ t (u)

)
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FIG. 2. The Monterano Nature Reserve and the corresponding partition in n = 50 strata according
to the SS scheme based on equal-size strata obtained by means of the Brus, Spätjens and de Gruijter
(1999) algorithm.

is the length of the intersection of t (u) with C, up to a known constant. Hence,
if the SS scheme with equal-size strata is adopted, the canopy coverage estimator
reduces to

T̂n = a(A)

Ln

n∑
i=1

l
(
C ∩ t (Vi)

)
,(4.1)

that is, the estimator in (4.1) actually represents the total sum of the intersection
lengths between C and the n transects, up to a known constant. Barabesi and
Marcheselli (2008) remark that if the boundary of C is rectifiable, y is a Hölder
function. Hence, if condition (2.3) holds, it turns out that Var[T̂n] = O(n−1−α).
In particular, if C is given by the union of circles or ellipses, it may be proven
that Var[T̂n] = O(n−2+ε) where ε > 0. Moreover, if C is given by the union of
polygons, it may be proven that Var[T̂n] = O(n−2). Hence, in real settings, the
estimator in (4.1) may be very efficient.
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Even if the canopy coverage could be estimated by means of polygon delin-
eation on the basis of visual interpretation of remotely sensed imagery, the pro-
cedure may typically produce errors and omissions [see, e.g., Corona, Chirici and
Travaglini (2004)]. So, in order to avoid the interpretation drawbacks in the estima-
tion of forest features such as forest ecotone or canopy coverage, Corona, Chirici
and Travaglini (2004) suggest adopting replicated line-intercept sampling. Hence,
for estimating canopy coverage in the Monterano Nature Reserve, the replicated
line-intercept sampling protocol has been implemented by assuming the described
procedure with n = 50 transects with fixed direction and length L = 200 m [these
choices are consistent with the study by Corona, Chirici and Travaglini (2004)].
The transect midpoints (displayed in Figure 2) have been placed by adopting the SS
scheme with equal-size strata obtained by using the Brus, Spätjens and de Gruijter
(1999) algorithm. In this case, the estimator in (4.1) has given rise to the estimate
660 ha for the canopy coverage. Hence, 63.16% of the Monterano Nature Reserve
is covered by vegetation. In addition, variance estimation has been performed on
the basis of (3.2) by adopting a sequential indexing of strata with a common side
(see Figure 2). Accordingly, the standard deviation estimate is 58 ha and a conser-
vative confidence interval for canopy coverage at the approximate 95% confidence
level is (647 ha,674 ha). Thus, a conservative confidence interval at the same level
for the percent coverage is given by (61.87%,64.46%).

5. Concluding remarks. Under the design-based approach, the target at-
tribute of many surveys can be conceptualized as a suitable fixed function y defined
on a given planar domain. This approach is usually described as the continuous-
population paradigm and it is especially suitable in environmental and ecological
frameworks [see, e.g., Williams and Eriksson (2002) and Gregoire and Valentine
(2008), page 2]. Indeed, in such spatial contexts, it is not often possible to achieve
an area frame in order to apply the usual finite-population sampling theory. Re-
grettably, practitioners frequently force the continuous-population setting into the
finite-population setting, owing to the lack of results or to the misunderstanding of
the continuous-population paradigm.

The continuous-population paradigm requires implementation of an effective
probability sampling design to estimate the target parameter, usually the total of
the study attribute given by the integral of the function y. Hence, a key decision
is the choice of the sampling scheme for the placement of sample sites. Schemes
based on tessellation and stratification are widely used in natural resource assess-
ment and for environmental monitoring, since evenly-spread sample sites over the
study region often simplify collection of field data and estimation efficiency is usu-
ally increased. However, as emphasized by Walvoort, Brus and de Gruiter (2010),
schemes based on tessellation methods may involve several drawbacks and, hence,
stratification schemes may often be preferable.

In the present paper it is shown that the “one-per-stratum” placement of the sam-
ple sites produces an unbiased “superefficient” spatial total estimator with respect
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to the uniform placement of independent sample sites. Variance properties and
convergence results for the suggested estimator are given in a purely design-based
approach without assuming any super-population model on the spatial correlation
structure of the target attribute, as usually considered for systematic and stratified
sampling of a two-dimensional population [see, e.g., Bellhouse (1977) and Breidt
(1995)]. In contrast, the present findings are achieved by assuming very mild con-
ditions on the function y (which are likely to be met in any real survey) and by
requiring simple conditions which avoid strata of too small or too large sizes, as
well as strata with stretched shapes.

APPENDIX

RESULT 1. Let y be a Hölder function. Hence, since each Ai is assumed to
be connected and y is a continuous function, there exists ūi ∈ Ai for each i =
1,2, . . . , n such that

y(ūi) = E[y(Vi)].
Accordingly, since the Hölder condition holds for y, we obtain

Var[y(Vi)] = E
[(

y(Vi) − E[y(Vi)])2] = E
[(

y(Vi) − y(ūi)
)2]

≤ H 2E[‖Vi − ūi‖2α]
≤ H 2 diam(Ai)

2α ≤ H 2d2α
n .

Hence, it holds that

σ 2
n =

n∑
i=1

a(Ai)
2 Var[y(Vi)] ≤ H 2d2α

n

n∑
i=1

a(Ai)
2.

Since a(Ai) ≤ d2
n and

∑n
i=1 a(Ai) = a(A), it also turns out that

σ 2
n ≤ H 2d2+2α

n a(A).

In addition, if condition (2.3) holds, it follows that

σ 2
n ≤ b1+αH 2a(A)n−1−α,

that is, σ 2
n = O(n−1−α).

RESULT 2. Let y be a piecewise Hölder function on A. Moreover, by denoting
B as the boundary of the partition, let us assume that

I = {i :Ai ∩ B �= ∅}.
Moreover, if

M = sup
u∈A

|y(u)|,
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then Var[y(Vi)] ≤ M2 and it holds that∑
i∈I

a(Ai)
2 Var[y(Vi)] ≤ M2d4

n card(I ),

where card(·) denotes cardinality of a set. Since B is rectifiable, it turns out that

card(I ) ≤ C1n
1/2,

where C1 > 0 is a suitable bounded constant. Hence, by assuming condition (2.3),
it follows that ∑

i∈I

a(Ai)
2 Var[y(Vi)] ≤ b2M2C1n

−3/2.

In addition, since y is a Hölder function on Ai for i /∈ I , by assuming the achieve-
ments in Result 1, it holds that∑

i /∈I

a(Ai)
2 Var[y(Vi)] ≤ H 2d4+2α

n card(I c).

Moreover, it turns out that

card(I c) ≤ C2n,

where C2 > 0 is a suitable bounded constant. Thus, by assuming condition (2.3),
it follows that ∑

i /∈I

a(Ai)
2 Var[y(Vi)] ≤ b2+αH 2C2n

−1−α.

Hence, it is finally seen that

σ 2
n ≤ b2M2C1n

−3/2 + b2+αH 2C2n
−1−α,

that is, σ 2
n = O(n−min(1+α,3/2)).

REMARK 1. If y is not a constant function on A and if condition (2.3) holds,
it follows that

lim inf
n

n∑
i=1

Var[y(Vi)] ≥ My,

where My > 0 is a bounded constant depending on y. Hence, from condition (2.4)
we have

σ 2
n ≥ c2Myn

−2.

RESULT 3. Let y be a Hölder function and let us assume that conditions
(2.3) and (2.4) hold. In order to prove the large-sample normality of the estimator
in (2.2), it suffices to verify the Lyapunov condition, that is,

lim
n→∞

vn

σ 3
n

= 0,
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where

vn =
n∑

i=1

a(Ai)
3E

[|y(Vi) − E[y(Vi)]|3]
.

By assuming the notation and the findings of Result 1, it turns out that

vn ≤ d2
n

n∑
i=1

a(Ai)
2E

[|y(Vi) − y(ūi)|3]
.

Moreover, since the Hölder condition holds for y, it also follows that

vn ≤ Hd2
n

n∑
i=1

a(Ai)
2E

[(
y(Vi) − y(ūi)

)2‖Vi − ūi‖α]

≤ Hd2+α
n

n∑
i=1

a(Ai)
2 Var[y(Vi)] = Hd2+α

n σ 2
n

and, hence,

vn

σ 3
n

≤ Hd2+α
n

σn

.

Thus, on the basis of condition (2.3) and Remark 1, it follows that
vn

σ 3
n

≤ c−1b1+α/2HM−1/2
y n−α/2

and, hence, the Lyapunov condition is proven.

REMARK 2. The large-sample normality of the estimator in (2.2) may be
proven even if y is a piecewise Hölder function and conditions (2.3) and (2.4) hold.
This result may be shown in a general setting by verifying the Raikov condition.

RESULT 4. Since the estimator in (3.1) may be rewritten as

σ̂ 2
n = n

n − 1

n∑
i=1

a(Ai)
2y(Vi)

2 − 1

n − 1
T̂ 2

n ,

it follows that

E[σ̂ 2
n ] = n

n − 1

n∑
i=1

a(Ai)
2E[y(Vi)

2] − 1

n − 1
E[T̂ 2

n ]

= n

n − 1

(
σ 2

n +
n∑

i=1

T 2
i

)
− 1

n − 1
(σ 2

n + T 2) = σ 2
n + B[σ̂ 2

n ].

On the basis of the notation and the findings of Result 1, since

Ti ≤ Ma(Ai),
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where M is defined in Result 2, it turns out that

n∑
i=1

(
Ti − T

n

)2

≤ 2
n∑

i=1

T 2
i + 2T 2n−1

≤ 2M2
n∑

i=1

a(Ai)
2 + 2T 2n−1

≤ 2M2a(A)d2
n + 2T 2n−1.

Hence, if condition (2.3) holds, it follows that

n∑
i=1

(
Ti − T

n

)2

≤ 2
(
bM2a(A) + T 2)

n−1

and, hence, B[σ̂ 2
n ] = O(n−1).

RESULT 5. Since the estimator in (3.2) may be rewritten as

σ̃ 2
n = a(A)2

n2

(
n∑

i=1

y(Vi)
2 −

n−1∑
i=1

y(Vi)y(Vi+1)

)
,

it follows that

E[σ̃ 2
n ] = a(A)2

n2

(
n∑

i=1

E[y(Vi)
2] −

n−1∑
i=1

E[y(Vi)]E[y(Vi+1)]
)

= σ 2
n +

n∑
i=1

T 2
i −

n−1∑
i=1

TiTi+1 = σ 2
n + B[σ̃ 2

n ].

Moreover, if y is a Hölder function, we have

(Ti − Ti+1)
2 ≤ a(A)2

n2

(
y(ūi) − y(ūi+1)

)2

≤ a(A)2

n2 H 2‖ūi − ūi+1‖2α

≤ H 2a(A)2D2α
n n−2.

Hence, if condition (3.3) holds, it turns out that

(Ti − Ti+1)
2 ≤ kαH 2a(A)2n−2−α.

Thus, it follows that

B[σ̃ 2
n ] ≤ M2a(A)2n−2 + kαH 2a(A)2n−1−α,
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where M is defined in Result 2, and, hence, B[σ̃ 2
n ] = O(n−1−α). Moreover, if

condition (2.4) holds, owing to Remark 1, we obtain∑
n≥1

P

(∣∣∣∣ σ̃ 2
n − E[σ̃ 2

n ]
σ 2

n

∣∣∣∣ > ε

)
≤ ∑

n≥1

1

σ 8
n ε4 E

[
(σ̃ 2

n − E[σ̃ 2
n ])4]

≤ ∑
n≥1

n4

c4M8
yε4 E

[
(σ̃ 2

n − E[σ̃ 2
n ])4]

≤ C3

c4M8
y ε4

∑
n≥1

1

n2 < ∞

since

E
[
(σ̃ 2

n − E[σ̃ 2
n ])4] ≤ C3n

−6,

where C3 > 0 is a suitable bounded constant. Hence, it follows that

lim
n→∞

σ̃ 2
n − E[σ̃ 2

n ]
σ 2

n

= 0.
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