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Disorder in two-band superconductors with repulsive interband interaction induces a frustrated competition

between the phase-locking preferences of the various potential and kinetic terms. This frustrated interaction can

result in the formation of an s + is superconducting state that breaks the time-reversal symmetry. In this paper

we study the normal modes and their associated coherence lengths in such materials. We especially focus on

the consequences of the soft modes stemming from the frustration and time-reversal symmetry breakdown. We

find that two-band superconductors with such impurity-induced frustrated interactions display a rich spectrum of

physical properties that are absent in their clean counterparts. It features a mixing of Leggett’s and Anderson-Higgs

modes, and a soft mode with diverging coherence length at the impurity-induced second-order phase transition

from s±/s++ states to the s + is state. Such a soft mode generically results in long-range attractive intervortex

forces that can trigger the formation of vortex clusters. We find that, if such clusters are formed, their size and

internal flux density have a characteristic temperature dependence that could be probed in muon-spin-rotation ex-

periments. We also comment on the appearance of spontaneous magnetic fields due to spatially varying impurities.

DOI: 10.1103/PhysRevB.98.014520

I. INTRODUCTION

The discovery of iron-based superconductors motivated

research on two-band superconductors where the pairing be-

tween electrons is produced by interband electron-electron

repulsion [1–3]. Such systems tend to form a state with two s-

wave gaps �i = |�i |eiθi (with i = 1,2), for which the relative

phase differs by π (that is, θ2 = θ1 + π ). This superconducting

state with a sign change between the gap functions is called s±,

in contrast to the more commonly studied s++ state, which has

a zero relative phase (θ1 = θ2). The s± superconducting state

behaves nontrivially when disorder is added. It is indeed known

that, under certain conditions, impurities induce a crossover

from the s± to the s++ state. At temperatures sufficiently

close to the critical temperature Tc, the transition from the

s± to the s++ state is realized as a direct crossover, with

little thermodynamic features, where one of the gap functions

is completely suppressed [4]. It was nonetheless recently

demonstrated that, due to competing kinetic and potential

terms, inhomogeneous states such as vortices or screening

currents become structurally nontrivial in the vicinity of that

crossover [5,6].

At lower temperatures, the impurity-induced transition to

the s++ state occurs via an intermediate state where the

intercomponent relative phase is different from 0 and π [7,8].

This state is called s + is state. It spontaneously breaks the

time-reversal symmetry, and is separated from the standard

s±/s++ states by a second-order phase transition (at mean-field

level). However, quantitative calculations of the phase diagram

demonstrated [9] that the impurity-induced s + is state occu-

pies a vanishingly small region of the phase diagram and is

unlikely to be observable directly. Note that this statement

applies only to weak-coupling mean-field theory of a dirty

two-band system. This behavior is drastically different from

that found in systems with three or more interacting bands,

where the s + is state appears as a result of the frustrated

interband repulsive pairing [10–14].

In this work we demonstrate that, even if the s + is state

occupies a very small region, its mere presence on the phase

diagram can still have important consequences. Indeed, as pre-

viously stated the s + is state spontaneously breaks the time-

reversal symmetry. Thus, in addition to the usual U (1) symme-

try, the s + is state also breaks the discrete Z2 symmetry asso-

ciated with the time-reversal operations. In other words, since

the relative phase between the gaps is neither 0 nor π , complex

conjugation leads to another state that cannot be rotated back

to the initial state by U (1) transformation. Because s±/s++
are different on symmetry grounds from the s + is state, at

the mean-field level the phase transition is second order. This

implies that there is a divergent coherence length inside the

superconducting state on both sides of the s + is domain [9].

Here we demonstrate that the emerging soft normal mode

with divergent coherence length is not only associated with the

relative phase (Leggett’s mode), but also with the amplitude

(Higgs modes). This leads to the situation that s±/s++ states

adjacent to the s + is domain should acquire unconventional

properties associated with the static and dynamic fluctuations,

the nature of topological excitations, and the magnetic response

to an external applied field. Therefore dirty two-band super-

conductors with a repulsive interband interaction have a much

more complex behavior than the well studied standard s++
state in clean systems where, by contrast, the existence of soft

modes away from superconducting phase transition requires

only weak interband coupling [15].
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The paper is organized as follows. In Sec. II, starting from

the microscopic Usadel theory of dirty two-band supercon-

ductors, we provide a detailed derivation of the corresponding

two-band Ginzburg-Landau model, and discuss the essential

properties of the phase diagram. Next, Sec. III is devoted to the

complete analysis of the linearized theory. This provides the

framework to describe the behavior of the coherence lengths

and their associated normal modes, across the different phases

of the phase diagram. The derived perturbation operator can

also be used to determine the upper critical fields of such

dirty two-band superconductors. This is discussed separately

in an Appendix. The perturbation operator features a divergent

length scale in the vicinity of the second-order phase transition

to the s + is phase. The existence of such a soft mode can

result in long-range attractive intervortex forces. In Sec. IV

we investigate this property beyond the linear regime regime,

and demonstrate that vortex clusters can form in the vicinity

of the s + is phase, and that they feature specific temperature

dependent properties.

Readers who are not interested in technical details of the

analysis of normal models but are interested in properties of

vortex states and their possible experimental manifestations

can, after Sec. II, directly proceed to Sec. IV.

II. GINZBURG-LANDAU MODEL DERIVED FROM

THE USADEL EQUATIONS

We investigate the properties of the superconducting states,

their characteristic length scales, and vortex structures within a

weak-coupling model of two-band superconductors with a high

concentration of impurities. Such material can be described

by a system of two Usadel equations coupled together by

interband impurity scattering terms [16]:

ωnfi =
Di

2
(gi�

2fi − fi∇2gi) + �igi

+
∑

j �=i

γij (gifj − gjfi), (1)

where ωn = (2n + 1)πT , with n ∈ Z the fermionic Matsubara

frequencies. T stands for the temperature, Di are the electron

diffusivities, and γij are the interband scattering rates.

The quasiclassical propagators fi and gi , which are, re-

spectively, the anomalous and normal Green’s functions in

each band, obey the normalization condition |fi |2 + g2
i = 1.

The two components �j = |�j |eiθj of the order parameter are

determined by the self-consistency equations

�i = 2πT

Nd
∑

n=0

∑

j

λijfj (ωn), (2)

for the Green’s functions that satisfy the Usadel equation

(1). Here Nd = �d/(2πT ) is the summation cutoff at the

Debye frequency �d . In the self-consistency equation (2), the

diagonal elements λii of the coupling matrix λ̂ describe the

intraband pairing, while the interband interaction is determined

by the off-diagonal terms λij (j �= i). The interband coupling

parameters and impurity scattering amplitudes satisfy the

symmetry relation [16]

λij = −λJ /ni and γij = Ŵnj , (3)

where λJ and Ŵ > 0. The impurity scattering rate is given in

units of Tc, ni = Ni/(N1 + N2) are the relative densities of

states, and N1,2 are the partial densities of states in the two

bands.

In general, the s± state is not favored by the impurity

scattering, which tends to average out the order parameter

over the whole Fermi surface, suppressing the critical tem-

perature. Still, provided the interband pairing interaction is

weak, superconductivity can be transformed into a s++ state

and survive even in the limit Ŵ ≫ Tc0, characterized by the

critical temperature Tc∞ which reads as [3,8]

ln(Tc0/Tc∞) = N1(w11 + w12) + N2(w22 + w21), (4)

where Tc0 is the critical temperature in the absence of interband

scattering, ŵ = 
̂−1 − z−1Î , and z is the maximal eigenvalue

of the coupling matrix 
̂ with the elements λkk′ . In order to

avoid a drastic suppression of the critical temperature in the

s++ state, according to Eq. (4), the interband interaction λJ

should be sufficiently weak. To derive a criterion, note that

N1w11 + N2w22 > 0, so that the right-hand side of Eq. (4)

is larger than N1w12 + N2w21 = λJ /(λ11λ22). Therefore, in

order to have a Tc∞ which is not much smaller than Tc0, we

require the following condition λJ /(λ11λ22) < 1 to be satisfied.

A. Ginzburg-Landau expansion

The two-band Ginzburg-Landau (GL) expansion is an

expansion in two small gaps and small gradients [not to be

confused with a single-parameter expansion τ = (1 − T/Tc)].

A detailed discussion of the formal validity of multiband

expansions in the context of a clean system can be found in [17].

It was demonstrated in Ref. [9] that for dirty systems, in the

region of its applicability, the Ginzburg-Landau model gives

a phase diagram that matches that of the microscopic Usadel

theory. Here we provide the full derivation of the GL expansion

including gradient terms. In the case of a dirty system, by

inverting the self-consistency equation (2), it is found that

2πT

Nd
∑

n=0

fi(ωn) =
λjj�k − λij�j

detλ̂
and j �= i, (5)

defining the expansion for the fi from the Usadel equation (1).

In the first approximation we put g
(0)
i = 1 (at ωn > 0) and thus

find

f
(1)
i =

γij�j + (ωn + γji)�i

ωn(ωn + γij + γji)
and j �= i . (6)

The corrections f
(3)
i from the nonlinear terms in Eq. (1) are

found by neglecting the gradients from which follows the

general relation

fi =
�i(ωn + γjigi) + γij�jgj

ωn(ωn + γijgj + γjigi)
gi . (7)
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Then, when taking into account the corrections gi = 1 −
|f (1)

i |2/2, this yields

f
(3)
i = −

∣

∣f
(1)
i

∣

∣

2
�i[(ωn + γji)

2 + γij (ωn + 2γji)]

2ωn(ωn + γij + γji)2

−
∣

∣f
(1)
i

∣

∣

2
�j (ωn + γij )γij

2ωn(ωn + γij + γji)2

+

∣

∣f
(1)
j

∣

∣

2
γij (ωn + γji)(�i − �j )

2ωn(ωn + γij + γji)2
. (8)

Finally, combining Eqs. (7) and (8) yields the nonlinear

terms in the Ginzburg-Landau expansion. The corrections

f
(g)

i from the gradient terms are obtained by linearizing the

Usadel equation (1), with respect to the corrections f
(g)

i . This

yields

f
(g)

i =
Di(ωn + γji)

2 + Djγijγji

2ω2
n(ωn + γij + γji)2

�
2�i

+
γij [Di(ωn + γji) + Dj (ωn + γij )]

2ω2
n(ωn + γij + γji)2

�
2�j . (9)

Finally, the Ginzburg-Landau functional reads as

F

F0

=
2

∑

j=1

{

kjj

2
|��j |2 + ajj |�j |2 +

bjj

2
|�j |4

}

(10a)

+
k12

2
((��1)∗��2 + (��2)∗��1) (10b)

+ 2(a12 + c11|�1|2 + c22|�2|2)Re(�∗
1�2) (10c)

+ (b12 + c12 cos 2θ12)|�1|2|�2|2 +
B

2

2
. (10d)

Here θ12 = θ2 − θ1 stands for the relative phase between the

complex fields �j = |�j |eiθj that represent the superconduct-

ing gaps in the different bands. The two gaps in the different

bands are electromagnetically coupled by the vector potential

A of the magnetic field B = ∇ × A, through the gauge deriva-

tive � ≡ ∇ + iq A. The coefficients of the Ginzburg-Landau

functional aij , bij , cij , and kij can be calculated from a given

set of input microscopic parameters λij , Di , T , and Ŵ of the

microscopic self-consistency equation. Their explicit formulas

are listed in Appendix A.

As can be seen in Eq. (9), the coefficients of the gradient

terms depend on both electronic diffusivity coefficients D1

and D2. Clearly the parameter space can be reduced by

absorbing one of the electronic diffusivity coefficients into the

gradient term. Without any loss of generality, we choose D1

to be the largest diffusivity coefficient (D1 > D2). Thus, in

the dimensionless units, the coefficients of the gradient term

depend only on the ratio of diffusivities, or relative diffusion

constant rd = D2/D1 < 1. The free energy (10) is expressed

in terms of dimensionless quantities, so the coupling constant q

should not be confused with 2π/�0. In such units, the coupling

constant q instead parametrizes the penetration depth of the

magnetic field (see units detail below). The dimensionless units

are defined as

∇ = ξ0∇̃, A = Ã/B0ξ0, � = �̃/Tc, (11)

where the variables with tildes are the dimensionful quantities.

Therefore, ξ0 =
√

D1/Tc is the new unit of length, and B0 =
Tc

√
4πN1 is the unit of the magnetic field (here N1 is the

density of states in the first band). The free energy is then

scaled by F0 = B2
0/4π , while the electromagnetic coupling

constant becomes q = 2πB0ξ
2
0 /�0.

In these new units, the London penetration lengthλL is given

by λ−2
L = q2(kii�

2
i0 + 2k12�10�20), where �i0 is the bulk

value of the dimensionless gap. Correspondingly the gauge

field coupling constant is q = λL(kii�
2
i0 + 2k12�10�20)−1/2.

Eventually, for a given set of input microscopic parameters, λij ,

Ŵ, rd , and T close to Tc, we can reconstruct the coefficients

and investigate the ground-state properties of the GL theory by

minimizing the free energy (10) with respect to |�j | and θ12.

B. Phase diagrams

The mean-field phase diagram of the dirty two-band su-

perconductors was calculated in [9], using both Usadel and

Ginzburg-Landau formalisms. It was demonstrated there that

the phase diagrams are quantitatively similar within the range

of validity of GL expansion. Here we briefly outline the

structure of the diagram within the Ginzburg-Landau model.

Knowing the coefficients (see details in Appendix A) of

the microscopically derived Ginzburg-Landau functional (10)

allows us to investigate the ground-state properties of dirty

two-band superconductors by minimizing the free energy (10)

with respect to |�j | and θ12.

The phase diagrams are constructed in the plane of pa-

rameters Ŵ,T of a two-band superconductor with interband

impurity scattering. For that purpose, we numerically minimize

the free energy (10) using a nonlinear conjugate gradient

algorithm. The results displayed in Fig. 1 demonstrate the

role of impurities on the ground-state properties, for various

representative cases. Namely nearly degenerate bands with

weak [Fig. 1(a)], intermediate [Fig. 1(b)], and strong [Fig.

1(c)] repulsive interband pairing interactions (as compared to

the intraband couplings). Also, we consider the case of inter-

mediate band disparity with intermediate interband coupling

[Fig. 1(d)].

Those diagrams illustrate the now well understood fact that,

in two-band superconductors, disorder may induce a transition

from the s± state (the red regions with θ12 = π in Fig. 1) to

the s++ state (the blue regions with θ12 = 0 in Fig. 1) [4,7–9].

The transition can occur in two qualitatively different ways.

Either via a direct crossover (denoted by a solid black line)

when one of the superconducting gap vanishes as a function of

impurity concentration [4], or via the intermediate complex s +
is state that breaks time-reversal symmetry with θ12 �= 0,π .

The crossover occurs without additional symmetry breaking

while the transition via an s + is state spontaneously breaks the

time-reversal symmetry, and both s±/s + is and s++/s + is

transitions lines are of the second order, at the mean-field level

[9]. As was mentioned in the Introduction, the existence of the

second-order phase transition on the phase diagram dictates

that there is softening of one of the normal modes near that

transition. This softening has a number of possible physical
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FIG. 1. Phase diagrams of the Ginzburg-Landau free energy

(10) describing two-band superconductors with interband impurity

scattering. These show the values of the lowest-energy state relative

phase θ12 = θ2 − θ1 between the components of the order parameter,

as a function of temperature and interband scattering Ŵ. The different

panels correspond to different values of the coupling matrix λ̂. (a)–(c)

Correspond to nearly degenerate bands with λ11 = 0.29 and λ22 = 0.3

with weak λ12 = λ21 = −0.01, intermediate λ12 = λ21 = −0.05, and

strong λ12 = λ21 = −0.1 repulsive interband pairing interaction. (d)

The case of intermediate band disparity λ11 = 0.25 and λ22 = 0.3

with intermediate λ12 = λ21 = −0.05 repulsive interband pairing

interaction. The solid black line shows the zero of �2, which is the

crossover between s± and s++ states. In (a)–(c), the crossover line is

attached to a dome of time-reversal symmetry-breaking s + is state.

In (d), the crossover line does not connect to an s + is state.

consequences that motivates the study performed in the next

section, where we consider the normal modes of this system.

III. LINEAR ANALYSIS: NORMAL MODES AND

COHERENCE LENGTHS

An analysis of the perturbation operator around classical

solutions such as the ground state, or the normal state, provides

important information such as the length scales of the theory,

the zero modes, or the upper critical field. To facilitate this

analysis, we find it convenient here to rewrite the Ginzburg-

Landau free energy (10) in terms of a new rotated field basis

(linear combination) that eliminates the mixed gradient terms.

A. Elimination of mixed gradient terms

Because it features mixed gradient terms, the original

basis for the superconducting degrees of freedom is quite

inconvenient to work with. This is why it is worth rewriting

the model using a linear combination of the components of the

order parameter that diagonalizes the kinetic terms:

ψ1 =
√

k11�1 +
√

k22�2, ψ2 =
√

k11�1 −
√

k22�2. (12)

Within this new basis, we refer to as rotated basis, the kinetic

term has a much simpler form. The potential, on the other

hand, becomes more involved. Yet it is a convenient basis to

deal with, for the determination of the physical length scales

as well as describing various unusual properties. In the new

rotated field basis, the free energy reads as

F =
2

∑

j=1

{

κj

2
|�ψj |2 + αjj |ψj |2 +

βjj

2
|ψj |4

}

(13a)

+ 2(α12 + γ11|ψ1|2| + γ22ψ2|2)|ψ1||ψ2| cos ϕ12 (13b)

+ (β12 + γ12 cos 2ϕ12)|ψ1|2|ψ2|2 +
B

2

2
, (13c)

with the rotated superconducting degrees of freedom ψj =
|ψj |eiϕj , ϕ12 = ϕ2 − ϕ1, and the coefficients for the kinetic

term are now

κ1 =
√

k11k22 + k12

2
√

k11k22

and κ2 =
√

k11k22 − k12

2
√

k11k22

. (14)

Upon some algebraic manipulations, all coefficients αij , βij ,

γij of the potential are expressed in terms of the coefficients

aij , bij , cij , and kij of the original Ginzburg-Landau functional

(10). Detailed expressions of new parameters can be found in

Appendix B. Within the framework of new rotated variables

(12), the Ginzburg-Landau equations have no mixed gradients

and read as

�
2ψj = 2

∂V

∂ψ∗
j

. (15)

The variation of the free energy (13) with respect to the vector

potential A determines Ampère’s equation ∇ × B + J = 0.

There the total current is the superposition of the partial

currents ( J =
∑

i J
(i)) that read as

J
(i) = qκiIm

(

ψ∗
i �ψi

)

. (16)

The reparametrization (12) simplifies drastically the

Ginzburg-Landau equations as there is no more coupling of

the components through mixed gradients. However, this comes

with the price of more complicated potential terms. This is

actually a minor issue, since the ground state within the rotated

basis can easily be determined from the one in the original field

basis according to the formulas

|ψ1|2 = k11|�1|2 + k22|�2|2 + 2
√

k11k22|�1||�2| cos θ12,

|ψ2|2 = k11|�1|2 + k22|�2|2 − 2
√

k11k22|�1||�2| cos θ12,

ϕ12 = tan−1

(

−2
√

k11k22|�1||�2| sin θ12

k11|�1|2 − k22|�2|2

)

. (17)

To understand the role of excitations, as well as the funda-

mental length scales of the Ginzburg-Landau free energy (13),

it can be rewritten in terms of gauge invariant quantities (i.e., in

terms of charged and neutral modes, see a general discussion

in the context of a simpler model in [18,19]) by expanding the

kinetic term in (13a) and using (16):

F =
1

2
(∇ × A)2 +

J
2

2q2̺2
+

∑

a

κa

2
(∇|ψa|)2

+
κ1κ2|ψ1|2|ψ2|2

2̺2
(∇ϕ12)2 + V (|ψ1|,|ψ2|,ϕ12). (18)

Here again ϕ12 = ϕ2 − ϕ1 stands for the relative phase between

the condensates, and ̺2 =
∑

i κi |ψi |2. For this rewriting, we

014520-4
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used the supercurrent defined from the Ampère’s equation ∇ ×
B + J = 0 that reads

J/q = q̺2
A +

∑

i

κi |ψi |2∇ϕa. (19)

As discussed below, due to absence of mixed gradient terms,

this formulation allows an easier calculation of the length

scales and a better interpretation of the corresponding normal

modes.

B. Coherence lengths and perturbation operator

The length scales that characterize matter fields are called

coherence lengths. Fundamentally the coherence length ξ

associated with a field �(r) is defined through the exponent

that characterizes how, from a small perturbation, the field

recovers its ground-state value �̄ (see, e.g., [20–22]). That

is, from a perturbation �(r) ≈ �̄, the field recovers according

to the asymptotic behavior

�(r) − �̄ ∝ e
− r

ξ (r ≫ ξ ). (20)

Note that typically in the context of superconductivity the

definition of the coherence length has an extra
√

2 factor

[20], while this factor is absorbed into the definition of ξ in

other contexts. Here we follow the more general definition

and absorb this factor into ξ . Note also that for the simplest

Ginzburg-Landau model the coherence length is occasionally

indirectly assessed, for example through overall vortex core

size or from the slope of the order parameter near the center of

the vortex core. Only in some special cases all these estimates

give consistent results. For example, even in the simplest

single-component s-wave superconductors, away from Tc all

these definitions give inconsistent results [23]. In multicompo-

nent systems the length scales physics is more complicated so

they should not be a priori expected to be easily assessable

from such quantities as the order parameter slope near the

origin. Another consequence of intercomponent interactions is

that it cannot be expected that independent coherence lengths

are associated with single fields �j . Instead, one can expect

to find linear combinations of the complex fields that recover

from a perturbation with different exponential laws (20) and

therefore are characterized by different coherence lengths.

In general, in multicomponent GL models, determination of

the various coherence lengths cannot be done analytically,

except in the cases of weak interband interaction, where the

intercomponent interactions can be addressed perturbatively

[24]. Thus generic determination of the coherence lengths has

to be carried out numerically.

To determine the coherence lengths one thus considers the

small perturbations in all relevant field degrees of freedom

around a physical solution, and linearizes the theory around

that solution. Such a physical solution is, for example, the

ground state, the normal state, etc. The eigenvalue spectrum

of the infinitesimal perturbation operator are the (squared)

masses of the normal modes, and the coherence lengths are

defined as the inverse masses. Thus, the eigenspectrum of the

obtained (linear) differential operator determines the masses of

the normal modes and consequently their corresponding length

scales. In the single-component limit that corresponds to the

standard calculation [20]. By contrast, the model we consider

here has four degrees of freedom associated with the matter

fields: two moduli and two phases of the complex fields.

If one neglects the coupling to vector potential then the sum

of the phases forms a mode with zero mass (the Goldstone

mode), since it is associated with a broken U (1) symmetry.

When coupling to the vector potential is included this mode

becomes massive via the London-Anderson-Higgs mecha-

nism. The inverse of that mass is the London’s magnetic field

penetration length. For the simplest two-band s++ material the

phase difference constitutes another massive mode that, in a

dynamical context, is called the Leggett’s mode [25]. In a static

case the length scale associated with this mode (i.e., the length

scale at which the phase difference recovers from a perturba-

tion) is also called Josephson length. However, it was discussed

in clean three-band superconductors that when time-reversal

symmetry is broken, there is no Leggett-type (phase-only)

mode, and instead the phase difference mode is hybridized (i.e.,

mixed) with the density (Higgs) modes [12,13,26,27]. Below

we find that in the impurities-induced s + is case the modes

are mixed as well. As dictated by the theory of the mean-field

second-order phase transitions, mass of one of the modes

should go to zero at the superconducting phase transition (in-

deed at this transition Z2 symmetry is broken and thus there is

divergence of one of the coherence lengths, while other length

scales should remain finite). In Ref. [9] it was demonstrated that

the transition to the s + is state from s++ or s± state is second

order at the mean-field level. This dictates that there should be

a divergent coherence length at that transition as well.

The perturbation theory is constructed as follows. The

fields are expanded in a series of a small parameter ǫ: ψi =
∑

a ǫaψ
(a)
i and collected order by order in the functional.

The zeroth order is the original functional, while the first

order is identically zero provided the leading order in the

series expansion satisfies the equations of motion. Because

we expand near a classical state (for example the ground

state), a physically relevant correction thus appears at the order

ǫ2 of the expanded Ginzburg-Landau functional. The length

scale analysis is done by applying the previously discussed

perturbative theory to the case where the leading order is the

ground state.

We choose the following expansion in small perturbations

around the ground state:

|ψi | = ui +
ǫfi√
κi

, ϕ12 = ϕ̄ + ǫ

√

κ1u
2
1 + κ2u

2
2

κ1κ2u
2
1u

2
2

φ, (21)

where ui and ϕ̄ denote the ground state while fi and φ stand

for the perturbations. ǫ is the arbitrarily small parameter of

the series expansion. Collecting the perturbations in a single

vector ϒ = (f1,f2,φ)T , the term which is second order in ǫ in

the Ginzburg-Landau functional (18) reads as

1
2
ϒT (∇2 + M

2)ϒ, (22)

where the diagonal entries of the (squared) mass matrix are

M
2
fifi

=
2

κi

(

αii + 3βiiu
2
i + (β12 + γ12 cos 2ϕ̄)u2

j

+ 6γiiu1u2 cos ϕ̄
)

, (23a)
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M
2
φφ = −

κ1u
2
1 + κ2u

2
2

κ1κ2u
2
1u

2
2

(

4γ12u
2
1u

2
2 cos 2ϕ̄

+ 2
(

α12 + γ11u
2
1 + γ22u

2
2

)

u1u2 cos ϕ̄
)

, (23b)

and the off-diagonal elements are

M
2
f1f2

=
1

√
κ1κ2

(

4(β12 + γ12 cos 2ϕ̄)u1u2

+ 2
(

α12 + 3γ11u
2
1 + 3γ22u

2
2

)

cos ϕ̄
)

, (24a)

M
2
fiφ

= −

√

κ1u
2
1 + κ2u

2
2

κ2
1 κ2u

2
1u

2
2

(

4γ12uiu
2
j sin 2ϕ̄

+ 2
(

α12 + 3γiiu
2
i + γjju

2
j

)

uj sin ϕ̄
)

, (24b)

with j �= i. From here, the benefit of using the rotated basis for

the fields (12) together with the gauge invariant formulation

(18), becomes rather clear. Indeed, within that formulation,

the perturbation operator (22) has off-diagonal terms coupling

various excitations only in the mass matrix. It is worth empha-

sizing here that the perturbation operator (22) can be used not

only to determine the physical length scales of the Ginzburg-

Landau theory, but also to obtain the second critical field Hc2.

This is presented as a separate discussion in Appendix D.

Finally, the length scales are given by finding the eigenstates

of (22). More precisely, the eigenvalues m2
a of the (symmetric)

mass matrix M2, whose elements are given in Eqs. (23)

and (24), are the (squared) masses of the elementary exci-

tations. The corresponding coherence lengths are the inverse

(eigen)masses: ξa = 1/
√

m2
a (and a = I, II, III). Similarly, the

London’s penetration depth of the magnetic field is the inverse

mass of the gauge field: λ = 1/mA. The mass of the gauge

field can be read from the prefactor of A in Eq. (19). That is

m2
A

= (q̺)2, which implies that London’s penetration depth

reads as λ = q̺.

The theory thus comprises four elementary length scales

associated with the different elementary perturbations of the

ground state. The length scale associated with the gauge field

excitations is the penetration depth λ, and the three remaining

quantities are the coherence lengths ξa (with a = I, II, III).

They describe at which distance the system recovers the

ground state if one applies small perturbations of different

linear combinations of the complex fields moduli and phase

differences. If for example, one perturbs only one gap’s

modulus, several modes will be excited since it enters several

linear combinations corresponding to different normal modes.

Therefore there will, in general, be several length scales in the

recover of the gap module from the perturbation.

Figure 2 shows such length scales in the case of ratio

of diffusivities rd = 1, as functions of the temperature and

interband scattering Ŵ. First of all, as can be seen in the

first and last column of Fig. 2, both the largest coherence

length (ξI) and the penetration depth λ naturally diverge at

Tc, thus signaling the restoration of the U (1) symmetry via a

second-order phase transition. The model features additional

phase transition associated with the time-reversal symmetry

breaking: from s++/s± [that breaks U (1)] to the s + is state

[that breaks U (1) × Z2]. If this phase transition is second order

then the largest coherence length (ξI) should be divergent at

that line as well. Figure 2 shows that this is indeed the case.

A similar conclusion on the order of the phase transitions was

reached in Ref. [9] through analysis of the effective potential

of the model. Note, however, that from the quantities reported

in Ref. [9], one cannot deduce the coherence lengths because

they depend on the gradient terms.

Interestingly, the second largest coherence length ξII is

always finite except at a single point of the phase diagram

that corresponds to the summit of the s + is dome, where ξII

also diverges. The shortest length scale (ξIII) is always finite.

As can be seen from the various panels in Fig. 2, all length

scales are finite at the crossover lines (denoted by the solid

black line), where one of the gap vanishes.

Physical interpretations of the different coherence lengths

can be deduced from the analysis of eigenvectors that corre-

spond to the normal modes. First of all, one should emphasize

that the eigenvectors of (22) are expressed in the rotated basis,

and thus do not have a direct physical interpretation in terms

of the original pairing gaps fields. Thus the eigenvectors of

perturbation operator (22) should be expressed in the original

basis. In analogy with the perturbative expansion (21) in the

rotated basis, the fields in the original basis are expanded in

small perturbations around the ground state, as

|�i | = Ui + ǫδ|�i |, θ12 = θ̄ + ǫδθ12. (25)

There Ui and θ̄ denote the ground state while δ|�i | and

δθ12 stand for the perturbations in the original basis, and ǫ

is the small parameter of the series expansion. The detailed

expressions of the perturbations in the original basis can be

found in Appendix C. It is also convenient to introduce the

perturbations associated with the total (δ|�+|) and relative

(δ|�−|) density variations, defined as δ|�±| = δ|�1| ± δ|�2|.
Now, given the infinitesimal perturbations (25), in terms

of the perturbations fi and φ of the rotated basis, we can

investigate the behavior of the length scales and their corre-

sponding physical modes. Figure 3 shows the length scales

and the corresponding modes as functions of the temperature

for a given interband scattering Ŵ = 0.7275. This corresponds

to a vertical scan in Fig. 1(b), going across s±, s + is and s++
phase. That vertical scan covers four qualitatively different

regimes. At low temperature, the system is in the s++ state.

The eigenmode associated with the largest length scale actually

changes its nature during that scan. Indeed, the mode associated

with the divergent length scale at Tc is a total amplitude mode,

while the one that diverges at the s + is transition is related to

the relative phases. It is thus convenient to label the modes by

their “critical” behavior. For example ϒcrit.
Tc

is the mode that is

associated with the length scale that diverges at Tc. The choice,

Fig. 3, of two different background colors for the s± phase is

to emphasize this fact that the mode ϒcrit.
Tc

that dominates in the

vicinity of Tc has a completely different nature than ϒcrit.
s+is that

is critical at the s + is transition.

Interestingly, in the s++/s± phases, the mode ϒcrit.
s+is

contributes both to relative phase and relative densities, and

is decoupled from the total density variations. This picture

produced by impurity scattering is in contrast to a clean

two-band case [25] where phase difference is fully decoupled

from densities at a linear level. Thus starting from a low

temperature state in the s++ phase, ϒcrit.
s+is does not contribute to
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FIG. 2. Physical length scales corresponding to various phase diagrams of the Ginzburg-Landau free energy (10). These are calculated from

the eigenvalue problem (22). From left to right, the panels in the different columns show the three coherence lengths ξi and the penetration depth

λ, as functions of the temperature and interband scattering Ŵ. The lines correspond to different values of the coupling matrix λ̂ that are displayed

in Fig. 1. Namely (a)–(c) correspond to nearly degenerate bands with weak, intermediate, and strong repulsive interband pairing interaction

respectively. (d) The case of intermediate band disparity with intermediate repulsive interband pairing interaction. The ratio of diffusivities here

is set to rd = 1 and the solid black line shows the crossover between s± and s++ states. The largest coherence length (ξI) diverges both at Tc and

the transition lines from s++/s± to the time-reversal symmetry-breaking s + is state, indicating a second-order phase transition. Interestingly,

the second largest length scale ξII also diverges in a single point of the phase diagram corresponding to the summit of the s + is dome. Note the

absence of any strong features of coherence lengths at the crossover line between s± and s++ states. Note also that since the minority component

vanishes at the crossover line, this illustrates that coherence length estimate ξ ∝ 1/� cannot be used in multiband systems.

the total density, but couples relative phase and relative density.

At a higher temperature a second-order phase transition to the

time-reversal symmetry-breaking s + is state occurs, signaled

by the divergence of the largest coherence length. In the s + is

state, all the modes contribute to the density modes (total and

relative) and to the relative phase excitations as well. Further

increasing the temperature drives the system through another

second-order phase transition to the s± state. Importantly,

when approaching Tc, the critical mode at s + is transition

ϒcrit.
s+is that was dominating becomes subdominant in favor of

ϒcrit.
Tc

, a pure density (amplitude) mode that is relevant for the

restoration of the normal state.

The results of the length scale analysis reported in Figs. 2

and 3 are performed for equal electron diffusivities in the

different bands (rd = 1). Varying the relative diffusion constant

alter the results only quantitatively, while the overall picture

described above remains qualitatively the same. Quantitative

detail on the influence of the relative diffusion constant rd on

the length scales and on the upper critical field are reported in

Appendix E. The analysis above shows that, at the linear level,

the normal modes of a dirty two-band superconductor always

couple the density and the relative phase excitations. Therefore,

such a system does not feature a phase-only Leggett’s mode.

This has to be contrasted with the case of a similar but clean

two-band system [15,17], where the Leggett’s modes and

density modes always decouple.

Complicated variations of the coherence lengths in the dirty

case, as well as the existence of diverging coherence lengths,

are consequences of competing s± and s++ and the s + is

states. They should have physical manifestations through the

various responses that involve spatial or dynamical variations

of the fields. Although their detailed analysis is beyond the

scope of the current paper, we mention a few phenomena that

can arise as a consequence of the rich interplay of the normal

modes and their corresponding length scales. The above

calculations do not consider dynamics but it demonstrates the
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FIG. 3. Behavior of the magnetic field penetration length, the

coherence lengths, and their associated normal modes, in a dirty two-

band superconductor with nearly degenerate bands and intermediate

repulsive interband pairing interaction [corresponding to Fig. 1(b)].

The first panel shows the penetration depth and the three coherence

lengths, as functions of the temperature, and for a fixed interband

impurity scattering Ŵ = 0.7275. It thus corresponds to a vertical scan

in Fig. 1(b). There are different normal modes that are associated with

the different coherence lengths. The green curve refers to the mode

ϒ crit.
Tc

, whose coherence length diverges at Tc, which is critical at the

superconducting phase transition. The pink curve is associated with

ϒ crit.
s+is , the mode whose coherence length diverges at the breakdown

of time-reversal symmetry. The blue curve corresponds to the mode

that is not critical. The last three panels thus display the contributions

of the different normal modes ϒ to the infinitesimal perturbations

δ|�+|, δ|�−|, and δθ12. Note that as ϒ are eigenvectors or a linear

operator, they are defined up to a normalization factor and only

their relative contributions are meaningful. The different background

colors denote different physical regimes. The s++ state is realized

at lowest temperatures, then the time-reversal symmetry-breaking

s + is state occurs for an intermediate temperature range and is

delimited by two second-order phase transitions with a diverging

coherence length. Finally, the s± is realized until Tc where another

second-order phase transition occurs. Note that within the s± phase,

there are two different background colors. This stresses that the mode

which is critical at Tc, ϒ crit.
Tc

, is essentially different from ϒ crit.
s+is ,

the critical mode at the s + is transition. Thus the green (pink)

background denotes the regions where ϒ crit.
Tc

(ϒ crit.
s+is) dominates.

existence of massless and soft dynamical modes that can be

directly probed in experiment [28]. The mixed modes also

dictate nontrivial thermoelectric properties [29,30] and their

softening manifests itself in anomalies of flux flow viscosity

[31]. Likewise by the same mechanism the mode mixing

produces nontrivial magnetic signatures of impurities [32,33],

we discuss this in more detail below. Another interesting

feature, which follows from the fact that one length scale

diverging near the transition to the s + is state, is that it can

result in a particular length scale hierarchy where the magnetic

field penetration length becomes an intermediate length scale.

In the next section we consider implications of such a length

scale hierarchy on vortex matter, and in particular illustrate

that some behavior that can be deduced from the length scale

analysis, actually survive beyond the linear regime.

IV. VORTICES IN THE VICINITY OF THE s + i s REGION,

PHYSICS BEYOND THE LINEAR REGIME

Here we discuss the physical properties associated with

the topological excitations of dirty two-band superconduc-

tors, especially focusing on the possible consequences of the

presence of the s + is critical line on the phase diagram. We

thus construct a vortex solution by numerically minimizing

the free energy (10). The physical degrees of freedom �1,

�2, and A are discretized using finite-element formulation

[34], and the free energy is minimized using a nonlinear

conjugate gradient algorithm. To construct vortex solutions the

minimization procedure is started with an initial configuration,

in which both components �1 and �2 have the same vorticity.

This initial vorticity specifies the number of vortices that

originally seeded in the numerical grid. The minimization

procedure leads, after convergence of the algorithm, to a vortex

configuration that carries the number of flux quanta that was

specified by the initial phase winding. Note that the numerical

grid has to be chosen much larger than the vortex configurations

that are constructed. This is important to ensure that vortex

matter do not interact with the domain boundaries and thus

that the obtained configurations are not artifacts of boundary

interactions. In particular, in the results that are displayed

below, the numerical grid is larger than the displayed region

which are close up views of the regions carrying vortices [35].

Note also that here we are interested in the physical properties

of the vortex matter, such as intervortex forces, rather than

magnetization process. This is why vortices are constructed

here in zero external field, and seeded by the initial guess.

By contrast in an external field, the vortex matter is not only

subjected to its own intervortex interactions, but also to the

interaction with Meissner currents, surface barriers, etc.

The determination of the length scales of the theory, de-

scribed in the previous section, relies on the linearization of the

theory around the ground state. This analysis is thus relevant

in the asymptotic regions that are far away from the vortex

cores. As a result, the long-range intervortex interactions (that

is, the interactions in the asymptotic region where the linear

theory holds) are described in terms of the coherence lengths

associated with the normal modes of the system [the solutions

of the eigenproblem (22)]. Their nontrivial evolution and mix-

ing across the phase diagram indicates the possible realization

of nontrivial intervortex physics beyond the linear regime

and thus a likely unusual magnetic magnetic response of the

system. Because the dirty two-band superconductors described

here feature a critical line that segregates the s + is state from

the other s-wave states, one coherence should diverge in the

vicinity of that transition. Thus varying the temperature can

drive the system from an s-wave state through the second-

order phase transition to the time-reversal symmetry-breaking

s + is state. Interestingly, as stressed in Fig. 3, for some

fixed values of the impurity scattering rates, there can be

two successive second-order phase transitions: one from the

s± → s + is followed by a second s + is → s++ transition

at lower temperature. As illustrated in Fig. 3, it immediately

follows that a temperature-driven phase transition to the s + is

state goes along with the divergence of the largest coherence

length at the transition line, while all other length scales,

including the magnetic field’s penetration depth, remain finite.
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Since the other length scales, including the magnetic field’s

penetration length are finite at this transition, there are only two

possible hierarchies of the length scales near that transition:

(i) all coherence lengths are larger than λ (which is a type-1

behavior) and (ii) ξI > λ but λ is larger than some of the other

coherence lengths. Since intervortex interactions are related

to the long-range asymptotics, such a hierarchy of the length

scales suggests long-range attractive, short-range repulsive

intervortex forces. This regime was earlier termed “type-1.5”

[36] while an associated phase separation was termed “semi-

Meissner” state [37]. As emphasized above, in a dirty two-band

superconductor, the normal mode with the largest coherence

length typically mixes density modes and phase-difference

mode. This implies that, in the vicinity of the s + is transition,

vortices feature a long-range tail of density suppression. This

results in long-range attractive intervortex forces (dominated

by the core-core interactions). On the other hand, at intermedi-

ate scales specified by the magnetic field’s penetration depth,

the interactions are dominated by current-current interactions

which are repulsive. The long-range intervortex interacting

potential predicted by the linear theory can be expressed as

a combination of modified Bessel functions of the second kind

K0 as

U (r) = −C2
λK0

( r

λ

)

+
∑

i=I, II, III

[

C2
i K0

(

r

ξi

)]

. (26)

The coefficients Cλ and Ci depend on the eigenstates of the

perturbation operator (the normal modes) and on nonlineari-

ties. Thus, in the vicinity of the second-order phase transition to

the time-reversal symmetry-breaking s + is state, the interplay

between the long-range attraction driven by the core-core

interactions, and the short-range repulsion due to the current-

current repulsion, yields nonmonotonic intervortex forces (cf.

with calculations in different two-band models [15,24,37,38]).

Such forces can promote the formation of a bound state

of vortices. In such a bound state, the distance separating the

vortices does not directly follow from linearized theory, but is

determined by full nonlinear theory. As a result, since all the

parameters of the Ginzburg-Landau model (10) are tempera-

ture dependent (see the exact formulas of the coefficients in

Appendix A), it is quite expectable that if vortex bound states

are formed in the full nonlinear model, their typical size should

also be temperature dependent.

Below we present the results of such an analysis of the

full nonlinear response in the Ginzburg-Landau model. Using

the numerical procedure described earlier in this section,

we systematically construct sets of several vortices for fixed

impurity scattering rates and decreasing temperatures similar

to the parameter set investigated in Fig. 3 (thus corresponding

to a vertical scan in the phase diagrams Fig. 1). The situation

that is considered now mimics a dilute group of vortices that

form in a field-cooled sample in fields far from upper critical

magnetic field. Figure 4 displays the behavior of a set of 20

vortices at different temperatures. The selected temperatures

are representatives of the various phases shown in Fig. 3.

Depending on the regime, when starting from an initial set of

20 vortices, the numerical procedure leads after convergence to

a characteristic picture corresponding to either a type-2 regime

or to vortex clusters that are typically realized in the type-1.5

regime. In the vicinity of the superconducting transition, as

illustrated by the configuration in the first column of Fig. 4,

which is close to Tc and deep in the s± region, the vortex

configuration is typical of a type-2 regime. Note that a type-

2 regime theoretically implies an infinite vortex separation,

but the strength of the repulsion decays exponentially with

the separation. So for all practical purposes, the repulsion

between vortices ends when the strength becomes smaller than

the numerical accuracy: that is similar to the experimental

situation of remnant vorticity where intervortex repulsion or

vortex-boundary interaction is too small to reach the truly

lowest energy state.

Upon decreasing the temperature, the largest coherence

length ξI increases rapidly, as the system gets closer to the

transition to the s + is state. This triggers the expected long-

range attractive mode which leads to the formation of a vortex

cluster. The last three columns in the left panel of Fig. 4

correspond, at the linear level, to type-1.5 regimes. In other

words, as can be read from the values of the length scales in

Fig. 2, the penetration depth there is an intermediate length

scale. The corresponding regimes in the last three columns of

Fig. 4 show that, in the nonlinear regime, vortices aggregate

in a cluster. As can be seen from the two central columns of

Fig. 4, the vortex coalescence occurs near the phase transition

to the s + is state, and the most compact cluster forms in the

s + is phase (this can seen from the third column). Further

decreasing of the temperature drives the system through an-

other second-order phase transition to the s++ state. While

moving away from criticality, the largest coherence length

shortens. Correspondingly, the range of attractive interaction

also shortens, and the attractive forces weaken. Eventually,

repulsive forces will become dominant again, and the set of

vortices will fall back in a type-2 regime. Observe that Fig. 4

clearly shows that the scale of strong suppression of gaps in

the vortex core is not directly related to coherence lengths.

For a system with nonmonotonic interactions, standard

kinetic mechanisms (see for example [39]) leads to different

patterns of phase coexistence. In the case studied here the

vortex clusters coexist with domains of Meissner state. The

temperature dependence of intervortex forces opens up a

possibility to discriminate the effect described here from a

phase separation originating in vortex pinning. The formation

of vortex cluster can be probed by the direct vortex visual-

ization techniques such as magneto-optics, scanning Hall, and

scanning SQUID probes. This could also be experimentally

probed for example in muon-spin rotation measurements

(μSR) like the ones conducted in Ref. [40]. That is, when μSR

detects a phase separation into vortex clusters and Meissner

domains, the above considered contraction of a vortex cluster

when the temperature is lowered should result in a local

increase of magnetic field: quantity that, again, can be extracted

from μSR data [40]. In order to connect the effect of vortex

clusterization with this experimentally measurable quantity,

we calculate the local mean magnetic flux density for a vortex

cluster as the system is cooled down. The evolution of the

mean magnetic flux density of a cluster during the cool-down

process is displayed in the right panel of Fig. 4. There is a

strong peak in the magnetic flux density in correspondence

to an increase of the vortex binding forces near the s + is

transition.
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FIG. 4. Evolution of bound state of 20 vortices during a cooling procedure like that displayed in Fig. 3. Apart from the temperature, all

other paramaters are fixed: the interband scattering rate is Ŵ = 0.7275, the gauge coupling constant is q = 0.5, and electronic diffusivities are

equal (rd = 1). In the left panel, the displayed quantities on the different lines are, respectively, the magnetic field B, the amplitudes of the gap

in majority (|�2|), and minority (|�1|) components. The last line shows the relative phase θ12 from which the ground-state phase can be directly

read. Different vortex configurations, at different temperatures, can be read from the various columns displayed in the left panel. The first column

shows a type-2 regime where the largest length scale is the penetration depth and thus the repulsion forces dominate. The other columns, on

the other hand, show the typical realization of a type-1.5 regime. There, due to the proximity with the s++/s± → s + is transition, the largest

coherence length increases and this triggers the long-range attractive forces resulting in the formation of a compact cluster of vortices. The right

panel shows the flux-carrying area (defined as the area of the region where the magnetic fields is above some threshold δ = 0.005Bmax), and the

internal mean magnetic flux density in the flux-carrying region. The internal flux density shows a strong peak where the attractive intervortex

forces are strongest and thus the clusters are the most compact. Here this peak is near the s + is transition. The numerical values of the various

length scales corresponding to the different regimes displayed in the left panel are shown in the top right table.

The appearance of this kind of signal assumes phase sepa-

ration due to kinetic reasons. However, similar signal should

also be expected for dilute vortex lattices that can contract

due to emerging attractive forces as well. The strength of the

effect will also depend on the magnetic penetration lengths:

the longer is λ, the weaker are the intervortex attractive forces.

On the quantitative side: an interesting feature is the vortex

clusterization can start very far away from the s + is phase

transition. This is fully consistent with linear analysis where

we find, in Fig. 3, a broad region of increased largest coherence

length associated with the critical mode. Therefore, even if

the s + is phase occupies an unobservably small domain on

the phase diagram the soft modes implied by that criticality

exist and modify magnetic response in a wide range of

parameters.

Having established vortex clustering due to existence of a

critical mode, we briefly discuss a few of the structural features

of vortex clusters. A detailed study of the vortex cluster struc-

ture is beyond the scope of this paper and is perhaps a fruitful

direction of application of methods developed in research on

filament bundles. Yet, it should be emphasized that indeed

the vortex clusters are not a simple superposition of single

vortex solutions. Correspondingly, Eq. (26), which is based

on the linear theory with the assumption of axially symmetric

composite vortices, can received nonlinear corrections. One

of the possible nonlinear effects is that clusters can exhibit

disintegration of the composite character of vortices: namely a

small splitting of the vortex cores in the different components

near clusters boundary. This behavior can clearly be seen in

the numerical solutions shown in Fig. 5 for a cluster of seven

vortices. As can be seen in Fig. 5, clearly the phenomena

of vortex splitting occurs at the boundary, while the inner

vortex sitting at the center of the cluster shows no splitting.

Such a splitting of vortex cores at the boundary of clusters

excites a mode that is not present in the interaction between

single vortices, but that should contribute to the intercluster

interactions.

It should finally be stressed that the coherence lengths

cannot be related in a simple way to overall vortex core

sizes, because of the nonlinear nature of the coupled system.

It can clearly be seen in Fig. 4 that although one of the

length scales diverges in the vicinity of the s + is transition,

this has a relatively little influence on the size of substantial

density suppression in vortex cores (but dramatically affects the

long-range weak density suppression and thus the intervortex

interactions).
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FIG. 5. Splitting of composite integer flux quanta vortices into

fractional vortices, at the boundary of clusters formed due to the long-

range attractive forces near the s + is transition. Here a cluster of

seven vortices for the same parameters as in Fig. 4 besides q = 0.8,

both in the s± state (first column) and s + is (second column). The

relative phase shows the splitting of vortices at the boundary of the

cluster.

V. EFFECTS OF SPATIAL GRADIENTS

IN IMPURITY DENSITY

The previous sections describe the effect of impurities on

the phase diagram of dirty two-band superconductors and,

in particular, how it affects the different length scales. We

further demonstrated that, in the vicinity of the impurity-

induced second-order phase transition associated with the

spontaneous breakdown of the time-reversal symmetry, it

results in nonmonotonic intervortex forces that can lead to

the formation of vortex clusters whose typical signature can

in principle be probed in μSR measurements. The discussion

so far focused on the case of a spatially uniform distribution

of impurity density. It is instructive to consider one more

example, where the impurity density is not uniformly dis-

tributed in space. Spatially varying impurity will result in

an inhomogeneous superconducting state which will feature

gradients both of densities and relative phases of the field

components as a consequence of mode mixing. This in turn can

produce spontaneous magnetic fields. Spontaneous magnetic

fields were indeed shown to occur in various models of s + is

states for different kind of inhomogeneities such as impurities

and domain walls and their combinations [32,33,41,42], and

impuritylike inhomogeneities produced by the local heating

of a superconductor [29,30]. In this section we report that

spontaneous magnetic fields arise when there are gradients of

impurity density. The magnetic field discussed in the previous

section will be superimposed with the spontaneous magnetic

field. This can have direct implications for the vortex states

previously considered, since both the inhomogeneities and the

spontaneous magnetic fields induced by them can provide a

pinning landscape for vortices.

To illustrate that inhomogeneities can indeed yield spon-

taneous magnetic fields, we consider an idealized situation

of a sinusoidal modulation of the impurity scattering rates

Ŵ = 0.7275 ± 0.02, where the period of the modulation is

of the order of the size of a vortex. Figure 6 shows this

situation where spontaneous magnetic field appears due to

the modulation of impurities. Moreover, it shows that it can

also substantially affect vortex structures such as the clusters

previously reported in Fig. 4. Indeed, in this example, inho-

mogeneities of the impurity scattering rates clearly result in

the fragmentation of the vortex cluster into smaller clusters.

In other words, inhomogeneities induce a pinning landscape

due to gap modulations and due to appearance of spontaneous

multipolar magnetic field, which affects the structure of vortex

clusters.

The spontaneous magnetic field that arises exclusively due

to inhomogeneities (i.e., without vortices) is displayed in the

second panel of the first row of Fig. 6, and it is maximal where

the modulation of Ŵ has its larger gradients. The spontaneous

magnetic field is spatially alternating and its total flux across

the sample is zero in the absence of vortices. Note that there

FIG. 6. Appearance of spontaneous magnetic fields and fragmen-

tation of vortex cluster due to small periodic modulation of the

impurity scattering rate Ŵ. All the microscopic parameters are the

same as in Fig. 4. The temperature is T/Tc = 0.7, while the impurity

scattering strength is modulated sinusoidally with amplitudes Ŵ =
0.7275 ± 0.02. The panels on the top row show the modulated

impurity and the induced magnetic field, in the absence of vortices.

The middle line displays the amplitudes of the gap in minority (|�1|)
and majority components (|�2|) of the fragmented of vortex cluster.

The bottom row shows the corresponding magnetic field B and

the relative phase θ12. Modulation of impurity provides a pinning

landscape that favors placing vortices where the impurity is increased,

and this tends to break a cluster into smaller clusters, as compared

to Fig. 4. Nonetheless, the clearly large areas of gap suppression

indicates the presence of attractive intervortex forces. In addition,

the modulation of Ŵ produces a small spontaneous magnetic field in

the s + is state as can be seen from the last panel. Note however that

the spontaneous field is several orders of magnitude smaller than that

of vortices, and it is typically dominated by the vortex background.
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is an enhanced spontaneous field near the boundaries that is

dipolelike, rather than quadrupolelike in the bulk. This is not

a generic property, but rather a consequence of the particular

choice of the modulation here that has stronger gradients whose

contribution is less compensated at the boundary.

The presence of spatially inhomogeneous distribution of

impurities can thus have experimental manifestations that can,

for example, be detected in a zero field by μSR and scanning

SQUID experiments. Moreover, as can be seen from the other

panels in Fig. 6, besides the spontaneous magnetic fields,

the inhomogeneities can also act as a pinning landscape for

vortices that will alter the structure of the clusters discussed

in the previous section. Such a cluster fragmentation due to

pinning should result in a reduction of the μSR signatures

discussed in the previous section, in the case of homogeneous

systems.

VI. CONCLUSION

In conclusion, in this work we studied the properties

of dirty two-band superconductors with repulsive interband

interaction. We used the microscopically derived Ginzburg-

Landau theory to give qualitatively consistent solutions with

the Usadel model, not too far from superconducting Tc.

We investigated the normal modes, and their corresponding

coherence lengths. The normal modes of dirty systems are

much more complex than those in clean two-band cases due

to the frustration between various interband interaction terms.

One of the new features is the mixing of the Leggett mode

with the density modes that occurs even without time-reversal

symmetry breaking. An important property of the dirty two-

band superconductors is the presence of a region of s + is

state on the phase diagram. This s + is domain is surrounded

by a line of second-order phase transition that dictates the

existence of a soft mode and an infinite disparity of coherence

lengths. A striking feature is that the disparity of the coherence

lengths and relatively soft mode persists for a wide range

of coupling constants and temperatures, even if the domain

of the s + is phase is too small to be directly resolvable

in experiment. This makes such systems very different from

the clean two-band s-wave case [15]. This should also have

consequences for various properties associated with the static

and dynamic fluctuations. We focused here on consequences

to the vortex physics and demonstrated the existence of a

region where the hierarchy of the length scales is such that

the penetration depth becomes an intermediate length scale

(the so-called type-1.5 regime). This leads to long-range

attractive and short-range repulsive intervortex forces, leading

to formation of vortex bound states or clusters. These clusters,

due to the temperature dependence of the mean magnetic field’s

density, have specific signatures that can be discriminated from

other mechanisms also responsible of cluster formation. This

should be experimentally measurable in muon-spin-rotation

experiments. Note finally that qualitatively similar features

should also be expected in other realizations of s + is states

[10–14,43].
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APPENDIX A: GINZBURG-LANDAU COEFFICIENTS

There, the coefficients of the Ginzburg-Landau functional

aij , bij , cij , and kij can be calculated from the inputs λij , T ,

and Ŵ of the microscopic self-consistency equation. Ni are the

densities of states and Di are the electron diffusivities. First,

the coefficients of gradient terms are given by [5]

kii = 2πT Ni

Nd
∑

n=0

Di(ωn + γji)
2 + γijγjiDj

ω2
n(ωn + γij + γji)2

, (A1a)

kij = 2πT Niγij

Nd
∑

n=0

Di(ωn + γji) + Dj (ωn + γij )

ω2
n(ωn + γij + γji)2

, (A1b)

with j �= i. The coefficients of the potential terms can be found

for example from Ref. [8] and they read as

aii =
Niλjj

det(λ̂)
− 2πT

Nd
∑

n=0

(ωn + γji)Ni

ωn(ωn + γij + γji)
, (A2a)

aij = −
Niλij

det(λ̂)
− 2πT

Nd
∑

n=0

γijNi

ωn(ωn + γij + γji)
. (A2b)

The other parameters read as

bii = πT Ni

Nd
∑

n=0

(ωn + γji)
4

ω3
n(ωn + γij + γji)4

+πT Ni

Nd
∑

n=0

γij (ωn + γji)
(

ω2
n + 3ωnγji + γ 2

ji

)

ω3
n(ωn + γij + γji)4

,

(A3a)

bij = −πT Ni

Nd
∑

n=0

γij

(ωn + γij + γji)4

+πT Ni

Nd
∑

n=0

γij (γij + γji)[ωn(γij + γji) + 2γijγji]

ω3
n(ωn + γij + γji)4

,

(A3b)
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and

cii = πT Ni

×
Nd
∑

n=0

γij (ωn + γji)
[

ω2
n + (ωn + γji)(γij + γji)

]

ω3
n(ωn + γij + γji)4

,

(A4a)

cij = πT Ni

Nd
∑

n=0

γij (ωn + γji)(ωn + γij )(γij + γji)

ω3
n(ωn + γij + γji)4

.

(A4b)

Thus for a given set of input microscopic parameters, λij ,

Ŵ, and T close to Tc, we can reconstruct the coefficients

(A1)–(A4) and investigate the ground-state properties of the

GL theory by minimizing the free energy (10) with respect to

|�j | and θ12.

APPENDIX B: GINZBURG-LANDAU COEFFICIENTS OF

THE MIXED GRADIENTS FREE BASIS

Rewriting the original Ginzburg-Landau model (10) using a

linear combination of the components of the order parameter:

ψ1 =
√

k11�1 +
√

k22�2, (B1a)

ψ2 =
√

k11�1 −
√

k22�2, (B1b)

allows a much simpler form of the kinetic terms which is

convenient to investigate physical length scales. Within the

new basis, the coefficients for the kinetic term of the rewritten

Ginzburg-Landau functional (13) read as

κ1 =
√

k11k22 + k12

2
√

k11k22

and κ2 =
√

k11k22 − k12

2
√

k11k22

. (B2)

The coefficients of the potential read as

α11 =
a11k22 + a22k11 + 2a12

√
k11k22

4k11k22

, (B3a)

α22 =
a11k22 + a22k11 − 2a12

√
k11k22

4k11k22

, (B3b)

α12 =
a11k22 − a22k11

4k11k22

, (B3c)

and

β11 =
b11k

2
22 + b22k

2
11

16k2
11k

2
22

+
b12 + c12

8k11k22

+
c11k22 + c22k11

4(k11k22)3/2
,

(B4a)

β22 =
b11k

2
22 + b22k

2
11

16k2
11k

2
22

+
b12 + c12

8k11k22

−
c11k22 + c22k11

4(k11k22)3/2
,

(B4b)

β12 =
b11k

2
22 + b22k

2
11

8k2
11k

2
22

−
c12

4k11k22

. (B4c)

Finally

γ11 =
b11k

2
22 − b22k

2
11

16k2
11k

2
22

+
c11k22 − c22k11

8(k11k22)3/2
, (B5a)

γ22 =
b11k

2
22 − b22k

2
11

16k2
11k

2
22

−
c11k22 − c22k11

8(k11k22)3/2
, (B5b)

γ12 =
b11k

2
22 + b22k

2
11

16k2
11k

2
22

+
c12 − b12

8k11k22

. (B5c)

APPENDIX C: PERTURBATIONS IN THE ORIGINAL

BASIS

Using Eqs. (21) and (25), the perturbations are recon-

structed, and they are expressed in terms of the perturbations

in the rotated basis as

δ|�1|2 =
1

2k11

(

f 2
1

κ2
1

+
f 2

2

κ2
2

)

−
(

u1f2

κ2

+
u2f1

κ1

)

√

κ1u
2
1 + κ2u

2
2

k2
11κ

3
1 κ3

2 u2
1u

2
2

sin ϕ̄φ

−
1

k11κ1κ2

[(

f1f2 +
κ1u

2
1 + κ2u

2
2

2u1u2

)

cos ϕ̄

]

,

(C1a)

δ|�2|2 =
1

2k22

(

f 2
1

κ2
1

+
f 2

2

κ2
2

)

+
(

u1f2

κ2

+
u2f1

κ1

)

√

κ1u
2
1 + κ2u

2
2

k2
22κ

3
1 κ3

2 u2
1u

2
2

sin ϕ̄φ

+
1

k22κ1κ2

[(

f1f2 +
κ1u

2
1 + κ2u

2
2

2u1u2

)

cos ϕ̄

]

,

(C1b)

δθ12 =
−2u1u2

(

u2
1 + u2

2

)

cos ϕ̄

√

κ1u
2
1+κ2u

2
2

κ1κ2u
2
1u

2
2

φ

(

u2
1 + u2

2

)2 + 4u2
1u

2
2 sin2 ϕ̄

−
2u1u2(u1 − u2)

(

u1f2

κ2
− u2f1

κ1

)

(

u2
1 + u2

2

)2 + 4u2
1u

2
2 sin2 ϕ̄

. (C1c)

APPENDIX D: SECOND CRITICAL FIELD

Hc2 can be obtained by considering the perturbation oper-

ator around the normal state. More precisely, in the original

parametrization the normal state is |�1| = |�2| = 0. Using

(17), this implies that the normal state in the new variables is

|ψ1| = |ψ2| = 0 and thus u1 = u2 = 0 and ϕ̄ = 0.

Close to the second critical field Hc2 the magnetic field is

approximately constant: B = B0ez and the densities are small.

Thus the Ginzburg-Landau equations (15) can be linearized

around the normal state as

�2ϒ = M
2
∣

∣

u1=u2=ϕ̄=0
ϒ ≡ M

2
0ϒ. (D1)
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FIG. 7. Upper critical field Hc2, as defined in (D7), as a function of

temperature and interband scattering Ŵ, for equal diffusivities in both

bands (rd = 1). The different panels correspond to different values

of the coupling matrix λ̂ that are displayed in Fig. 1. Clearly the

complexity of the phase diagram of the model has little effect on the

behavior of Hc2.

Because of the gauge invariance, the vector potential can be

parametrized in the Landau gauge as A = (0,B0x,0)−1. As a

result, the linearized Ginzburg-Landau equations read as

[∇2 − (qB0x)2]ϒ = M
2
0ϒ. (D2)

For the simple Gaussian ansatz ϒ = C exp (− x2

2ξ 2 ) with the

vector C = (C1,C2)T and qB0 = 1/ξ 2. Equation (D2) further

simplifies:

M
2
0ϒ =

−1

ξ 2
ϒ. (D3)

Thus 1/ξ 2 is an eigenvalue of −M2
0. More precisely, its

largest:

qHc2 =
1

ξ 2
:= max

(

Eigenvalue
[

− M
2
0

])

. (D4)

It is easy to realize that the perturbations of the relative phase

ϒ decouple from density perturbations. The mass matrix thus

becomes

M
2
0 = 2

(

α11/κ1 α12/
√

κ1κ2

α12/
√

κ1κ2 α22/κ2

)

, (D5)

and its eigenvalues are

κ2α11 + κ1α22 ±
√

(κ2α11 − κ1α22)2 + 4α2
12κ1κ2

κ1κ2

. (D6)

As a result, we find the second critical field in the dimensionless

units of Eq. (10),

qHc2 = −
α11

κ1

−
α22

κ2

+

√

(

α11

κ1

−
α22

κ2

)2

+ 4
α2

12

κ1κ2

. (D7)

FIG. 8. Effect of relative diffusion constant on the different

length scales and on the upper critical field Hc2 [corresponding to

Fig. 1(b)]. The top block displays the length scales as functions of

the temperature for a given interband scattering Ŵ = 0.7275. The

relative diffusion constant affects only quantitatively the different

length scales and does not affect the phase diagram. Similarly, the

bottom-most panel shows upper critical field Hc2 as a function of

the temperature for the same parameter set. Increasing the relative

diffusion constant also increases the upper critical field.

Figure 7 shows the upper critical field Hc2, defined in (D7),

as a function of temperature and interband impurity scattering

Ŵ, in the case of equal diffusivities. This shows the case of two-

band superconductors with different intraband and interband

coupling.

APPENDIX E: EFFECT OF THE RELATIVE DIFFUSION

CONSTANT

Figure 8 shows the effect of the relative diffusion constant on

the different length scales and on the upper critical field Hc2,

for a dirty two-band superconductor with nearly degenerate

bands and intermediate repulsive interband pairing interaction

[corresponding to Fig. 1(b)]. Relative diffusion constant has

only a quantitative influence on the various length scales, while

it increases the upper critical field Hc2.
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