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Abstract. As one of the major directions in applied and computational harmonic analysis, the
classical theory of wavelets and framelets has been extensively investigated in the function setting,
in particular, in the function space L2(Rd). A discrete wavelet transform is often regarded as a
byproduct in wavelet analysis by decomposing and reconstructing functions in L2(Rd) via nested
subspaces of L2(Rd) in a multiresolution analysis. However, since the input/output data and all
filters in a discrete wavelet transform are of discrete nature, to understand better the performance
of wavelets and framelets in applications, it is more natural and fundamental to directly study a
discrete framelet/wavelet transform and its key properties. The main topic of this paper is to study
various properties of a discrete framelet transform purely in the discrete/digital setting without in-
volving the function space L2(Rd). We shall develop a comprehensive theory of discrete framelets
and wavelets using an algorithmic approach by directly studying a discrete framelet transform. The
connections between our algorithmic approach and the classical theory of wavelets and framelets
in the function setting will be addressed. Using tensor product of univariate complex-valued tight
framelets, we shall also present an example of directional tight framelets in this paper.

Key words: discrete framelet transform, perfect reconstruction, sparsity, stability, dual framelet
filter banks, discrete affine systems, vanishing moments, sum rules.
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1. Introduction and Motivations
In this paper we study a discrete framelet/wavelet transform and its various properties. To explain
our motivations and to provide necessary background, let us first briefly outline the classical theory
of wavelets and framelets in the function space L2(Rd).

Let M be a d× d invertible real-valued matrix. For any square integrable function f ∈ L2(Rd),
throughout the paper we shall adopt the following notation:

fM;k,n(x) := [[M; k, n]]f(x) := | det(M)|1/2e−in·Mxf(Mx− k), x, k, n ∈ Rd, (1.1)

where i denotes the imaginary unit. In particular, we define fM;k := fM;k,0. Let Ψ be a (finite)
subset of L2(Rd). The following homogeneous M-affine (or M-wavelet) system

AS(Ψ) := {ψMj ;k : j ∈ Z, k ∈ Zd, ψ ∈ Ψ}, (1.2)
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has been extensively studied in the function spaceL2(Rd) in the literature of wavelet analysis, often
with M being an expansive integer matrix. Here we say that M is expansive if all its eigenvalues
have modulus greater than one. Elements in Ψ are often called wavelet (generating) functions. To
emphasize the dilation matrix M in an affine system, we also use ASM(Ψ) instead of AS(Ψ).

There are several different types of wavelets and framelets. The affine system AS(Ψ) could be
an orthonormal basis, a tight frame, or a Riesz basis for the function space L2(Rd). For example,
we say that AS(Ψ) is a tight frame for L2(Rd) if

∥f∥2L2(Rd) =
∑
j∈Z

∑
k∈Zd

∑
ψ∈Ψ

|⟨f, ψMj ;k⟩|2, ∀ f ∈ L2(Rd). (1.3)

It follows from (1.3) that every function f ∈ L2(Rd) has the following wavelet representation:

f =
∑
j∈Z

∑
k∈Zd

∑
ψ∈Ψ

⟨f, ψMj ;k⟩ψMj ;k (1.4)

with the series converging in L2(Rd).
One of the major tasks in wavelet analysis is to construct Ψ having some desirable properties

so that AS(Ψ) is an orthonormal basis, a tight frame, or a Riesz basis for L2(Rd). For this purpose,
the dominating approach in the current literature is to use a multiresolution analysis (MRA). A
sequence {Vj}j∈Z of closed subspaces of L2(Rd) is called a multiresolution analysis of L2(Rd)
(see [2, 8, 35]) if

(i) Vj ⊆ Vj+1 and Vj = {f(Mj·) : f ∈ V0} for all j ∈ Z;

(ii) ∪j∈ZVj is dense in L2(Rd) and ∩j∈ZVj = {0};

(iii) There exists Φ ⊆ L2(Rd) such that the linear span of ϕ(· − k), k ∈ Zd, ϕ ∈ Φ is dense in V0.

{ϕ(· − k) : k ∈ Zd, ϕ ∈ Φ} is often required to be a Riesz basis or an orthonormal basis of
V0. By (i), we have Φ ⊆ V1 and therefore, Φ must be M-refinable satisfying ϕ̂(MTξ) = â(ξ)ϕ̂(ξ)
for almost every ξ ∈ Rd, where ϕ is obtained by listing all the elements in Φ as a column vector
and â is a (#Φ)× (#Φ) matrix of 2πZd-periodic Lebesgue measurable functions. Now a set Ψ of
wavelet generating functions is often derived from ϕ via the following relation:

ψ̂(MTξ) = b̂ψ(ξ)ϕ̂(ξ), a.e. ξ ∈ Rd, ψ ∈ Ψ, (1.5)

where b̂ψ is some 1 × (#Φ) row vector of 2πZd-periodic measurable functions. By appropriately
constructing â and b̂ψ, ψ ∈ Ψ, one obtains an affine system AS(Ψ) so that it is an orthonormal basis,
a tight frame, or a Riesz basis for L2(Rd). There are a vast literature on this topic, to mention a
very tiny portion of them, see [2, 8, 35, 36, 39, 40] and numerous references therein.

We now discuss the associated discrete wavelet/framelet transform in the function setting by
decomposing and reconstructing functions in L2(Rd) via nested subspaces of L2(Rd) in a multires-
olution analysis. For simplicity of discussion, we assume that Φ = {ϕ} is a singleton and AS(Ψ)
is a tight frame for L2(Rd) with Ψ being derived from an M-refinable function ϕ via (1.5). To
compute the wavelet coefficients ⟨f, ψMj ;k⟩ in the wavelet representation of f in (1.4), a widely ac-
cepted approach in the literature consists of two parts: projection (or discretization) and a discrete
transform. To discretize a function f from the continuum domain into the discrete/digital domain,
one selects a large enough integer J so that the function f is well approximated by the projected
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function PJf :=
∑

k∈Zd(DJf)(k)ϕMJ ;k, where Dj, j ∈ Z are the discretization (or approximation)
operators defined by

Dj : L2(Rd) → l2(Zd) with Djf := {⟨f, ϕMj ;k⟩}k∈Zd . (1.6)

Therefore, most information of the function f is encoded now in the discrete sequence DJf . Next
a discrete transform is employed to compute all wavelet coefficients ⟨f, ψMj ;k⟩, j < J and k ∈ Zd

using only the discrete sequence DJf and the Fourier coefficients of â and b̂ψ, ψ ∈ Ψ. More
precisely, rewrite the relations ϕ̂(MTξ) = â(ξ)ϕ̂(ξ) and ψ̂(MTξ) = b̂(ξ)ϕ̂(ξ) as

ϕ(x) = dM
∑
k∈Zd

a(k)ϕ(Mx− k) and ψ(x) = dM
∑
k∈Zd

b(k)ϕ(Mx− k),

where dM := | det(M)| and
∑

k∈Zd a(k)e−ik·ξ := â(ξ), that is, {a(k)}k∈Zd is the sequence of the
Fourier coefficients of â. Then one can easily deduce that

(Dj−1f)(n) = d
1/2
M

∑
k∈Zd

a(k−Mn)(Djf)(k), ⟨f, ψMj−1;n⟩ = d
1/2
M

∑
k∈Zd

b(k−Mn)(Djf)(k).

Now one can easily see that all the coefficients ⟨f, ψMj ;n⟩, j < J and n ∈ Zd can be computed
recursively using DJf and the Fourier coefficients of â and b̂ψ, ψ ∈ Ψ. This discrete transform is
called a fast wavelet transform in the literature (see Sections 2 and 4 for more detail).

However, the mapping DJ in (1.6) may fail to be onto and therefore, not all signals in l2(Zd) can
be exactly reconstructed by the associated discrete wavelet transform. This is not desirable in both
theory and application, since ⟨f, ϕMJ ;k⟩ is often numerically computed by quadrature formulas and
therefore, the numerically computed sequence DJf may no longer fall inside the range of DJ . Even
if the mapping in (1.6) is onto, it is highly nontrivial to practically implement the discretization in
(1.6) using a refinable function ϕ. On the contrary, a practical sampling device for discretizating a
function in the continuum domain is often pre-designed. For example, a digital camera can be used
to convert a natural scene from the continuum domain into the digital world. It is more realistic to
assume that a digital device employing (1.6) uses a pre-designed function ϕ = η and a particularly
selected integer J . Therefore, a discretization or a measurement of f is given in advance by
{⟨f, ηMJ ;k⟩}k∈Zd , instead of the one in (1.6) using a refinable function ϕ. These difficulties motivate
us to directly study a discrete framelet transform without associating it to an underlying affine
system in the function space L2(Rd). To our best knowledge, almost all papers and books on
wavelet analysis deal with wavelets in the function space L2(Rd) and a discrete framelet transform
is always regarded as a consequence of a multiresolution analysis as outlined above. Though
it is very natural and fundamental to directly study a discrete framelet/wavelet transform, this
algorithmic approach has barely been adopted before in wavelet analysis and harmonic analysis,
including books oriented for engineers such as [39, 40].

The structure of the paper is as follows. In Section 2, we shall recall the one-level discrete
framelet transform and then study its perfect reconstruction property. We shall explain the differ-
ences between a discrete framelet transform and its special case–a discrete wavelet transform. In
Section 3, we study several basic key properties that are closely related to sparsity of a discrete
framelet transform in the discrete setting, in particular, properties such as vanishing moments, sum
rules, and polynomial reproduction. In Section 4, we shall introduce the notion of stability of a
discrete framelet transform and discrete affine systems. Then we shall study the stability issue
of a discrete framelet transform, which is one of the most important and challenging aspects of
wavelet analysis. In Section 5 we shall investigate symmetry property of wavelets/framelets and
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the important role played by linear-phase moments in wavelet analysis. In Section 6, we shall study
connections between dual framelet filter banks and frequency-based dual framelets. We show that
every dual framelet filter bank naturally corresponds to a frequency-based dual framelet without
any a priori condition. Finally, in Section 7 we present an example of directional tight framelets
using tensor product of univariate complex-valued tight framelets.

2. Perfect Reconstruction of Discrete Framelet Transforms
In this section, we recall one-level discrete framelet transforms (DFrT) in dimension d. Among the
three fundamental properties of a discrete framelet transform: prefect reconstruction, sparsity, and
stability, we address in this section the most basic property—the perfect reconstruction property.

To introduce a discrete framelet transform, we need some definitions and concepts first. By
l(Zd) we denote the linear space of all sequences v : Zd → C of complex numbers on Zd. For
v ∈ l(Zd), we often write v = {v(k)}k∈Zd . Theoretically, a discrete input data is often regarded
as an element in l(Zd). Similarly, by l0(Zd) we denote the linear space of all sequences u =
{u(k)}k∈Zd : Zd → C on Zd such that {k ∈ Zd : u(k) ̸= 0} is a finite set. An element in l0(Zd) is
often regarded as a finite-impulse-response (FIR) filter or a finitely supported mask. In this paper,
we use u for a general filter and v for a general data.

A discrete framelet transform can be described using two linear operators—the subdivision
operator and the transition operator. More precisely, for a filter u ∈ l0(Zd) and a d × d integer
matrix M, the subdivision operator Su,M : l(Zd) → l(Zd) and the transition operator Tu,M :
l(Zd) → l(Zd) are defined to be

[Su,Mv](n) := | det(M)|
∑
k∈Zd

v(k)u(n−Mk), n ∈ Zd, (2.1)

[Tu,Mv](n) := | det(M)|
∑
k∈Zd

v(k)u(k−Mn), n ∈ Zd (2.2)

for v ∈ l(Zd). The transition operator is used for decomposition and plays the role of coarsening
and frequency-separating the data to lower resolution levels; while the subdivision operator is used
for reconstruction and plays the role of refining and predicting the data to higher resolution levels.

For a d× d invertible integer matrix M, we frequently use the following notations:

dM := | det(M)|, ΓM := (M[0, 1)d) ∩ Zd and ΩM := ((MT)−1Zd) ∩ [0, 1)d. (2.3)

In other words, ΓM = {γ1, . . . , γdM} denotes a complete set of representatives of the distinct cosets
of the quotient group Zd/[MZd], while ΩM = {ω1, . . . , ωdM} denotes a complete set of representa-
tives of the distinct cosets of the quotient group [(MT)−1Zd]/Zd. Note that ΩM = (MT)−1ΓMT .

It is often convenient to use the formal Fourier series (or symbol) v̂ of a sequence v =
{v(k)}k∈Zd , which is defined to be v̂(ξ) :=

∑
k∈Zd v(k)e−ik·ξ for ξ ∈ Rd, where k · ξ := k1ξ1 +

· · ·+ kdξd for k = (k1, . . . , kd)
T and ξ = (ξ1, . . . , ξd)

T. Note that v = {v(k)}k∈Zd is simply the se-
quence of Fourier coefficients of v̂. Quite often, one only needs to deal with v in the space l2(Zd),
equipped with the inner product:

⟨v, w⟩ :=
∑
k∈Zd

v(k)w(k), v, w ∈ l2(Zd) (2.4)

and ∥v∥2
l2(Zd)

:= ⟨v, v⟩ <∞. In terms of Fourier series, we have

Ŝu,Mv(ξ) = dMv̂(M
Tξ)û(ξ), T̂u,Mv(ξ) =

∑
ω∈ΩM

v̂((MT)−1ξ + 2πω)û((MT)−1ξ + 2πω). (2.5)
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We now describe a one-level standard (multidimensional) discrete framelet transform which
consists of two parts: a one-level framelet decomposition and a one-level framelet reconstruction.
Let ũ0, . . . , ũs ∈ l0(Zd) be filters for decomposition. For a given data v ∈ l(Zd), a one-level
framelet decomposition employing the filter bank {ũ0, . . . , ũs} is

wℓ := d
−1/2
M Tũℓ,Mv, ℓ = 0, . . . , s, (2.6)

where wℓ are called sequences of framelet coefficients of the input signal v. We can group all
sequences of framelet coefficients together and define a framelet decomposition (or analysis) op-
erator W̃ : l(Zd) → (l(Zd))1×(s+1) employing the filter bank {ũ0, . . . , ũs} as follows:

W̃v := d
−1/2
M (Tũ0,Mv, . . . , Tũs,Mv), v ∈ l(Zd). (2.7)

Let u0, . . . , us ∈ l0(Zd) be filters for reconstruction. A one-level framelet reconstruction em-
ploying the filter bank {u0, . . . , us} can be described by a framelet reconstruction (or synthesis)
operator V : (l(Zd))1×(s+1) → l(Zd) which is defined to be

V(w0, . . . , ws) := d
−1/2
M

s∑
ℓ=0

Suℓ,Mwℓ, w0, . . . , ws ∈ l(Zd). (2.8)

The role played by the factor d−1/2
M in (2.7) and (2.8) is to balance or preserve energy between the

input signal and its framelet coefficients. We shall explain this issue later in this section. We denote
a framelet decomposition operator employing the filter bank {u0, . . . , us} by W and similarly, a
framelet reconstruction operator employing the filter bank {ũ0, . . . , ũs} by Ṽ .

One of the fundamental properties of a discrete framelet transform is the prefect reconstruction
property: VW̃v = v for all input data v. We say that a discrete framelet transform employing a
filter bank ({ũ0, . . . , ũs}, {u0, . . . , us}), or simply, a filter bank ({ũ0, . . . , ũs}, {u0, . . . , us}) has
the perfect reconstruction (PR) property if VW̃v = v for all input data v ∈ l(Zd). By δ we denote
the Dirac (or Kronecker) sequence such that

δ(0) = 1 and δ(k) = 0, ∀ k ̸= 0. (2.9)

The following is a necessary and sufficient condition for the perfect reconstruction property of
a general one-level discrete framelet transform:

Theorem 1. Let ũ0, . . . , ũs, u0, . . . , us ∈ l0(Zd). Then the following statements are equivalent:

(i) ({ũ0, . . . , ũs}, {u0, . . . , us}) has perfect reconstruction property, that is, for all v ∈ l(Zd),

v = VW̃v = d−1
M

s∑
ℓ=0

Suℓ,MTũℓ,Mv, (2.10)

where W̃ and V are defined in (2.7) and (2.8), respectively.

(ii) The identity in (2.10) holds for all v ∈ l0(Zd).

(iii) The identity in (2.10) holds for dM particular sequences v = δ(· − γ), γ ∈ ΓM.

(iv) The following perfect reconstruction condition holds: for all ω ∈ ΩM and ξ ∈ Rd,

̂̃u0(ξ)û0(ξ + 2πω) + ̂̃u1(ξ)û1(ξ + 2πω) + · · ·+ ̂̃us(ξ)ûs(ξ + 2πω) = δ(ω). (2.11)
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Proof. (i)=⇒(ii)=⇒(iii) is trivial by l0(Zd) ⊆ l(Zd). By (2.5), we have

d−1
M

̂[Suℓ,MTũℓ,Mv](ξ) = T̂ũℓ,Mv(MTξ)ûℓ(ξ) =
∑
ω∈ΩM

v̂(ξ + 2πω) ̂̃uℓ(ξ + 2πω)ûℓ(ξ). (2.12)

Therefore, (2.10) holds if and only if

v̂(ξ) =
∑
ω∈ΩM

v̂(ξ + 2πω)
s∑
ℓ=0

̂̃uℓ(ξ + 2πω)ûℓ(ξ). (2.13)

Plugging v = δ(· − γ) into (2.13) and noting ̂δ(· − γ)(ξ) = e−iγ·ξ, we see that (2.13) becomes

1 =
∑
ω∈ΩM

eiγ·2πω
s∑
ℓ=0

̂̃uℓ(ξ + 2πω)ûℓ(ξ).

Since d
−1/2
M (eiγ·2πω)γ∈ΓM,ω∈ΩM

is a unitary matrix, we deduce that (2.11) must hold. Therefore,
(iii)=⇒(iv). If (2.11) is satisfied, then (2.13) holds trivially for all v ∈ l0(Zd). Hence, (iv)=⇒(ii).

To complete the proof, we show that (ii)=⇒(i). Note that all filters u0, . . . , us, ũ0, . . . , ũs are
supported inside a ball Br(0) with center 0 and radius r. Let v ∈ l(Zd) and n ∈ Zd. We shall
deduce from (ii) that

d−1
M

s∑
ℓ=0

[Suℓ,MTũℓ,Mv](n) = v(n). (2.14)

Define Kn := M−1(n−Br(0)). Define a finitely supported sequence vn ∈ l0(Zd) by vn(k) := v(k)
for all k ∈ Zd ∩ (Br(0) +MKn), and vn(k) = 0 otherwise. Clearly, vn ∈ l0(Zd) and vn(n) = v(n)
since n ∈ Zd ∩ (Br(0) +MKn). For all k ∈ Zd ∩Kn, since all filters are supported inside Br(0),

[Tũℓ,Mv](k) = dM
∑
j∈Zd

v(j)ũℓ(j−Mk) = dM
∑

j∈Zd∩(Br(0)+MKn)

vn(j)ũℓ(j−Mk) = [Tũℓ,Mvn](k).

Therefore, we deduce that

d−1
M

s∑
ℓ=0

[Suℓ,MTũℓ,Mv](n) =
s∑
ℓ=0

∑
k∈Zd∩Kn

[Tũℓ,Mv](k)uℓ(n−Mk)

=
s∑
ℓ=0

∑
k∈Zd∩Kn

[Tũℓ,Mvn](k)uℓ(n−Mk) = d−1
M

s∑
ℓ=0

[Suℓ,MTũℓ,Mvn](n) = vn(n) = v(n),

where we used (ii) and the fact that vn(n) = v(n). Hence, (ii)=⇒(i).

The condition in (2.11) can be equivalently rewritten as the following matrix form: ̂̃u0(ξ + 2πω1) · · · ̂̃us(ξ + 2πω1)
... . . . ...̂̃u0(ξ + 2πωdM) · · · ̂̃us(ξ + 2πωdM)


 û0(ξ + 2πω1) · · · ûs(ξ + 2πω1)

... . . . ...
û0(ξ + 2πωdM) · · · ûs(ξ + 2πωdM)


⋆

= IdM , (2.15)

where {ω1, . . . , ωdM} := ΩM. A filter bank satisfying the perfect reconstruction condition in (2.15)
is called a dual M-framelet filter bank. It follows trivially from the perfect reconstruction con-
dition in (2.15) that ({ũ0, . . . , ũs}, {u0, . . . , us}) is a dual M-framelet filter bank if and only if
({u0, . . . , us}, {ũ0, . . . , ũs}) is a dual M-framelet filter bank. In other words, VW̃ = Id l(Z) if and
only if ṼW = Id l(Z). In particular, a dual M-framelet filter bank with s = dM − 1 is called a
biorthogonal M-wavelet filter bank which, by the following result, is a nonredundant filter bank.
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Proposition 2. Let ({ũ0, . . . , ũs}, {u0, . . . , us}) be a dual M-framelet filter bank. Let the framelet
decomposition operator W̃ : l(Zd) → (l(Zd))1×(s+1) and framelet reconstruction operator V :
(l(Zd))1×(s+1) → l(Zd) be defined in (2.7) and (2.8). Then the following statements are equivalent:

(i) W̃ is onto, or V is one-to-one.

(ii) VW̃ = Id l(Zd) and W̃V = Id(l(Zd))1×(s+1) , that is, V−1 = W̃ and W̃−1 = V .

(iii) s = dM − 1, where dM := | det(M)|.

The same conclusion holds if l(Zd) is replaced by l2(Zd) or l0(Zd).

Proof. (ii)=⇒(i) is trivial. Note that VW̃ = Id l(Zd) follows directly from the perfect reconstruction
property. Using W̃VW̃w = W̃w, if W̃ is onto, then W̃(l(Zd))1×(s+1) = l(Zd) and we must
have W̃V = Id(l(Zd))1×(s+1) . By VW̃ = Id l(Zd), we have VW̃V = V and therefore, V(W̃V −
Id(l(Zd))1×(s+1)) = 0. If V is one-to-one, we must have W̃V = Id(l(Zd))1×(s+1) . Hence, (i)=⇒(ii).

Now we prove (ii) ⇐⇒ (iii). Suppose that (ii) holds. Then W̃V = Id(l(Zd))1×(s+1) implies

d−1
M Tũℓ,M

(
Su0,Mw0 + · · ·+ Sus,Mws

)
= wℓ, ∀ w0, . . . , ws ∈ l(Zd), ℓ = 0, . . . , s. (2.16)

Taking the Fourier series on both sides of (2.16), we see that (2.16) is equivalent to

ŵ0(ξ)
∑
ω∈ΩM

û0((M
T)−1ξ + 2πω) ̂̃uℓ((MT)−1ξ + 2πω) + · · ·

+ ŵs(ξ)
∑
ω∈ΩM

ûs((M
T)−1ξ + 2πω) ̂̃uℓ((MT)−1ξ + 2πω) = ŵℓ(ξ)

for all ℓ = 0, . . . , s. It is trivial to see that the above identities hold if and only if∑
ω∈ΩM

ûm((MT)−1ξ + 2πω) ̂̃uℓ((MT)−1ξ + 2πω) = δ(ℓ−m), ℓ,m = 0, . . . , s.

Rewriting the above identities into matrix form, we see that W̃V = Id(l(Zd))1×(s+1) if and only if û0(ξ + 2πω1) · · · ûs(ξ + 2πω1)
... . . . ...

û0(ξ + 2πωdM) · · · ûs(ξ + 2πωdM)


⋆  ̂̃u0(ξ + 2πω1) · · · ̂̃us(ξ + 2πω1)

... . . . ...̂̃u0(ξ + 2πωdM) · · · ̂̃us(ξ + 2πωdM)

= Is+1.

(2.17)
Combining (2.17) with (2.15), we conclude that we must have s+ 1 = dM. Therefore, (ii)=⇒(iii).

Conversely, if s = dM − 1, as a square matrix, (2.15) directly implies (2.17). By the above
argument, we must have W̃V = Id(l(Zd))1×(s+1) . Therefore, (iii) must hold.

If l(Zd) is replaced by S := l2(Zd) or l0(Zd), one can check that W : S → (S)1×(s+1) and
Ṽ : (S)1×(s+1) → S are well defined. The same proof can be used to verify the claims.

Consequently, under a biorthogonal wavelet filter bank, any input signal v ∈ l2(Zd) has a
nonredundant representation v = Vw with the unique choicew = W̃v; while under a dual framelet
filter bank with s > dM, an input signal v can be represented as v = Vw from infinitely many
w ∈ (l(Zd))1×(s+1) of framelet coefficients.

In the following, we explain the role played by the factor d−1/2
M in (2.7) and (2.8). To do so, we

need the following simple relation, which is well known in the literature (e.g., see [5]), between
the subdivision operator Su,M and the transition operator Tu,M acting on the space l2(Zd).
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Lemma 3. Let u ∈ l0(Zd) be a finitely supported filter on Zd. Then Su,M : l2(Zd) → l2(Zd) is the
adjoint operator of Tu,M : l2(Zd) → l2(Zd); that is, T ⋆

u,M = Su,M satisfying

⟨Su,Mv, w⟩ = ⟨T ⋆
u,Mv, w⟩ := ⟨v, Tu,Mw⟩, ∀ v, w ∈ l2(Zd). (2.18)

Proof. By (2.5), we have Ŝu,Mv(ξ) = dMv̂(M
Tξ)û(ξ) and hence

⟨Su,Mv, w⟩ =
dM

(2π)d

∫
[−π,π)d

v̂(MTξ)û(ξ)ŵ(ξ)dξ

=
1

(2π)d

∫
MT[−π,π)d

v̂(ξ)û((MT)−1ξ)ŵ((MT)−1ξ)dξ =
1

(2π)d

∫
[−π,π)d

v̂(ξ)Tu,Mw(ξ)dξ,

where we used (2.5) in the last identity. Hence, (2.18) holds.

Note that the space (l2(Zd))1×(s+1) is equipped with the following inner product:

⟨(w0, . . . , ws), (w̃0, . . . , w̃s)⟩ := ⟨w0, w̃0⟩+ · · ·+ ⟨ws, w̃s⟩, w0, . . . , ws, w̃0, . . . , w̃s ∈ l2(Zd)

and ∥(w0, . . . , ws)∥2(l2(Zd))1×(s+1) := ∥w0∥2l2(Zd)
+ · · ·+ ∥ws∥2l2(Zd)

. Recall that

W : l2(Zd) → (l2(Zd))1×(s+1) with Wv := d
−1/2
M (Tu0,Mv, . . . , Tus,Mv), v ∈ l2(Zd) (2.19)

and

V : (l2(Zd))1×(s+1) → l2(Zd) with V(w0, . . . , ws) := d
−1/2
M

s∑
ℓ=0

Suℓ,Mwℓ, (2.20)

for w0, . . . , ws ∈ l2(Zd). The adjoint operators of W and V are defined to be

W⋆ : (l2(Zd))1×(s+1) → l2(Zd) through ⟨v,W⋆w⟩ := ⟨Wv, w⟩ (2.21)

and
V⋆ : l2(Zd) → (l2(Zd))1×(s+1) through ⟨V⋆v, w⟩ := ⟨v,Vw⟩ (2.22)

for all v ∈ l2(Zd) and w ∈ (l2(Zd))1×(s+1). By Lemma 3, we have W⋆ = V and V⋆ = W .
The role played by the factor d−1/2

M in (2.7) and (2.8) is explained by the following result:

Theorem 4. Let u0, . . . , us ∈ l0(Zd) be finitely supported sequences on Zd. Let W : l2(Zd) →
(l2(Zd))1×(s+1) be defined in (2.19). Then the following statements are equivalent:

(i) ∥Wv∥2
(l2(Zd))1×(s+1) = ∥v∥2

l2(Zd)
for all v ∈ l2(Zd), that is,

∥Tu0,Mv∥2l2(Zd) + · · ·+ ∥Tus,Mv∥2l2(Zd) = dM∥v∥2l2(Zd), ∀ v ∈ l2(Zd). (2.23)

(ii) ⟨Wv,W ṽ⟩ = ⟨v, ṽ⟩ for all v, ṽ ∈ l2(Zd).

(iii) W⋆W = Id l2(Zd), that is, W⋆Wv = v for all v ∈ l2(Zd).

(iv) ({u0, . . . , us}, {u0, . . . , us}) is a dual M-framelet filter bank.

Proof. Obviously, (ii)=⇒(i). Note that (i) implies ⟨W⋆Wv, v⟩ = ⟨Wv,Wv⟩ = ⟨v, v⟩. Using
the well-known polarization identity, it is straightforward to see that ⟨Wv,W ṽ⟩ = ⟨W⋆Wv, ṽ⟩ =
⟨v, ṽ⟩. Hence, (i)=⇒(ii). The equivalence between (ii) and (iii) is trivial. Note that W⋆ = V . The
equivalence between (iii) and (iv) follows directly from Theorem 1.

8



Bin Han Properties of Discrete Framelet Transform

A filter bank {u0, . . . , us} is called a tight M-framelet filter bank if ({u0, . . . , us}, {u0, . . . , us})
is a dual M-framelet filter bank. In particular, a tight M-framelet filter bank with s = dM−1 is called
an orthogonal M-wavelet filter bank. By item (i) of Theorem 4, the energy is preserved after a
tight framelet decomposition:

∑s
ℓ=0 ∥wℓ∥2l2(Zd)

= ∥Wv∥2
l2(Zd)

= ∥v∥2
l2(Zd)

for all v ∈ l2(Zd), where
(w0, . . . , ws) := Wv is the sequence of framelet coefficients. Let {u0, . . . , us} be an orthogonal M-
wavelet filter bank. Define W as in (2.19) and V as in (2.20). By Proposition 2 and Theorem 4, we
see that W = V⋆ is an invertible orthogonal mapping satisfying ⟨Wv,W ṽ⟩ = ⟨v, ṽ⟩ for all v, ṽ ∈
l2(Zd) and V = W⋆ is an invertible orthogonal mapping such that for all w0, . . . , ws, w̃0, . . . , w̃s ∈
l2(Zd), ⟨V(w0, . . . , ws),V(w̃0, . . . , w̃s)⟩ = ⟨(w0, . . . , ws), (w̃0, . . . , w̃s)⟩.

3. Sparsity of Discrete Framelet Transforms
One key feature of wavelets in the function space L2(Rd) is the sparse representation for smooth or
piecewise smooth functions ([2, 8, 35, 36]). Since we deal with the discrete setting, the sparsity of a
discrete framelet transform, which we shall discuss in this section, refers to the sparsity of framelet
coefficients for smooth discrete signals. We shall mention in Section 6 some connections between
sparsity of a discrete framelet transform and the sparse representation of a framelet/wavelet in
the function space L2(Rd). In applications, it is desirable to have as many as possible negligible
framelet coefficients for smooth signals. In this section, we study several basic key mathematical
properties that are closely related to sparsity of a discrete framelet transform in the discrete setting,
in particular, properties such as vanishing moments, sum rules, and polynomial reproduction. This
section is mainly surveyed from the papers [25, 24] as well as [16, 19]. For the convenience of the
reader, we shall provide self-contained proofs for results stated in this section.

For an integer j = 1, . . . , d, by ∂j we denote the partial derivative with respect to the jth
coordinate of Rd. Define N0 := N∪{0}. For µ = (µ1, . . . , µd)

T ∈ Nd
0 and x = (x1, . . . , xd)

T ∈ Rd,
we define |µ| := |µ1| + · · · + |µd|, µ! := µ1! · · ·µd!, xµ := xµ11 · · · xµdd , and ∂µ := ∂µ11 · · · ∂µdd .
Moreover, we write ∂ := (∂1, . . . , ∂d)

T, the gradient differentiation operator.
Smooth signals are modeled by polynomials of various degrees. Let p : Rd → C be a d-variate

polynomial, that is, p(x) =
∑

µ∈Nd
0,|µ|6n

pµx
µ for some n ∈ N0 and if

∑
|µ|=n |pµ| ̸= 0, deg(p) := n

is called the (total) degree of the polynomial p. Sampling a polynomial p on the integer lattice Zd,
we have a polynomial sequence p|Zd : Zd → C which is given by [p|Zd ](k) = p(k), k ∈ Zd. If a
sequence v = {v(k)}k∈Zd is a polynomial sequence, then a polynomial p, satisfying v(k) = p(k)
for all k ∈ Zd, is uniquely determined. For simplicity of presentation, we shall use p to denote
both a polynomial function p on Rd and its induced polynomial sequence p|Zd on Zd.

For a nonnegative integer m ∈ N0, Πm denotes the space of all polynomials of (total) degree
no more than m. In particular, Π := ∪∞

m=0Πm denotes the space of all polynomials on Rd. For
a polynomial p(x) =

∑
µ∈Nd

0
pµx

µ and a smooth function f(ξ), we use the following polynomial
differentiation operator in this section:

p(x− i∂)f(ξ) :=
∑
µ∈Nd

0

pµ(x− i∂)µf(ξ), (3.1)

where in case of confusion ∂ is always with respect to ξ in this paper. Using the Taylor expansion
of p(y + z) at the point y, we have p(y + z) =

∑
µ∈Nd

0
(∂µp)(y) z

µ

µ!
. Consequently, we have

p(x− i∂)f(ξ) =
∑
µ∈Nd

0

(−i)|µ|

µ!
∂µp(x)∂µf(ξ) =

∑
µ∈Nd

0

xµ

µ!
[(∂µp)(−i∂)]f(ξ). (3.2)
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Using Leibniz differentiation formula and (3.2), one can also verify the following generalized
product rule for differentiation:

p(x− i∂)
(
g(ξ)f(ξ)

)
=

∑
µ∈Nd

0

(−i)|µ|

µ!
∂µg(ξ)[(∂µp)(x− i∂)]f(ξ). (3.3)

It follows directly from (3.2) and (3.3) that

[p(−i∂)(eix·ξf(ξ))]|ξ=0 = [p(x− i∂)f(ξ)]|ξ=0. (3.4)

For u ∈ l0(Zd) and v ∈ l(Zd), the convolution u ∗ v satisfying the relation û ∗ v(ξ) = û(ξ)v̂(ξ)
is defined to be

[u ∗ v](n) :=
∑
k∈Zd

u(k)v(n− k), n ∈ Zd. (3.5)

and an associated sequence v⋆ satisfying the relation v̂⋆(ξ) = v̂(ξ) by

v⋆(k) := v(−k), k ∈ Zd. (3.6)

To study basic properties of a discrete framelet transform, it is of importance to investigate how
the subdivision operator and the transition operator act on polynomial spaces. Since the subdivision
and transition operators can be expressed via the convolution operation, in the following we first
study the convolution operation acting on polynomial spaces.

Lemma 5. ([25, Proposition 2.1] and [24, (4.7)]) Let u = {u(k)}k∈Zd ∈ l0(Zd). Then for any
d-variate polynomial p ∈ Π, p ∗ u is a polynomial sequence with deg(p ∗ u) 6 deg(p) and

[p ∗ u](x) :=
∑
k∈Zd

p(x− k)u(k) =
∑
µ∈Nd

0

(−i)|µ|

µ!
∂µp(x)∂µû(0) = [p(x− i∂)û(ξ)]|ξ=0. (3.7)

Moreover, [∂µp] ∗ u = ∂µ[p ∗ u] for all µ ∈ Nd
0 and p(· − y) ∗ u = [p ∗ u](· − y) for all y ∈ Rd.

Proof. Using the Taylor expansion, we have p(x− k) =
∑

µ∈Nd
0
∂µp(x) (−k)µ

µ!
. Hence, we deduce

[p ∗ u](x) =
∑
k∈Zd

p(x− k)u(k) =
∑
k∈Zd

∑
µ∈Nd

0

∂µp(x)u(k)
(−k)µ

µ!
=

∑
µ∈Nd

0

∂µp(x)
∑
k∈Zd

u(k)
(−k)µ

µ!
.

By û(ξ) =
∑

k∈Zd u(k)e−ik·ξ, we observe that ∂µû(0) = i|µ|
∑

k∈Zd u(k)(−k)µ. Hence, [p∗u](x) =∑
µ∈Nd

0

(−i)|µ|
µ!

∂µp(x)∂µû(0), from which and (3.2) we see that all the claims hold.

For an integer m ∈ N0 and smooth functions f ,g, we use the following big O notation

f(ξ) = g(ξ) +O(∥ξ − ξ0∥m), ξ → ξ0 (3.8)

to mean the following relation:

∂µf(ξ0) = ∂µg(ξ0), ∀ µ ∈ Nd
0 satisfying |µ| < m. (3.9)

For a polynomial p ∈ Πm−1 of degree less than m, by (3.7), it is evident that the polynomial
p∗u depends only on the values ∂µû(0) of û at the origin for µ ∈ Nd

0 with |µ| < m. In other words,
if u, v ∈ l0(Zd) satisfy û(ξ) = v̂(ξ) +O(∥ξ∥m) as ξ → 0, then p ∗ u = p ∗ v for all p ∈ Πm−1.

Now we study the action of the transition operator on polynomial spaces.
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Theorem 6. ([25, Proposition 3.1] and [24, Proposition 4.2]) Let u ∈ l0(Zd) and M be a d × d
invertible integer matrix. For any given polynomial p ∈ Π,

Tu,Mp = dM[p ∗ u⋆](M·) = p(M·) ∗ up =
∑
µ∈Nd

0

dM(−i)|µ|

µ!
(∂µp)(M·)∂µû(0), (3.10)

where up is any finitely supported sequence on Zd such that

ûp(ξ) = dMû((MT)−1ξ) +O(∥ξ∥deg(p)+1), ξ → 0. (3.11)

In particular, for any positive integer m ∈ N, the following statements are equivalent:

(1) Tu,Mp = 0 for all polynomial sequences p ∈ Πm−1.

(2) Tu,Mq = 0 for all polynomial sequences q = (·)µ with µ ∈ Nd
0 and |µ| = m− 1.

(3) û(ξ) = O(∥ξ∥m) as ξ → 0, that is, ∂µû(0) = 0 for all µ ∈ Nd
0 with |µ| < m.

Proof. Since Tu,Mp = dM[p ∗ u⋆](M·) = dM
∑

k∈Zd p(M(· − M−1k))u(−k), by Lemma 5 and
p(M(· −M−1k)) =

∑
µ∈Nd

0
∂µ(p(M·)) (−M−1k)µ

µ!
, we see that Tu,Mp is a polynomial sequence and

dM[p ∗ u⋆](M·) =
∑
µ∈Nd

0

∂µ(p(M·))dM
µ!

∑
k∈Zd

u(−k)(−M−1k)µ =
∑
µ∈Nd

0

(−i)|µ|

µ!
∂µ(p(M·))∂µûp(0),

where we used ∂µûp(0) = dMi
|µ|∑

k∈Zd u(k)(M−1k)µ. Now the identities in (3.10) follow directly
from (3.7). The equivalence among items (1)–(3) is a direct consequence of (3.10).

We say that a filter u has order m vanishing moments if items (1)–(3) in Theorem 6 hold. If
u has order m but not m + 1 vanishing moments, we define vm(u) := m and say that u has the
vanishing moments of order m. Vanishing moments are important for sparse framelet expansions,
since most framelet coefficients are identically zero for any polynomial to certain degree.

We define the coset sequence u[γ] (or u[γ:M]) of u = {u(k)}k∈Zd at the coset γ +MZd by

û[γ](ξ) :=
∑
k∈Zd

u(γ +Mk)e−ik·ξ, that is, u[γ] = {u(γ +Mk)}k∈Zd . (3.12)

Now we proceed to investigate the subdivision operator acting on polynomial spaces. In con-
trast to the case of the transition operator, Su,Mp is not always a polynomial sequence for an input
polynomial sequence p. For example, for p = 1 and u = δ, we have [Su,Mp](γ +Mk) = δ(γ)dM
for all γ ∈ ΓM and k ∈ Zd. Hence, Sδ,M1 is not a polynomial sequence.

Before proceeding further, we need an auxiliary result which is implicitly given in [25].

Lemma 7. Let u = {u(k)}k∈Zd ∈ l0(Zd) and q ∈ Π. Then the following are equivalent:

(i) (q∗u[γ])(−M−1γ) =
∑

k∈Zd q(−M−1γ−k)u(γ+Mk) =
∑

k∈Zd q(−k)u(Mk) = (q∗u[0])(0)
for all γ ∈ ΓM.

(ii) [q(−i∂)(e−iM−1γ·ξû[γ](ξ))]|ξ=0 = [q(−i∂)û[0](ξ)]|ξ=0 for all γ ∈ ΓM.

(iii) [q(−iM−1∂)û(ξ)]|ξ=2πω = 0 for all ω ∈ ΩM\{0}.
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Proof. The equivalence between (i) and (ii) is a direct consequence of the following identity[
q(−i∂)(e−iM−1γ·ξû[γ](ξ))

]∣∣
ξ=0

=
[
q(−M−1γ − i∂)û[γ](ξ)

]∣∣
ξ=0

=
∑
k∈Zd

q(−M−1γ − k)u(γ +Mk)

for γ ∈ Zd, where we used (3.4) and (3.7). Note that û(ξ) =
∑

γ∈ΓM
e−iγ·ξû[γ](MTξ). Therefore,

û((MT)−1ξ + 2πω) =
∑

γ∈ΓM
e−iγ·2πωe−iM

−1γ·ξû[γ](ξ). Now we see that item (ii) is equivalent to
[q(−i∂)û((MT)−1ξ + 2πω)]|ξ=0 = 0 for all ω ∈ ΩM\{0}, which is just item (iii).

We have the necessary and sufficient condition for Su,Mp to be a polynomial sequence.

Theorem 8. ([25, Lemma 3.2]) Let u = {u(k)}k∈Zd ∈ l0(Zd), M be a d × d invertible integer
matrix, and p ∈ Π be a polynomial. Then the following statements are equivalent:

(1) Su,Mp is a polynomial sequence, that is, Su,Mp ∈ Π.

(2)
∑

k∈Zd(∂µp)(−M−1γ−k)u(γ+Mk) =
∑

k∈Zd(∂µp)(−k)u(Mk) for all µ ∈ Nd
0 and γ ∈ ΓM.

(3) [(∂µp)(−i∂)(e−iM−1γ·ξû[γ](ξ))]|ξ=0 = [(∂µp)(−i∂)û[0](ξ)]|ξ=0 for all µ ∈ Nd
0 and γ ∈ ΓM.

(4) [(∂µp)(−M−1γ − i∂)û[γ](ξ)]|ξ=0 = [(∂µp)(−i∂)û[0](ξ)]|ξ=0 for all µ ∈ Nd
0 and γ ∈ ΓM.

(5) [(∂µp)(−iM−1∂)û(ξ)]|ξ=2πω = 0 for all µ ∈ Nd
0 and ω ∈ ΩM\{0}.

Moreover, if any of the above items (1)–(5) holds, then deg(Su,Mp) 6 deg(p) and

Su,M(∂βp) = [(∂βp)(M−1·)] ∗ u, β ∈ Nd
0, (3.13)

Su,M(p(· − y)) = p(M−1 · −y) ∗ u = [Su,Mp](· −My), y ∈ Rd. (3.14)

Proof. By the definition of the subdivision operator Su,M in (2.1), for j, γ ∈ Zd,

[Su,Mp](γ +Mj) = dM
∑
m∈Zd

p(m)u(γ +Mj−Mm)

= dM
∑
k∈Zd

p(M−1(γ +Mj)−M−1γ − k)u(γ +Mk).

Hence, [Su,Mp](γ + M·) is a polynomial sequence for every γ ∈ Zd. Now it is easy to see that
Su,Mp is a polynomial sequence if and only if

∑
k∈Zd p(· − M−1γ − k)u(γ +Mk) is independent

of γ. Using Taylor expansion of p, we have∑
k∈Zd

p(x−M−1γ − k)u(γ +Mk) =
∑
k∈Zd

∑
µ∈Nd

0

xµ

µ!
(∂µp)(−M−1γ − k)u(γ +Mk)

=
∑
µ∈Nd

0

xµ

µ!

∑
k∈Zd

(∂µp)(−M−1γ − k)u(γ +Mk).

Hence,
∑

k∈Zd p(·−M−1γ−k)u(γ+Mk) is independent of γ if and only if all
∑

k∈Zd(∂µp)(−M−1γ−
k)u(γ + Mk) are independent of γ, which are obviously equivalent to the conditions in item (2).
Thus, we proved (1) ⇐⇒ (2). Moreover, when Su,Mp ∈ Π, the above argument also yields

Su,Mp = dM
∑
k∈Zd

p(M−1 · −M−1γ − k)u(γ +Mk) =
∑
k∈Zd

p(M−1(· − k))u(k), ∀ γ ∈ Zd,

from which we see that (3.13) holds. The equivalence among (2)–(5) follows from Lemma 7.
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For subdivision operator acting on polynomial spaces, we now have the following result.

Theorem 9. ([25, Proposition 3.3] and [24, Proposition 4.3]) Let u = {u(k)}k∈Zd ∈ l0(Zd) and M
be a d× d invertible integer matrix. For any positive integer m ∈ N, the following are equivalent:

(1) Su,MΠm−1 ⊆ Π, or Su,MΠm−1 ⊆ Πm−1.

(2) Su,Mq ∈ Π for all polynomials q = (·)µ with µ ∈ Nd
0 and |µ| = m− 1.

(3) ∂µû(2πω) = 0 for all µ ∈ Nd
0 with |µ| < m and for all ω ∈ ΩM\{0}; in other words,

û(ξ + 2πω) = O(∥ξ∥m), ξ → 0, ∀ ω ∈ ΩM\{0}. (3.15)

(4) e−iM
−1γ·ξû[γ](ξ) = û[0](ξ) +O(∥ξ∥m) as ξ → 0 for all γ ∈ ΓM, or its equivalent form:∑

k∈Zd

u(γ +Mk)(γ +Mk)µ =
∑
k∈Zd

u(Mk)(Mk)µ, ∀ µ ∈ Nd
0, |µ| < m. (3.16)

If (3.15) holds, then for all p ∈ Πm−1 and v ∈ l0(Zd), Su,M(p ∗ v) = p(M−1·) ∗ [Su,Mv].

Proof. (1)=⇒(2) is obvious. By Theorem 8, if Su,Mp ∈ Π, then Su,M(∂µp) ∈ Π for all µ ∈ Nd
0.

The equivalence between (1)–(4) now follows from Theorem 8.

We say that a filter u has order m sum rules if any of items (1)–(4) in Theorem 9 is satisfied. If
u has order m but not m+ 1 sum rules, we define sr(u) := m and we say that u has the sum rules
of order m. The action of the subdivision operator on polynomial sequences has been initially (but
implicitly) investigated in [16, Section 2] and [19, Section 2].

4. Stability of Multilevel Discrete Framelet Transforms
One of the key features of a discrete framelet transform is its ability to extract the multiscale
structure embedded in signals. For this purpose, a multilevel discrete framelet transform is often
used in applications by recursively performing one-level discrete framelet transforms on selected
sequences of framelet coefficients at the immediate higher scale level. In this section, we recall
a (standard) multilevel discrete framelet transform, introduce the notion of its stability in the se-
quence space l2(Zd), and then study its stability and discrete affine systems in l2(Zd).

4.1. Multilevel discrete framelet transforms
In the following, we describe a commonly used standard multilevel discrete framelet transform
by recursively performing one-level discrete framelet transforms on only one selected sequence
of framelet coefficients. Of course, one can select several or even all the sequences of framelet
coefficients for further decomposition, but we have more or less the same algorithm. The framelet
coefficients and their associated filters in such selected sequences for further decomposition are
called parent (or low-pass) framelet coefficients and parent (or low-pass) filters or masks (since
they are often low-pass filters), respectively. In this paper, we use a or its indexed version to denote
a low-pass (or parent) filter and use v or its indexed version to denote low-pass (or parent) framelet
coefficients. The framelet coefficients and their associated filters in other sequences, which are not
selected for further decomposition, are called child (or high-pass) framelet coefficients and child
(or high-pass) filters (since they are often high-pass filters), respectively. In this paper, we use b or
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its indexed version to denote a high-pass (or child) filter and use w or its indexed version to denote
high-pass (or child) framelet coefficients.

Let ã be a dual low-pass filter and b̃1, . . . , b̃s be dual high-pass filters for decomposition. For a
positive integer J , a J-level discrete framelet decomposition is given by

vj−1 := d
−1/2
M Tã,Mvj, wj−1;ℓ := d

−1/2
M Tb̃ℓ,Mvj, ℓ = 1, . . . , s, j = J, . . . , 1, (4.1)

where vJ : Zd → C is an input signal. After a J-level discrete framelet decomposition, the
original input signal vJ is decomposed into one sequence v0 of low-pass framelet coefficients and
sJ sequences wj;ℓ of high-pass framelet coefficients for ℓ = 1, . . . , s and j = 0, . . . , J − 1. For
various purposes, such framelet coefficients are often processed by thresholding or quantization.

Let a be a primal low-pass filter and b1, . . . , bs be primal high-pass filters for reconstruction.
Now a J-level discrete framelet reconstruction is

v̊j := d
−1/2
M Sa,Mv̊j−1 + d

−1/2
M

s∑
ℓ=1

Sbℓ,Mẘj−1;ℓ, j = 1, . . . , J. (4.2)

For analysis of a multilevel discrete framelet transform, it is convenient to rewrite the J-level
discrete framelet decomposition employing the filter bank {ã; b̃1, . . . , b̃s} by using a J-level de-
composition operator W̃J : l(Z) → (l(Z))1×(sJ+1) as follows:

W̃JvJ := (wJ−1;1, . . . , wJ−1;s, . . . , w0;1, . . . , w0;s, v0), (4.3)

where wj−1;ℓ and v0 are defined in (4.1). Similarly, a J-level discrete reconstruction operator
VJ : (l(Z))1×(sJ+1) → l(Z) employing the filter bank {a; b1, . . . , bs} is defined by

VJ(ẘJ−1;1, . . . , ẘJ−1;s, . . . , ẘ0;1, . . . , ẘ0;s, v̊0) = v̊J , (4.4)

where v̊J is computed via the recursive formulas in (4.2). Due to the recursive cascade structure of
the operators W̃J and VJ in (4.1) and (4.2), a multilevel discrete framelet transform is often called
a fast framelet transform. A fast framelet transform with s = dM−1 is further called a fast wavelet
transform. We shall denote a J-level discrete framelet decomposition operator employing the filter
bank {a; b1, . . . , bs} by WJ and a J-level discrete framelet reconstruction operator employing the
filter bank {ã; b̃1, . . . , b̃s} by ṼJ .

We say that a J-level discrete framelet transform has the perfect reconstruction property if
VJW̃JvJ = vJ , that is, the reconstructed signal v̊J is the same as the original input signal vJ if
v̊0 = v0 and ẘj;ℓ = wj,ℓ for all ℓ = 1, . . . , s and j = 0, . . . , J − 1. For example, by Theorem 1,
a J-level discrete framelet transform employing a filter bank ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}) has
the perfect reconstruction property if for all ξ ∈ Rd,

̂̃a(ξ + 2πω1)
̂̃b1(ξ + 2πω1) · · · ̂̃bs(ξ + 2πω1)

...
... . . . ...̂̃a(ξ + 2πωdM)

̂̃b1(ξ + 2πωdM) · · · ̂̃bs(ξ + 2πωdM)


 â(ξ + 2πω1) b̂1(ξ + 2πω1) · · · b̂s(ξ + 2πω1)

...
... . . . ...

â(ξ + 2πωdM) b̂1(ξ + 2πωdM) · · · b̂s(ξ + 2πωdM)


⋆

= IdM .

(4.5)

That is, ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}) is a dual M-framelet filter bank. Note that W⋆
J = VJ ,

W̃⋆
J = ṼJ . Therefore, VJW̃Jv = v for all v ∈ l(Zd) if and only if ṼJWJv = v for all v ∈ l(Zd).
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4.2. Stability of multilevel discrete framelet transforms
Beyond the perfect reconstruction property and sparsity that we have discussed in Sections 2 and 3,
another fundamental property is stability. We say that a filter bank {a; b1, . . . , bs} has stability in
l2(Zd) if there exist positive constants C1 and C2 such that

C1∥v∥l2(Zd) 6 ∥WJv∥(l2(Zd))1×(sJ+1) 6 C2∥v∥l2(Zd), ∀ v ∈ l2(Zd), J ∈ N. (4.6)

A filter bank {a; b1, . . . , bs} having stability in l2(Zd) is also called a framelet filter bank (with
stability) in l2(Zd). By (4.6), the l2-norm of framelet coefficients provides an equivalent norm for
the sequence space l2(Zd). We say that a multilevel discrete framelet transform employing a dual
M-framelet filter bank ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}) has stability in the space l2(Zd), or simply
a dual M-framelet filter bank ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}) has stability in l2(Zd), if both filter
banks {ã; b̃1, . . . , b̃s} and {a; b1, . . . , bs} have stability in the space l2(Zd).

We now have the following result on the stability of a multilevel discrete framelet transform.

Theorem 10. Let ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}) be a dual M-framelet filter bank. Let WJ , W̃J

be its associated J-level discrete framelet decomposition operators and VJ , ṼJ be its associated
J-level discrete framelet reconstruction operators. Then the following statements are equivalent:

(i) The dual M-framelet filter bank ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}) has stability in the space
l2(Zd), that is, there exist positive constants C1 and C2 such that (4.6) holds and

C−1
2 ∥v∥l2(Zd) 6 ∥W̃Jv∥(l2(Zd))1×(sJ+1) 6 C−1

1 ∥v∥l2(Zd), ∀ v ∈ l2(Zd), J ∈ N. (4.7)

(ii) There exist positive constants C1 and C2 such that for all v ∈ l2(Zd) and J ∈ N,

∥WJv∥(l2(Zd))1×(sJ+1) 6 C2∥v∥l2(Zd) and ∥W̃Jv∥(l2(Zd))1×(sJ+1) 6 C−1
1 ∥v∥l2(Zd). (4.8)

(iii) There exist C1 > 0 and C2 > 0 such that for all w⃗ ∈ (l2(Zd))1×(sJ+1) and for all J ∈ N,

∥VJw⃗∥l2(Zd) 6 C2∥w⃗∥(l2(Zd))1×(sJ+1) and ∥ṼJw⃗∥l2(Zd) 6 C−1
1 ∥w⃗∥(l2(Zd))1×(sJ+1) . (4.9)

(iv) There exist C1, C2 > 0 such that for all v ∈ l2(Zd), w⃗ ∈ (l2(Zd))1×(sJ+1), and for all J ∈ N,

∥VJw⃗∥l2(Zd) 6 C2∥w⃗∥(l2(Zd))1×(sJ+1) and ∥W̃Jv∥(l2(Zd))1×(sJ+1) 6 C−1
1 ∥v∥l2(Zd). (4.10)

(v) There exist C1, C2 > 0 such that for all v ∈ l2(Zd), w⃗ ∈ (l2(Zd))1×(sJ+1), and for all J ∈ N,

∥WJv∥(l2(Zd))1×(sJ+1) 6 C2∥v∥l2(Zd) and ∥ṼJw⃗∥l2(Zd) 6 C−1
1 ∥w⃗∥(l2(Zd))1×(sJ+1) . (4.11)

If in addition s = dM − 1, any of the above statements is equivalent to

(vi) There exist positive constants C1 and C2 such that for all w⃗ ∈ (l2(Zd))1×(sJ+1) and J ∈ N,

C1∥w⃗∥(l2(Zd))1×(sJ+1) 6 ∥VJw⃗∥l2(Zd) 6 C2∥w⃗∥(l2(Zd))1×(sJ+1) (4.12)

and
C−1

2 ∥w⃗∥(l2(Zd))1×(sJ+1) 6 ∥ṼJw⃗∥l2(Zd) 6 C−1
1 ∥w⃗∥(l2(Zd))1×(sJ+1) . (4.13)
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Proof. (i)=⇒(ii) is trivial. Note that VJ = W⋆
J and ṼJ = W̃⋆

J . It follows from the well-known
identities ∥W⋆

J∥ = ∥WJ∥ and ∥W̃⋆
J∥ = ∥W̃J∥ that (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v), where ∥ · ∥

here refers to the operator norm in the space l2(Zd).
We now prove that (ii) and (iii) together imply (i). Since ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}) is a

dual M-framelet filter bank, we have the perfect reconstruction property ṼJWJv = VJW̃Jv = v
for all v ∈ l2(Zd). By (4.8) and (4.9), we have

∥v∥l2(Zd) = ∥ṼJWJv∥l2(Zd) 6 C−1
1 ∥WJv∥(l2(Zd))1×(sJ+1)

from which and (4.8) we see that (4.6) holds. (4.7) can be proved similarly.
Since v = VJW̃Jv for all v ∈ l2(Zd), replacing ∥v∥l2(Zd) in (4.7) by ∥VJW̃Jv∥l2(Zd), we deduce

C1∥W̃Jv∥(l2(Zd))1×(sJ+1) 6 ∥VJW̃Jv∥l2(Zd) 6 C2∥W̃Jv∥(l2(Zd))1×(sJ+1) (4.14)

for all v ∈ l2(Zd) and J ∈ N. If s = dM−1, then W̃J is onto, and therefore, (4.12) follows directly
from (4.14). (4.13) can be proved similarly.

For VJ and ṼJ , generally we can only have (4.14) and its duality part by replacing W̃J and VJ
in (4.14) with WJ and ṼJ , respectively. For s > dM, both (4.12) and (4.13) cannot hold, since by
Proposition 2, there exists w⃗ ̸≡ 0 in the space l0(Zd) such that VJw⃗ = 0. Obviously, (4.10) implies
that a small change of an input data v induces a small change of all framelet coefficients, and
a small perturbation of all framelet coefficients results in a small perturbation of a reconstructed
signal. The notion of stability of a multilevel discrete framelet transform can be extended to other
(weighted) sequence spaces and we shall address such issue elsewhere. Here we only provide some
connections between stability of a multilevel discrete framelet transform and a refinable function.

Proposition 11. Let {a; b1, . . . , bs} be a filter bank such that â(0) = 1 and there exists a positive
constant C such that

∥WJv∥2(l2(Zd))1×(sJ+1) 6 C∥v∥2l2(Zd) ∀ v ∈ l2(Zd), J ∈ N. (4.15)

Let M be a d × d expansive integer matrix, that is, all its eigenvalues are greater than one in
modulus. Define a frequency-based refinable function φ by

φ(ξ) :=
∞∏
j=1

â((MT)−jξ), ξ ∈ Rd. (4.16)

Then φ ∈ L2(Rd) with ∥φ∥2
L2(Rd)

6 (2π)dC.

Proof. Since VJ = W⋆
J , by (4.15), we have

∥VJ w⃗∥2l2(Zd) 6 C∥w⃗∥2(l2(Zd))1×(sJ+1) ∀ w⃗ ∈ (l2(Zd))1×(sJ+1), J ∈ N. (4.17)

Take w⃗0 = (0, . . . , 0, δ), that is, v0 = δ and all high-pass framelet coefficients vanish. Then
VJw⃗0 = d

−J/2
M SJa,Mδ. Since the Fourier series of SJa,Mδ is dJM

∏J−1
j=0 â((M

T)jξ), we have

∥VJw⃗0∥l2(Zd) = ∥d−J/2M SJa,Mδ∥2l2(Zd) = d−JM ∥SJa,Mδ∥2l2(Zd) =
dJM

(2π)d

∫
[−π,π)d

J−1∏
j=0

|â((MT)jξ)|2dξ

=
1

(2π)d

∫
Rd

χ(MT)J [−π,π)d(ξ)
J∏
j=1

|â((MT)−jξ)|2dξ.
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It now follows from ∥VJw⃗0∥2l2(Zd)
6 C∥w⃗0∥2l2(Zd)

= C that

1

(2π)d

∫
Rd

χ(MT)J [−π,π)d(ξ)
J∏
j=1

|â((MT)−jξ)|2dξ = ∥d−J/2M SJa,Mδ∥2l2(Zd) = ∥VJ w⃗0∥2l2(Zd) 6 C.

Since M is expansive, we have limJ→∞ χ(MT)J [−π,π)d(ξ)
∏J

j=1 |â((MT)−jξ)|2 = |φ(ξ)|2 for all
ξ ∈ Rd. Applying Fatou’s lemma, we have

1

(2π)d

∫
Rd

|φ(ξ)|2dξ 6 lim inf
J→∞

1

(2π)d

∫
Rd

χ(MT)J [−π,π)d(ξ)
J∏
j=1

|â((MT)−jξ)|2dξ 6 C.

Hence, φ ∈ L2(Rd) and ∥φ∥2
L2(Rd)

6 (2π)dC.

4.3. Discrete affine systems for l2(Zd)
In this section, we explain the role played by the dilation matrix M in a multilevel discrete framelet
transform. Then we give the definition of discrete affine systems for l2(Zd). In other words, we
introduce the notion of discrete framelets and discrete wavelets for l2(Zd) in this section.

To implement the subdivision and transition operators using the convolution operation, we need
the upsampling and downsampling operators on sequences in l(Zd). The upsampling operator
↑M : l(Zd) → l(Zd) and the downsampling (or decimation) operator↓M : l(Zd) → l(Zd) with a
d× d sampling matrix M are defined to be

[v↑M](n) :=

{
v(M−1n), if n ∈ MZd;
0, otherwise,

and [v↓M](n) := v(Mn), n ∈ Zd. (4.18)

It is convenient to use the notation v(M−1·) for v ↑M and v(M·) for v ↓M. Now the subdivision
operator Su,M in (2.1) and the transition operator Tu,M in (2.2) can be equivalently expressed as
follows:

Su,Mv = dMu ∗ (v↑M) and Tu,Mv = dM(u
⋆ ∗ v)↓M. (4.19)

According to (4.19), the subdivision and transition operators differ to the convolution operation
only in the use of the upsampling and downsampling operators with the sampling matrix M, which
plays a crucial role in a multilevel discrete framelet transform to extract multiscale structure em-
bedded in a signal. To understand this point well, instead of viewing the decomposition operator
W̃J and the reconstruction operator VJ in the recursive way as in (4.1) and (4.2), we consider wj;ℓ
as a direct consequence of a linear mapping acting on the input signal v (more precisely, vJ ).

We have the following result on the recursive application of subdivision or transition operators.

Lemma 12. Let M1,M2 be d× d invertible integer matrices and let u1, u2 ∈ l0(Zd). Then

Su1,M1Su2,M2v = Su1∗(u2↑M1),M1M2v = | det(M1M2)|u1 ∗ (u2 ↑M1) ∗ (v↑M1M2) (4.20)

and

Tu2,M2Tu1,M1v = Tu1∗(u2↑M1),M1M2v = | det(M1M2)|(u1 ∗ (u2 ↑M1) ∗ v)↓M1M2. (4.21)
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Proof. The Fourier series of the sequence Su1,M1Su2,M2v is

| det(M1)|û1(ξ)Ŝu2,M2v(M
T
1 ξ) = | det(M1M2)|û1(ξ)û2(MT

1 ξ)v̂(M
T
2M

T
1 ξ).

Therefore, (4.20) holds. By duality in (2.18) and by (4.20), we have

⟨w, Tu2,M2Tu1,M1v⟩ = ⟨Su2,M2w, Tu1,M1v⟩ = ⟨Su1,M1Su2,M2w, v⟩
= ⟨Su1∗(u2↑M1),M1M2w, v⟩ = ⟨w, Tu1∗(u2↑M1),M1M2v⟩,

from which we see that (4.21) holds.

From the definition of the sequence wj;ℓ of framelet coefficients in (4.1), we see that

vj = d
−1/2
M Tã,Mvj+1 = · · · = d

(j−J)/2
M T J−j

ã,M vJ = d
(j−J)/2
M Tã∗(ã↑M)∗···∗(ã↑MJ−j−1),MJ−jv (4.22)

and

wj;ℓ = d
−1/2
M Tb̃ℓvj+1 = d

(j−J)/2
M Tb̃ℓ,MT

(j+1−J)/2
ã,M vJ = d

(j−J)/2
M Tã∗(ã↑M)∗···∗(ã↑MJ−j−2)∗(b̃ℓ↑MJ−j−1),MJ−jv.

Therefore, framelet coefficients wj−1;ℓ are obtained by filtering a given signal v using the filters
d
(J−j)/2
M ã ∗ (ã ↑ M) ∗ · · · ∗ (ã ↑ MJ−j−1) ∗ (b̃ℓ ↑ MJ−j), whose supports grow with the scale level
J − j. More precisely, by (2.2),

wj;ℓ(k) =
⟨
v, d

(J−j)/2
M [ã ∗ (ã↑M) ∗ · · · ∗ (ã↑MJ−j−2) ∗ (b̃ℓ ↑MJ−j−1)](· −MJ−jk)

⟩
, k ∈ Zd.

Similarly, we deduce that

VJ(0, . . . , 0, v0) = d
−J/2
M SJa,Mv0 = d

(j−J)/2
M Sa∗(a↑M)∗···∗(a↑MJ−1),MJv0 (4.23)

and

VJ(0, . . . , 0, wj;ℓ, 0, . . . , 0) = d
(j−J)/2
M SJ−j−1

a,M Sbℓ,Mwj;ℓ
= d

(j−J)/2
M Sa∗(ã↑M)∗···∗(a↑MJ−j−2)∗(bℓ↑MJ−j−1),MJ−jwj;ℓ.

(4.24)

Define filters aj and ãj, j ∈ N by

âj(ξ) := â(ξ)â(MTξ) · · · â((MT)j−1ξ) and ̂̃aj(ξ) := ̂̃a(ξ)̂̃a(MTξ) · · · ̂̃a((MT)j−1ξ) (4.25)

with the convention that a0 = ã0 := δ. That is,

aj = a ∗ (a↑M) ∗ · · · ∗ (a↑Mj−1) and ãj := ã ∗ (ã↑M) ∗ · · · ∗ (ã↑Mj−1). (4.26)

Now a J-level discrete framelet transform employing a dual M-framelet filter bank ({ã; b̃1, . . . , b̃s},
{a; b1, . . . , bs}) can be equivalently rewritten as

v =
∑
k∈Zd

⟨v, ã[J ;k]⟩a[J ;k] +
J∑
j=1

∑
k∈Zd

s∑
ℓ=1

⟨v, b̃ℓ,[j;k]⟩bℓ,[j;k], (4.27)

where
a[j;k] := d

j/2
M aj(· −Mjk), bℓ,[j;k] := d

j/2
M [aj−1 ∗ (bℓ ↑Mj−1)](· −Mjk) (4.28)
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and
ã[j;k] := d

j/2
M ãj(· −Mjk), b̃ℓ,[j;k] := d

j/2
M [ãj−1 ∗ (b̃ℓ ↑Mj−1)](· −Mjk). (4.29)

By employing the dilation matrix M, a multilevel discrete framelet transform provides a multi-
scale representation of a signal, which is the key to extract the multiscale structure in a signal. The
representation in (4.27) also shows that the stability of a multilevel discrete framelet transform in
the space l2(Zd) is closely related to the asymptotic behavior of the sequences aJ , ãJ in (4.25) as
J → +∞, which is in turn closely related to the frequency-based refinable functions φ and φ̃.

The above discussion motivates us to define discrete affine systems as follows:

DASJ({a; b1, . . . , bs}) :={a[J ;k] : k ∈ Zd}
∪ {bℓ,[j;k] : ℓ = 1, . . . , s, j = 1, . . . , J, k ∈ Zd}

(4.30)

and

DASJ({ã; b̃1, . . . , b̃s}) :={ã[J ;k] : k ∈ Zd}
∪ {b̃ℓ,[j;k] : ℓ = 1, . . . , s, j = 1, . . . , J, k ∈ Zd}.

(4.31)

Under the convention that

∼ : DASJ({a; b1, . . . , bs}) → DASJ({ã; b̃1, . . . , b̃s}) with u 7→ ũ,

that is, (u, ũ) is always regarded as a pair together, the representation of v ∈ l2(Zd) in (4.27) can
be rewritten as

v =
∑

u∈DASJ ({a;b1,...,bs})

⟨v, ũ⟩u, v ∈ l2(Zd), J ∈ N. (4.32)

Therefore, the stability in (4.6) of a filter bank {a; b1, . . . , bs} in l2(Zd) simply means the stability
of the discrete affine system DASJ({a; b1, . . . , bs}) in l2(Zd):

C2
1∥v∥2l2(Zd) 6

∑
u∈DASJ ({a;b1,...,bs})

|⟨v, u⟩|2 6 C2
2∥v∥2l2(Zd), ∀ v ∈ l2(Zd), J ∈ N. (4.33)

In other words, if {a; b1, . . . , bs} has stability in l2(Zd) , then ASJ({a; b1, . . . , bs}) is a frame for
for L2(Rd) for all J ∈ N. It is also easy to prove that {a; b1, . . . , bs} is a tight M-framelet filter
bank if and only if (4.33) holds with C1 = C2 = 1. Furthermore, {a; b1, . . . , bdM} is an orthogonal
M-wavelet filter bank if and only if DASJ({a; b1, . . . , bdM}) is an orthonormal basis for l2(Zd) for
every J ∈ N.

4.4. Variants of multilevel discrete framelet transforms
There are many variants to a standard multilevel discrete framelet transform. Here we look at two
particular variants. By the definition in (2.1) and (2.2), it is easy to notice that

Su,M(v(· − n)) = [Su,Mv](· −Mn), Su(·−n),Mv = [Su,Mv](· − n), n ∈ Zd (4.34)

and

Tu,M(v(· −Mn)) = [Tu,Mv](· − n), Tu(·+n),Mv = Tu,M(v(· − n)), n ∈ Zd. (4.35)

In other words, if we shift an input signal v or a filter u by an integer, then its output under the sub-
division operator is a shifted version of Su,Mv. For the transition operator, however, Tu,M(v(· − n))
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or Tu(·+n),Mv is generally no longer a shifted version of Tu,Mv if n ̸∈ MZd. This shift sensitivity of
framelet coefficients with respect to a shift of an input signal is not desirable in some applications
such as signal or image denoising, since a simple shift of a noise wouldn’t change the characteris-
tics of a noise. To overcome this difficulty, we put together the dM sequences Tu(·+γ),Mv, γ ∈ ΓM

in a disjoint way so that we have only one sequence dMu
⋆ ∗ v. Similarly, it is easy to verify that∑

γ∈ΓM
Su(·+γ),M(w(M · −γ)) = dMu ∗ w. In other words, the new discrete framelet transform

is undecimated by removing the downsampling (i.e., decimation) and upsampling operations in
the original discrete framelet transform. Thus, it is called a J-level discrete undecimated framelet
transform employing the filter bank ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}), which in the terminology of
Subsection 4.1 is just a J-level discrete framelet transform employing the new filter bank

(d
−1/2
M {ã(· − γ1), . . . , ã(· − γdM); b̃1(· − γ1), . . . , b̃1(· − γdM), . . . , b̃s(· − γ1), . . . , b̃s(· − γdM)},

d
−1/2
M {a(· − γ1), . . . , a(· − γdM); b1(· − γ1), . . . , b1(· − γdM), . . . , bs(· − γ1), . . . , bs(· − γdM)}),

where {γ1, . . . , γdM} := ΓM. Let us present a J-level discrete undecimated framelet transform
employing a dual M-framelet filter bank ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}). A J-level discrete un-
decimated framelet decomposition is given by

vj−1 := (ã⋆ ↑MJ−j) ∗ vj, wj−1;ℓ := (b̃⋆ℓ ↑MJ−j) ∗ vj, ℓ = 1, . . . , s, j = J, . . . , 1, (4.36)

where vJ : Zd → C is an input signal. A J-level discrete undecimated framelet reconstruction is

v̊j := (a↑MJ−j) ∗ v̊j−1 +
s∑
ℓ=1

(bℓ ↑MJ−j) ∗ ẘj−1;ℓ, j = 1, . . . , J. (4.37)

Using the same proof as in Theorem 1, one can straightforwardly check that the above J-level
discrete undecimated framelet transform has the perfect reconstruction property if and only if

̂̃a(ξ)â(ξ) + ̂̃b1(ξ)b̂1(ξ) + · · ·+ ̂̃bs(ξ)b̂s(ξ) = 1. (4.38)

Therefore, the perfect reconstruction condition on a filter bank for an undecimated framelet trans-
form is much weaker than the condition in (4.5) for an usual dual M-framelet filter bank. In this
sense, an undecimated framelet transform would be properly called a multiscale convolution trans-
form using a filter bank satisfying (4.38). Similar to (4.27), we have the signal representation:

v =
∑
k∈Zd

⟨
v, ãJ(· − k)

⟩
aJ(· − k) +

J∑
j=1

∑
k∈Zd

s∑
ℓ=1

⟨v, b̃ℓ,[j;0](· − k)⟩bℓ,[j;0](· − k). (4.39)

A J-level discrete undecimated framelet transform has redundancy ratio Js while the original J-
level discrete framelet transform has redundancy ratio s(dJ−1

M −1)

dJ−1
M (dM−1)

+ 1

dJ−1
M

(a J-level discrete wavelet
transform has redundancy ratio one, that is, no redundancy). Therefore, a J-level discrete undec-
imated framelet transform is a redundant transform, having roughly dMJ times more coefficients
than the original J-level discrete framelet transform, but has a simple structure. To reduce the
redundancy rate and to keep the transform nearly shift invariant, we discuss another variant—a
discrete averaging framelet transform.

Let n be a positive integer. We say that A := (A1, . . . ,An) : l(Zd) → (l(Zd))1×n,Av =
(A1v, . . . ,Anv) is a data partitioning operator if A is an injective operator (that is, a one-to-
one but not necessarily linear mapping). A has at least one left-inverse and we say that Ã :
(l(Zd))1×n → l(Zd) is a data averaging operator of A if ÃAv = v for all v ∈ l(Zd). An
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example of data partitioning and data averaging operators is to use the convolution operation. Let
Θ1, . . . ,Θn, Θ̃1, . . . , Θ̃n ∈ l0(Z) be finitely supported sequences on Zd such that

̂̃Θ1(ξ)Θ̂1(ξ) + · · ·+ ̂̃Θn(ξ)Θ̂n(ξ) = 1. (4.40)

Then we have a data partitioning operator A : l(Zd) → (l(Zd))1×n,Av = (Θ⋆
1 ∗ v, . . . ,Θ⋆

n ∗ v)
and a data averaging operator Ã : (l(Zd))1×n → l(Zd), Ã(v1, . . . , vn) = Θ̃1 ∗ v1 + · · · + Θ̃n ∗ vn.
By (4.40), it is evident that ÃA = Idl(Zd). A simple choice is to take Θ1 = · · · = Θn = δ and
Θ̃1 = · · · = Θ̃n = 1

n
δ. For this particular example, the data partitioning operator simply copies the

data n times and the data averaging operator Ã is exactly the averaging operation.
Under a data partitioning operator A, a signal v is split into n sub-signals: A1v, . . . ,Anv. Re-

gard each sub-signal as a completely separate branch. Now a discrete n-branch averaging framelet
transform is to perform an independent discrete framelet transform on each branch. After process-
ing and reconstruction of each branch, we end up with n reconstructed sub-signals. Then we use
the data averaging operator to form one reconstructed signal.

A particular discrete framelet transform may perform better only for a small subset of signals
with certain characteristics. Using a data partitioning operator, we may be able to split a signal into
sub-signals with different characteristics so that the advantages of a particular discrete framelet
transform can be explored. Comparing with a J-level discrete undecimated framelet transform
which has redundancy ratio Js, a J-level discrete n-branch averaging framelet transform has only
n times redundancy, which is independent of the scale level J and is much smaller than Jswhen the
scale level J is large. A discrete averaging framelet transform using complex-valued dual framelet
filter banks is of particular interest in high-dimensional data analysis for achieving directional
representations to capture various high-dimensional singularities such as edges in images. For
example, the dual-tree complex wavelet transform employing two correlated orthogonal wavelet
filter banks (see the tutorial article [38]) is a particular example of the averaging framelet transform
with n = 2 branches. See Section 7 for another example of directional framelets using tensor
product complex-valued tight framelet filter banks.

5. Linear-phase Moments and Symmetry Property of Framelets
In this section we discuss linear-phase moments and symmetry property in wavelet analysis.

It is sometimes desirable that the image of a polynomial under a convolution operation is itself
or its translated version. For this purpose, we recall the notion of linear-phase moments introduced
in [23, 26]. We say that u ∈ l0(Zd) has order m linear-phase moments with phase c ∈ Rd if

û(ξ) = e−ic·ξ +O(∥ξ∥m), ξ → 0. (5.1)

If m > 1, it follows from (5.1) that c =
∑

k∈Zd u(k)k, which is called the default phase of u.
If u has order m but not m + 1 linear-phase moments with the default phase, then we define
lpm(u) := m and we say that u has the linear-phase moments of order m.

If a filter has linear-phase moments, then the action of the convolution operation, the subdivi-
sion operator, and the transition operator on polynomial spaces has some particular structure.

Proposition 13. Let u ∈ l0(Zd), c ∈ Rd, and m ∈ N0. Then (i) p ∗ u = p(· − c) for all
p ∈ Πm−1 if and only if (ii) u has order m linear-phase moments with phase c if and only if
(iii) Tu,Mp = dMp(M · +c) for all p ∈ Πm−1. Similarly, u has order m sum rules and order m
linear-phase moments with phase c if and only if Su,Mp = p(M−1(· − c)) for all p ∈ Πm−1.
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Proof. By Lemma 5, we have (3.7). On the other hand, using the Taylor expansion of p, we have
p(x − c) =

∑
µ∈Nd

0,|µ|<m
∂µp(x) (−c)µ

µ!
. Comparing the coefficients of ∂µp, µ ∈ Nd

0, |µ| < m with
(3.7), we see that p ∗ u = p(· − c) if and only if ∂µû(0) = (−ic)µ for all µ ∈ Nd

0, |µ| < m,
which can be equivalently rewritten as (5.1). (iii) is a direct consequence of item (i) and (3.10) in
Theorem 6. The part on subdivision operator is a direct consequence of Theorem 9.

Linear-phase moments are of particular interest in the application of subdivision schemes in
computer aided geometric design, since the property Su,Mp = p(M−1(· − c)) for all p ∈ Πm−1

simply means that the subdivision scheme is interpolating on all polynomial sequences p ∈ Πm−1.
In the following, we make some remarks on the relations between linear-phase moments and

symmetry. Note that a filter u has one linear-phase moment just means û(0) = 1.

Proposition 14. Let u ∈ l0(Zd) satisfying lpm(u) > 1 with phase c ∈ Rd.

(i) If u(cu − k) = u(k) for all k ∈ Zd with cu ∈ Zd, then c = cu/2 (that is, the phase c agrees
with the symmetry center cu/2 of u) and lpm(u) must be an even integer;

(ii) If u(cu − k) = u(k) for all k ∈ Zd with cu ∈ Zd, then c = cu/2.

Proof. Set m := lpm(u). For (i), we have û(ξ) = e−icu·ξû(−ξ). Then it follows from (5.1) that
e−icu·ξ = û(ξ)

û(−ξ) = e−i2c·ξ +O(∥ξ∥m) as ξ → 0. Since m > 1, we must have c = cu/2. Note that
û(ξ) = e−icu·ξû(−ξ) and cu = 2c imply û(ξ)eic·ξ = û(−ξ)e−ic·ξ, from which we see that

∂µ[û(ξ)eic·ξ](0) = 0, for all µ ∈ Nd
0 with positive odd integers |µ|. (5.2)

On the other hand, the definition of linear-phase moments in (5.1) is equivalent to û(ξ)eic·ξ =
1 +O(∥ξ∥m) as ξ → 0. Since u has m but not m + 1 linear-phase moments with phase c, it now
follows from (5.2) that m must be an even integer.

For (ii), we have û(ξ) = e−icu·ξû(ξ). Then it follows from (5.1) that we must have e−icu·ξ =
û(ξ)

û(ξ)
= e−i2c·ξ +O(∥ξ∥m) as ξ → 0. Thus, c = cu/2 holds.

According to the following result, linear-phase moments also play a critical role in the con-
struction of tight framelet filter banks having symmetry.

Proposition 15. Let {a; b1, . . . , bs} be a tight M-framelet filter bank such that â(0) = 1 and
a(ca − k) = a(k) for all k ∈ Zd with ca ∈ Zd. Then lpm(a⋆ ∗ a) = lpm(a) and

min(vm(b1), . . . , vm(bs)) = min(sr(a), 1
2
lpm(a)). (5.3)

Proof. By â(0) = 1 we see from the perfect reconstruction condition (4.5) (also see [4, 10]) that

min(vm(b1), . . . , vm(bs)) = min(sr(a),
1

2
vm(1− |â|2)). (5.4)

Since a has symmetry, we have â(ξ) = e−ica·ξâ(ξ). Set c := ca/2 and n := vm(1− |â|2) Then,

[1 + eic·ξâ(ξ)][1− eic·ξâ(ξ)] = 1− |â(ξ)|2 = O(∥ξ∥n), ξ → 0.

Since â(0) = 1, we conclude from the above relation that 1− eic·ξâ(ξ) = O(∥ξ∥n) as ξ → 0. That
is, we proved lpm(a) > n. It is trivial that vm(1 − |â|2) > lpm(a). Note that vm(1 − |â|2) =
lpm(a⋆ ∗ a). Hence, lpm(a⋆ ∗ a) = lpm(a) and (5.3) follows directly from (5.4).
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We now discuss symmetry properties of wavelets and framelets which are desirable in many
applications. Let G be a finite subset of d×d integer matrices whose determinants are ±1. We say
that G is a symmetry group compatible with a d×d invertible integer matrix M (see [17, 18, 21, 22])
if G forms a group under matrix multiplication and M−1EM ∈ G for all E ∈ G . That is, the
mapping gM : G → G , gM(E) := M−1EM is well defined. Note that g−1

M (E) = MEM−1. For
matrices M and N, we say that N is G -equivalent to M if N = EMF for some E,F ∈ G . Note
that {Id,−Id} is a basic symmetry group compatible with any d × d invertible integer matrix M.
In dimension two, there are two important symmetry groups:

D4 :=

{
±
[
1 0
0 1

]
,±

[
1 0
0 −1

]
,±

[
0 1
1 0

]
,±

[
0 1
−1 0

]}
, (5.5)

D6 :=

{
±
[
1 0
0 1

]
,±

[
0 −1
1 −1

]
,±

[
−1 1
−1 0

]
,±

[
0 1
1 0

]
,±

[
1 −1
0 −1

]
,±

[
−1 0
−1 1

]}
. (5.6)

Define

M√
2 :=

[
1 1
1 −1

]
, M√

3 :=

[
1 −2
2 −1

]
, I2 :=

[
1 0
0 1

]
. (5.7)

As shown in [21, Theorem 2], up to D4-equivalence and a multiplicative constant, M√
2 and I2

are the only two matrices which are compatible with D4. Similarly, up to D6-equivalence and a
multiplicative constant, M√

3 and I2 are the only two matrices which are compatible with D6.
Let a ∈ l0(Zd) and G be a symmetry group on Zd. We say that a has G -symmetry with a

symmetry center ca ∈ Rd and ϵa ∈ {−1, 1} if

a(E(k− ca) + ca) = ϵaa(k), ∀ k ∈ Zd, E ∈ G . (5.8)

Clearly, we must have (Id − E)ca ∈ Zd for all E ∈ G . Similarly, we say that a has complex
G -symmetry with a symmetry center ca ∈ Rd and ϵa ∈ {−1, 1} if

a(E(k− ca) + ca) = ϵaa(k), ∀ k ∈ Zd, E ∈ G . (5.9)

Now we have the following result on symmetry of an M-refinable function and its mask.

Theorem 16. ([22, Proposition 2.1]) Let M be a d × d expansive integer matrix. Let G be a
symmetry group compatible with M. Let a ∈ l0(Zd) with â(0) = 1. Define φ as in (4.16) and a
compactly supported distribution ϕ by ϕ̂ = φ, that is, ϕ(x) = 1

(2π)d

∫
Rd φ(ξ)e

ix·ξdξ if φ ∈ L1(Rd).
Then a has G -symmetry with a symmetry center ca and ϵa = 1 if and only if

ϕ(E(· − cϕ) + cϕ) = ϕ, ∀ E ∈ G with cϕ := (M− Id)
−1ca. (5.10)

Moreover, if N = EMF for some E,F ∈ G (that is, N is G -equivalent to M), then N is also
expansive, ϕN = ϕ(·+ (M− Id)

−1ca − (N− Id)
−1ca), and

ϕN(E(· − cN) + cN) = ϕN, ∀ E ∈ G . (5.11)

where cN := (N − Id)
−1ca and ϕ̂N(ξ) :=

∏∞
j=1 â((N

T)−jξ), ξ ∈ Rd. If b ∈ l0(Zd) and Gb is a
subgroup of G such that b has Gb-symmetry with a symmetry center cb and ϵb ∈ {−1, 1}, then

ψ(F (· − cψ) + cψ) = ϵbψ, ∀ F ∈ Gb with cψ := M−1cb +M−1(M− Id)
−1ca, (5.12)

where ψ := dM
∑

k∈Zd b(k)ϕ(M · −k), that is, ψ̂(MTξ) := b̂(ξ)ϕ̂(ξ). If G -symmetry and Gb-
symmetry are replaced by complex G -symmetry and complex Gb-symmetry, respectively, then all
the claims hold by adding complex conjugate to the right sides of (5.10), (5.11), and (5.12).
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Proof. Note that (5.10) is equivalent to

ϕ̂(ETξ) = ei(ca−Eca)·ξϕ̂(ξ) = ei(Id−E)(M−Id)−1ca·ξϕ̂(ξ), ∀ E ∈ G , ξ ∈ Rd. (5.13)

Also note that (5.8) holds if and only if

â(ETξ) = ϵae
i(Id−E)ca·ξâ(ξ), E ∈ G , ξ ∈ Rd. (5.14)

By the definition of ϕ̂ in (4.16) and the relation ϕ̂(MTξ) = â(ξ)ϕ̂(ξ), one can easily check that
(5.14) holds if and only if (5.13) holds.

Since G is finite and limj→∞ M−j = 0, we must have limj→∞ N−j = 0. By the definition of
ϕ̂ and ϕ̂N, we can directly check that ϕ̂N(ξ) = ei[(M−Id)−1−(N−Id)−1]ca·ξϕ̂(ξ) is satisfied and (5.11)
holds. Using (5.13) and b̂(FTξ) = ϵbe

i(Id−F )ca·ξ b̂(ξ) for all F ∈ Gb, we have (5.12).

6. Connections of Filter Banks to Frequency-based Dual Framelets
In this section we discuss the connections between dual framelet filter banks and frequency-based
dual framelets. We shall see that every dual framelet filter bank ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs})
satisfying ̂̃a(0) = â(0) = 1 corresponds to a frequency-based dual framelet on Rd, which is
introduced in [27, 28]. For simplicity of presentation, we only outline the main ideas of the proofs
and refer the reader to [27, 28] for the detailed proofs of the results stated in this section. At the end
of this section, we mention some connections between the sparsity of a discrete framelet transform
and the sparse representation of a dual framelet in the function space L2(Rd).

Following the standard notation, we denote by D(Rd) the linear space of all compactly sup-
ported C∞ functions. By Llocp (Rd) we denote the linear space of all measurable functions f such
that

∫
{y∈Rd : ∥y∥6r} |f(x)|

pdx < ∞ for all r > 0 with the usual modification for p = ∞. For
f ∈ D(Rd) and ψ ∈ Lloc1 (Rd), we shall use the following pairing

⟨f ,ψ⟩ :=
∫
Rd

f(ξ)ψ(ξ)dξ and ⟨ψ, f⟩ := ⟨f ,ψ⟩ =
∫
Rd

ψ(ξ)f(ξ)dξ.

Let J be an integer and N be a d × d invertible real-valued matrix. Let Φ and Ψ be subsets of
Lloc1 (Rd). A frequency-based (NT)−1-affine system (or an N-modulation system) is defined to be

FASJ(Φ;Ψ) = {φNJ ;0,k : k ∈ Zd,φ ∈ Φ} ∪ ∪∞
j=J{ψNj ;0,k : k ∈ Zd,ψ ∈ Ψ}, (6.1)

where we used the notation in (1.1). To emphasize the role played by N, we also use FASN
J (Φ;Ψ)

instead of FASJ(Φ;Ψ). Let

Φ = {φ1, . . . ,φr}, Φ̃ = {φ̃1, . . . , φ̃r}, Ψ = {ψ1, . . . ,ψs}, Ψ̃ = {ψ̃1, . . . , ψ̃s} (6.2)

be subsets of Lloc1 (Rd). Let FASJ(Φ;Ψ) be defined in (6.1) and FASJ(Φ̃; Ψ̃) be defined similarly.
As in [27, 28], we say that the pair (FASJ(Φ;Ψ),FASJ(Φ̃; Ψ̃)) is a frequency-based dual (NT)−1-
framelet if the following identity holds

r∑
ℓ=1

∑
k∈Zd

⟨f ,φℓNJ ;0,k⟩⟨φ̃
ℓ
NJ ;0,k,g⟩+

∞∑
j=J

s∑
ℓ=1

∑
k∈Zd

⟨f ,ψℓ
Nj ;0,k⟩⟨ψ̃ℓ

Nj ;0,k,g⟩ = (2π)d⟨f ,g⟩ (6.3)

for all f ,g ∈ D(Rd), where the infinite series in (6.3) converge in the following sense
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(i) for every f ,g ∈ D(Rd), all the following series converge absolutely for all integers j > J :

r∑
ℓ=1

∑
k∈Zd

⟨f ,φℓNJ ;0,k⟩⟨φ̃
ℓ
NJ ;0,k,g⟩ and

s∑
ℓ=1

∑
k∈Zd

⟨f ,ψℓ
Nj ;0,k⟩⟨ψ̃ℓ

Nj ;0,k,g⟩. (6.4)

(ii) for every f ,g ∈ D(Rd), the following limit exists and

lim
n→+∞

( r∑
ℓ=1

∑
k∈Zd

⟨f ,φℓNJ ;0,k⟩⟨φ̃
ℓ
NJ ;0,k,g⟩

+
n−1∑
j=J

s∑
ℓ=1

∑
k∈Zd

⟨f ,ψℓ
Nj ;0,k⟩⟨ψ̃ℓ

Nj ;0,k,g⟩
)
= (2π)d⟨f ,g⟩.

(6.5)

As shown in [27, Lemma 3] and [28, Lemma 10], the condition in the above item (i) is auto-
matically satisfied if Φ,Ψ, Φ̃, Ψ̃ are subsets of Lloc2 (Rd) and r, s are finite integers. The condition
in the above item (ii) is simply the perfect reconstruction property in the test function space D(Rd)
for a pair of frequency-based affine systems.

Let J be an integer and M be a d× d invertible real-valued matrix. Let Φ and Ψ be subsets of
Lloc1 (Rd). A nonhomogeneous M-affine system is defined to be

ASJ(Φ;Ψ) = {ϕMJ ;k : k ∈ Zd, ϕ ∈ Φ} ∪ ∪∞
j=J{ψMj ;k : k ∈ Zd, ψ ∈ Ψ}. (6.6)

To emphasize the role played by M, we also use ASM
J (Φ;Ψ) instead of ASJ(Φ;Ψ). If Φ,Ψ are

subsets of L2(Rd), then we can define Φ := {ϕ̂ : ϕ ∈ Φ} and Ψ := {ψ̂ : ψ ∈ Ψ}, where
the Fourier transform used in this paper is defined to be f̂(ξ) :=

∫
Rd f(x)e

−ix·ξdx, ξ ∈ Rd for
f ∈ L1(Rd). Then it is easy to see that the image of ASM

J (Φ;Ψ) under the Fourier transform is
exactly FASN

J (Φ,Ψ) with N = (MT)−1. Moreover, the homogeneous M-affine system AS(Ψ) in
(1.2) is simply the limiting system of ASJ(Φ,Ψ) as J → −∞. See [27, 28] for more detail.

Frequency-based dual framelets can be completely characterized as follows:

Theorem 17. ([28, Theorem 11] and [27, Theorem 6]) Let M be a d × d real-valued invertible
matrix such that M is expansive. Define N := (MT)−1. Let Φ, Φ̃,Ψ, Ψ̃ in (6.2) be finite subsets of
Lloc2 (Rd). Then the following statements are equivalent:

(i) (FASJ(Φ;Ψ), FASJ(Φ̃; Ψ̃)) is a frequency-based dual M-framelet.

(ii) The following identities hold: for all f ,g ∈ D(Rd),

lim
j→+∞

r∑
ℓ=1

∑
k∈Zd

⟨f ,φℓNj ;0,k⟩⟨φ̃ℓNj ;0,k,g⟩ = (2π)d⟨f ,g⟩ (6.7)

and
r∑
ℓ=1

∑
k∈Zd

⟨f ,φℓId;0,k⟩⟨φ̃
ℓ
Id;0,k

,g⟩+
s∑
ℓ=1

∑
k∈Zd

⟨f ,ψℓ
Id;0,k

, ⟩⟨ψ̃ℓ
Id;0,k

,g⟩

=
r∑
ℓ=1

∑
k∈Zd

⟨f ,φℓN;0,k⟩⟨φ̃ℓN;0,k,g⟩.
(6.8)
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(iii) The following relations are satisfied:

lim
j→+∞

⟨ r∑
ℓ=1

φℓ(Nj·)φ̃ℓ(Nj·),h
⟩
= ⟨1,h⟩, ∀ h ∈ D(Rd); (6.9)

and
Ik
Φ(ξ) + Ik

Ψ(ξ) = INk
Φ (Nξ), a.e. ξ ∈ Rd, k ∈ Zd ∪ [N−1Zd], (6.10)

where Ik
Φ(ξ) :=

∑r
ℓ=1φ

ℓ(ξ)φ̃ℓ(ξ + 2πk), k ∈ Zd and Ik
Φ := 0 for k ∈ Rd\Zd, and

Ik
Ψ(ξ) :=

s∑
ℓ=1

ψℓ(ξ)ψ̃ℓ(ξ + 2πk), k ∈ Zd and Ik
Ψ := 0, k ∈ Rd\Zd. (6.11)

Note that if item (i) holds for some J ∈ Z, then it holds for all J ∈ Z. Item (ii) follows from
item (i) by considering the difference between two consecutive levels. (ii)=⇒(i) can be proved
by properly scaling (6.8) to every scale level J and then by summing them up. The equivalence
between items (ii) and (iii) follows from the simple relation (see [28, Lemma 10]):∑

k∈Zd

⟨f ,ψU ;0,k⟩⟨ψ̃U ;0,k,g⟩ = (2π)d
∫
Rd

∑
k∈Zd

f(ξ)g(ξ + 2πU−1k)ψ(Uξ)ψ̃(Uξ + 2πk)dξ

with the series on the left converging absolutely and U being a d× d invertible real-valued matrix.
According to the following result, a dual framelet filter bank is naturally linked to a frequency-

based dual framelet.

Theorem 18. Let M be a d×d expansive integer matrix. Let Θ, a, b1, . . . , bs, ã, b̃1, . . . , b̃s ∈ l0(Zd)
such that â(0) = ̂̃a(0) = 1. Define N := (MT)−1,φ(ξ) :=

∏∞
j=1 â(N

jξ) and φ̃(ξ) :=
∏∞

j=1
̂̃a(Njξ)

for ξ ∈ Rd. Then φ and φ̃ are well-defined functions in Lloc2 (Rd) satisfying φ(MTξ) = â(ξ)φ(ξ)
and φ̃(MTξ) = ̂̃a(ξ)φ̃(ξ) for all ξ ∈ Rd. For ℓ = 1, . . . , s, define

η(ξ) := φ(ξ), η̃(ξ) := Θ̂(ξ)φ̃(ξ), ψℓ(MTξ) := b̂ℓ(ξ)φ(ξ), and ψ̃ℓ(MTξ) := ̂̃bℓ(ξ)φ̃(ξ),
Then (FASJ({η}; {ψ1, . . . ,ψs}),FASJ({η̃}; {ψ̃1, . . . , ψ̃s})) is a frequency-based dual M-framelet
for every (or some) J ∈ Z if and only if Θ̂(0) = 1 and ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs})Θ is an
OEP-based dual M-framelet filter bank, that is, for all ω ∈ ΩM and ξ ∈ Rd,

Θ̂(MTξ)̂̃a(ξ)â(ξ + 2πω) + ̂̃b1(ξ)b̂1(ξ + 2πω) + · · ·+ ̂̃bs(ξ)b̂s(ξ + 2πω) = δ(ω)Θ̂(ξ). (6.12)

One can prove Theorem 18 by directly verifying the conditions in Theorem 17. Framelets in
L2(Rd) using OEP-based dual M-framelet filter banks have been introduced in [4, 10] (also see
[9]). A classical dual M-framelet filter bank discussed in previous sections is a particular case
of OEP-based dual M-framelet filter banks by taking Θ = δ. All our discussions in Sections 2,
3, and 4 can be carried over to OEP-based dual M-framelet filter banks. Under the condition
â(0) = ̂̃a(0) = 1 and Θ = δ, Theorems 17 and 18 together show that the perfect reconstruction
property of ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}) is equivalent to the perfect reconstruction property of
a frequency-based dual framelet (FAS0({φ̃}; {ψ̃1, . . . , ψ̃s}),FAS0({φ}; {ψ1, . . . ,ψs})).

Another application of Theorem 17 is the following result on tight framelets in L2(Rd).

Proposition 19. ([28, Corollary 17]) Let M be a d × d expansive real-valued matrix and define
N := (MT)−1. Let Φ and Ψ be finite subsets of Lloc2 (Rd). Then the following are equivalent:

26



Bin Han Properties of Discrete Framelet Transform

(1) FASJ(Φ;Ψ) is a tight frame for L2(Rd), that is, Φ,Ψ ⊆ L2(Rd), and for all f ∈ L2(Rd),

∑
φ∈Φ

∑
k∈Zd

|⟨f ,φNJ ;0,k⟩|2 +
∞∑
j=J

∑
ψ∈Ψ

∑
k∈Zd

|⟨f ,ψNj ;0,k⟩|2 = (2π)d∥f∥2L2(Rd). (6.13)

(2) (FASJ(Φ;Ψ), FASJ(Φ;Ψ)) is a frequency-based dual M-framelet.

(3) limj→+∞
∑
φ∈Φ⟨|φ(Nj·)|2,h⟩ = ⟨1,h⟩ for all h ∈ D(Rd) and for almost every ξ ∈ Rd,∑

φ∈Φ

φ(ξ)φ(ξ + 2πk) +
∑
ψ∈Ψ

ψ(ξ)ψ(ξ + 2πk)

=
∑
φ∈Φ

φ(Nξ)φ(N(ξ + 2πk)), k ∈ Zd ∩ [N−1Zd],∑
φ∈Φ

φ(ξ)φ(ξ + 2πk) +
∑
ψ∈Ψ

ψ(ξ)ψ(ξ + 2πk) = 0, k ∈ Zd\[N−1Zd],∑
φ∈Φ

φ(Nξ)φ(N(ξ + 2πk)) = 0, k ∈ [N−1Zd]\Zd.

(4) There exist subsets Φ,Ψ of L2(Rd) such that {ϕ̂ : ϕ ∈ Φ} = Φ, {ψ̂ : ψ ∈ Ψ} = Ψ, and
ASJ(Φ;Ψ) is a tight frame for L2(Rd):

∑
ϕ∈Φ

∑
k∈Zd

|⟨f, ϕMJ ;k⟩|2 +
∞∑
j=J

∑
ψ∈Ψ

∑
k∈Zd

|⟨f, ψMj ;k⟩|2 = ∥f∥2L2(Rd), ∀ f ∈ L2(Rd). (6.14)

Moreover, if any of (1)–(4) holds, then AS(Ψ) is a tight frame for L2(Rd), that is, (1.3) holds.

We complete this section by discussing the issue of sparsity. Let ̂̃ϕ := φ̃, ̂̃ψ := ψ̃ℓ and b̃ := b̃ℓ
in Theorem 18. Assume that ψ̃ ∈ L2(Rd). Suppose that the filter b̃ has orderm vanishing moments.
Let k ∈ Zd. If an input data v agrees with some polynomial of degree less than m on the support of
b̃(· −Mk), then it follows from Theorem 6 that the framelet coefficient [Tb̃,Mv](k) = 0. Therefore,
if an input data v can be well approximated by some polynomial of degree less than m on the
support of b̃(· −Mk), then the framelet coefficient [Tb̃,Mv](k) is negligible.

Now we look at the function setting. Since M is expansive, a smooth function f can be well
approximated by its Taylor polynomial Tm−1 of degree less than m near a point M−jk ≈ x0.

Since b̃ has order m vanishing moments, by ̂̃ψ(MTξ) = ̂̃b(ξ)̂̃ϕ(ξ), we see that ψ̃ also has order m
vanishing moments: ⟨p, ψ̃⟩ = 0 for all p ∈ Πm−1. Consequently, if M is isotropic (that is, all the
eigenvalues of M has the same modulus and M is similar to a diagonal matrix), then (see [8] for
dimension one)

|⟨f, ψ̃Mj ;k⟩| = |⟨f − Tm−1, ψ̃Mj ;k⟩| 6 C| det(M)|−(m/d+1/2)j, j → ∞, (6.15)

where the constant C only depends on ψ̃ and f . Therefore, for a smooth function f , the framelet
coefficients ⟨f, ψMj ;k⟩ decays to zero rapidly as the scale level j → +∞. The fast decay of framelet
coefficents in (6.15) plays a critical role in establishing the sparse representation of wavelet or
wavelet-like expansions in L2(Rd) (see [1, 2, 8, 13, 14, 35, 36]).

Moreover, it follows trivially from the perfect reconstruction condition in (4.5) that

min(vm(b1), . . . , vm(bs)) 6 sr(ã), min(vm(b̃1), . . . , vm(b̃s)) 6 sr(a)
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with the equalities being true when s = | det(M)|−1 (that is, the case of biorthogonal wavelet filter
banks). Therefore, for the case of wavelets, the sparsity property of a discrete framelet transform
is closely related to the sum rules of the filters a and ã which in turn are closely related to the
approximation properties of the shift-invariant spaces generated by the refinable functions ϕ and
ϕ̃. In other words, the orders of vanishing moments, which are crucial for sparsity of wavelets,
are completely determined by the approximation properties of refinable functions, while this claim
may no longer be true in general for framelets.

7. Directional Tight Framelets in L2(Rd)

In this section, we discuss an example of directional tight framelets in L2(Rd). As argued in
[1, 13, 14] and many references therein, tensor product real-valued wavelets in L2(Rd) are isotropic
and can only handle the horizontal and vertical directions well in dimension two. Therefore, tensor
product real-valued wavelets are often not efficient enough to capture directional singularities in
high-dimensional signals such as images. Therefore, directional affine systems are of interest for
high dimensional data analysis such as image processing.

Applying Proposition 19, we can easily obtain directional tight framelets in L2(Rd) (see [28,
Section 4] for detail). Here we provide an example of directional tight framelets with finitely many
directions which are tensor product of complex-valued tight framelets in dimension one. We start
with a real-valued C∞ function θ : R → R such that (θ(ξ))2 + (θ(1 − ξ))2 = 1 for all ξ ∈ R,
θ(ξ) = 0 for all ξ < 0, and θ(ξ) = 1 for all ξ > 1. Such functions θ can be easily constructed,
for example, see [8, Section 3.3.5] and [15, Lemma 4.2]. For 0 < ε1 < ε2 < ε3 < ε4, we define
2π-periodic C∞ functions aε1,ε2 and bε1,ε2,ε3,ε4 by

aε1,ε2(ξ) :=


1, if ξ ∈ [−ε1, ε1],
0, if ξ ∈ [−π,−ε2] ∪ [ε2, π),
θ( ε2+ξ

ε2−ε1 ), if ξ ∈ (−ε2,−ε1),
θ( ε2−ξ

ε2−ε1 ), if ξ ∈ (ε1, ε2)

(7.1)

and

bε1,ε2,ε3,ε4(ξ) :=


1, if ξ ∈ [ε2, ε3],
0, if ξ ∈ [0, ε1] ∪ [ε4, 2π),
θ( ξ−ε1

ε2−ε1 ), if ξ ∈ (ε1, ε2),
θ( ε4−ξ

ε4−ε3 ), if ξ ∈ (ε3, ε4).

(7.2)

When ε2 6 π, aε1,ε2 is a well-defined 2π-periodic C∞ function. When ε4 6 2π + ε1, bε1,ε2,ε3,ε4 is
a well-defined 2π-periodic C∞ function. Define 2π-periodic functions by

â(ξ) := aε1,ε2(ξ), b̂p(ξ) := bε1,ε2,ε3,2π−ε3(ξ), b̂n(ξ) := bε1,ε2,ε3,2π−ε3(−ξ)

and functions φ,ψp,ψn on R by

φ(ξ) :=
∞∏
j=1

â(2−jξ), ψp(ξ) := b̂p(ξ/2)φ(ξ/2), ψn(ξ) := b̂n(ξ/2)φ(ξ/2). (7.3)

Moreover, since φ,ψp,ψn ∈ L2(R), we can define functions ϕ, ψp, ψn ∈ L2(R) by

ϕ̂(ξ) := φ(ξ), ψ̂p(ξ) := ψp(ξ), ψ̂n(ξ) := ψn(ξ). (7.4)
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Under the following conditions

0 6 π − ε3 6 ε1 < ε2 < π/2 and 2ε2 < ε3 < π, (7.5)

we can easily check that {a; bp, bn} is a tight 2-framelet filter bank such that ϕ̂ is supported inside
[−2ε2, 2ε2], ψ̂p is supported inside [2ε1, 4ε2], and ψ̂n(ξ) = ψ̂p(−ξ). Though ϕ is a real-valued
function, the wavelet functions ψp, ψn are complex-valued functions. Similarly, though the low-
pass filter a has real coefficients, the two high-pass filters bp, bn have complex coefficients. By
Theorem 18 and Proposition 19, we see that FASJ({φ}; {ψp,ψn}) is a frequency-based tight 2-
framelet for L2(R). Moreover, both ASJ({ϕ}; {ψp, ψn}) and AS({ψp, ψn}) are tight 2-framelets
for L2(R). See Figure 1 for the graphs of â, b̂p, b̂n and ϕ, ψp with the choice ε1 = 0.3, ε2 = 1.47,
and ε3 = 2.94.
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Figure 1: (a) is the graph of the refinable function ϕ with the low-pass filter a. (b) is the graph of
the wavelet function ψp (solid line for the real part and dotted line for the imaginary part). (c) is
the graph of â (in solid line), b̂p (in dashed line), and b̂n (in dotted line).

We now consider the tensor product framelets in dimension two. Recall that the tensor product
u⊗ v of u and v simply means u⊗ v(ξ1, ξ2) := u(ξ1)v(ξ2). In dimension two, we have the tensor
product tight 2I2-framelet filter bank:

{a⊗ a; a⊗ bp, a⊗ bn, bp ⊗ a, bp ⊗ bp, bp ⊗ bn, bn ⊗ a, bn ⊗ bp, bn ⊗ bn}, (7.6)

which consists of one low-pass filter a ⊗ a having real coefficients and 8 high-pass filters having
complex coefficients. Define M := 2I2 and N := 2−1I2. By Theorem 18 and Proposition 19,

FASJ({φ⊗φ}; {φ⊗ψp,φ⊗ψn,ψp ⊗φ,ψp ⊗ψp,ψp ⊗ψn,ψn ⊗φ,ψn ⊗ψp,ψn ⊗ψn})

is a frequency-based tight 2I2-framelet for L2(R2) and both

ASJ({ϕ⊗ ϕ}, {ϕ⊗ ψp, ϕ⊗ ψn, ψp ⊗ ϕ, ψp ⊗ ψp, ψp ⊗ ψn, ψn ⊗ ϕ, ψn ⊗ ψp, ψn ⊗ ψn}) (7.7)

and AS({ϕ⊗ψp, ϕ⊗ψn, ψp⊗ϕ, ψp⊗ψp, ψp⊗ψn, ψn⊗ϕ, ψn⊗ψp, ψn⊗ψn}) are tight frames for
L2(R2). Splitting the real and imaginary parts of the filters in (7.6), we end up with a directional
tight 2I2-framelet filter bank and their associated functions are the real and imaginary parts of
the generators in (7.7), whose graphs are given in Figure 2. From Figure 2, we can see that the
tensor product tight framelets have four directions. Tight 2I2-framelets with more directions can
be constructed similarly using more high-pass filters instead of just two high-pass filters bp and
bn. For example, tight 2I2-framelets with eight directions can be constructed using four high-pass
filters bp1 , bp2 and bn1 , bn2 .

We finish this paper by some remarks. First of all, the above constructed directional tight
framelets are quite different from those systems developed in [1, 13, 14, 28]. (Homogeneous)
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Figure 2: The first row is the real parts and the second row is the imaginary part of the tensor prod-
uct complex wavelet functions. Both the real parts and the imaginary parts exhibit four directions.

wavelets/framelets with composite dilations are proposed in [14] to remedy the lack of directional-
ity of classic wavelets, while [28] employs nonstationary (nonhomogeneous) wavelet structure to
achieve directionality by using the standard dilation matrix 2jI2 at the scale level j. The affine sys-
tems developed in [1] for curvelets, in [13] for shearlets, and in [28] for directional tight framelets
have more and more directions as the scale level increases and the elements of the generators
are highly anisotropic by obeying the hyperbolic rule as discussed in [1]. The directionality in
[1, 13, 14] is achieved by taking advantages of different anisotropic dilation matrices at the scale
level j, while the directionality in [28] is achieved by using different framelet generators directly
through rotation, but still employing the isotropic dilation matrix 2jI2 at the scale level j. The
directional tight framelets constructed in [28] have associated underlying filter banks but the re-
dundancy of the system in [28] is much higher than those in [1, 13] which are optimal for carton-
like images ([1, 13]). However, the tight framelets constructed above have only limited directions
and are similar in some sense to the complex wavelets in [38]. Hence, their asymptotic approx-
imation rates will be similar to those of classical tensor product real-valued wavelets. However,
for a given digital image, its resolution is finite and therefore, it has only finitely many directions.
Hence, the constructed tight framelets are of particular interest in their applications to digital image
processing.
Acknowledgment: The author thanks Zhenpeng Zhao at University of Alberta for plotting the
graphs in Figures 1 and 2.
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