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PROPERTIES OF DISTRIBUTIONS OF RANDOM VARIABLES
WITH INDEPENDENT DIFFERENCES OF CONSECUTIVE

ELEMENTS OF THE OSTROGRADSKĬI SERIES
UDC 519.21

M. V. PRATS’OVYTYĬ AND O. M. BARANOVS’KĬI

Abstract. Several metric relations for representations of real numbers by the Ostro-
gradskĭı type 1 series are obtained. These relations are used to prove that a random
variable with independent differences of consecutive elements of the Ostrogradskĭı
type 1 series has a pure distribution, that is, its distribution is either purely discrete,
or purely singular, or purely absolutely continuous. The form of the distribution
function and that of its derivative are found. A criterion for discreteness and suf-
ficient conditions for the distribution spectrum to have zero Lebesgue measure are
established.

Introduction

By the Ostrogradskĭı algorithms, any real number x ∈ [0; 1] can be represented as
follows:

1
q1

− 1
q1q2

+ · · · + (−1)n−1

q1q2 · · · qn
+ · · ·

where qn are positive integers such that qn+1 > qn for any n ∈ N, or

1
q1

− 1
q2

+ · · · + (−1)n−1

qn
+ · · ·

where qn are again positive integers such that qn+1 ≥ qn(qn + 1) for any n ∈ N.
The problems related to algorithms of sign alternating series expansion of a number

were investigated by M. V. Ostrogradskĭı not very long before his death and were not
published. His short notes on the problem were discovered in 1951 in the manuscript
section of the Academy of Sciences of Ukraine and further deciphered by E. Ya. Remez in
[1]. In that paper, the author points out at a certain analogy between the Ostrogradskĭı
series and a continued fraction and devotes much attention to the application of the
Ostrogradskĭı series for finding approximate solutions of algebraic equations. Sierpiński
[2] studied similar problems independently of Ostrogradskĭı (in the paper [2], there are
several algorithms for series expansion of a real number; two of these algorithms give
the Ostrogradskĭı series expansion). Pierce probably also worked on the problem (the
book [4, p. 10] mentions, referring to [3], the Pierce algorithm for sign alternating series
expansion of a real number; the result is the Ostrogradskĭı type 1 series). Gnedenko
mentions two algorithms due to Ostrogradskĭı in editor’s remarks to the book [5] noting
that there had been no detailed studies of these series by the time of writing (1961).

There exist other papers dealing with applications of the Ostrogradskĭı series. Let us
mention some of them. The paper [6, pp. 91–96] establishes a link of the Ostrogradskĭı
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algorithms with the algorithm of continued fraction expansion of a number. Some gener-
alizations of these algorithms related to branching continued fractions are also obtained
there. In [7], p-adic analogs of the Euclid algorithm and the Ostrogradskĭı algorithm are
used for constructing p-adic continued fractions, and unimprovable rates of convergence
of the corresponding convergents to the real number are obtained. The same author
“combines” in [8] the Engel algorithm and the Ostrogradskĭı algorithm for constructing
an algorithm of representation of real numbers by series whose convergence rate is higher
than that of the Engel series and that of the Ostrogradskĭı series. The paper [9] should
perhaps be considered the first to contain a metric theory of numbers represented by
the Ostrogradskĭı series. In this paper, the first Ostrogradskĭı algorithm is studied and
estimates for the error of the nth approximation are found. A generalization of the Os-
trogradskĭı algorithm for approximations in Banach spaces is also proposed in [9]. In the
paper [10], an algorithm for sign alternating series expansion of a number is introduced
leading, under a certain choice of the parameters, to the Lüroth series, Engel series, and
Ostrogradskĭı series (though the latter series are not studied in that paper). We also note
that the algorithm of the Q̃∞-representation (see [11] or [12]) can give, under a certain
choice of the set Q̃∞, the sign alternating series expansions of the Lüroth type.

In this paper, we study a random variable such that the consecutive terms in the
expansion of this variable in the Ostrogradskĭı type 1 series have differences that are
independent random variables. The main question in the study of this variable is to
determine the structure of its distribution; if it is singular, then the structure of this
singular distribution must be established. By the Lebesgue theorem, any distribution
function admits a unique representation in the form

(1) F (x) = α1Fd(x) + α2Fac(x) + α3Fs(x)

where Fd is a discrete distribution function, Fac is an absolutely continuous distribution
function, Fs is a singular distribution function, αk ≥ 0, and α1 + α2 + α3 = 1. Repre-
sentation (1) is called the structure of the distribution function (or the structure of the
distribution). Any singular distribution function can be represented as follows:

(2) F (x) = γ1F
S(x) + γ2F

C(x) + γ3F
K(x)

where FS , FC , and FK are an S-type, a C-type, and a K-type distribution function,
respectively, γk ≥ 0, and

γ1 + γ2 + γ3 = 1.

Representation (2) is called the structure of the singular distribution function (or the
structure of the singular distribution) [11, p. 74]. Solving the problem of the structure of
a distribution (or that of the structure of a singular distribution) consists in determining
the numbers α1, α2, α3, and the functions Fd, Fac, Fs (γ1, γ2, γ3, and FS , FC , FK ,
respectively).

Recall also that random variables having Q-, Q∞-, Q̃∞-representations have already
been studied, as well as those represented by a continued fraction or by an Ostrogradskĭı
type 2 series whose elements are either independent random variables or form a Markov
chain (see [11]). Besides the problem of the structure of the distribution, fractal properties
of these random variables have been studied, that is, fractal properties of the distribution
spectrum and distribution support.

This paper contains four sections. In Section 1, an Ostrogradskĭı type 1 series and
its approximant numbers are defined and some lemmas describing certain properties of
the approximant numbers are given, as well as a theorem stating that a real number
can be represented by an Ostrogradskĭı type 1 series and that this representation is
unique. An Ō1-representation of a number is introduced together with the cylindric sets
corresponding to the Ō1-representation of a number.
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In Section 2, the set C[Ō1, {Vk}] is introduced containing all numbers x having Ō1-
representations whose elements take values in the sets V1, V2, . . . , Vk, . . . , respectively.
In particular, some sufficient conditions for this set to have zero Lebesgue measure are
obtained.

In Section 3, we consider a random variable whose elements of the Ō1-representation
are independent. The forms of the distribution function of this variable and its derivative
are obtained, a criterion for the distribution to be discrete is proved, and sufficient
conditions for being Cantor-type singular are established. Section 4 contains a proof
of the fact that the Ō1-elements of a uniformly distributed random variable cannot be
independent and cannot form a homogeneous Markov chain.

1. Representation of numbers by the Ostrogradskĭı type 1 series

Definition 1. An expression of the form

(3) q0 +
1
q1

− 1
q1q2

+ · · · + (−1)n−1

q1q2 · · · qn
+ · · ·

is called an Ostrogradskĭı type 1 series, which is written for brevity as

O1(q0; q1, q2, . . . , qn, . . . )

where q0 is an integer, q1, q2, q3, . . . are positive integers and qk+1 > qk for any k ∈ N.
The numbers qk are called the elements of the Ostrogradskĭı type 1 series.

It is clear that any finite partial sum of series (3) is a rational number as the result
of a finite number of rational operations with rational numbers. An infinite series of the
form (3) is absolutely convergent under the above assumptions imposed on qk (which can
be readily checked by the d’Alembert criterion of convergence of positive series) and is
therefore a finite real number (which is irrational by Theorem 1).

Definition 2. A number having the form

Ak

Bk
= O1(q0; q1, q2, . . . , qk) = q0 +

1
q1

− 1
q1q2

+ · · · + (−1)k−1

q1q2 · · · qk

is called an approximant number of order k of the Ostrogradskĭı type 1 series.

The following results can readily be proved [13].

Lemma 1 (The law of creation of the approximant numbers). For any positive integer k,
we have

Ak = Ak−1qk + (−1)k−1,

Bk = Bk−1qk = q1q2 · · · qk

(assuming that A0 = q0, B0 = 1).

Lemma 2. The approximant numbers of even orders form an increasing sequence, while
the approximant numbers of odd orders form a decreasing sequence. Moreover, each
approximant number of an odd order is greater than any approximant number of an even
order.

Theorem 1 (M. V. Ostrogradskĭı). Each real number x can be represented by Ostro-
gradskĭı series (3). Moreover, if x is irrational, this representation is unique and ex-
pression (3) contains infinitely many terms; if x is rational, it can be represented in the
form (3) with a finite number of terms in two different ways:

O1(q0; q1, q2, . . . , qn),

O1(q0; q1, q2, . . . , qn − 1, qn).
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The elements q1, q2, q3, . . . of the Ostrogradskĭı series expansion of a number

x ∈ (0; 1)

can be calculated applying the first Ostrogradskĭı algorithm to the number x:

1 = q1x + α1, 0 ≤ α1 < x,

1 = q2α1 + α2, 0 ≤ α2 < α1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 = qnαn−1 + αn, 0 ≤ αn < αn−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The representation of a number x in the form (3) is also called the O1-representation
of x and the numbers qk are called the O1-elements of x.

Let us switch from the O1-representation of x ∈ (0; 1) to an Ō1-representation by
setting

g1 = q1, gn+1 = qn+1 − qn for an arbitrary n ∈ N.

The representation of the number x as

x =
1
g1

− 1
g1(g1 + g2)

+ · · · + (−1)n−1

g1(g1 + g2) · · · (g1 + g2 + · · · + gn)
+ · · ·

is called the Ō1-representation of the number x and is written for brevity as

x = Ō1(0; g1, g2, . . . , gn, . . . ).

The numbers gk are called the Ō1-elements of x. It is clear that each gk can take any
positive integer value.

We define a cylindric segment of range n with base (s1, s2, . . . , sn) corresponding to
the Ō1-representation of numbers as the set ∆̄s1s2...sn

of all numbers x ∈ [0; 1] admitting
the Ō1-representation satisfying

g1 = s1, g2 = s2, . . . , gn = sn.

We define a cylindric interval of range n with base (s1, s2, . . . , sn) corresponding to
the Ō1-representation of numbers as the set ∇̄s1s2...sn

of all numbers x ∈ [0; 1] for which
there is no Ō1-representations failing to satisfy

g1 = s1, g2 = s2, . . . , gn = sn.

The motivation for the terms “segment” and “interval” is given in the following as-
sertion.

Lemma 3. A range n segment ∆̄s1s2...sn
is equal to the segment (closed interval)[

Ō1(0; s1, s2, . . . , sn−1, sn + 1); Ō1(0; s1, s2, . . . , sn−1, sn)
]

if n is odd, and to the segment[
Ō1(0; s1, s2, . . . , sn−1, sn); Ō1(0; s1, s2, . . . , sn−1, sn + 1)

]
if n is even. A range n interval ∇̄s1s2...sn

is equal to the (open) interval having the same
endpoints as the interval ∆̄s1s2...sn

.

Lemma 4. The cylindric sets have the following properties:
(1) ∇̄s1s2...sn−1s ⊂ ∇̄s1s2...sn−1 for any admissible s1, s2, . . . , sn−1, s.
(2) ∇̄s1s2...sn

∩ ∇̄t1t2...tn
= ∅ if and only if there exists a number

k ∈ {1, . . . , n}
such that sk �= tk.
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(3) ∆̄s1s2...sn−1 =
⋃∞

s=1 ∆̄s1s2...sn−1s, and moreover

∆̄s1s2...(sn+1) ≤ ∆̄s1s2...sn
if n is odd, and

∆̄s1s2...sn
≤ ∆̄s1s2...(sn+1) if n is even.

(For two sets A and B, the notation A ≤ B means that a ≤ b for all a ∈ A and
b ∈ B.)

(4) The length of a range n interval ∇̄s1s2...sn
equals∣∣∇̄s1s2...sn

∣∣ =
1

s1(s1 + s2) . . . (s1 + s2 + · · · + sn)(s1 + s2 + · · · + sn + 1)

=
Bn−1

Bn(Bn + Bn−1)

where Bn is the denominator of the approximant number of order n.

2. Some problems of the metric theory of numbers

represented by the Ostrogradskĭı type 1 series

The metric number theory studies measures of numeric sets whose elements (symbols,
numbers), represented in some system, have certain properties. Different representations
of numbers generate different metric theories (the metric theory of n-adic expansions,
that of Q-representations [11], that of continued fractions [5]).

Representations of numbers by the Ostrogradskĭı series enable us to develop another
metric theory.

Take an arbitrary sequence {Vk} of subsets of the set of positive integers and consider
the set C[Ō1, {Vk}] of all numbers x ∈ [0; 1] admitting Ō1-representation whose elements
satisfy the following conditions:

g1(x) ∈ V1, g2(x) ∈ V2, . . . , gk(x) ∈ Vk, . . . .

Lemma 5. The set C[Ō1, {Vk}] can be represented as follows:

C[Ō1, {Vk}] =
∞⋂

k=1

⋃
v1∈V1

...
vk∈Vk

∆̄v1v2...vk
.

Proof. Indeed, a number x0 belongs to the family C[Ō1, {Vk}] if and only if for any
positive integer k, there exists a cylindric segment ∆̄v1v2...vk

of range k containing the
point x0 and such that v1 ∈ V1, v2 ∈ V2, . . . , vk ∈ Vk. �

Theorem 2. Let
Vk =

{
v
(k)
1 , v

(k)
2 , . . . , v

(k)
Nk

}
.

If all sets Vk are finite and moreover limk→∞(N1N2 · · ·Nk)/(k + 1)! = 0, then

λ
(
C[Ō1, {Vk}]

)
= 0.

Proof. Write
Sk =

⋃
v1∈V1

...
vk∈Vk

∆̄v1v2...vk
.

Then the above lemma implies that C[Ō1, {Vk}] =
⋂∞

k=1 Sk. Each set Sk is the union of
N1N2 · · ·Nk intervals with no common interior point, whose lengths satisfy the inequality∣∣∆̄v1v2...vk

∣∣ ≤ 1
(k + 1)!

.
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Therefore

λ (Sk) =
∑

v1∈V1
...

vk∈Vk

∣∣∆̄v1v2...vk

∣∣ ≤ N1N2 · · ·Nk

(k + 1)!
.

Moreover, we have S1 ⊃ S2 ⊃ · · · ⊃ Sk ⊃ Sk+1 ⊃ · · · . Then

λ
(
C[Ō1, {Vk}]

)
= lim

k→∞
λ (Sk) ≤ lim

k→∞

N1N2 · · ·Nk

(k + 1)!
= 0,

since Lebesgue measure is continuous. This completes the proof of the theorem. �

3. Random variables with independent differences of consecutive

elements of the Ostrogradskĭı type 1 series

Consider the following random variable:

(4) ξ = Ō1(0; η1, η2, . . . , ηk, . . . )

whose Ō1-elements ηk are independent random variables taking values 1, 2, . . . , m, . . .
with probabilities p1k, p2k, . . . , pmk, . . . , respectively, that is,

P {ηk = m} = pmk, pmk ≥ 0,

∞∑
m=1

pmk = 1 for all k ∈ N.

Since the random variable ξ is the sum of infinitely many terms, it can only take
irrational values.

It is clear that the distribution of the random variable ξ is completely determined by
the numbers pmk.

The following assertion can readily be proved.

Lemma 6. The distribution function Fξ of the random variable ξ is as follows:

(5)
Fξ(x) = 1 −

g1(x)−1∑
j=1

pj1 +
∑
k≥2

(−1)k−1

(
1 −

gk(x)−1∑
j=1

pjk

) k−1∏
i=1

pgi(x)i

for 0 < x ≤ 1

where gk(x) is the kth Ō1-element of the number x. The sum is finite or infinite depending
on whether or not the number x is rational.

Proof. The distribution function of a random variable is defined by

Fξ(x) = P {ξ < x} .

First, suppose the number

x = Ō1(0; g1(x), g2(x), . . . , gk(x), . . . )

is irrational. Since the event {ξ < x} is represented as the union of disjoint events:

{ξ < x} = {η1 > g1(x)} ∪ {η1 = g1(x), η2 < g2(x)} ∪ · · ·
∪ {η1 = g1(x), . . . , η2k−2 = g2k−2(x), η2k−1 > g2k−1(x)}
∪ {η1 = g1(x), . . . , η2k−1 = g2k−1(x), η2k < g2k(x)} ∪ · · · ,
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we have

Fξ(x) = 1 −
g1(x)∑
j=1

pj1 +
g2(x)−1∑

j=1

pj2 · pg1(x)1 + · · ·

+
(

1 −
g2k−1(x)∑

j=1

pj,2k−1

) 2k−2∏
i=1

pgi(x)i +
g2k(x)−1∑

j=1

pj,2k

2k−1∏
i=1

pgi(x)i + · · · .

The latter expression is easily reduced to the form (5).
If the number x is rational and such that x = Ō1(0; g1(x), g2(x), . . . , g2k(x)), then the

event {ξ < x} is the union of the first 2k events identical to those in the previous case.
Therefore Fξ(x) is now represented in the form (5) and the sum contains 2k terms.

If x = Ō1(0; g1(x), g2(x), . . . , g2k−1(x)), then
P {ξ < x} = P {η1 > g1(x)} + P {η1 = g1(x), η2 < g2(x)} + · · ·

+ P {η1 = g1(x), . . . , η2k−2 = g2k−2(x), η2k−1 ≥ g2k−1(x)}

= 1 −
g1(x)∑
j=1

pj1 +
g2(x)−1∑

j=1

pj2 · pg1(x)1 + · · ·

+
(

1 −
g2k−1(x)−1∑

j=1

pj,2k−1

) 2k−2∏
i=1

pgi(x)i.

The latter expression is reduced to (5) containing 2k − 1 terms.
It remains to show that the values taken by the function Fξ for different representations

of a rational number are the same. Indeed,

Fξ

(
Ō1(0; g1(x), g2(x), . . . , gk(x), 1)

)
= 1 −

g1(x)−1∑
j=1

pj1 − · · · + (−1)k−1

(
1 −

gk(x)−1∑
j=1

pjk

) k−1∏
i=1

pgi(x)i + (−1)k
k∏

i=1

pgi(x)i

= 1 −
g1(x)−1∑

j=1

pj1 − · · · + (−1)k−1

(
1 −

gk(x)∑
j=1

pjk

) k−1∏
i=1

pgi(x)i

= Fξ

(
Ō1(0; g1(x), g2(x), . . . , gk(x) + 1)

)
. �

Remark. The proof of Lemma 6 makes it clear that if all columns of the matrix ‖pmk‖
are the same (that is, ηk are identically distributed) and positive, equality (5) is the
Q̃∞-representation of the number Fξ(x) if Q̃∞ = {p11, p21, . . . , pm1, . . . }, and gk(x) are
the Q̃∞-elements of the number Fξ(x). In other words, if

x = Ō1(g1(x), g2(x), . . . , gk(x), . . . ),

then
Fξ(x) = ∆g1(x)g2(x)...gk(x)...

(the latter expression is a symbolic form of the Q̃∞-representation of the number Fξ(x);
see [11] and [12]).

Lemma 7. If the derivative of the function Fξ exists at a point x such that

x = Ō1(0; g1(x), g2(x), . . . , gk(x), . . . ),

then

F ′
ξ(x) = lim

n→∞
Bn

(
g1(x) + g2(x) + · · · + gn(x) + 1

) n∏
i=1

pgi(x)i
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where Bn is the denominator of the approximant number of order n.

Proof. Indeed, if the derivative exists at the point x, then

F ′
ξ(x) = lim

x′<x<x′′

x′′−x′→0

Fξ(x′′) − Fξ(x′)
x′′ − x′ = lim

n→∞

P
{
ξ ∈ ∆̄g1(x)g2(x)...gn(x)

}∣∣∆̄g1(x)g2(x)...gn(x)

∣∣
= lim

n→∞
Bn

(
g1(x) + g2(x) + · · · + gn(x) + 1

) n∏
i=1

pgi(x)i. �

Theorem 3. The random variable ξ has a discrete distribution if and only if

(6)
∞∏

k=1

max
m

{pmk} > 0.

Let pg′
kk = maxm {pmk} for all k ∈ N. If the random variable is discrete, the atoms

of the distribution of ξ are those and only those x ∈ [0; 1] that differ from

x0 = Ō1

(
0; g′1, g

′
2, . . . , g

′
k, . . .

)
only in a finite number of Ō1-elements gk(x) satisfying pgk(x)k > 0.

Proof. Note that x is an atom of the distribution of ξ if
∞∏

k=1

pgk(x)k > 0.

Necessity. Let the random variable ξ have a discrete distribution and let x be an atom
of the distribution of ξ. Assume that the infinite product in (6) diverges to zero. Then

P {ξ = x} =
∞∏

k=1

pgk(x)k ≤
∞∏

k=1

max
m

{pmk} = 0

contradicting the assumption that x is an atom of the distribution. Therefore this as-
sumption is false proving the necessity.

Sufficiency. Suppose that (6) holds. Then it is clear that x0 and all x that differ
from x0 by a finite number of Ō1-elements gk(x) satisfying pgk(x)k > 0 are atoms of the
distribution of ξ. Let us show that this distribution is discrete.

Assume that x
(m)
j = Ō1(0; g1, g2, . . . , gm, g′m+1, . . . , g

′
k, . . . ) is an arbitrary atom among

those atoms whose Ō1-elements coincide with the Ō1-elements of x0 beginning with the
(m + 1)th element. Then

P
{

ξ = x
(m)
j

}
= pg11pg22 · · · pgmm

∞∏
k=m+1

pg′
k(x)k,

P
{
ξ ∈

{
x

(m)
j

}}
=

∑
g1 : pg11>0

...
gm : pgmm>0

(
pg11pg22 . . . pgmm

∞∏
k=m+1

pg′
k(x)k

)

=
∑

g1 : pg11>0

pg11

∑
g2 : pg22>0

pg22 · · ·
∑

gm : pgmm>0

pgmm

∞∏
k=m+1

pg′
k(x)k

=
∞∏

k=m+1

pg′
k(x)k,

since all these sums are equal to 1.
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The set D =
⋃∞

m=1

{
x

(m)
j

}
is at most countable, since it is a countable union of at

most countable sets.
Let us calculate P {ξ ∈ D}. Since

{
x

(m)
j

}
⊆

{
x

(m+1)
j

}
, we have

P {ξ ∈ D} = lim
m→∞

P
{

ξ ∈
{

x
(m)
j

}}
= lim

m→∞

∞∏
k=m+1

pg′
kk = 1

by continuity of the probability. The latter limit equals 1 by properties of convergent
infinite products.

Therefore P {ξ ∈ D} = 1, that is, the random variable ξ is concentrated on a set which
is at most countable. By definition, this means that the distribution of ξ is discrete. The
theorem is proved. �

The following result follows from Theorem 3.

Corollary 1. The distribution of the random variable ξ is continuous if and only if the
infinite product in (6) equals 0.

Theorem 4. The distribution of the random variable ξ is pure, that is, the distribution
of ξ is either purely discrete, or purely singular, or purely absolutely continuous.

Proof. By Theorem 3, it is sufficient to prove that if the distribution of ξ is continuous,
then it cannot be a mixture of a singular distribution and an absolutely continuous
distribution, that is, the distribution of ξ is either purely singular or purely absolutely
continuous.

Let x = Ō1(0; g1(x), g2(x), . . . , gn(x), . . . ) and let t1, . . . , tn be a fixed set of positive
integers. Put

∆̄t1...tn
(x) = Ō1(0; t1, . . . , tn, gn+1(x), gn+2(x), . . . )

and
∆̄t1...tn

(E) =
{
u : u = ∆̄t1...tn

(x), x ∈ E
}

,

Tn(E) =
⋃

t1,...,tn

∆̄t1...tn
(E), T (E) =

⋃
n

Tn(E)

for any set E of the interval [0; 1].
Consider the event A = {ξ ∈ T (E)}. Since ηk are independent, the event A, being

generated by the sequence of random variables ηk, is independent of all σ-algebras Bm

generated by η1, . . . , ηm. Therefore A is a tail event. Then the Kolmogorov 0-1 law gives
that either P(A) = 0 or P(A) = 1.

Since T (E) ⊃ E, the inequality P {ξ ∈ E} > 0 implies

P {ξ ∈ T (E)} ≥ P {ξ ∈ E} > 0

and hence P {ξ ∈ T (E)} = 1.
Only one of the following two cases may occur:

1. There exists a set E such that λ(E) = 0 and P {ξ ∈ E} > 0.
2. For an arbitrary set E satisfying λ(E) = 0, we have P {ξ ∈ E} = 0.

In the first case, the equality λ(E) = 0 implies that λ(T (E)) = 0, meaning that
there exists a set T (E) satisfying λ(T (E)) = 0 and P {ξ ∈ T (E)} = 1. Therefore the
distribution of ξ is purely singular by definition.

In the second case, the distribution function of ξ has the N -property, which is equiv-
alent to its absolute continuity [15]. �

Recall [11, p. 66] that the spectrum Sξ of the distribution of a random variable ξ (of
the distribution function Fξ) is defined as the set of growth points of Fξ, that is,

Sξ =
{
x : Fξ(x + ε) − Fξ(x − ε) > 0 for all ε > 0

}
.
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Lemma 8. The spectrum Sξ of the distribution of the random variable ξ is a subset of the
set C[Ō1, {Vk}] where Vk = {v : pvk > 0}. The spectrum differs from the set C[Ō1, {Vk}]
by a set which is at most countable.

Proof. It is sufficient to justify the following two inclusions in order to prove the theorem:

1. Sξ ⊆ C[Ō1, {Vk}].
2. Irrational points of C[Ō1, {Vk}] belong to Sξ.

1. Let x = Ō1(0; g1(x), . . . , gk(x), . . . ) be an irrational number belonging to the spec-
trum Sξ. Assume that x /∈ C[Ō1, {Vk}], that is, there exists a number k0 such that
pgk0(x)k0 = 0. Then there exists ε > 0 such that (x − ε, x + ε) ⊂ ∆̄g1(x)g2(x)...gk0 (x) and
therefore

P {ξ ∈ (x − ε, x + ε)} ≤ P
{

ξ ∈ ∆̄g1(x)g2(x)...gk0 (x)

}
=

k0∏
k=1

pgk(x)k = 0

contradicting the fact that x ∈ Sξ. Hence our assumption is false and x ∈ C[Ō1, {Vk}].
Let x be a rational number belonging to the spectrum Sξ. The random variable ξ

cannot take rational values and therefore P {ξ = x} = 0. Then for any ε > 0 the interval
(x − ε, x + ε) contains at least one irrational number y ∈ Sξ (since otherwise we would
have

P {ξ ∈ (x − ε, x + ε)} = 0

contradicting the inclusion x ∈ Sξ). By the part of the lemma proved above, we have
y ∈ C[Ō1, {Vk}]. Therefore for any ε > 0 the interval (x − ε, x + ε) contains at least
one number y ∈ C[Ō1, {Vk}], that is, x is a limit point of C[Ō1, {Vk}]. Since the set
C[Ō1, {Vk}] is closed, we have x ∈ C[Ō1, {Vk}] proving the first inclusion.

2. Let x be an irrational number belonging to C[Ō1, {Vk}]. For any fixed ε > 0 one
can find a positive integer k0 such that ∇̄g1(x)g2(x)...gk0 (x) ⊂ (x − ε, x + ε). Then

P {ξ ∈ (x − ε, x + ε)} ≥ P
{

ξ ∈ ∇̄g1(x)g2(x)...gk0 (x)

}
=

k0∏
k=1

pgk(x)k > 0,

whence x ∈ Sξ. The lemma is proved. �

Lemma 9. The probability that the random variable ξ belongs to the set

C
[
Ō1, {V ′

k}
]
, where V ′

k ⊆ Vk = {v : pvk > 0},

is given by

P
{
ξ ∈ C

[
Ō1, {V ′

k}
]}

=
∞∏

k=1

Lk =
∞∏

k=1

(1 − Γk)

where Lk =
∑

j∈V ′
k
pjk and Γk =

∑
j∈Vk\V ′

k
pjk.

Proof. By Lemma 5, the set C
[
Ō1, {V ′

k}
]

can be represented as follows:

C
[
Ō1, {V ′

k}
]

=
∞⋂

k=1

( ⋃
v1∈V ′

1

· · ·
⋃

vk∈V ′
k

∆̄v1...vk

)
.

Since ⋃
v1∈V ′

1

· · ·
⋃

vk∈V ′
k

⋃
vk+1∈V ′

k+1

∆̄v1...vkvk+1 ⊆
⋃

v1∈V ′
1

· · ·
⋃

vk∈V ′
k

∆̄v1...vk
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and

P

{
ξ ∈

⋃
v1∈V ′

1

⋃
v2∈V ′

2

· · ·
⋃

vk∈V ′
k

∆̄v1v2...vk

}
=

∑
v1∈V ′

1

∑
v2∈V ′

2

· · ·
∑

vk∈V ′
k

pv11pv22 . . . pvkk

=
∑

v1∈V ′
1

pv11

∑
v2∈V ′

2

pv22 · · ·
∑

vk∈V ′
k

pvkk

= L1L2 · · ·Lk,

we have

P
{
ξ ∈ C

[
Ō1, {V ′

k}
]}

= lim
k→∞

L1L2 · · ·Lk =
∞∏

k=1

Lk

by the continuity of the probability. �

The following result is a corollary of Lemma 8 and Theorems 2 and 3.

Theorem 5. If the infinite product in (6) diverges to 0, the kth column of the matrix
‖pmk‖ contains Nk positive elements, and

lim
k→∞

N1N2 · · ·Nk

(k + 1)!
= 0,

then the distribution of the random variable ξ is of the Cantor type (that is, the spec-
trum Sξ of the random variable ξ has Lebesgue measure 0).

4. Random variables with differences of consequent elements of the

Ostrogradskĭı type 1 series forming a Markov chain

Consider the following random variable:

(7) ξ̃ = Ō1(0; η1, η2, . . . , ηk, . . . )

whose Ō1-elements ηk are random variables forming a Markov chain with initial proba-
bilities p1, p2, . . . , pm, . . . and transition matrix ‖pij‖, that is,

P {η1 = m} = pm, pm ≥ 0,

∞∑
m=1

pm = 1

and

P {ηk+1 = j | ηk = i} = pij , pij ≥ 0,

∞∑
j=1

pij = 1 for all i ∈ N.

The proof of the next result is similar to that of Lemma 6.

Lemma 10. The distribution function Fξ̃ of the random variable ξ̃ has the following
form:

(8)

Fξ̃(x) = 1 −
g1(x)−1∑

j=1

pj

+
∑
k≥2

(−1)k−1

(
1 −

gk(x)−1∑
j=1

pgk−1(x)j

)
pg1(x)

k−2∏
i=1

pgi(x)gi+1(x)

for 0 < x ≤ 1

where gk(x) is the kth Ō1-element of the number x. The number of terms in the sum is
finite or infinite depending on whether or not the number x is rational.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



158 M. V. PRATS’OVYTYĬ AND O. M. BARANOVS’KĬI

Proof. Let us prove the statement for an irrational number x. Since the event{
ξ̃ < x

}
can be represented as a union of disjoint events (see the proof of Lemma 6) and since

P {η1 = g1(x), . . . , η2k−2 = g2k−2(x), η2k−1 > g2k−1(x)}
= P {η1 = g1(x)} · · ·P {η2k−1 > g2k−1(x) | η2k−2 = g2k−2(x)}

= pg1(x)

2k−3∏
i=1

pgi(x)gi+1(x)

(
1 −

g2k−1(x)∑
j=1

pg2k−2(x)j

)
,

P {η1 = g1(x), . . . , η2k−1 = g2k−1(x), η2k < g2k(x)}
= P {η1 = g1(x)} · · ·P {η2k < g2k(x) | η2k−1 = g2k−1(x)}

= pg1(x)

2k−2∏
i=1

pgi(x)gi+1(x)

g2k(x)−1∑
j=1

pg2k−1(x)j ,

we have

Fξ̃(x) = 1 −
g1(x)∑
j=1

pj +
g2(x)−1∑

j=1

pg1(x)j · pg1(x) + · · ·

+
(

1 −
g2k−1(x)∑

j=1

pg2k−2(x)j

)
pg1(x)

2k−3∏
i=1

pgi(x)gi+1(x)

+
g2k(x)−1∑

j=1

pg2k−1(x)j · pg1(x)

2k−2∏
i=1

pgi(x)gi+1(x) + · · · .

The latter expression is easily reduced to (8). �

Theorem 6. The distribution of the random variable ξ̃ has atoms if and only if there
exists a set (g1, g2, . . . , gk, . . . ) such that

pg1

∞∏
k=1

pgkgk+1 > 0.

Proof. Indeed, the number x = Ō1(0; g1, g2, . . . , gk, . . . ) is an atom of the distribution
of ξ̃ if and only if

P
{

ξ̃ = x
}

= P {η1 = g1, η2 = g2, . . . , ηk = gk, . . . }

= pg1

∞∏
k=1

pgkgk+1 > 0. �

We conclude by proving that a uniformly distributed random variable cannot be of
type (4) or (7).

Theorem 7. If the distribution of a random variable τ is uniform on [0; 1], then the
Ō1-elements gk(τ ) of this random variable are dependent. Moreover they cannot form a
Markov chain.

Proof. Let us first prove by contradiction that gk(τ ) cannot be independent.
Since τ is uniformly distributed on [0; 1], any Borel set B, in particular, any interval
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[a; b], satisfies
P {τ ∈ B} = λ(B)

where λ denotes Lebesgue measure.
Assume (for a contradiction) that gk(τ ) are independent random variables taking

values 1, 2, . . . , m, . . . , with probabilities p1k, p2k, . . . , pmk, . . . , respectively. Then

P
{
τ ∈ ∆̄g1g2...gk

}
=

k∏
i=1

pgii

and
P

{
τ ∈ ∆̄g1g2...gk−1g

}
P

{
τ ∈ ∆̄g1g2...gk−1

} = pgk for all k and g1, . . . , gk−1, g.

The expression for the length of the interval ∆̄g1g2...gk
gives

λ
(
∆̄g1g2...gk−1g

)
λ

(
∆̄g1g2...gk−1

) =
g1 + · · · + gk−1 + 1

(g1 + · · · + gk−1 + g)(g1 + · · · + gk−1 + g + 1)
.

Therefore the equality
g1 + · · · + gk−1 + 1

(g1 + · · · + gk−1 + g)(g1 + · · · + gk−1 + g + 1)
= pgk

should hold for all k and g1, . . . , gk−1, g. However,

λ
(
∆̄1g

)
λ

(
∆̄1

) �=
λ

(
∆̄2g

)
λ

(
∆̄2

) ,

showing that our assumption is false and the random variables gk(τ ) cannot be indepen-
dent.

Assume now that the random variables gk(τ ) form a homogeneous Markov chain with
initial probabilities p1, p2, . . . , pm, . . . and transition matrix ‖pij‖. Then

P
{
τ ∈ ∆̄g1g2...gk

}
= pg1

k−1∏
i=1

pgigi+1

and
P

{
τ ∈ ∆̄g1g2...gk−1g

}
P

{
τ ∈ ∆̄g1g2...gk−1

} = pgk−1g for all k and g1, . . . , gk−1, g.

Therefore the equality
g1 + · · · + gk−1 + 1

(g1 + · · · + gk−1 + g)(g1 + · · · + gk−1 + g + 1)
= pgk−1g

should hold for all k and g1, . . . , gk−1, g leading us, as before, to the conclusion that
the random variables gk(τ ) cannot form a homogeneous Markov chain. The theorem is
proved. �
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Pedagog. Univ., Kÿıv, 2002, pp. 391–402. (Ukrainian)

15. I. P. Natanson, Theory of Functions of a Real Variable, “Nauka”, Moscow, 1972; English transl.,
Frederick Ungar Publishing Co., New York, 1955. MR0039790 (12:598d); MR0067952 (16:804c)

Dragomanov National Pedagogical University, Pyrogov Street 9, Kÿıv 01601, Ukraine
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