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INTRODUCTION

In spite of the apparent complexity of the M loop

generalized Veneziano formula ! "3), it has recently been shown 1)’2)
that the most important part of the integrand - the one that depends

on the momenta of external particles - has a simple geometrical

J
the multiloop integrand turns out to be simply the exponential of

interpretation. Indeed, the quantity raised to the power P, P, in

certain harmonic functions defined on a clesed Riemann surface topo-
logically equivalent to a sphere with M handles. These harmonic
functions are the so-called third Abelian integrals, which are simply
the solution of the clacssical flow problem on the surface with a
source and a sink of egqual but opposite strengths. These harmonic
functions are siuwply related to the Newmann function of each of the
two copies of a surface with boundaries obtained, loosely speaking,
by cutting the closed surface into two symmetrical halves. In tnis
way, the equivalence of the operator formalism with the original

Nielsen analogue model 4) was established.

In Refs. 1) and 2) this result was established for the
multiloop integrand but only part of the measure of integration was
congidered. 4 general discussion was given of the di%ergence factors -
generalized partition functions - that depeud only on the multipliers
of the group of automorphisms, but the part of the integration measure
that depends on Koba-Wielsen variables of external particles was
not explicitly considered. The first purpose of this paper is to
discuss with more de%tail the measure of integration and the duality
properties of multiloop amplitudes and to give a general prescription

on how zhould the most general multiloop zmplitude be integrated.

The measure and domain of integration of multiloop amplitudes
are discussed in Section 2. The domain of integration can be under-
stood as follows: +the M ‘loop amplitude has an associated Riemamm
surface given by a sphere with M handles. The Koba-lielsen
variables sz of external particles can be identified with points

on the surface. If the surface is kept fixed the 2z, 6's 7Tun along
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certain closed paths - or cycles - on the surface that split 1t into
two symmetrical halves andé that correspond to the boundaries of the
original open surface of the analogue model. The zi's are in-
tegrated along these cycles on the surface in such a way that the
cyclic order of the zi's that are on the same cycle 1s maintained,
and that each configuration is counted ounly ouce. Different sets of
cycles - there are several ways of splitting & sphere with M handles
into two symmetrical halves - and different partitions of Koba-llielsen
variables on the cycles correspond to different M loop amplitudes.
Finally, the surface is also varied by integrating over a remaining
set of {3M-3) variables - the so-called Riemann moduli - that
describe conformally inequivalent configurations ol the Riemann

surface.

The second purpose of this paper is to start a general
discussion on singularities and divergencies of multiloop amplitudes,
and this problem is discussed in Section 3. The integration over the
Koba-Nielsen variables of external particles gives rise only to poles,
and the new singularities, specific of multiloop amplitudes - like
normal threshold cuts - arise from the integration over the surface
parameters. Indeed, all these unitarity singularities can be associated
with an end point in the domain of the Riemann moduli that corresponds
toc the vanishing of one or more handles. A short discussion is given
in Section % of the different mechanisms thal generate these unitarity

singularities.

The bulk of Section 3 1s devoted to the analysis of a new
class of singularities that are characteristic of dual theories and
that are not unitarity singularities in the sense that they are not
asgsoclated with the intermediate states of the Born approximation.
These singularities are the so-called Pomeranchuk-like singularity
in non-planar diagrams or the exponential divergences of the integrand
in the planar ones, and they are discussed in detail for the case of
the N loop diagram with (N +1) boundary cycles on the associated

Riemann surface, using the results of domain variational theory.



Thiz branch of mathematics gives the behaviour of fdinvarianl lManc-
tions on @ Riemann surface when the surface 1s varied, and is, therc-
fore, particularly suited fo the analysis of all singularities coring

from end vpoints of integration in the Riemann moduli.

Domain varigtional bheory can be applied at once Lo obiain
the behavigur of the momentum-dependent part of the multilcop
integrand near the end points of integration, because this part of
the integrand is given in terms of invariant functions on the liemann
surace. However, the measure of integration is nol an invariant
diflerential and its behaviour near the end points of inlegralion is
simply obtainea only in a few special cases. This problem 1s par-
ticularly evident for the case of the non-unitary singularities we
are interested in; and the way in which we have solved 1L, 18 also
explained a2l length in Section 3. Our methods allow us to carry out
a full investigation of Pomeranchuk-like singularities and divergences
for the set of multiloop amplitudes we are considering. Using domain
variational theory, we find the most singular part of the integrand in
the cases in which the integral diverges, and we are, therefore, able
to write counterterms that render the inlegrals finite in different
limits of integration, and that also have.a very simple interpretation

in terms of invariant funciions on a Ricmann surface.

A11 1he ingredients of the theory of functions on Riemann
surfaces and of automorphic Tunctions ithat are useful in multiloop
theory have beern presented in Kef. 2) - hereafter referred to as T -
arnd we ghall use kere all the conventions and notaiions used in that
paper. We have also included iwo Appendices. Appendix 4 contains
a slightly refined version of the multiloop calculations carried
out, in Refs. 1) and 2) and ig included mainly ror the sdaxe of
completencss. Appendix B contains the discussion of somc technical

points associated with the renormalization problem.
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INTEGRATION DOMAIN OF MULTILOOP AMPLITUDES

The purpose of this section is to consider the measure and
the domain of integration of multiloop amplitudes. We shall use here

the notations and conventions of I.

a. The CGeneral Multiloop Amplitude

The most general M loop amplitude in the dual resonance
model can be calculated by sewing M pairs of Reggeons in an N
Reggeon vertex, leaving N'=N-2M external Reggeons which can
eventually be restricted to be in the ground state corresponding to

the basic scalar particle of the theory.

Several different expressions for the N Reggeon vertex

6),7),8)

have been considered recently in the literature, which

turn out to be eguivalent in the calculation of scalar tree diagrams.
Indeed, they all differ from one another ba gauge operators associated
with external Reggeon legs, which, of course, are irrelevant when

the Reggeons are coupled to physical states made out of scalar par-
ticles. However, previous experience with one-loop diagrams shows
that gauge operators that are trapped inside a closed loop give rise
to a modification of the integration measure. This is the way in
which factors representing the absence of spurious states show up in
the measure whenever a non-planar loop is computed using the Hermitian
twisted propagator 9) P(x) :XHG (1-}:)W. It is, therefore, clear
that a definite criterion must be used in the choice of the XN

Reggeon vertex.

The criterion we are looking for is given by the two fol-
lowing fundamental requirements, both implied in the KSV unitariza-

tion program 10 for the dual resonance model:

a) +the multiloop amplitude must be independent of the particular

gset of Reggeons that one chooses to sew;

b) the multiloop amplitudes should exhibit duality properties in all

internal lines.
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These requiremcnts are automatically fulfilled if the W

Reggeon vertex satisfies

a') complete factorization (i.e., of the operator part as well as

the measure);
b!) operatorial duality.

Property a‘) guarantees a) Tor the multiloop amplitude.
Indeed, by multiple factorization the § Reggeon verilex operator can
be turned down into a series of N-2 three Reggeon vertices V  joined
by N-3 propagators P. Then, the sewing implies to close the loops

*)

in all lines, shows that it is irrelevant to identify one or the

with other propagators and the result, being completely symmetric

other propagator as the one originated by the sewing.

For operational dualily we mean that, for amplitudes con-

structed with three-Reggeon vertices and propagators, the relation

Xa X, n Xy
x - ’
X
N x ‘f rl M
ig satisfied identicsally in the operators aT,...,a4 and in
the Chan variables Xq,...,x4 of the external lines before
any integration is carried out, provided x and y are re-
lated by the K3V change of variables 10). This property

remains true after further sewings of the external Reggeons, and
guarantees the invariance of the tree or multiloop amplitudes when an
arbitrary internal line iz dualized. The symmetric N Reggeon vertex
that satisfies properties a') and b') is the one proposed by Olive 8
which we shall use from now on with a slightlg different notation.

Other versions of the N Reggeon veriex 857

satisfy also properties
a') and b') but only up to gauge cperators attached to the external
Reggeon 1lines, and the duality properties of the whole multiloop
amplitude are therefore not automatically guaranteed. Since, as

we said before, they differ from Olive's vertex by some gauge

We defer to Ref. 9) the discussion on twist and gauge properties,

of vertices and propagators as well as factorization of tree

amplitudes and definition of sewicrg.



operators assoclated 1o externasl lines, there will be some modifica-
tions in the integration measurc of the multiloop amplitude. We
shall discuss in detail this modification for the planar multiloop
amplitude in Section d. of this Chapter.

In Olive'!'s Tormulation 8), each Reggeon is characteriszed
by means of itwo adjaccnt Koba-Nielsen varlables 2 ﬁi running
over the unit cirecle, and which can be thougat of as the Koba-Nielsen
variables of the two scalars (or quarks?) cut of which the Reggcon
hag been facltorized. Xeeping track of these two Koba-Nielsen

variables allows one to define the Chan variable of the Reggeon as
X; = ((gt ) ¢; ' F{‘-r rel.n

where, as usual, we use the notation

G.‘,c,ﬂ( - (a-b)(C-of)
N

h
If the iJD Reggeon 1s in its ground state, its Chan

(2.2)

variable X.l:O and, consequently, we have z, = Fi’ that is to =ay,
we recover 4 single Koba-Nielscn variable for the scalar particle.

Since we shall ultimately put all non-sewn Reggeons in thelr ground
state, this extra variable will be of relevance only for sewn Eeggeons
and will be relstcd to their Chan variables. One of the two variables,
say z;, can be thought of as the point where the Reggeon is implanted.
Moreover, Reggeons should be twisted in Olive's vertex using the
Hermitian twisting operator 9) @ (Xi) =.Q.(’I-Xi)w and this inter-

changes the role of the 2z, and ﬂi variables.

We then write the N Reggeon veriexX as

VR L [oen]--t2] - |2 ). o2,
N #
s (i"-_” - i"-} ( {" @)

(23, )8y % )fec ) .

N a N o b, 0,7 ot
S v 61'-: 1) VJ )
N e e 22 a U a ) (2.3)
E‘: F e'q - p‘..' P l i¥} ( ft u”)

)=t



In (2.3), Zoy Zye 2o Tepresent the Kobka-NWielscn varlubles of three

arbitrary Reggeons which ars not integrated.

The variables in Hg. {2.3) satisly the follewing cyclic

order over the unit{ circle

23' ﬂ. ,a;, 2 - = e," "} - o 2~’ €~
(2.4)
and the integration region over Zy covers tne whole unit circle

sabject to the condition (2.4).

The gquariity Q in (2.3) is defined by

N B,
e" - [{
[ g * - » P -

L -7 Fr-; (2.9)
and, tharefere, 1t is egual fo zero 1% atb least one the Reggeon in
the vertex is in its ground state, because, as said before, in this
case 1ts » and 6 variables coincide. Due to the fact that we
shall put all unsewn Reggeone in their ground states, we can forget

from now on the @ factor im (2.3).

£+
(i ) - .
The c¢perators a J in {2.3) beloaging to cvery Reggeon
9 ) ]
i are really a asct of operators ~ agil where nw=0,1,2... and
ik’
/,( =0,1.2,3 (/ﬁ is & Loroentz index). Mhe zero mode i3 courled Lo

the momentum of tiae Reggeon, i.e., 2 Regegeon with momentun ig
_g b b fat it p

FERY (.\
. - . . A1 R |
an eigenstate of a, with eiligenvalue 3“ . U< /' and V' are
irfinite matricecs wheogse matrix elements are defined in terms of
]
2x? matrices generabing prajective transformations 9’. Each
infinite matrizx C has an asgociated 2x2 matrix
a b ‘}
¢ of
(2.5)
in terms of which ifs matrix elements are defined as
" ol -
I [feae+ b e 2
— = heo + nom " !
Vn Leaeed Vi ) % (z.7)



e
aof - bc

C,. = %9

(2.8)
Th i and ¥V J matrices can be written as
( } ’( F‘- ) [ﬂ‘-' e‘. Tt
(v |
( }j F‘;_l - e - y C) i
J.; ! 4=t e, *).M
(2.9)

r - - \J -
where fi_(ziziﬂ"/(@iJ Zi+‘l)'

In computing matrix elements of products of matrices the
corrzct procedure is first to multiply the corresponding 2Zx2

matrices and then to apply Egs. (2.7)-(2.9).

The multiloop amplitude can now be calculated by sewing
pairs of Reggeons as done in Refas. 1) and 2). A slightly refined
version of the calculation is given in Appendix A. After sewing M_
pairs of Reggeons with Xoba-Nielsen variables Z gy s e,. and 7 l'gv
by connecting them with a (twisted or untwisted) propagator with
associated Chan variable X,. s and after the loop momentum integra-

tion is done, onc obtains the result



Tzt ] T et vomidulin VECisitert)
T ™ i gy

(2.10)
- = o o 4 s .
where [hj and LN‘j indicute the sel of indices dorresponding
to the sewn and unsewn Reggeons. Moersover, .= (Ul) y vty
1 G0 alal
and V(Zi’zj;zo’zé) is the Green furction of a sphers with M
haundles if the indices i, Jj are different and the regular part
of V if the indices i, Jj are equal. We reamnind the reader that
the Green functioa of a closed Ricmann surface is defined in fterws
[y
of its Abelian integrals ’/ as
[/('3‘.%,,8,,?.‘, /?2 (e) - 2 -Q (f")
. !
g
{2.11)
ana the regular part is defined as V—log!1—(zl/z,)‘. The possibi-
d

1ity ol fixing three arbitrary variables «_, 2

4 z, 1s the origin

'b!
of the volume element

A2, of2, A2
OIDL“ T b <

(8a-26) (T2 ) (@ ~2a)

in Bq. (2.10)

We have taken Zy zé to be two arbitrary points on the
surface, thai is to say, two ordinary points in the complex plane of
its group of automorpnisms (this will be clear in what follows). The
indepcndence of 29 zé is guaranteed in this case by mome ntum
conservation. For the case of the sphere with no handles,
eXp'V(zi,zJ;zO,zé) is just the anharmonic ratio of the four points
indicated in the argument of the Green funciion,

Yie have written our result in terms of the Green function

of 2 closed Riemann surface - the "double" of the open Riemann surface



of the analogue model 2)’5) - because they may bc more meaningful
than the original surfaces of the analogue model. Indeed, we shall
see that exvV has to be integrated along well-defined paths on

the clozed Ricrann suriace.

b. Tke {roup of Automorphisms

The explicit form of the Green function V was given in I
in terms of the group of automorphism which defines the Riemann
surface. Tais group is the infinite set of projective transformations
T* cefined by ar?itrary products of the N generators ?ﬁ‘ and
their inverses ?ﬁ . Every generator originates from a pair of

sewn Reggeons and is given by

éi*-r S B

-1 o (44 I
l - -~ ~ :?- X ' o
//‘ ra“" 1%#! Vb dl Va
(2.12a)
if thinair cf Reggeot: Tith KOba_NiElS;? variables %ﬁu’ Gi‘ and
A are oewn with the propagalor
w7 O
1
A
= Voty, x.°° @
e
o - é;") (2.1%2)
and by
I_ ot o t e‘,_, .;'u ';«w
- - - s
o X
/ Guer S Saets o
(2.12b)
if the Reggeons are sewn with the propagator 2)
!
L
D = o o
DESE
o (2.13D)

We remin? here the reader that, due to the symmetric struc-
23 . . .
ture of the vertex ), the first case (2.12a) corresponds to an

untwisted line and the sccond (2.12b) to a twicted ome.



Let us analyze the iransformation T, . The Chan variable

7~ ,
}5" ol ezch Reggeon is ralated to the two Koba-Nielsen variables
2y, e @vd the neighbouring variavles f@ and o by (2.1).
1 [opa 5 = S a1 PRI ( )
When two Regzeons are sewn, one mast impose the condition that their

Chan variables coincide, and this means ithat the parameters é" and

A
Eﬁ! are related to the integration variable % oy n (2.10) by
- —~ - ~
= z ( )
x/u (F/“Jé“:e“" r/“"') £ (gf" ‘ 'é«, /3"-"?/'-*'
(2.14)
Conaition (?.4) implies
7 }. <
(2. 15}
Ey vuesing (2.14} We can rewrite (2.12a) andg (2.12b) as
— ﬁ .e/" 9." F’”-'
Voahnd ,eﬁﬂ ~ F’“
(2.16a)
for an untwisted sewn Reggeon and
"“ 6" i}« P/«-c i}tu
= ~ A “~ "
4 S 6'--' % ﬁ#
{2.1€b)

for a twisted one.
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In Ejs. (2.716a) and (2.16b) any one of the columns is
implied by the other three and the equality given by Bg. (2.14).

T+ ig also convenient to eliminate :§~ in the measure of integration

in favonr of ‘6/‘ or F/‘ , using the relation .
0/#,. _ (e/"'n ""‘;-) J&' - (3,:4-;";,:) a’é‘t__
Xf("”/‘) {t"f/')(ﬁ"g"") (é:"'ﬁ;){é: -;Jl)

(2.17)
In Figures 1ta and 1b we have shown the relative order of the different
variables on the unit circle and the correspondences implicd by
Eqs. (2.16a) and (2.16b), respectively. The arrows indicate how the
points are mapped into each other by the application of ?ﬁ .

Every generator @ﬂ depends on three parameters. Instead
of Zp %, and Zae originated by the sewing procedure, we could

introduce the two invariant points ;; s I and the multiplier
11

%ﬁ . They are defined by
T () - 2-
V '{« . K ______f_':.

s
7;"” ~ I 2 (2.1)

with the convention

LN
(2.19)

By examining in Figs. la and 1bh how points transform under

it is easy to locate the position of tke invariant points f

T

/q H
ﬁb“ orn the unit circle relative to the other variables that we

are considering. We can see that, in general, they are located



)

betwecn 2 4 p and hbetwecen =z end g . Tt follows [(rom
bet " nd L two . 1 p" ¥

(2.4) tizat tne invariant polnts ;}»3 1}‘ are ordered, with respect
to tre Koba-Nielsen variacles of all the remaining Reggeons not

sewn by the generator %P , 1in exactly the same way as the Koba-

Nielsen variables %n and 3~ of the sewn Reggeons. All our
Zenerators %" leave the unit circle invariant and theis 1g there-

lfore a property of all members Td of the group. This is lhe
reason why every transformation depends on only thrce real para-
meters (phases of {;' and 75“ and the real multiplier 'E“ ),
K’u being positive for (2.16a) and negstive for (2.16b).
There are several advantages in using the invariant
points {; s AL” and the multiplier X &3 integralion variables

~

instead of the o0ld Koba-ilielsen variables 5“ y %;' and the Chan varisa-

tle x;u as in (2.10). With this later sel of varishles the siiuation
rather aesthetically unpleasant because it iz not aulte clear whut

role sbould the Chan variables %M play under over-all prajective
transformaticns. Witk invariant points and rwltipliers the situation
iz more transparent; an over-all projective transformation carried oul
in the complex 2z plane where ihe group of automorphisms is dellinec

ig equivalenl to 4 similarity trarnsformation of the elements ol unc
group 11). Since the multiplier is a funciion ol thce trace and the
detcrminant of the 2x2 matrices that delines Lhe group element,

it is left invariant under such a similarity tlransformation 1?).

Due to t=c over-~all projective invariance of ihe integrand, we cdn
arbitrarily fix three points which - except lor the case =1 - can

be chosen to be three invariant points. For M =1 we have only two
invarianl points and we are therefore forced to fix in addition tlhe
Koba-Nielsen variablc =z, of somc cxiernal particic.

Ls explained at length ir I, automerphic iunctions with
respect to these groups with & generators deline single-valued
funclions on a Riemanr surface topologically equivalent to a sphere
with M handles. The Koba-Niclsen complex planc 1s simply Lhe

conmplex plane in which these groups of aufonmorphisms are defincd.

io



More than that, the generators qﬂ of the group of automorphisem
provide us with a concrete parametrizalion of the surface. It can
be shown that two Fiemann surfaces are conformelly equivalent i and
only if their corresponding groups of automeorphiems are connected

7).

corresponds 1o an over-all projective transformation of the multi-

by & similarity lLransformation We have seen before that this
loop integrand. Therefore, when three invariant points are kept
fixed because of the over-all projective invariance of the integrand,
the remaining (BM-E) fixed points and multipliers parametrize
conTormally inequivalent Riemann surfaces. Projective invariance of
the multiloop integrand, therefore, means that one is integrating
over conformally inequivalent configurations of the surface. In the
one-loop case the surface depends orn only one parameter which des-
cribes its conformally inequivalent configurations. In general,

the (2M-3) paramcters are complex; but, Ln our case, they are real
and this means that we are dealing with symmetrical Riemann surfaces,
that ig to eay, surfaces that can be thought of as the double of some

open surfaces with boundaries.

At this slage the main advantage of using invariant points
and multipliers as independent wvariables should also be clear: the
variables describing configuraticns of the surface are decoupled
from the remaining variables, the Koba-Kielsen variables Z. ol
external particles, that correspond to points on the surface. For
every set of (3M-3) surface parameters we shall find a region of
integration for the external variables z; thal is dictated by the
sewing proccdure and the extra requirement that every confliguration of
the points on the surface is counted only once. Then we shall discuss

the integration over the remaining (BM-B) surface pasrameters.

Finally, we want to emphasize here a point discussed at

length in I concerning the connection btetween Burnside's group of

12)

automorphisms arnd the Riemann surface. Congider the sphere with
M handles represented in Fig. 2, where we have drawn a set of
02/‘ BE 02/” (g =1,...,1). The whole Riemsnn

surface corresponds to the fundamental region of the group, which is

canonical cyeles
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. o . . . ) - -1
the cxterior of all the isometric circles of ?/u and %‘,

(,“:=1,...,M) if they are all non-intersecting. This is not, how-
ever, an essential requirement because the fundamental region can
also be defined if isometric c¢ireles corresponding to different

1).

fundamental region by an element ol the group, Ty (z), is as good

generators intersect Any other region obtained by mapping the
as the firsi one to represent the surface. Indeed, =z and Q‘ (z)
correspond %o the same point on the Riemann surface. The infinitely

many regions so obtained fill the complex plane except for some

points that are the limil points of the group. The isometric circles
of T and ?;j, to be denoted by E“ and 5;1, become on the
surface the "vertical” canonical cycles 02 . Paths Joining on
the complex plane homologous points of I/" and 5;1 become, on

the surface, the "horizontal" canonical cycles C%“,.
The group of automorphisms that we find corresponds so a

cutting of the surface along lhe vertical 02 canonical cycles,

/4-1
whereas the oper surface of the analogue model (in the planar case,
for exemple) is obtained by cutting the surlace "korizontally" along

the ©C cycles and a closed cycle that goes around all kandles.

2
These cycles become the boundaries of the opean surface, and this is
why we skall refer 1o them sometimes as "boundary lines" though, of
course, our surface has no boundaries. 1In pariicular, we can see that
arcs of the unit circle joining {,Q and 5;1 over which external
variables Z; run, will become boundary lines in cur langusge, and
will correspond to boundaries of the open surface of the analogue

model.

c. Thke Reglon of Integration

i) The one-loop orientable diagrams

Let us first consider the example of the one-loop orientable
diagrams, whose group of automorphisms i1s exhibited in Fig. 3.
It we denote by g , ‘1 , K +the invariant points and multipliers

we can draw the two isometric circles I and 1_1 (with the same
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radii) which are perpendicular to the unit circle. The intersecting

points are homologous to each other in the sense that

A'- T(a) B': T(B)

where T is the transformation defined by (2.18) in terme of ;: ‘{

and K (K positive in this case).

Let us now fix = +1 arbitrarily in the BE' segment. Then

Z of Pig. 1a is

” ~
2, = Z }
~ {(/"""
The condition that we had before sewing, that is to say, that all

%3 starting from %/A+2 up to fi‘ _q» B8re integrated in all

possible posiiions of the unit cirele provided their relative

fa

order is preserved and they do not overcome 5“ y 15 reflected
. ; b
in the fact that they are integrated between €/"+1 and T(%ﬁ'+1)

keeping their relative order.

On the Riemann surface this is equivalent to saying that,

fixing all the variables from =z 1 up to EL°‘4 range

S M

over a closed cycle.

)

Similarly, fixing z/"ﬂ, all variables frouw

z 1 up to ﬁi“_1, range over another closed cycle. Now we must
Tntegrate oaver 11“44 and 3“44. One of them can be kept

fixed because of over-all projective invariance but the other,

say Zﬂ+'|’ carn, in principle, go from ’7 to § . This would

imply, on the surface, that it would go arcund its corresponding
cycle an infinite number of times due to the fact that invariant
points are also limit points, that is to say, accumulation points
of fundamental regions M . This reflects the infinite multiple

1 -
3). In order to

counting first encountered by Kaku and Thorn
avoid it we must impose the restriction that %/4+T also goes
only once over the boundary cycle. This ilmplies in Fig. 2 that
Z/~+1 also goes — as the other variables do - over a segment of the

unit circle in the fundamental region, i.e., limited by a point

and its transform as, for instanrce, the segment BB'.



Ao discussed ir T we can visuaalize the surfzce as a torus
(3ec Fig. 4). The two voundaries are shown in dotted lires and

that if wo cut the asurface arourd both of them we are

left with iwo separated aymmetric open surfaces, The prescription
we oblained can be interpreted by saying thait the dual amplitude
we are discussing is obtained by allowing the external variables
which are on a boundary to be integrated only oncc over all
yossible positions on that boundary cycle kceping their relative

ordeor fixed.

A different cyclic orderliag of extersmal variables Ir a boundary

corresponds to a different dual amplitude. TFurthermore, s dif-

forent partition of externai variables belween the two boundaries
corrcspond to a different family of dusl amplitudes. The planar
loop amplitude, for instance, 1s obtained when all variables are
or only ore boundary cycle. This 1s the pariicular case when the

two sewn Heggeons {of flz. ia) are cosntigucus. In ihis case

I3

L
i, = 7 = zo that T, given by {2.16a) bocomes
I IL P ol yoLe e
F

- (3” §;“ gk?,, Fau-:

Pr 2w T B,

Hrom (2.20] it I8 obvious thar

7’: F)M g é.“:g““ (2.2

For=over, [rom (2.:)@) w/“ o= |(//, ) and 6’" , :;I_;( E“' _1) 50 that,

using (2.18) and {2.27) we find

@::: (%« ’ f;,a'gu+' ’ ég*zlj = 42""'[@"‘ gh*" 'ff;ﬁ)

(o
2

20

L—
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In this case, the Jacobisn of the trarsformation from the volume

element dz , d%z,, dxa that originally occurred in the loop cal-
an om ?A- i o p

ulati 1§, A4t 15 ticularly aimple. Indeed, by using

culasion to o%“_4b&§p is particularly simp deed, by using

Egs. (2.17), {(2.71) and (2.22} we find

oAi ol el oMy A, (3 Bo-tan)
b (1-2,) KL 1-K) (3 fl(Zre =¥

P
3
.
e
bl
e

whers, in the right-hand side, Z must be urndersioad as
7, =T, {2 ) where % is determined by ; , and Kg, .
Vo /m+2 /h //n Z/u /“

ii} Non-orientablie one-1oop examuple
Let ug now discags briefly trne one-loop non-orientable cuse.
aiven f -7 and K (now K<0) we can again represent the
!
igsometric c¢ircles as in IPig. 3, but now the intersecting poinls

are rclated by
— ’ Y
A'- T) , B=TH

It 1s ¢clear Zrom this ildentification that, on the surface, all
external variables will run over only one boundary cycle. Indeed,
as seen in Fig. 1b, ihe polint /@n e iz the szare as the point

5; :NDQgﬂ _1) and, therefore, all external variables on the

upper side of the figure can be transported to the lower side by

the action of T. Tke lasl one, T(%“H) will be bounded 1o

[a]
£

2
T =T
$q4 K g K

would be in the

M

and, alsc, that the point

~ 2
come before T ol Y =17 (z ). We notice that
ald

T %

B e | I(](,n +T)
southern hemisphere of Fig. 1b, somewhere in between %;¢+1 and
2 . '
FP; 1‘K‘(Z/ur1>' Then, fixing 2, ;s

integration region of ali the other external parficles ig the

we can say that the

boundary line on the surlace which starts at the point =z

M1’



“
}  and closes back at e (7

£v K ,a44>'

goes through T

= ;ﬂK\ St

We illustrate in Fig. £ the boundary cycle con the torus: it
cuts two Moblus strips from iit.

| as the discussed

The points T |l & T :

P §o il s o x| m st/
beforé] subdivide the integration region in subregions that

show different dual singularities. For the three-point o2ne-~loap
non-orientable diagram, for instance, the singularities of tha

4) _

all dual to each other - can be agsociated with the subdivisgion

differeant twisted configurations ¢f the triangle diagran

of the integration region as follows:

= 2, <2, (23 ¢ 7;«,”0 (%)

= 2 en ¢ )y Tt

T ' ! : ( )
= 2<% ¢ ,;7"“{ ) < /7””{9)(8 <7' 20)

ﬁT (ﬁ;ldi‘e(e;('T

Y/ ‘TIK(I

P BB

We do not find multipie counting in the non-orientable one-loop,
due *o ths {reedom to fix an external particle (Zl‘+1 in the
preceding discussion). But, 1f some extra sewings were periormed
this would replace csomes other z; by iavariant points ¢ other

branstormstions which would be kept fixed by fixing the surface.
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Tren, = could approach f and AT covering, uherefore,
aa + 1 AN e

ar infinite number of times the boundary we discussed. Again,

we wou_d add the extra condition that the integration region

counts every configuration only once zo that =z 1 goes also

only once through the boundary line.

We have discussed, up to now, the integration region ol ex-
ternal variables, which are some boundary cycles on the surface.
The intezration over the surface parameters ig straightforward in
the sinzle loop case due to the fact that there is only onc pari-
meter ¥ which may vary between O to 1 Zor the orientable
case and O and -1 for the non-orientsable one. This linitation
ig obvious, due to the fact ithat by definition the multipliers of
the transformations (2.16a), (2.16b} are always defined to be in
modulus less than one. Incluéing regions with |K‘:>1 would
imply multiple coumting of conformally inequivalent comfigurations
0¥ the surface. Moreover, the gartition function that occurs in the
measure has a waatural boundary oa the circle ‘KJ =1 =0 1that the

irtegration cannot possibly be extended beyond it.

1idi) General prescription for the intezration region

The discussion of the one-loop example carvied cut in ihe
preceding parsgraphs can easily be extended to a situation in
which there is more than one palr of sewn Heggeons and, consgeytently,
the group of automorphisme has wmnre than cno generator. To every
palr of sewn Reggeons the preceding discussion of tne integration
region for fixed values of i1he surface parameters can be applied.
The result ne general prescription i1s that cversy M loop dual

amplitude is obtained as Tollows.

a) A set of czlosed boundary cycles 1s drawn on the sphers with
M nandles in such a way that they cut the surface into two
symmetrical halves. This set is composed by a‘ most (W +1)
boundary lines. We emphasize that there are sets with an
arbitrary number of boundary lines ranging between 1 and
(M+1). This point will be clarified when we cousider specific

eXxamples.
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b} Extoernsl variables are partitioned ir all possible ways on the
boundary lines. For each partition one must, in addition,
congider all non-cyclic mermutations of exbLernzl varisbles on

each boundary line.

¢} All external variables arc ' ntegrated cor the surfarce along
the zlosed boundary lines in such a way that their cyclic
order is maintained and that every configuration on the
surface is counted only once. This last requirement'avoids the
multiple counting that arises from the pericdizity of the

integrand.

d) TFinally, one must integrate over all iopologically equivalent
but conformally ineguivalent configurations of the Riemann
surface described by the (BM»B) gurface parameters that
give rise %o different groups of aubtocmorphisms. We emphasize
thig poirnl because the same group can be generated 1n many
different ways or, equivalently, different generators can pgive
rise to the same group. For cxample, the group gencrated by
T, and T, T, y =17,
are clearly the same, one is simply changing the identification

and the one generated by and T
of the generators. The multiplier is ipvariant under such 2
chaage, but the values ol the invariant jpoints ( §2, 72) musl
not be allowed to cover the range of | fé. ?é) because ia
tnat case one would clearly be multiple counting the confi-

would be naturally obteined if the sewing giving rise to T

gurations of the surface The second group of automorphisms

2

wers rade on Reggeons implanted at the points T?(z) and

jolPRes . . ~ i i

T1az ingtead of v, = <respectively; which are the same

points on the surface. The restrictlon given in c) on the
externzl varablcs, before the sewing 1s made, givee rise to

C
the previous restriction on the invariani points of T2.

We are srateful to Dr. E. Cremmer for a discussion of this

point.
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A11 these requirements imply that multipliers are such that
their magnitude is between zerc and one (if they are bizger than
one, one 1s again multiple éounting surface configurationé)

and that invariant points 5), , ?/“ are integrated on

the unit cirele in such a way lhat the cyclic order is
maintained, and that they cover ounly once a fundawsntal

regior of the subgroup in which the corresponding generator

T

region correspond, as we shall discuss in wore detail later

has been eliminated. DSome boundaries of the integration

on, to configurations in which there is a topological change
on the surface, that 1s to say, when one or more handles

varnish.

The two-loop example

We shall illustrate here the general prescription with the

two-loop example. The sphere with two handles is shown in

Fig.
T wo

a)

b)

a)

fa. The possible boandary sets whica cut the surface into

symmetric parts are:

the three-boundary lines which come from an horizoantal custing
of Fig. €a; they are depicted in Wig. da znd give rise to

orientable amplitudes;

the two-boundary lines depleted in TFig. 6b; one of them cuts
a Mébius strip from the double term and the other makes a
hole in guch a MBbius strip; this zives risge to & non-

orientable amplitude;

the one-boundary line exhibited in Fig. 6¢ which leaves a
double K®Bbius strip (two MSbius strips joined by a piece of

boundary); this is a norn-orientable two~loop diagram;

finally, the one-boundary linc exhibited in Fig. 6d, which
gives an orientable two-loop diagram with canly one boundary,
the so-called "pretzel™ diagram that corresponds to one of the

primitive operators of Gross et al.
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When tre corvrresponding group of automorphisms 1s considered,
the different boundary sebts will be related to differcent signs
of the multipliers K,| and K2 and, eventually, to different
orderings of the four invariant points g 19 1 4 {2, 722 o1l
the unit circle. Il is important to keep in mind that a hyperbolic
gsenerator K>0 determines two boundaries on the surfzce, and
that a loxodromic generator (K‘CO) determines only one, &as
discussed in the previous example. When both K1 and K2 arsa
positive, *tke ondering of the invariant poinls on the unit circle
ig fixed for each amplitude. There are, therefore, two different

amplitudes, corresponding to cases a) and d4) given by
a} l(,)o K,>o f'-"‘,l'fz"/z
L) K|>0 K?. 20 g: ng } (f: } 7?.

When one multiplier, say KQ’ iz negative, the relative position
of g ' " ’ with respect Lo § PY ‘72 ig irrelevani lor the
same reason that in the one-loop non-orientable case the position
of the exfernal varliahlcs 7 with respect Lo the invariant
points is also irrelevant. Therefore, the non-orientable ampli-

tudes b) and ¢! are specified only by

b) K. >0 Ke € O
c_) K, <o Ke< O

If we represent the isometric circles - with the corresponding
invariant points inside ~ logether with the invariant unil circle,
we can have for a), o) and ¢) a pattern as that of Fig. 7. For

1

d) the ord=r of I; and 12 on the unit circle must be inter-

changed. The relations between intersection points are given by
I — / —
a) and 4 A . A) B._ (ﬁ) "
” c= 1o A ; 20 F [0, ) 502

o ATA) B TB) , A T(B), By:TiA)

o A= ToB)  Bl=T(A) =42



For the configuration of Fig. 7, in which the isometric circles
of the twa generators T1 and T2 are gxterrai to each other,
the isometric cireles of the other transformations of the group
are interral to the four basic isometric circles and, therefore,
the region of the cowplex plane exterior to them represents the

fundamental region.

The boundary sets are given by the following segments of the

un~t circle

D Al A ALA,  awd BB +B. B

b) A',Ar ) B, B;+Ae ’4:,*5,, B’

¢) A:,)q;'f' B:Be f’A; 747_ *82/9,

a) {(We imagine 1:1 and I, exchanged in Pig.7)

A : 8; "'Ba BII*B: Az "'4;74:

Let us remark that the "pretzel™ diagram d) has some new features.
Indeed, it can be thought as a sewing of a pair of Reggeouns in a
one-loop non-planar diagram. This one has two boundaries and -
to obtalin the "pretzel" - the two sewn Reggeons must belong to
;he two different boundaries. The sewing leaves us with the one-
boundary pretzel, i.e., it decreased the number of boundary from
two to one. Before the sewing, to transfer an external particle
from one bourndary to the other wounld imply different amplitudes,
i.e., dizgrams which are not related by a dualizy trarsformation.
After the sewing has been done it 1s irrelevant from which of the

non-dual configurations we had ctarted.
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The integration over the surface parameters implles the integration

over one invariant polint (three are fixed arbitrarily} and K

1
and K2 (related $0 the radii of the cirecles) with the condition
that |K‘ ‘31 where Ky 1s the pultiplier of an arbitrary
transformation qd generated by Tq, L? and their inverses.

In varying the suarface parameters two isometric circles
corresponding to different generators can overlap. In this case
some lsometric circles of other Td ceage to be ianterior to the
four bhasic isometric cireles. A cage corresponding to amplitude
a) is visualized in Fig. 8, where the iransforration to which the
isometric circles belong is shown in the figure. Tlie other
isoretric cireles are interior to the ones plotted in the figure
so that fundamertal region is the part ol the complex plane
exterior to thsz shaded area, The houndaries, over whicn e2xternal
variables are located, are now given by the arcs A 4!, A A! and

i 22
Aoty |

In the case under digscussion all the trarsformations of +the
group are hypsvbolic and in tais case K't =1 (TK becones
parabolic) implies that the two conjugate isometric circles cor-

angevnt. Then, this configuration ig a

ek

responding to Ty are
limit of tke inlegrution region over the “M-3 surface parameters.
We shall seze later on that this corresponds to & handle vanishing
in the Riewann surface. Therefore we see from Fig. 8 that the
integration region over K, KZ and one of the lnvariant points

is limited by :5)

K, = (A =A & Fg8)
Ke (A, = Ar u Fig8)
HT;T.:! (I"m -‘-4,’, v Fy.4)

]
—

IZT; T



Indeed, by using the expression for a multiplier of a product

it ieg easy to show thail KT1T2 <1

l K.+ /Ky « (5,,72'({,,{2)(1-(/,)(I-—L’;) I 22 m:

(2.24)

the egquality sign of (2.24) being the limit of integration region

corresponding to KT1T0 =1.

The values of the thres integration parameters for which
K.( =1 - T‘ different from .P.,], Tg? T1T2 ana T2T,| -
are outside of the integration region 15). This result is obtained
* =1
by showing ~ that the isometric circles Iy , 1u of every

T¢ other than T T T1T and 1,7, are interior to conjugate

17 e 2 2

isametric circles of one of tie four transtormations. Therefore,
they cannot become tangent before conjugate isometric circles of
the four transformations quoted become tangent and stop the

integration.

A similar argument can be made for the set of orientable
M loop diagrams with (M + 1) boundary lines, that include the
planar diagram and some noin-planar ones, In this case the pairs
of isometric circleg of %n and 3;1 (p=1,...,11} are
consecutive as in the two-loop case we have been considering.
It is easy to see by application of the previous theorem that,
if all pairs of isometric circles are exterior to one another,
only the generators T/n car become parabolic. When consecutive
isometric circies of different generators overlap while keeping
all their radii finite, it follows that the only new isometric
eircles that emerge into the fundamental region are those of
(T1T2.....TM) and (T1T2.....TM)_1; the Tirst one from inside

This can be done by successive applications of the folliowing

1 -~
theorem f ). Ir I, and 121 are exterior to each other, then

112 (the isometric circle of T,I,jET,]TE) is contained in

T

2



| -1
i

L

LA

and I(TTTK‘.._TN\-1 are row conzecutive they can become

il

. . o =1 i .
and the sccond ons [rom ingside ITT. Zincce [T4m? Ty
L2 e a il

tangent and the group elerent Tﬂ:.....TNr can become paraboslic.
We Tind, thereiore, (M-+1) perabolic points corresponding %o

the vaniching of the (M +71) boundary cycles.

However, this s true when the radii of the lsomelric circles
ot the gensrators =zrc kept finite. if the radius of {’" snid
I:;, suy s allowed to vanish first, cither by letting Igﬁ 0
or by letting i“ - 10” - which implies that the mullipliers of
other group clements wvanish - then, an identical argument shows

*)

oM ' m . ., : - B
that (TT*Q"'"1/u-4_,n+1"""M) can now become parabolic .
This can casily be understond in the sense that if the radius ol

I is allowed to vanish Tirst we have essentially an (M-1)

;:Op diagram and the new parabolic poini is ezsertially the same
than bhe ore found hefore for the (-1) wsubloops. Therefore,
altogether, we have (QN-i} paravolic voints although only
(M41} can occur when all ¥ handles are finite; the remaining
ones occur only when ouc or more handles are allowed to vanish
firsi by factorizing one or more Reggeons. However, all of them
are in the domain of integraticn of the W loop amplitude we

are considering.

é. The Measure o. In

Wa have discussed the integration region by choosing as
variables the ZM-3% independent multipliers and iavariant points of
the transformatioas defining the group of automorphisme and the

N' =N-2M wvariables Z. that correspond to the externszl particles.

This cholce is dictated from the ezplicit parametrization of thc

=}

Green function Vo appearing in the integrand {2.10) [é_., Fg. (A.BBI].
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This choice is also suited for the evaluation of ithe partition function
and the determinant of the period matrix in the integrand of (2.10).
Both depenc only on the 3M-3 surface variables. In the remaining
factors of the measure of integration (volume element) we must still
Zpe 3 Zm and %, by ;;“ ,41/‘ and E}t
In order to do thisz one must first subsititute the variable %/b by

’/ﬂ or 6‘4 by using Eqgs. (2.14) and (2.17). Then, one must
perform a further change of variables from :" s z’u ) g‘, (or

substitute the variables

o~

3 ;
% 7 1o ‘7 K. This last sftep is easily
l,’,&'} /.S Vo , . P
done by taking for @“ the first three-(or last three ) columms

of Bg. (2.16) and writing it in terms of 2x2 matrices by using the

general relation

. b . yPoa abeba

s § 2 :
);, —-33h*6
(2.25)
where
Y- (6-()(3-3;_
| (a-r)(t.?)
(z.26)

Finall; K. .
inally, o g;

terms of the 2x2 wmatrix elements by using well-known relations

and 'Z“ can be easily written in
[%ee, for example, Bq. (E.1} of Appendix QI.

"These straightforward algebraic manipulatioas are parti-
cularly simple for the M loop plansr amplitude, whick is obtained
by sewing with a twisted propagator M pairs of coansecutive Reggeons
(M planar tadpoles}. In this case each 3. is glven by Eg. (2.20}
and the invariant poirts and multipliers by Egs. (2.21) and (2.22).
The Jacobian for the change of variables to invariaet points and mul-
tipliers is given by Eq. (2.23).. Moreover, the duslity properties
of the M 1loop planar amplitiude - which are automatic in our formu-

lation - allows us to choose arbitrarily the relastive positioas of
o



external scalars and tadpoles. When all external particles are

chosen to be consecutive, the ¥ loop formula can be written

L 4]

é-’

Ay *

placar f—- _ﬂ",{e ,ﬁ! AK, of 5, o4, (Y-,

a
,. -—yﬁ::.j.ﬁ M”"— 2 Pt-f, V(ﬁ,e R ,’)

7/" - .7#
4z T[Tl [Tienf]

where

Let us now compare our result with the one given by

Kaku and Yu 3)

ii: (2,- e)hﬂ A ,( (-« /')/f t‘)(’/‘ . )(7/«4 ‘L')

(2.27)

for the planar casc. These authors do not integrate

over the loop momenta, but it is quite easy fto undo the loop moment -
that the

il
um integration in our case (see Appendix A). One finds *

terms raised to the power ;%.pj are exponentials of third Abelian

integrals in the complex normalization, and that terms raised o

the power p.k - %A being a loop wmeomentum - are exponentials

i

of first ALbelian integrals. Using the Poincaré £> series the

third Abelian integral can be written in the forw of an iafinite

2)

and Yu Bj. The cowparison of the first Abelian integrals

product which is, of course, the same as the 2ne given

‘delicate because the Poincaré gseries gives them as a

logarithmic singularities at the centres of the lsometric

by Kalu
is more
Series

circles

the elemerts of the group Féee Eg. (A ‘O) which 4o not 1ie on the

12)

of

of

unit circle. However, as shown by Burnside y thesge logarithmic

sinsularities cancel and the first Abelian integrals are singular

only at the invariant points of the group, that lie con the unit

circle. This phenomenon is what Kaku and Yu 2 call the

cancellation technigue"

Minfinit

e



The measure of integration is the same, as for a
factor we shall discuss later, if one interprets their result

[Eq. (10) of Ref. 3)]], as valid only in configurations in which

one never has adjacent tadpoles. The extra factor

~y
TT.{?_c$h) (2.29)

Y

they have as compared to the result displayed in (2.27) is pro-

bably related to gauge factors in the N FReggeon vertex and is

reminiscent of the factor that appeared in the single-loop formula
when spurious states were eliminated from the closed loop 9). Indeed,
it is quite straightforward to check that, because of the properties
of Olive's vertex, we do have spurious states propagating in our one-
loop planar formula. In this case, having only cne generator, it is
clear that a factor (1-K) will never spoil the duality properties

of the amplitude. For more than one loop, there are duality trans-
formations tha%t correspond to sewing the diagram in a different way

and trat amount to changing the generators of the group and using,

for example, T,| and T1T? as generators instead of T1 and T?.
Since the multiplier of T,]T2 is a function of the multipiiers and
invarient points of T, and T,, the factor (2.29) is not =a

dual invariant factor by itself.

Let us discuss briefly the rasults we would have obtained

7)

(2 3) in our calculations. Iovelace vertex is obtained by (2.3), (2.9)

if the Lovelace N THeggeon vertex had been uzsed at the place of

by replacing every ﬂL“ by 3. « The multiloop amplitude is then
iven by Eg. (2.10) with substituted by 24 .
g y Eq ) tz“ Y Zm



For every pair of sewn Heggeons (with variables %" and
EA) one can introduce two variables 6“ and Fﬂl related to

e
X by & uati as {(2.14) in which ars sub-
X an y an eq ion { N Y in whi "/ﬂ R and ﬂ/‘_,] 1re sub
stituted by Zﬂ _qooand oz oy respectively. The integration over
ak can be again elimirated by {(2.17) in terms of d or

e g y B
(i/g“ . Tne generators. of the group of automorpalism are again given

]
by (2.16} with ﬂ/'__,{ and ﬂ,_JJ replaced by z’._,] and Z 1"
This implies that the 2z and P variables appearing in the measure
have different expressions in terms of invariant points arnd multi-

pliers.

In the planar casz, for instance, the relation bhetween
the =z and {3 tadpole variables with invariant points and mul-

tiplier would be

§2 3 1 Kas - (B3 B i3une)= (30 Y San 3en)
(2.30)

instead of Egs. (2.21), (2.22). Tor the multiloop planar amplitude,
the modification to (2.2?), implied by the use of the Lovelace vertex
ig simply an extra factor

T -8)

s
in the integration measure, factor we have already discussed. We

remark that due to the operatorial duality of the vertex 8) (2.3), the
unintegrated multiloop amplitudes satisfy duality relations. The
drawback of our procedure is that we have spurious states propagating
in untwisted lines. In the approaches in which spuriocus states are
eliminated through the projection operator, duality relations hold
only for integrated amplitudes. However, we have understood that

the integration region is not the one given by the operatorial pres-
cription due to periodicities, and this is why it is so relevant, in

our point of view, to have duality for unintegrated expressions.



SINGULARITIES OF MULTILOOP AMPLITUDES

The purpose of this Section is to investigate the singula-
rities of multiloop amplitudes. We have seen in the previous section
that the multiloop formula involves the integraiion of the exponential
of the (rsen functiorn of a sphere with WM handles in two steps.

For a given configuration of the surface the variables associated with
the external particles are integrated along closed cycles. In
addition, one must integrate over all conformally non-equivalent con-
figurations of the surface. The Green function V(zi,zo;zj,zé)
depends explicitly on the Koba-Nielsen variables of external particles,
and, ioplicitly, on the (3M-3) Riemann moduli that describe the
conformully non-equivalent configurations of the surface. Beside

the obvicus logarithmic singularitiss that occur whensver 75 ard

zj coincide, the Green function can alsc exhibit logerithmic singu-
larities in ite dependence on the surface parameters. Indeed, the
infegration limi%t in the surface parameters represents configurations
in which the surface changes its topology. The sphere with M

handles looses there one or more hendles. We will first discuss the
zeneral Teatures of these end point singularities and then show ex-
prlicitly how general methods of domain variatiornal theory 5) can be

nsed 1in order to evaluate them.

The multilocp amplitude exhibits in general two elementary
classes of singularities. The first one, which we will call unitarity
singularities, occurs when some multiplier Kg| vanishes. The second
one, for which some Ko( reaches the value +1 or -1, gives rive
to0 singularities, or divergencies, which are not related to unitarity
and which are a specific characteristic of dual theories. As we will
see later on, both cases represent situations in which the surface
lopses a handle. Of course, several singularities can oceour sinmulta-

neously, giving rise to the vanishing of more than a handle.



a. Unitarity Singularities

Let us {irst discuss the end point K, =0 in which Kr,
ig the multiplier of otie of the generaitors used to deiine the group
of automorphisms and which appear as one of the 3M-3 explicit

variables of the surface.

In this case the radius of the c¢orresponding isometric
circles shrinks to zero with KF . Tn the two-loop case of Fig. 7,
for instance, we would find the two isometric circles 11 ard I%
(if K1;a0) shrinking around the two fixed points § ; and Q 1
Then, the external variables Z1s which lie on the arcs described
before can hecome arbitrarily close to the fixed points in guestion.
When this happens, the function gP’(Zi) appearing in the cxpressiocon
(A.BB) of the Green function develops 4 logarithmic singularity 5)’12)
of the form log(zi-—sq] which goes as %logPﬂ if a, approaches
the isometric circle. This is, however, not sufficient Lo give a
singularity of the ampliitude due to the fzct that (A_T)’b1 behaves
as (1ogﬁK1)_1, and the logaritimic behaviour is, therefore, cancelled.
But if two external variables z; and Zj approach the isoretric

circle, then we will find a term coming from

! -4 . .
a e

kjic
(3.1)

The ferm containing lhe lhird Abelian integral in the complex normal-
ization,l<izi|n (1—2:)_1‘z{>, ir Eq. (A.BZ) is regular when z; Or
zj approach the invariact point. However, 1if 7y and zj approach
the invariant point from the same side of the isometric circle - as
it happens for the planar case, for cxample, then the third Abelian
integral gives the usual Reggeon pole when zi—+zj. In this case,

i 1
Pi°pj with numerator functions that have cuts in the same variables

the integration over z., Zj and K gives poles in the variable

coming from the term in the integrand given by Eg. {3.1).
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gides of the isometric circle, as 1t happens for non-planar diagrams,
the integration over Ziy zj and K1 gives rise only to a cut, as
expected. This cul is the one associated with the Reggeon-Reggeon

14),17)

cut dual To the Pomeranchuk-like singularity we shall discuss

later on.

The orizin of the unitarity cuts 1s easy 1o understand.
[ndeed, they come from the first Abelian integral contribution to the

1,2}

Green function which arose Trom the integration over the loop

momentum.

dad we analyzed the K, ~0 contribution before integrating
over the loop momentum we would have recogniwed that it corresponded
10 an unsewn Heggeon implanted, with the loop momentum k and -k
at the two invariant points g and qr, respectively. We would
have found only polss in the square of the momerta containing ki
the piachking of these poles on the integration contour over kr_being

responsible, as In the wsuzal Feynmen diagrams, of the cuts.

Froam the point of view of the surface, the Kr_ﬁ«O carn. be
visualized as & handle hecoming infinitely thin and, therecfore,
disappearing. The handle is the one which has Cg as the assoclated
"vertical™ cycle i1n Fig. 2. The analysis of the Sf;gularities iz
particularly easy in this case due to the fact “hat the variable
which goes to zero iz a multiplicr of one of the generators that
appears explicitly in the expression {or the Green function. Bui,
of course, multipliers K°( of other members of the group of auto-
morphiams can vanish in the boundary of ihe 3M-3 wvariable integration.
In the two-loop case discussed before, we had as independent variables,

two multipliers (K1,K?) and one invariant point (say ¥ 1). The inte-

gration region has as boundaries not only K1=13 and K2=:O but alsoc
Jr ;= ?1 (with K1 arbitrary). It is easy to show that this implies
K12::0, which correspeonds to the vanishing of the handle which separates

the two holes of the double torus of Fig. 6s. Hers, the parameter that

goes to zero in the limit in which the surface changes 18 not one of
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the variables cxplicitly used in 1he construction of the Green func-
tion. However, the logarithmnic singularity in terms of such a para-
meter can always be exhibiled by using the classical results of domain

5). Then one must find the explicit relation between

variational theory
that parameter and some of the (BM-B) independent variables that
have been chesen. We shall illustrate later on this procedure. We
turn now to the discussion of the singularities appearing in the
JK* ]ﬁd1 limit which, as discussed before, are also boundaries of

the integration region.

b. Parabelic Singularities

We have seen in the previous section that whenever a mul-
tiplier goes to zero there 12 a handle that vanishes in our sphere
with M handles. This behaviour at the end point of the region of
integration gives rise to the normal threshold or Regge cuts in
the multiloop amplitude, and is visualized by thinking of some of
the handles of Hig. 2 hecoming very thin and finally breaking down.
However, this is not the only way in which a handle can vanish.

We cen also think that the handle becomes so thick that finally the
open a@pace in the middle disappears. VWhen suchk a thing happens,

an "internal boundary line" shrinks 1o a point. This means, in the
language of the group of aulomorphisms obtained by cutting the surface
along the 02 _q cycles (the one that we discussed in Section 1)
that the arc of the unit clircle between the isometric circles of the
generator associated with the handle tends to a point, that is to
gay, the two isometric circles become tangent and the generator
becomes parabolic. Therefore, parabolic points, wkich are in the
boundary of our region of integratior, also correspond to the
vanighing of a handle in our Riemann surface. If our c¢losed Riemann
surface were sliced "horizontally" to obtain two copies of an open
Riemsnn surface wiih (N +1) boundaries {the original Riemann
surface of the analogue model) we wouald observe that a handle vanish-
ing in the way we are describing now would correspond to a hole
shrinking to zerc in the open Rlemann surface. This explains the

connection with the more familiar surfaces of the analogue model.
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We shall, however, pursue our discussion in the next section in
terms of the Green function of the sphere with handles because, as
explained before, this is the approach that can be extended to more
general gituations. Before doing that we shall briefly review some

[
. . s 2
classical results of domain variational theory

¢. Results from Domain Variational Theory

5)

We shall use here the notation of 3chiffer and Spencer
and dencte the Green function of a sphere with M handles by
V(t,to;q,qo) where +t'!'s and q's are points on the surface. We
shall keep the notation zi,zj for the case in which we explicitly
represent these invariant functions on the surface in terms of auto-

morphic funections in the complex plane.

Gonsider a sphere with M handles, to be denoted by _M> .
Let us pick up twe points on the surface, aqr 9y and consider the
Green function V(t,to;qq,qz) where to is some unessential parameter
point, fixed on the surface once and for all. When t 15 near a
V(t,to;q1,q2) behaves like log{lt—q1‘_1} ; and when t 18 near
q, 1t behaves like log If-qzj. Therefore, one can define two

closed curves 'an 72 around a,, 4, respectively by

f Vb g) = by

(3.2)
'f’_l -\r(-*'atOS%qu)-:. loai.

(3.3)
where € is a small parameter. An extra handle is attached to the
surface by cutting two holes along the profile cycles '¥1, 1(2 and
identifying the two boundaries in a sulitable way. The part _/!}

*
outside 1}, 12 becomes'}4: , & sphere with (M +1) handles
(see Fig. 9). The only reason to cut the holes along profile lines of

the Green function is to simplify the analysis that follows.
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In order to identify the curves T,J and ¥, it is

convenient to introduce the analytic function

ikt ;9,,9,) = Q“m;&)" _O.q (t,)

92

(3.4)
in such a way that
V-Cl:,{:,;qhqz) - R Al'(!:,t,;qﬂqz) (5.5)
Tet us now choose two arbitrary points tgo) and tgo)

on ]’1 and ¥ ,, respectively, that we wish to identify. Then,

we can write

IU'U‘.:..) E'i °|1.‘71) = dr(t:): boiquqz) + 2193'1;'." - fet (
2.6)

where &4 is a real constant because it follows {rom Egs. (3.2)

and (3.%) that Rev jumps by 2log1/&  when going from '7'1 to

1{2. Then, starting froam t1o and tgo) we identify points t1g'X’1

and t, g]’z if they satisfy the eguation

wlt, b0 909 )= ok, 60 fa) 4 2y g - (5.7)
3.7

that is to say, points in '6’1 and "6’2 are identified by keeping
constant the imaginary part of the change in Vv in going from
'11

moves around ’f'1 in the clockwise sense, t2 moves around 6’

to ]’2. This has as an immediate consecuence that 1f t1

2

in the counter-clockwise sense. The reader will easily convince
himself that this is exactly what is needed in order to obtain a

handle fromn the identification of the two holes.

The region in J"'- outside the two curves '(1 and r2
becomes a sphere with (M-+1) handles,,}t *, after the idertification
ig made. We shall denote by F*(t to’ q_qo) the Green function of

Jt*l Following this procedure one can add an arbitrary number of

*
handles to }(, in order to get a new suri‘accj(., .
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An exact lnbtegral equation can be writter in order to
compute V¥* from the knowledge of ¥V, when the two surfaces differ
by an arbitrary number of handles. Rather than wriling here this
integral equation, we shall give an iterative soluilon given by
Schiffer and Spencer which will be the basis ol most of our discus-

sions. IfJ‘L* and J‘L differ by oce handle, then we nave

. i
Vitt,;9,9,) = VIEL.93,) + zjoa& Vit.t;9,9.) V0a,9,,9,9)

Jher e {e‘“ WV99:99s) Wt 99,)

99; 9?2
1o
+ e 9V(99:99:z) V(t&.4q.49,.) 3 + OCe?) 500
e 9,
This eguation gives the pehaviour of ?*(tto ulqo) wWher:
Lthe handle vanishes, that is to say, when £ -0, in Lerms of the

Green Tunclion of the surface without the handle.

We shall olflen bhe interssied in analyzing the bchaviour of
the Green function whern several handies vanish simultaneously. Here
the main point is that, as shown by Schiffer and Spencer 77, the
behaviour of V¥ iz additive in the number of hardles up to and
including the gquadratic terms in & . In other words, if h hahdles
vanish, Y 18 now the Greer function of the surface with h less
nandles and one kas to add h terms similar to the one exhibited
in Eg. (3.8), depending on the parameters of each handle. The error
goes to zero faster than Eiej(j_,j =1,...,h), and this simplec ob-
servation will be sufficient for our purposes. Finaily, we remind the
reader that the multileop integrand in Eq. (2) contains the regular
part of the Green function if the index 1i=j. Subtracting log]t -q!
on both sides of BEg. (3.8) we see that when V*(t,to;q,qo) i3 replaced
by ite regular part, the net effect is to replace V(t,to;q,qo) by its
regular part in the right-kand side of thne equation. There is no
restriction imposged, when 1=73, to the & dependent terms of the
variational formula. We now proceed to apply Ea. {3.8) 1o the analysis

of singularities and divergencies of multiloop amplitudes.
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d. Parabolic Singularities and Renormalization

We have previously discussed in some detall the unitarity
singularities coming from K* - 0. We menticned, however, that
apart from the simplest cases Krb—aO (i.e., a vanishing multiplier
corresponding to a generator of the group of automorphisms) in which
the singularitics were evident, the general method to investigate
them is to apply domain variational theory. This amounts to using
the results of the previous section and relating the relevant surface
parameter & 1o some of the (3M-3) surface integration parameters,
muitipliers and invariant points of the gererators, in terms of which
the measure of integration i1s given and, in particular, to the
partition functicons which, %o the best of our knowledge, is not an

invariant [function on the surface.

This last slep is particularly evident for the singularities
arising from ﬂKa ‘ﬁ1. In this case, the small parameter &  whose
zero limit implies the vanishing of 4 handle, must be related to a
miltiplier going to one. As discussed 1n the tast section, the
vanishing of the handle is related to the vanishing of a hole if the
surface is cut along lhe "horizontial" ¢, canonical cycles. In
principle, one could construct a new group of automorphism by cutting
the surface along the even or "horizontal" CQF‘ carnnonical cycles.
The Green function, belng an iavariant lfunction on {the surface, is, of
course, independent of the way in which the surface is parametrized;
but one s1ill needs to relate the new surface parameters to the para-
meters of the measure, which is given explicitly in terms of the para-
meters of the group corresponding fto the "vertical™ cutting. However,
the generators of the new group are highly non-linear functions of
the generators of the old one 5)’18), and, to the best of our knowledge,

these Tunctions arc not known ir gencral. Therefore, we cannot at the

moment rewrite globally the measure ir a more suitable way.

In the one-loop case, the change from a "vertical® to a
"horizontal"™ group of automorphisms correspords to performing Jacobi's

, 1
imaginary transformation 9) on the 8 Tfunctions, as done first hy
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Neveu and Scherk 20). We have emphasized before that in the multi-
loop case the corresponding change of variables is not explicitly
known. We have circumvented this problem by carrying out a "local
change of variables which is not valid everywhere but only near
the end points where the loop amplitude diverges, using domain
variational theory. This is sufficient to obtain the most singular
part of the multiloop integrand and define, if desired, suitable

counter-terms.

We shall illustrate the method by investigating the ]Q‘ -1
singularity and divergence in an orientable § loop diagram with
(N +1) boundary lines. We will start by discussing the well-known
case of the single-loop diagreams in order to motivate our approach

to the more general case.

1) The one-loop case
We shall consider the case of orientable diagrams, in which
we have two boundary lines on the torus, as shown in Fig. 4.
If the torus is sliceé horizontally, we get two copies of an

annulus, the original open surface of Nielsen's analogue model.

The group of automorphism corresponding to single-valued
functions on & torus has only one generator. Consider the group
obtained by cutting the surface along the vertical cycle 01;
and let us call T its generator, which is written as

T(x)~ £, K B-~5
1”(5).—'§E- T~ gh;
(3.9)
As it is explained at length in I, going in the complex =z
plane argund the isometric circle It of T 1is equivalent to

going around the C1 cycle on the surface, and going in the

complex plane from a point 2z to its homologous T{z) cor-

responds to going around the 02 cyele on the surface. In
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£ T(z) 1is on 151. In this case,

there is only one first Abelian integral, given by

particular, if =z 1is on I

#(e) = 2.%: la? [::::]

and whose periods are easily calculated

(3.10)

%1 = 4 (3.11)

P . B JuK
2L

(%.12)

We remind the reader that first Abelian integrals in the complex
normalization are uniguely defined once all the periods PQQ _1
are given. The remaining periods, which determine the period
matrix By , can in principle be calculated. Therefore,

(3.11) is just the normalization condition for @#(z).

Let us now imagine that we reprééent single-valued func-
tions on a torus by means of another group of automorphisms
that would correspond to cutting the surface along the horizontal

cycle G2. We shall denote the new generator by f, given by

T)-n 2'- ",

.
-— ' - ’-
T(e) -9, 2N
(3.13)
but now the role of the 01 and 02 cycles has been interchanged:
going around If is eguivalent to going around the C? cycle

onn the surface, and going from z' *to T(z'} 1is equivalent to
going around the OT cycle. We now compute the first Abelian

integral,

Be)e A fog | E-
) Tog7 3[:' 7;] . 5
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which 1s correctly normalized because

B, = L

(3.15)

and the remaining periocd is given by

P «Ba= - 2m_

S
&:3; (3.16)

The two functions @ and @ are two different representa-
tions of the same invariant function on the torus. But, il
this is so, the period B must be the same, so from Egs. (3.12)

and (3.16) we get

4n®

log f

which ectablishes the relation between the generators of the

logka-

{(3.17)

"horizontal" and the "vertical" groups of automorphisms. Using
the fact that f =32, ‘where R is the radius of the annulus
(this comes {rom the faect that the torus is the double of the
snnulus, as discussed at length in I) we recognize Eg. (3.17)

as the change of variables requlred by the Jacobi transformatlon
used by Neveu and Scherk 20) to investigate the single-loop

divergence.

The multiloop case

The previous example shows how to proceed in the more
general case. The sphere with one handle depends on only one
Biemann modulus {the multiplier of the generator of the group)
and the relation between differenti parametrizations of the
surface is given by the period B. In general, it is known
that the M xM period matrix ]Bﬂf are continuous functions

of the (3M-3) Riemann moduli that characterize the surface.
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The relation between different parametrizations of the surface
can in principle be obtained in the same way as before by
computing the period matrices and demanding that they be equal.
This procedure gives a set of (3M-3) Riemann moduli as implicit
functions of the other set, because it can alsoc be shown that
there are only (BM—B) independent matrix elements of the

period matrix 18)

However, as soon as one goes beyond the one-loop problem,
it is no longer possible to compute explicitly the period
matrix. As said before, we have circumvented this problem by
computing the pericd matrix B only near the point when a
handle vanishes, using domain variational theory. We shall,
therefore, derive a suitable change of variables for the multi-
loop amplitude that will not be correct "globally", as Eq. (3.17)
was, but only "locally", near the end-points of the integration
region where the multilocop integral diverges. This will be
sufficient in order to obtain the most divergent part of the

amplitude and define suitable counter-terms.

The Riemann surface associated with the M loop amplitude
is parametrized in terms of the generators of the group of
automorphisms. Three invariant points can be kept fixed
because of the projective invariance of the multilcoop formula,
and the remaining invariant peoints and multipliers provide a
natural set of 3M-3 Riemann moduli. Let us assume that one

cf the generators, say, T becomes parabolic. In Appendix B

M’
the period matrix is estimated near the parabolic point and it

is shown that

B = IOJ K" + 0(53) ; SM-‘!-—RH

MM .
2N (5.18)

and that all the remaining matrix elements vanish like 2;2.
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In order to describe the vanishing of the handle in terms
of domain variational theory, we must proceed as indicated in
Fig. 9. The two circles ¥ 1 and 1’2 along which the holes

are cut will become, when identified3 an even canonical cycle

CZM' Arn arc going from a point tso in 1(1 to its homo-
logous tgo) in 1r2 will become an odd cycle C2M q If

we compare with what we did for the normal threshold cut, it

is clear that the roles of the even and odd cycles asgsociated
with the vanishing handle have been interchanged. Equation (3.8)
gives at once the behaviour of the momentum-dependent part of
the Veneziano integrand in this parametrization, but we must
8till find the behaviour of the measure of integration when

£ -0. A relation between K, and & will be found by
estimating the behaviour of the period matrix as & -0 and

comparing with Eq. (3.18).

Once the variation of the Green function is known several

5)

allow one to calculate the behaviour of all the other functionals

useful functional relations given by Schiffer and Spencer

that can be defined on the Riemann surface 1like, for example,
first Abelian integrals and period matrices. We shall gstimate,
however, the period matrix element BMM in a more direct way.
The first problem is to compute ﬁﬁ(t). An excellent candidate

is the function

'V-(f.) = € [w‘lﬁz ) - (Jqﬁa.(td] (5.19)

whare A is the third Abelian integral in the complex

a0 %)
normalization of the surface .}6 corresponding in this case
to the sphere with (M-1) handles. Indeed, the function

1f(t) ig regular in.}t*- (remember that Ay and a, are
in .ﬁ- buat not in J‘L*) Woreover, third Abelian integrals
in the complex normalization have no periods around the odd

*
nical cycles of M and M coincide, we conclude that

P02P-1

cycles CQF'_1, ,t:?,...,M-1. Since the first (M-1) cano-

(¥) =0, for Ja=Ts+00pl=1.  Therefore, if we can Fix
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the constant € in such a way that sz (ﬂk)-—1 1f.(t)
will become our first Abelian integral ﬁ*(t) Using the rela-
tion between third Abelian integrals in the real and the complex

normalization, Eg. (3.19) can be rewritten as

H-1

Y = C {.O. C rzq'=I= 2'_ 950:) g,lt.ﬂ}

Jaz
(3.20)

where the coefflicients 09, are explicitly given in I but are
irrelevant for our purposes here. In order to compute PGQM 1(‘fj
we must investigate how qf(t) changes when going from a point

t2 cn 722 to its homologous t,| on 1(1. The change in

the function \_ q1q2(t) - %ﬂlz(to)j is immediately obtained
from Egs. (3.4) and (2.7)

'a?':‘lztt') - 'Q'qa‘h(t") == 2'°3£ ~iet

and the remaining part of the right-hand side of Eqg. (%.20)
contributes a complex constant plus terms linear in & because
the (t) (,.. =1,...,M-1) are the first Abelian integrals
of.}(. , and are conseguently regular at the points Ggs Ggye

Then, we conclude that

PC:H_I('-r) -.C [ 2lqe +p+ OLE)]

where P is a complex constant. Then,

»
(t) = _ 4 W, (8) - (t0)
?S" 2log &+ p+ OE) [‘1:‘!; q‘q" J
(3.21)

Now, the matrix element BM is easily obtained. Since

M
hh1q2(t) nas period 2Ti when going around ¥ 1 (it has a

logarithmic singularity at 1t =q1), we obtain

B . Li
lﬂs*P""o@) (3.22)
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From Egs. (5.18) and (3.22) we obtain

log Ky + o[¢-ku?] - en”
lags. + p'+0(s)

(3.23)

‘g0 we conclude that, near & -0, the multiplicr behaves like

log Ky = :2": + O[lage)™)
°9 (3.24)

Yeing Eq. {3.24) to perform a change ol variables ln the par-

tition funciion that diverges when KM—+1, ag done in the one-

loop case, one easily finds

£
dkﬁ E- 3

poy De
T (1-iky)
=1 (5.25)

Thig behaviour is the same as the one founa in the one-loop case.

de when &—~o

A1l the manipulations done in this sectlon were necessary only

to establish that the parameter &  ihat occurs in Eq. (3.25)

ig the seme as Llhe one that parzmetrizes the behaviour of the
(jreer function in Eg. (3.8). The results of domain variational
theory for the Green funcilon can now be combined with the
behaviour of the partitice function to investigate the divergence

of multiloop amplitudes.

Tet us first consider a planar aiagram, wita (N+1) boundary
lines. Before getting involved in the snalysis of all possible
simultaneous singularities, we shall complete the previoas
discussion and consider the behaviour of the loop integrand
when only one generator becones parabolic. In particulax, we
are interesied in the term of V¥ that has the dependence on

log &
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d 2 “ﬂﬂ

(3.26)

where q. s qj are the variables associatcd with external par-
ticles and arc integrated along the boundary lines as discussed
in Section 2. We emphasize here that V 1in Eg. (3.26) is the
Green function of the sphere with (M-1)} handles, which is
divided in {wo symmetric halves by M boundary lines. When
the new handle is attached and a new boundary line Ls drawn
on the surface, one must proceed in such a way that the new
surface j€; is mgain symmetric and can be divided into two
nalves by cutting it along the (M+1) boundary lines. This
is easily achieved by cutting the two holcs along cycles ¥ ]
and TrZ) that are symmetric with respect to the remaining M
boundar& lines. When the two cycles 1r1 and U'Q are
identified to construct JY,*, they will become thé new houndary
line on the sphere with M handles. For the two circles to
be symmetric, they must be cut around symmetric points 215 95
with respect to the M boundaries of_}t,; or, in other words,
Qs must be ejqual to E‘I’ the conjugate point of g, on ﬂp
with respect to the M ©boundary lines that we have on this

surface.

Using momentum conservation, we can get rid of the qo,

a! dependence in Eq. (%3.26) and write it as:

eocp {_ 1 ;. by R Q. Q)R LD q-(qﬁ)}
3! 2-203& ,? %
. (3.27)
Let us now pause for a moment to consider one ol the two
identical surfaces obtained by cutting JHE horizontally along
the boundary lines. Its Green function is defined in terms of

B
the third Abelian integral of the original surface M as 5)



G ! 4 { ~ ’ ~ H’}
(3.28)
“and it vanishes on the boundaries simply because, on the bound-

aries, conjugate points coincide. It is shown 1n Ref. 5) that

G(q',q) can be rewritten as

G(9)9) = A Q5 0) +©

(3.29)
where O is a constant independent of g'. Therefore, momentuam
conservation allows us once again to rewrite Eq. (3.27) asg

wp $- L Z pop; A G(g;,9 G(q',qi)}
P {. 2 . P EB 2109 & ) J
(3.30)

and, therefore, we can immediately conclude that the coefficlentg
of 10g(h/£)1gpj vanishes whenever oune or the two particles of
momerntum P s pj are implanted on a boundary line of,}L , that
is to say, on a boundary that is not shrunk to zero by the
handle that vanishes. The only problem that remains is to
consider the case in which the two particles 1 and | are
inserted in the boundary that goes to zero with the handle.

This is most easily seen directly from Eq. (3.26), because
V(qi,qo;q1,q2) just cancels the log € 1in the denominator LT

g. is on due to Bq. (%.2). On the other hand,

i 17
V(qj,qé;q1,q2) is not identically equal to log & if 4y is
on TT because qé#qo, but we can replace it by log &
because, in any case, HEq. {(4.18) is independent of a, and qé.

Therefore, the final result is that we can rewrite Eg. (3.26) as

o {- 4 & L PRy Loge]
(3.31)



where lhe sum e ' extends only to ihe particles attached to
the vanighing boundary. Putting together Egs. (3.25) and (3.31)

we see that the integrand behaves near & =0 as

-+ )

(5.32)
where & 1g the invariant mass of the particles entering into
the vanishing boundary line. This behaviour gives rise Lo the
same Pomeranchuk-like singularity found in the one-loop case 14)’17),
and we can sec that there 1s no divergence if §‘iﬁ%. Moreover,
the singularity is found to be a cul because, from our estimates
ol the period matrix il Tollows that (det.A)2, that occurs in
the denominator of the multiloop integrand, behaves 1ike (logEL)z.

The treatment given here espentially the same as the one

is
1
first given by Lovelacc ), the only differences being that he
worked directly with the open Riemann surface of the analogue
model and conslidered a hole snrinking to zero, and that we

have included the meagure ir our considerations.

If there are no particles attached 10 the vanishing boundary
line il follows that therc is no logarithmie factor in the
variational [ormoula Tor V*(qi,qo;q.,qé}. Therefore, using

J
‘- . St
Eiq. €%.8) one readily shows that

Ay

" ' -
vep {-;—_ % R&WﬂaQ.;qjﬁoJ} - {.J,-_%P;f,-\f(m.,-‘yﬂ:}-: O(e?)
(3.33)
and combining this result with the behaviour of the partition
function given by kq. (3.725) we counclude that the integral of

the lefl-hand side of Rg. (3.%3) is finite.

The main conclusion of this sectiorn is, therefore, the
following: if the diagram is non-planar and there i1s momentum

entering into the vanishing boundary linc, the integral is
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convergent in the parabolic limit of integration. Otherwise

it diverges, but the counterterm is given by Ig. 15.33) in

terms of the exponertial of the Green function of the sphere

without the handle that vanishes. The counterterm is, there-

fore, just the Veneziano integrand for (M-1) loops but in-
tegrated, however, with the M loop measure. This simple
observation readily explairs the duality properties of the
counterterm and the fsct Lhat double poles rather than single

0).

convince onesell that the Heveu-Scherk procedure

poles occur in sSome energy variables Onc can easily

20
) for re-
gularizing the single-loop amplitude is a particular case of

the resull dezcribed above.

One final word of cautlion concerning the Interpretation

of BEq. {%.33): if we want to write an explicii formula for
2)
]

in the "wvertiecal" configuration, we have ito keep the M gene-

V(qi,qo;q.,qé) in terms of Burnside autororphic functions

rators {one of them being, of course, parabolic). The genus

of the surface 18), that is to say, lLhe number of handles, will
be (M-1), because of the presence of a paraboliic cycle in the
boundary of the fundamental region of tne group of automor-
prisms 1 . Howeveg, it must be kepl in mind that in thie casc
12

Burnside's proof of convergence does uaot apply.

Multiple divergencies

The extension of the previous results to the case in which
several generators become simul taneously parabolic is straight-
forward because ol the additivity ol the results of domain
variational theory 2 up to ard including terms in & 2. There-
fore, the most singular part of the multiloop intezrand in the
limit in which {1wo gencrators, zay, T and T, hecome si-
multaneously parabolic is given by the exponential of the Green
function of the sphere with (M—?) handles. I1 1s also simple
to construct an integrand which is finite at the end points of

the integration region corresponding to Trb and/or TY
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becoming parabolic. I we introduce sub-indlces g, W in
Vv to indicate Green functions of surfaces where the caorregponding
handlcse have been eliminated, one can immediately check that the

weighted integral of

exp {_ “i % P;b-'\f(ql.q‘.'cgq'.)} - ~p {--é %ﬁ&'\}:(‘lﬁ.;‘g q:)J -

- % {'%. .2:] P,-g-'V;(q; %Y %)} + Sap {-i% PPy v)-nv(‘i."i.'.‘i_,' %)}

(35.34)

ig finite in the limits KP. and/or Ky = 1. In the same way
it is possible Lo write an exprcssion that is finite when N
generators beccome parabolic in all possible ways, but we shall
not discuss this point here because the procedure becomes very
tedious and it is not all clear at the moment whether it is

meaningful from a physical point of view.

It has been shown previously that for the class of diagrams
we arc considering hers there are at most (N+1) parabolic
points if the multipliers of the group of automorphism are
requirsd to be different from zero. This does not contradict
the statement thal this class of diagrams shows (2N~1) para-
bolic poinls 16 . Indeed, as discussed before, the extra para-
bolic points show up_only when some generator has multiplier
zero and they can be understood as divergencies associated
with loops of lower order, because setfing a multiplier cqual
to zero is equivalent to Tactorizing an internal Reggeon. One
can wonder why the multiloop amplitudes we are considering
ghow (N+1) divergencies if there are only N handies. The
reason is that divergencies are associated with the number of
boundaries rather than with the number of handles. We have
seen before that a divergence occurs every time that a handle
varishes ir such a way that it forces an intermnal boundary line

to vanishk, but the choice of the "external boundary line" is



topologically irrelevant. In case the reader finds it hard to
imagine how the external boundary can possibly vanish we have
illustrated the example of the two-loop amplitude in Fig. 10,
in which all the boundary lines are explicitly shown to be on
an equal féoting. Two handles and two boundaries can be
eliminated, but the choice of the boundary that survives is ar-

bitrary.

It should be clear at this stage that domain variational
theory does not provide a natural way of eliminating all (N41)
divergences at once. Indeea, after all N handles have been
subtracted there is nothing else than can heppen to the surface.
This is not a problem at all, because our method is sufficient
to glve the most singular behaviour of the multiloop integrand
in all possible end points of integration. It is only a
problem il one insists that it is physically meaningful to leep
adding and subtracting ever increasing numbers of counterterns
and if one alsc insists on writing a global counterterw that
renders the amplitude [inite. MNoreover, this problem occcurs
only for the planar N loop diagram. If the diagram is non-
planar, the integral does not diverge in at least iwo of the
parabolic points, and our results are sufficient to construct
over-all counterterms that render the amplitude finite. Wore-
over, 1t is alsc clear that some Kg =1 singularities can be
gimultaneoas with Kd_::O singularities. This corresponds,
for example, to the extra parabolic points that occur whenever

a feggeon has been previously Tactorimed.

In connection with the planar multiloop amplitude, a regu-
larization procedure has been discussed by Cremmer and Neveu 21)
and we would like to interpret their procedure from our point
of view. ILet us restrict, for simplicity, to the two-loop case.
Their procedure consists of introducing first a counter term to
cancel the divergence associated with the vanishing of the
"external" boundary, that 1s to say, the boundary where all par-

ticles are implanted. Both the initial amplitude and the counter-



term are still divergent when the two other boundaries vanish,
g0 they introduce six other counterterms to take aWay that

divergence.

Oremmer and Neveu Tind that the momentum dependent part of
the counterterm associated with the extermal boundary is the
same as that of the Born approximation 21). In order to under-
stand this point, we start by investigating what happens when
a handle vanishes in such a way that 1t forces the boundary
where all particles are implanted to shrink to zero. In terms
of Fig. 9, all particles are now attached 1o the circle 1f .
but, of course, there is no Pomeranchuk- like singularity because

of momentum conservation. Therefore, we find

Vn (%:%:939) = vn.g,(qi.‘leiq:.'q‘;) + 0 (3.35)

that shrinks to

and all points q.. qj lie on the cycle 'K

5 b
merpo with the hangle. Tn othner words, all p;irs of points
Q0 g. tend 1o coinecide in this 1limit. We now remind the reader
that Vy T(q 10,39 ,a) ) is perfectly regular at the points q,,
Qs and that the only singularity that could concern us in tie
limit we are taking is the logarithmic singularity that it

exhibits when ql._~eqj

V"_l (3;9,:9; q,)a Iog lq'--qs-l + Terms regolar when q.._,?. |
3.36

The regular part can now be expanded around the point g in

*1
the form

Vi (9;9,;9;9%) = log [9;-a3] + A+ By(a;-9,) + 8,(9;-9,) + €(9:-9,)(3;-9.) 4
(3.37)

The logarithmic verm is exactly the Green function of the sphere,
Vo(qi,qogq.,qé) up to terms that vanish because of momentum

conservation. The constant and the linear terms in Bkqg. (5.37)
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are also cancelled because of momentum conservation, and the

. 2
quadratic terms are of order & ~. Therefore, we conclude that

op -4 Z VG304 00)] - ot & R Va4 ) OV
(3.38)

which explains why the counterterm has the same momentum

dependence as the Born term, in the particular case in which

all particles are attached to the vanishing boundary. The

remaining divergences can be itaken away from the first term of

the lett-hand side of Bq. (4.30) in the way discussed before,

but there is no natural way of doing the same tco the counter-

term. Any further regularization has to be done at the expense

of changing the partition function part of the measure of In-

21
tegration, which is indeed whal Cremmer and Neveu do ).

The analysis we have given here does not exhaust all multi-
loop amplitudes. We have essentially covered all diagrams
whose group of automorpnism contains only hyperbolic generators.
The extension of these mcthods to the case in which there arc
loxodromic generators is currently under investigation. We
would like to strese that thelr |Ki<[fv1 gingularities arc a
charactcristic feature of dual theories. In some particular
cases, as the planar one, they appear as a divergence of the
amplitude but this is due to the fact that in these cases the
singularity is in fthe sgquare of the sum of all particle momenta

which happens to be xero due to momentum conservation.

The specific loecation of these singularities depends also
on the measure of integration and could therefore be shifted
in theories whose sewing procedure woald provide with different
measures. However, their exisitence is related to tne Grecn
function which guarantees the duality of the theory. They
seem, therefore, unavoidable. Moreover, they are independent
from the loop momentum integration. This Tact, which was known
for the one-loop case can be recognized in general in the

s
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orientable loop case discussed before from the Tact that the
first Abelian integral in {(A.%3) is not singular for %(-w T
Thias contribution was coming from the loop momentum integration
or, in other woras, the singularity would be the same Tor

every loop momentur.

Therefore, we cannot identify these singularitics with some
intermediate statc. [n other words, one uses unilarity to
build the theory and onc finds that, besides the states that
were plugged i1n, one buiit up some new ones whichk have rnothing
to do with unitarity. The interprectation of tnese states,
characteristic of a dual theory, in the unitarity framework 1is

1111 far from understood.
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APPENDTIZ A

CALCULATION OF THE LOOP INTEGRAND

We shall give here, for the sake of completeness, a slightly
refined vergion of the multiloop calculations carried out in Refs. 1)
and 2). The prool ig almost identical to the one presented in I,

9)

except that zero modes are treated in a somewhat different way.

The reader ls referred to I for notations and conventions.

In order to derive the mﬁltiloop amplitude given by
Eq. (2.10) from The N Reggeon vertex given by Eg. (2.3), one hag
to sew pairs of Reggeons by connecting them with a (twisted or
untwisted) propagator, and by taking the trace over oscillator in-
dices and integrating over the loop momenta. The starting point is

the matrix elements of the N Reggeon vertex betwcen conerent states.

To wp -4 Z @OV

2 i*ﬁ : :
(A.1)
We have mentioned in Secetion 1 how to calculate the matrix

elements of a matrix € in terms of the projective transformation

9) With respect to the product 0102, either

one first multiplies the 2x2 matrices and then applies the rules

agsociated with it

given by Egs. (2.?)—(2.8), or one calculates (0102)nm directly in
Q

terms of (01)nm and (OQ)nm by the rale

(Clcz.)nm = E-; (C1)nh (C?-)gm + (ci),,ogo,m'*' So,o Lc?-)om

(A.2)
It follows that these infinite matrices from an infinite dimensional
representation of the projective group only wilithin the subspace of

internal excitations (non-zcro modes). We shall rewrite Bg. (A.2) as
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(C'ICZ)mn = (c‘.ca')hn * (C“)no S.O,m * Sn,ﬂ (C")Om

(4.%)

where (C1.02) means matrix product without zero modes in the inter-

mediate state. Using this notation in Eg. (A.1), together with

momentum conservation, we have

Tz oxp { LT & U vl +4 Z B [ 10163 + <ol V) .u'»)]}
I*J FALY
(h.4)

Another important element in the calculation is the fact that, in
terms of the symbol iy introduced in I as the infinite matrix cor-

responding to the projective transformation

4 o] 4
W = = T = (: ¢ 19')

(4.5)
0 i oo
0 =
oo i o
(A.6)
the following identity is true for infinite matrices
(&.7)

as can be verified by multiplying 2x2 matrices. We warn the reader
that f‘ , as an infinite matrix, does not exist, and it should never
be considered by itself. FEquations like (A.T) only make sense if
2%2 matrices are multiplied first and then the matrix elements of

the product are computed. Anocther useful identity 1is
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valid in any configuration.

a. Trace Calculations

The guadratic term in the coherent state parameters in
Eg. (A.4) can be linearized by means of a real functional integral in
the space of internal excitations (non—%ero modes) as donge in Ref. 1)
and in I. This step is ro%t at all necessary, but simplifies the

presentation of the calculaiion. Using Bg. (A.8), we get
2 N D) W) ]
A . U of V*/ [t
1. (_dd:l"] v;q,{ ZE’,.P"L‘@( RO ERC [ >}

S % mp{-.liqlrlfn pa <fW"’l~<~'->}

L=4
(£.9)
Let us nowv put the uasewn Beggedns on the groand state.
From now on, we spall denote by N' the number of unsewn Reggeons,

and by M the number of pairs of sewn Reggeons with assoclated Koba-
~ N
Nielsen variables ZP,%._,Z » h‘( 'A- =1,... ,M) , and momenta Kl" and’

kr_::~kr_, respectively. As in I, we shall keep z; (i =1,...,N‘)

as the Kopa-Nielser varisbles of unsewn Reggeons. By making use of

Lt UV 16> = o) UM |wsS = <o) PV D

and defining

{}L.TO)

| (Bi-r ~Eita)
kt&" p;'-a)(zi'-%i-la) (4.11)

¢, = lUD oYy + LIVW o) = bg
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we can rewrite (A.9) as

- i ~
Tt o v Bl clninBmo),
3 y S v
-4 2 CIR'RNED
X -\[_T; ?JXP { ?_<:Flpl§> +4'.2;_1P‘.<z l‘f) +Ei )"+ (adh il o }

{(a.12)
where zi> :V(l)f0> is a vector with components zil/ﬁl (n;éO),
defincd only in the subspace of internal excitations. Using again the

identities given by Ege. (A.8) to write ([1°=T)

o](4+7) Vi 154> = e U T (447) lod = S (24 P) |0

and introducing the Hermitian propagaior Af" for the r—th Reggeon

we have

o e M
T=fder)” T e > {.g }%1[k’._<orr|A£'U},(1+n)lo>ﬂ+
+ k,, <ol (4+mMV Iotp]} X
N' M ~
S5 g ainis e Zpceds> Z Lol h iy + 5 YATASY

(4.13)
From now on, this calculation parallels closely the one presented in L.

The next step is to split |, >=| & >+ o> into its zero mode and
I pa R Cha

internal excitation components and to integrate over ‘ g(".>. The
integrals are of the form
L) %,> + xR + <Pl X
j + SR, Bngy e ’ mr "L

_ <Ryl by >
= £
(A.14)
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but since the integral is in the subspace of internal excitations
there are no zero-mode intermediate states in the scalarlproduct
<hr_‘h#;> and dots to symbolize their absence must be put in the
right places, that is to say, ‘hr>:<hr_ \-lh},>. We shall not
enter here into these straightforward calculations. When the product
law (A.3) is used to recombine different terms, the result can be

simply writiten as

! .L‘f'cp-
N (
TI o (det0) * cm‘) {4+0) }
n ( ok ) L]Le. wpi }%k <o) 1}. +2. fo>

M N’
[ 5 op {-gesinsy « Z SITRI> 4 T pceitss ]

-4
< exp { <, 4= <o[(4+7) (Ty.- )PH)_}
(A.15)

L

(A.16)
Before doing the Sf functional integral, let us examine the matrix
clemrent {f]?P,P |f> . Since this is a real symmetric quadratic form

in the fn’ we can write

EIT 016> L (s T
TP 16>« & {AITPID> + <F1Tr)Ti4> ] o
)

z
AT

lowever, using Eq. (

T -4 21 -4
(‘r‘r* - (L) . PTr . T
J"") (/‘) M - r (a.18)
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so that BEg. (A.17) can be written as

<{j1}rlf>=.£i.<-$l('|;.\+'l;1)r'lf> (£.19)

Introducing
M
:Zl = :Zl ( +-T -4
pea T )

we can write

M
- L LY 4 E;fﬂ‘l}r'lf) = ...;-:<-H(4-2‘.')|"l£>_

(K.20)
The S;f functional integral can now be made as in I, with

the result:

”f
T . 4 T e *’"P{ <o](u-r~)-r (4+r') ,,,>J
[dek(1-2)]2 4= f'="

- D on ) - LZ kb FeEA, B |
(A.21)}

where

- ~4
%.(%) = il Lo (=T ) L2 o

(a.22)



;6 (2;) = <ol (4+r-) (-7 . ____ 2>

{(a.23%)
A -1
A = <o LT ()T yie - Te) L2l "% 24)

In REa. (A.21}, the indices i, j run over all the external
particles and }4. s ¥ over all the sewn Reggeons. As in I, the
cperator (I-";ﬁ,‘}m1 has to be taken with caution. The absence of
diagonal terms 1i=J in the original vertex means that (‘I—Z)_T hasg
to be taken as the sum of the identity operator plus all the elements
of the group G generated by the TP’ , ,;. =1,...,M. Moreover, if

the index 1 1is egual to J +the identity must be omitted in the

matrix element <2‘ n _4____ g,
"I 1__z ' ‘a>

b, Identification of Abelian Ilntegrals

Let us start by considering the matrix elements

L5y

. 4 . ,
(E:.H"_.-[zd.) = 2 <2|.|T'-|:‘I-Z_.,>
1-Z o
(a.25)

where the summation extends over &1l the elements of the group
generated by the T},_ operators. It must be kept in mind that
these matrix elements are computed in the subspace of internal exX-

i n, — .
citations. ©Since fzi>=V(l)‘O> has componcnts zi/Jn (n>0); it

follows from Eq. (A.8) that

Lz M = o\ VIR o <o U

(4.26)

-n
and, therefore, 1ts components are given by Uon: (zi )/(,\fr‘i‘) The

operator T acts herc as a sort of a metric operator that defines a
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KM3bius invariant Hermitian adjoint. When the Koba-Nielsen variables
are on the unit circle this Hermitian adjoint <zl‘r' colncides

_1_

with the usual one because 2z z¥. If we denote by Tﬂ.(z) the

projective transformation assccilated with the infinite matrix Td.’

the matrix elements (A.25) can be easily computed
<zt A== 1. &(2) | _ _ Tale)
¢l 4—:ZZ|!5:> - EE' eog l =X l EE' £°3 }i a;h; ,

= Z dgle-T@)) - 2 Lg 2 -T)

= Re w- (=,
= [
i%”io )
(A.27)
where GJ;%ZO(Zi) is the third Abelian integral of a sphere with U
of
nandles, and Eq. (A.27) correcsponds to its representation in terms of

2)

generators, T)~(Z)' The point % denotes the origin in the complex

a Poincaré @ series of a group of automorphisms with M
plane where the automorphic functions are beling constructed. When
the matrix element given by Eq. (A.27) is multiplied by pipj and
summed over all i, 7 the =z dependent term disappears because of

o]
momentum conservation.

(z)

Let us now focus our attention in thoe matrix element %P‘
defined by Bq. (A.22). We shall denote by Tf,(z) the projective
transformation associated with the generator Tr,. Let us first

split Q?b (z} into two parts

-1 ~4
@)= L&l L (hT)loy + L i) 0t Q=TI T lo>
{a,28)
and examine the first term of the right-hand side. Using Bq. (A.E)
and the fact that the sums extend over all ihe elements of the group

of automorphisms, we get:
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elr L. (L T ley = Z <&M (W) lod - 2N (TT)led

- Z T (LT le> - Z <EIPTT) o>

Z <=NT, o> - qZ g, [PT,.1e> =0
o ! '

The same argument cannot be applied to the second term of the right-
nand side because T [ and Tr_,l"l are not clements of the group.

IT we denote the .2x2 matrix associated with T}L( Y by

p= 3
’d-

>
{(r )no and {TF'I")HO

it is gquite straightforward to compute ’h

using Eq. (1.5) and get ine result
(Tor) - 4 (e L T
I he = —= -—Ji‘) = = };
Vi Cp Vn
M P
') L f_d
P = £ (-2) =& %
' g (A.29)
where J and Jy, ara the centres of the isometric circles of
(A.QB) can be rewritten

Tr(z) };nd TF(Z), respectively. Then, Eq.
- 4 _ 4 PT 1310
ar_Cz) = A2 IMTUg - 4 §<zl o 131>

2 Log [2-T (3] - 4 2 Log l2- T, (3r0)

ol

a4
2

AT Im 9‘;*(;) + T Im 95_.,(2)

(A.30)
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where ﬁ/‘(z} (}cz‘l,...,M) is one of the first Abelian integrals
of a sphere with M handles in the complex normalization, as given
by Burnside 12), associated with the f»th handle. It is quite
straightforward to show that _1(2)::—ﬂ‘b(z) following his nor-
malization proof of first Abelian integralé; s0 we conclude that
the matrix element 5 (z) is direetly the imaginary part of the

J

first Abelian integral EﬁF(z in the complex normalization.

Let us now consider the matrix 1}40 for ,L;é ¥ . Using
the same arguments as before we can eliminate a term in the right-hand

side of the matrix element

- -4
Z T (- (40) aiZ TR-3)T
Using

rore= ()7

P, 2 T

we can apply the group multiplication law to the left (we need the
transposed matrices for this) and eliminate snother term. The matrix

element simplifies to

Apo = 4 <ol (B-T)1. A TR .

-t 4 =4
- 44BN L BTl LTI g ()1

TI‘JM,L (%) -4, (3,)]
|- N = —
z ’é“ P
(A.31)
where Jq . J.9_1 are the centres of the isometric circles of Ty
-1
and TV s respectively. 3Since the centres of the isometric circles

are the points homologous to infinity, we can write



A= - L Im[2 (%) - B.(2) + () - B.(tw) ]

= TU :Jn»-]%ug

(4.32)
S0 K)‘Q is proportional to ihe imaginary part of the period matrix

of the first Abelian integrals @ (z). We have used the fact that

r
B},h; = ?‘_(.T\J (e)) - sé_Ci)

is independent of =.

Care must be exerc.sed with the diagonal elements K}V“ ,
because in this case the Poincaré © serics are not well defined 12)-
Il can be shown that the extra diagonzl term
< U+ T (4+0) (o>
2. M 2
in Eqg. (A.21) comblnes with Kﬂ- to give Im B Pr, We have, there-

fore succeeded in corrccting the coefficients of the momenta in
Eq. (A.21) with Abelian integrals and period matirices of a sphere with

M handles.

c. Loop Momentum Inuvegrations

It is gquite straightforward now to carry out the loop mo-
mentum integrations 1)’2). This is simply an MxM Gaussian integral,
and the result is

M ! o O
Tl'all'kf._RI,._4 _ A Twe' =
p= [det (4-2))* [au;AJ" ‘et

Z‘ Rp {<e 1P g + 2 Jger) ), , Im 05}
i4=4 AV=1
(£.33)
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where A=ImB and 251 mean that the ldentity in the expansion of

('|~2)_1 i not included when i1=]. As shown before, and explained
at length in I, the term in brackets is Re Zizo(zj), the real part

of the third Abelian integral of a sphere with M handles in the real
normalization. NMomentum conservation allows us to add in the exponent
any function thai depends on only one of the two variables Z s Zj'
Therefore, we can replace the bracket by the Green function of the

sphere with M handles, defined by 5)

VG2, 2,2) = 0 &) - RO ()
B2, &% (A.734)

o]
ratic of the four arguments. If the indices 1, j are egual, only

If M=0, V(zi,z ;zj,zé) is just the logarithm of the anharmonic

the regular pari of V has to be taken. Moreover, it has already
been discussed in I how to obtalin the singularity factor (partitiOn

functions) from [@et(1-2?)]_2. This completes the proof of Bg. (2.10).



APPENDIX B

ESTIMATES OF PERIOD MATRICES NEAR A PARABOLIC POINT

Tet us consider a group of automorphisms with M+ 1 hyper-
bolic generators ?ﬂh’ and suppose that one of them, say TM-+1’
becomes parabolic. We are interested in estimating the period matrix

Bf#? of the first Abelian integrals near the parabolic limit.

In general, one can write a projective transformation in

terms of the multiplier K and invariant points g_, rL as 1)

Te) e —5-KUZ - gq (-
(-k) 2 - (-XE) (B.1)
and

A= ad-be = K(g-lz)z'

(B.2)
Since T(z) 1ie assumed to be hyperbolic, O0<X<1. Moreover, the
transformations we deal with in multiloop theory leave a circle
(the gso-called principal circle) invariant. Then, it follows that

the invariant poinis ¥§ N lie on the principal circle.

The centres and radii of the isometric circles of T and

=
T are given by

g = - SL = ,.ﬂ:Jf}i__ ; :ffa ._J::LEQL,
< (1-k) (-k) .2)
lz - J:E | !:-'Q l
(B.4)

(-i)
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In the parabolic limit, the isometric circles of T and
=1 . .
T become tangent, and S - 'L and, at the same time, K-—1 in

order to keep the centres and the radius finite.

11
A parabolic transformation is of the form )

] { c
@) - jf i!":§= : (B.5)

or

~ ~ &
-r(z) = (“I-I- Cg) 2 - C%
cz + (1-¢&)

(B.6}

It is easy to see that Ba. (6) is the limit for S.—ao of
Eg. (B.1) if we make

g;:: Q:p S- = §f4.if
Ke 1-:8-

(B.7)

Let us now consider the intersections of the isometric circles
with the principal circle in the "near parabolic" limit. This is most
easily done if the principal circle is mapped to the real axis in such
a way that the centres of the isometric circles and the invariant
points are real. The situatican in the near parabolic limit is illus-
trated in Fig. 11. Since the invariant points are always inside the
isometric cirecles, there are two intersecticans of the iscmetric circles

with the real axis between them. We call those intersections XA

and XB'
A simple calculation, using Eqs. (B.3) and (B.4), shows
that
G- ¥n = £on - 220 §fa 2l
A A+ K

14+ K
(B.8}



Using

it follows from Egq. (B.8) that

><5'- X;; - ()(:Sjﬁ) ; igﬁz i-K
(B.2)

Equation (B.9) ig a crucial obeservation for the problem we
are considering. It means that the isometric circles tend to approach
each other faster than the invariant points and its relevance 1s due
to the fact that XA is the homologous point of XB under T
so that

¥F+1’

B]*,M-H = é_(xs) - ¢#_(XA)

Let us now consider the firet Abelian integral ﬂw,jiz)
I

(B.10)

associated with the generator ihat becomes parabolic, that is to say,

5)

the first Abelian integral normalized in such a way that

Pf"(¢”“) = d¢"|+| - S"‘JH‘H ; P-‘"'”' M+l

Cap- (B.11)
2)

a Poincaré @ series ag follows

Following Burnside , Wwe can write L in terms of
& : M1

ému)= ?:'r-: é' &% [-C‘(z)-'J"“.] o

up to a constant that does not contribute o the periods. 1t is
convenient row to splil the © series in three parts: ths
summatior over the cyclic subgroup generated by TM+1’ the subgroup
generated by the remaining gencrators, and the crossed terms. It

is guite straightforward to evaluale tine & series over lac ecyclic
subgroup (this would be a first Abelian integral of a gphere with

only one handle). Consequently, Eg. (B.12) can be rewritten as



¢m1u) = 'i%"_' "‘3 [:——i ] + a;-n(:)

(B.13)
where aM+1(Z> is the contribution coming from the remaining sub-

group and the crosscd terms.

Pirst Abelian integrals have logarithmic singularities on
the limit points of the group of automorphism. Limit points are
accumulation points of centres of isometric circles of elements of
the group, and for the case of groups with more than one generator
there is a non-denumerable infinite number of them, and in the case
of principal circle groups {our case) they lie on the principal circle
inside the isometric circles 1 . We shall use here the fact proved
in Burnside's paper 12) that the first Abelian integral QM+1(Z)
has an odd number of logaritamic singularities inside the isometric
circles 1 "

"M+ IM+1’ ]
inside the remaining isometric circles Ifh’ I (); =1, ...,M).

and an even number of logarithmic singularities

Indeed, this is the reason why ﬂM+1(Z) has period 1 {-1) when

going around the isometric circle I and zero otherwise,

-1
M+1 (IM-H)
because Burnside proved that logarithmic singularities cancel by

2)

pairs 20 g Eg. (B.13) we have explicitly exhibited one logarithmic

. . - . . R . . -1
gingularity of inside and one inside IM+T; TO we

QM+1 IM+1

conclude that the remainder BM+1(Z) has an even number of logarithmic

singularities inside T and 1'1 .
M1 M1

can be taken entirely inside these isometric circles, there is no

-1

M+1"

Therefore, the cuts of aM+1(Z)
branch cut 6M+1(Z) crossing from IM+1 te I

The remaining isometric circles of the generators of the
. ) i -1
group are either to the right of IM+1 or to the left of IM+1‘

Using the theorem guoted in Section 2¢. on the distribution of iso-

1)

oneself that there are no other limi+ points between ; and PL .

metric cireles in a group of automorphisms , it is easy to convince
Therefore, we conclude that 5ﬁ+1(z) is regular in the interval
(g,il) and can, therefore, be expanded around the points x, or

XB.



[

We can now compute the matrix clement given

B,
M, M7

by
BH-H,H-n = ¢H+, [T;I'I-l(a)l - ’é“., (2)

and independent of z. Then

'BH-M, M3}

30, by the mean value theorem:

B = log Kf”'” + O[(xg-xa)]

M}, M+| 21

Therefore, using Eg. (B.9) we conclude that

B o _ldRmi L o(52) 5.4
2ni s

M+, M)
(B.14)
for KN+1(W1° A similar argumcns, Logether witsa tne symmetry of
L
malrix va y can be used to prove that lhe remaining matrix

near the parabolic limit.

. . 2
elements are of order (T—KM+1)
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PIGURE CAPTIONS

Figure 1 Points on the Koba-Nielsen unit circle homelogous under
the generator T, .. The action of the generator is
indicated by an arrowed line. Case (a) is for an

untwisted Reggeon, case (b} for a twisted one.

FPigure 2 Canonical cycles on a sphere with M handles.

Figure 3 The Koba-Nielsen complex plane for the one-loop orien-—

table diagrams.

Filgure 4 The Riemann surface of the one-~loop orientable diagrams,

with the boundary lLimes indicated on it.

Figure 5 The Riemann surface of the one~loop non-orientable

diagrams with the boundary line indicated on it.

Figure © The sphere with two handles and boundary lines corres-
ponding to different two-loop diagrams.
(a) Disgram with three boundary lines.
(b) Diagram with two boundary lines.
(c) Non-orientable diagram with one boundary line.

(d) Orientable diagram with one boundary line.

FPigure 7 The Koba-Nielsen complex plane for two-loop diagrams

of type (a), (b), (c) - see text - in the casge in which

all isometric cirecles are exterior to one another.

Figure 8 The Koba-Nielsen complex plane for two-loop diagrams of

type (a), (b), (c) when the isometric circles 1;1 and

el .
12 overlap

Figure 9 Attaching a new handle to a sphere with N handles.
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Symmetrical representation of the three boundary lines
for a two-loop diagram. Only the visible part of the

boundary lines has been drawn.

Invariant points and isometric cireles near the parabolic

limit.
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