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Abstract. In this work a new kind of non-holomorphic Eisenstein series, first
introduced by Goldfeld, is studied. For an arbitrary Fuchsian group of the first kind
we fix a holomorphic cusp form and consider Eisenstein series constructed with the
modular symbol associated with this cusp form. We develop the theory analogously
with that of the usual Eisenstein series starting with its meromorphic continuation
to the entire complex plane. A functional equation is then obtained relating the
values at s to those at 1− s.

Introduction

Let H = {z ∈ C : Im z > 0} be the upper half plane and let Γ ⊂ SL2(R)
be a fixed non co-compact Fuchsian group of the first kind, (for example Γ(N),
Γ0(N)), acting on H. For simplicity assume that Γ has a unique cusp at infinity
with stability group

Γ∞ =
{
±

(
1 m
0 1

)
,m ∈ Z

}
.

For each γ in Γ we shall label its matrix elements
(

γa γb

γc γd

)
. Let f(z) be an

element of S2(Γ), the space holomorphic cusp forms of weight 2 for Γ. Following
[Go] we define a modified Eisenstein series

(0.1) E∗(z, s) =
∑

γ∈Γ∞\Γ
〈 γ, f 〉Im(γz)s, z ∈ H,

where for γ ∈ Γ the modular symbol is given by

〈 γ, f 〉 = −2πi

∫ γw

w

f(τ) dτ,

the definition being independent of w ∈ H. Note that since 〈 γ1γ2, f 〉 = 〈 γ1, f 〉+
〈 γ2, f 〉 the series is not automorphic. The transformation rule is

E∗(γz, s) = E∗(z, s)− 〈 γ, f 〉E(z, s),

for all γ ∈ Γ where E(z, s) is the usual Eisenstein series for Γ.
This new type of non-holomorphic Eisenstein series was introduced by Goldfeld

in order to study the distribution properties of modular symbols 〈 γ, f 〉 as γ ranges
over the group Γ. The series (0.1) converges for Re(s) > 2 and Goldfeld hypoth-
esised that it should have an analytic continuation and a functional equation. In
this paper Selberg’s method, (described in [Iw], [He]), is extended to establish the
following results.
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2 CORMAC O’SULLIVAN

Theorem 0.1. The Eisenstein series E∗(z, s) defined by equation (0.1) for Re(s) >
2 has a meromorphic continuation to the entire complex s-plane.

E∗(z, s) can also be expressed using its Fourier expansion. This will be built up
from a number of parts:

• a generalized Kloosterman sum

S∗(m,n, f ; c) =
∑

γ∈Γ∞\Γ/Γ∞
γc = c

〈 γ, f 〉 e2πi(n γa
c +m

γd
c )

defined for c ∈ C =
{

c > 0 :
( ∗ ∗

c ∗
)
∈ Γ

}
,

• the K-Bessel function

Kv(z) =
1
2

∫ ∞

0

e
−z
2 (u+ 1

u )uv−1 du for Re(z) > 0,

• lastly the Whittaker function (from now on z = x + iy, z′ = x′ + iy′ . . . )

Ws(nz) = 2|n| 12 y
1
2 Ks− 1

2
(2π|n|y)e2πinx.

Then, using Bruhat’s double coset decomposition, we have that

E∗(z, s) = φ∗(s)y1−s +
∑

n6=0

φ∗(n, s)Ws(nz),(0.2)

with φ∗(s) =
√

π
Γ(s− 1

2 )
Γ(s)

∑

c∈C

S∗(0, 0, f ; c)
c2s

,(0.3)

φ∗(n, s) =
πs

Γ(s)
|n|s−1

∑

c∈C

S∗(n, 0, f ; c)
c2s

,(0.4)

where φ∗(s) and φ∗(n, s) are meromorphic for s ∈ C by Theorem 0.1 since they
occur as Fourier coefficients of E∗(z, s). The conventional functions E(z, s), φ(s)
and φ(n, s) are defined similarly - just replace each occurance of the modular symbol
by 1. Now we are in a position to state the functional equation

Theorem 0.2. E∗(z, s) satisfies,

φ(s)E∗(z, 1− s) = E∗(z, s)− φ∗(s)φ(1− s)E(z, s)

for all s ∈ C and
φ(s)φ∗(1− s) = −φ∗(s)φ(1− s)

where φ∗(s) is defined by (0.3) for Re(s) > 2.

These results are first steps in developing the theory of these series. As discussed
in [Go2], estimating sums of the form

(0.5)
∑

γ∈Γ

w(γ)〈 γ, f 〉
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with weighting factor w and f in S2(Γ) allows us to uncover information on Gold-
feld’s conjecture, see [Go3], which is equivalent to Szpiro’s conjecture on elliptic
curves and implies a version of the abc conjecture.

In a further paper I will describe the behaviour of E∗ on the critical line Re(s) =
1/2. It has infinitely many simple poles on this line at points corresponding to the
discrete spectrum of the Laplacian 4 on the space L2(Γ\H). The residues of these
poles are Maass forms. These ideas should lead to precise estimates for series such
as (0.5).

The method we use to prove Theorem 0.1 generalizes naturally to more general
series of the form

(0.6) Em,n(z, s) =
∑

γ∈Γ∞\Γ
〈 γ, f 〉m〈 γ, g 〉nIm(γz)s,

for example, with f, g in S2(Γ). It can be shown using the same ideas and induction
on m + n that Em,n(z, s) has a meromorphic continuation to the entire s-plane.
It also satisfies a (complicated) functional equation relating values at s and 1− s.
This allows us to consider higher moments of (0.5).

Acknowledgement: This work was done as part of my Ph.D. thesis under the
guidance of Dorian Goldfeld. I would like to express my deep thanks to him for
introducing me to such a stimulating area and for his continuing help and support.

1. Preliminaries

More generally let Γ ⊂ PSL2(R), (or −I ∈ Γ ⊂ SL2(R)), be any fixed non
co-compact Fuchsian group of the first kind. Γ has a finite number of inequivalent
cusps. By conjugation we may assume ∞ is a cusp and that its stability group is
Γ∞ as defined earlier. We shall denote by F the Ford fundamental domain for Γ.
This consists of the closure of all points z in H exterior to the isometric circles of
elements of Γ and contained in the vertical strip {z ∈ H : 0 ≤ Re(z) ≤ 1}. See
[Ka], Chapter 3. The finite set F ∩ R gives us inequivalent representatives for the
remaining cusps. For each cusp a, b, c, ... introduce scaling matrices σa, σb, ... .
These are elements of SL2(R) that satisfy

σa∞ = a and σ−1
a Γaσa = Γ∞.

It shall be useful to break up F into cuspidal zones labelled Fa(Y ) for each cusp
a and a central, compact region F(Y ):

F∞(Y ) = {z ∈ F : Im z > Y },
Fa(Y ) = σaF∞(Y ),

F(Y ) = F−
⋃
a

Fa(Y )

where the union is taken over all cusps.
Note that each scaling matrix σa is determined up to translation on the right,

so they can be chosen to ensure that Fa(Y ) ⊂ F for large Y . The invariant height
of z will be denoted y(z),

(1.0) y(z) = max
b∈cusps

max
γ∈Γ

{
Im σ−1

b γz
}
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and we see that
F(Y ) = {z ∈ F : y(z) ≤ Y }.

In other words, the closer z is to a cusp, the larger the height.
Define j(γ, z) = γcz + γd. Let χ be a one dimensional unitary representation of

Γ, singular at every cusp, i.e. with

χ

(
σa

(
1 1
0 1

)
σ−1

a

)
= 1 for each a.

Let f(z) be a fixed holomorphic cusp form of weight 2 for Γ. Define the generalized
Eisenstein series

E∗
a(z, s, χ) =

∑

γ∈Γa\Γ
χ(γ)〈 γ, f 〉Im(σ−1

a γz)s, z ∈ H.

As a concrete example, think of E∗
∞(z, s) = E∗

∞(z, s, 1) for Γ = Γ0(N). It equals

∑

c,d

〈( ∗ ∗
c d

)
, f

〉
ys

|cz + d|2s

where f ∈ S2(Γ0(N)) and the sum is over all coprime integers c, d, with 0 < c and
N | c.

These series transform with a shift: for all γ ∈ Γ

E∗
a(γz, s, χ) = χ(γ)E∗

a(z, s, χ)− χ(γ)〈 γ, f 〉Ea(z, s, χ).

E∗
a(z, s, χ) is absolutely convergent for Re(s) > 2 and holomorphic in s there. This

can be seen with the following result.

Lemma 1.1. For all γ ∈ Γ, z ∈ H and any cusp a

〈 γ, f 〉 ¿ Im(σ−1
a γz)−1 + Im(σ−1

a z)−1,

where the implied constant depends only on Γ and f .

Proof:

〈 γ, f 〉 =− 2πi

∫ γz

z

f(z′) dz′

=− 2πi

∫ σ−1
a γz

σ−1
a z

g(z′) dz′

where g(z′) = f(σaz′)
j(σa,z′)2 is a cusp form of weight 2 for σ−1

a Γσa. We have the Fourier
expansion

g(z′) =
∞∑

n=1

bne2πinz′
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and by an elementary result [Sh], Lemma 3.62, bn ¿ n. Therefore

〈 γ, f 〉 =− 2πi

∫ σ−1
a γz

σ−1
a z

[ ∞∑
n=1

bne2πinz′
]

dz′

=− 2πi

∞∑
n=1

bn

∫ σ−1
a γz

σ−1
a z

e2πinz′ dz′

=−
∞∑

n=1

bn

n

(
e2πinσ−1

a γz − e2πinσ−1
a z

)

¿
∞∑

n=1

(
e−2πn Im(σ−1

a γz) + e−2πn Im(σ−1
a z)

)
.

Using e−x

1−e−x ≤ 1
x completes the proof. ¥

Remark. In particular, for a = ∞ and z = −γd

γc
+ i

|γc| we obtain the bound

〈 γ, f 〉 ¿ |γc|. This can be improved to |γc| 12+ε for congruence groups, see [Go].

We know that the usual Eisenstein series

Ea(z, s, χ) =
∑

γ∈Γa\Γ
χ(γ)Im(σ−1

a γz)s

is absolutely convergent (and uniformly convergent on compacta) for Re(s) > 1.
Thus Lemma 1.1 gives us immediately

Corollary 1.2. The modified Eisenstein series E∗
a(z, s, χ) converges absolutely and

uniformly on compacta for Re(s) > 2.

Next, to describe the Fourier expansion of E∗
a(z, s, χ), we need the Kloosterman

sum

S∗ab(m,n, χ, f ; c) =
∑

γ∈Γ∞\σ−1
a Γσb/Γ∞

γc = c

χ(σaγσ−1
b )〈σaγσ−1

b , f 〉 e2πi(n γa
c +m

γd
c )

defined for c ∈ Cab =
{

c > 0 :
( ∗ ∗

c ∗
)
∈ σ−1

a Γσb

}
.

For Re(s) > 2 we can write the Fourier expansion of E∗
a(z, s, χ) explicitly

E∗
a(σbz, s, χ) = φ∗ab(s, χ)y1−s +

∑

n6=0

φ∗ab(n, s, χ)Ws(nz),

(1.1)

with φ∗ab(s, χ) =
√

π
Γ(s− 1

2 )
Γ(s)

∑

c∈Cab

S∗ab(0, 0, χ, f ; c)
c2s

,(1.2)

φ∗ab(n, s, χ) =
πs

Γ(s)
|n|s−1

∑

c∈Cab

S∗ab(n, 0, χ, f ; c)
c2s

.(1.3)
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By comparision,

(1.4) Ea(σbz, s, χ) = δabys + φab(s, χ)y1−s +
∑

n6=0

φab(n, s, χ)Ws(nz)

where, as before, φab is obtained from φ∗ab by replacing the modular symbols in S∗ab

with 1s. The analytic continuation of this series, for general Γ, was first demon-
strated by Selberg, see [Se], Theorem 7.3 for example. The following statement is
based on [Iw], Prop 6.1:

Theorem 1.3. Given c > 1 define the vertical strip

S = {s ∈ C : 1− c ≤ Re(s) ≤ c}.

Then there exist functions Aa(s, χ) 6≡ 0 on S and Aa(z, s, χ) on H×S such that the
following hold:

(i) Aa(s, χ) and Aa(z, s, χ) are analytic in s of order ≤ 8,
(ii) Aa(s, χ)Ea(z, s, χ) = Aa(z, s, χ) for 1 < Re(s) ≤ c,
(iii) (4z + s(1− s))Aa(z, s, χ) = 0,
(iv) Aa(γz, s, χ) = χ(γ)Aa(z, s, χ) for all γ ∈ Γ,
(v) Aa(z, s, χ) is real analytic in (z, s),
(vi) Aa(z, s, χ) ¿ eηy(z) for any η > 0,

where the implied constant depends on η, s and Γ.

So we see that (ii) allows us to represent Ea(z, s, χ) as the quotient of analytic
functions Aa(z,s,χ)

Aa(s,χ) on an arbitrarily wide strip S. Our goal is to develop similar
results for the new series E∗.

2. Constructing an Integral Equation

We begin with some growth estimates that we shall need to establish equation
(2.1), the main result of this section.

Lemma 2.1. For z ∈ H and σ = Re(s) > 1 we have

Ea(σbz, s, χ) ¿ 1
yσ

+ yσ

the implied constant depending on σ and Γ.

Proof: First, for y ≥ 1, using the Fourier expansion (1.4) we see that

Ea(σbz, s, χ) ¿ yσ.

For z = x + iy define ẑ = x + i. Then it’s easy to show that

Im(z)Im(γz) ≤ Im(γẑ)

when y ≤ 1 and γ ∈ SL2(R). Thus, for y ≤ 1,

|Ea(σbz, s, χ)yσ| ≤ Ea(σbẑ, σ) ¿ 1. ¥
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Lemma 2.2. For z ∈ H and σ = Re(s) > 2 we have

E∗
a(σbz, s, χ) ¿ 1

yσ+1
+ yσ+1

the implied constant depending on σ, Γ and f .

Proof: We’ll use the result of Lemma 1.1:

〈 γ, f 〉 ¿ Im(σ−1
a γσbz)−1 + Im(σ−1

a σbz)−1.

|Ea(σbz, s, χ)| ≤
∑

γ∈Γa\Γ
|〈 γ, f 〉|Im(σ−1

a γσbz)σ

¿
∑

γ∈Γa\Γ

(
Im(σ−1

a γσbz)σ−1 +
Im(σ−1

a γσbz)σ

Im(σ−1
a σbz)

)

= Ea(σbz, σ − 1) +
Ea(σbz, σ)
Im(σ−1

a σbz)

Finally with Im(σ−1
a σbz)−1 ¿ y−1 + y one obtains the lemma. ¥

The Laplace operator on the hyperbolic plane is given by

4z = y2

(
∂2

∂x2
+

∂2

∂y2

)
.

If ρ(z, w) is the hyperbolic distance between two points z and w in H we define

u(z, w) =
1
2
(
cosh ρ(z, w)− 1

)
,

and we can derive the simple formula

u(z, w) =
|z − w|2

4 Im z Im w
.

This metric is more convenient to work with. We need the Green function

Ga(u) =
1
4π

∫ 1

0

(t(1− t))a−1(t + u)−a dt

for u, a > 0. This function is discussed in [Iw], §1.7. It is smooth except for a
logarithmic singularity at 0,

Ga(u) =
−1
4π

log(u) + O(1) as u → 0

and we have easily that Ga(u) ≤ u−a for a ≥ 1. The analytic continuation of
E∗

a(z, s, χ) will depend on the integral equation we establish next.
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Theorem 2.3. If θ(z) : H → C is an eigenfunction of 4 with eigenvalue λ that
satisfies θ(z) ¿ yσ + y−σ for σ > 0 then, when a > σ + 1,

−θ(w)
λ + a(1− a)

=
∫

H
Ga(u(w, z))θ(z) dµz

where from now on dµz will mean the hyperbolic invariant measure dxdy/y2.

Proof: The condition a > σ + 1 ensures the integral is absolutely convergent; use
the bounds

Ga(u(z, w))
y2

¿
{ 1

|z|a+2 y ≥ 1

ya−2

|z|2a+1 y < 1

assuming that z is not close to w, the implied constant depending on w. Thus

(
λ + a(1− a)

) ∫

H
Ga(u(w, z))θ(z) dµz

=
∫

H
Ga(u(w, z))

(
λ + a(1− a)

)
θ(z) dµz

=
∫

H
Ga(u(w, z))

(4z + a(1− a)
)
θ(z) dµz.

As in the last part of [Iw], Theorem 1.17 we divide H into a disc U and its comple-
ment V . The integral over U disappears as we let its radius go to zero. Applying
Green’s formula to V and using the equation

(4z + a(1− a)
)
Ga(u(z, w)) = 0

proves that

−θ(w) =
∫

H
Ga(u(w, z))

(4z + a(1− a)
)
θ(z) dµz. ¥

In fact a stronger result (which we won’t use) may be proven.

Theorem 2.4. If θ(z) : H→ C satisfies θ(z) ¿ yσ +y−σ for σ > 0 and has partial
derivatives up to order 2 with similar bounds then, when σ ¿ a,

−(4w + a(1− a)
) ∫

H
Ga(u(w, z))θ(z) dµz = θ(w).

Now we can exploit the fact that E∗
a(z, s, χ) is an eigenfunction of the Laplacian,

4zE
∗
a(z, s, χ) = s(s− 1)E∗

a(z, s, χ),

along with Lemma 2.2 and Theorem 2.3 to write

−E∗
a(z, s, χ)

(a(1− a)− s(1− s))
=

∫

H
Ga(u(z, z′))E∗

a(z′, s, χ) dµz′

for 2 < Re(s) < a− 1. The next Lemma will be used to break this integral up into
pieces.
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Lemma 2.5. Let Γ be a discrete subgroup of SL2(R) with fundamental domain F.
If f is any integrable function on H with

∫
H |f(z)| dµz < ∞ then

∫

H
f(z) dµz =

∫

F

∑

γ∈Γ

f(γz) dµz.

Proof: Use Lebesgue’s theorems on monotone and dominated convergence. ¥

Since ∫

H
|Ga(u(z, z′))E∗

a(z′, s, χ)| dµz′ < ∞

for Re(s) < a− 1

−E∗
a(z, s, χ)

(a(1− a)− s(1− s))
=

∫

F

∑

γ∈Γ

Ga(u(z, γz′))E∗
a(γz′, s, χ) dµz′

=
∫

F

∑
γ

Ga(u(z, γz′))χ(γ)
(
E∗

a(z′, s, χ)− 〈 γ, f 〉Ea(z′, s, χ)
)
dµz′.

Therefore, for 2 < Re(s) < a− 1 we get

−E∗
a(z, s, χ)

(a(1− a)− s(1− s))
=

∫

F
Ga(z, z′, χ)E∗

a(z′, s, χ) dµz′(2.1)

+
∫

F
G∗a(z, z′, χ)Ea(z′, s, χ) dµz′

where, for z 6≡ z′(mod Γ)

Ga(z, z′, χ) =
∑

γ

χ(γ)Ga(u(z, γz′))

=
∑

γ

χ(γ)Ga(u(γz, z′)),

G∗a(z, z′, χ) =−
∑

γ

χ(γ)〈 γ, f 〉Ga(u(z, γz′))

=
∑

γ

χ(γ)〈 γ, f 〉Ga(u(γz, z′)).

Proposition 2.6. Let Γz = {γ ∈ Γ : γz = z}. Then, for a > 1, the function
Ga(z, z′, χ) : H×H→ C is continuous except on the diagonal z ≡ z′(mod Γ) where
we have, for some fixed γ′ ∈ Γ,

Ga(z, z′, χ) =
−1
2π

log |γ′z − z′|χ(γ′)
∑

γ∈Γz

χ(γ) + O(1), as z′ → γ′z.

For a > 2 the function G∗a(z, z′, χ) : H×H→ C is continuous except at pairs (z, z′)
where we have z′ = γ′z and 〈 γ′, f 〉 6= 0, in which case

G∗a(z, z′, χ) =
1
2π

log |γ′z − z′|χ(γ′)〈 γ′, f 〉
∑

γ∈Γz

χ(γ) + O(1), as z′ → γ′z.
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Proof: Start with any z0, z
′
0 ∈ H. Let Dr(z) = {w ∈ H : u(z, w) < r} denote

an open hyperbolic ball. By [Sh], Prop 1.7 we can choose ε > 0 such that if
u(γz0, z0) < 2ε for any γ ∈ Γ then in fact γz0 = z0 (and the same for z′0). Fix an
ordering of Γ = {γi}i∈N with u(γiz0, z

′
0) ≤ u(γi+1z0, z

′
0). From [Iw], Lemma 2.11

there exists a C so that

(2.2) #{γ ∈ Γ : u(γz0, z
′
0) ≤ R} ≤ C(R + 1).

Let Φ be the finite set {γ1, γ2, . . . , γN} ⊂ Γ with u(γiz0, z
′
0) < 2ε. Consider the

series
∞∑

i=N+1

|Ga(u(γiz0, z
′
0))| ≤

∞∑

i=N+1

1
u(γiz0, z′0)a

for a ≥ 1.

It is absolutely convergent for a > 1 by (2.2). Now for any z ∈ Dε/2(z0), z′ ∈
Dε/2(z′0) we have

Ga(z, z′, χ) =
N∑

i=1

Ga(u(γiz, z′)) +
∞∑

i=N+1

Ga(u(γiz, z′))

= S1(z, z′) + S2(z, z′), say.

The terms in S2 are continuous and converge uniformly because

|Ga(u(γiz, z′))| ≤ u(γiz, z′)−a ≤ (u(γiz0, z
′
0)− ε)−a

≤ 2au(γiz0, z
′
0)
−a

so S2(z, z′) is continuous at (z0, z
′
0). S1 can have a discontinuity at (z0, z

′
0) only if

there is some γ′ ∈ Γ with γ′z0 = z′0. In that case γ′Γz0 = Φ. So

S1(z0, z
′) =

∑

γ∈γ′Γz0

χ(γ)Ga(u(γz0, z
′))

=
∑

γ∈γ′Γz0

χ(γ)
−1
4π

log |u(γ′z0, z
′)|+ O(1) as z′ → z′0 = γ′z0

=
−1
2π

log |γ′z0 − z′)|
∑

γ∈γ′Γz0

χ(γ) + O(1) as z′ → z′0 = γ′z0

as required. The result for G∗ is proven similarly. ¥

3. Applying Fredholm Theory

We must carry out some modifications to equation (2.1) before we can use the
next result.

Theorem 3.1 (Fredholm). Assume
∫
F dµz′ = V < ∞ and that K(z, z′) is

bounded and integrable on F× F, then for all λ ∈ C there exist D(λ) and Dλ(z, z′)
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entire in λ with the following property. If f(z) is any bounded integrable function
on F and if g(z) (defined on F) satisfies

g(z) = f(z) + λ

∫

F
K(z, z′)g(z′) dµz′

then g(z) is uniquely determined and given by the formula

g(z) = f(z) +
λ

D(λ)

∫

F
Dλ(z, z′)f(z′) dµz′

when D(λ) 6= 0.

Proof: See [Iw] A.4. ¥

Our situation is slightly complicated by dependence on a parameter s that will
be contained in a compact set S ⊂ C. K(z, z′) = Ks(z, z′) so D(λ) and Dλ(z, z′)
vary with s. Also f(z) = f(z, s) and λ = λ(s), where f , λ and K are analytic
functions of s on S. If g(z, s) is analytic in some neighborhood S′ ⊂ S and satisfies

(3.1) g(z, s) = f(z, s) + λ

∫

F
Ks(z, z′)g(z′, s) dµz′ ∀s ∈ S′

then by the theorem

g(z, s) = f(z, s) +
λ

D(λ)

∫

F
Dλ(z, z′)f(z′, s) dµz′

for all s ∈ S′, where D(λ) 6= 0. (We have assumed that Ks(z, z′) and f(z, s) are uni-
formly bounded in S.) But the right side of this last equation will be meromorphic
in the larger domain S. This is how we shall achieve the analytic continuation.

To get (2.1) into the right form we first eliminate the singularity at z = z′ of
Ga(z, z′, χ) by taking the difference

Gab(z, z′, χ) = Ga(z, z′, χ)−Gb(z, z′, χ), b < a

and similarly set G∗ab = G∗a−G∗b . With Lemma 2.6 we can see that these new series
are continuous on H×H. We obtain

E∗
a(z, s, χ)νab(s) =

∫

F
Gab(z, z′, χ)E∗

a(z′, s, χ) dµz′

+
∫

F
G∗ab(z, z′, χ)Ea(z′, s, χ) dµz′,(3.2)

when νab(s) = (a(1 − a) − s(1 − s))−1 − (b(1 − b) − s(1 − s))−1 and 2 < Re(s) <
b− 1. The kernel Gab(z, z′, χ) can be estimated in cuspidal zones using its Fourier
expansion, see [Iw], Lemma 5.4:

Gab(σaz, σbz′, χ)−(2a− 1)−1(y′)1−aEb(σaz, a, χ)

+(2b− 1)−1(y′)1−bEb(σaz, b, χ) ¿ e−2π(y′−y)

for y′ > y > Y.
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Following [Iw] we replace Gab(z, z′, χ) by a truncated version

GY
ab(z, z′, χ) : H× F→ C

which is bounded in z′. If z′ ∈ F(Y ) then set GY
ab(z, z′, χ) = Gab(z, z′, χ) otherwise

if z′ ∈ Fb(Y ) then

Gab(z, z′, χ) = GY
ab(z, z′, χ)+(2a− 1)−1Im(σ−1

b z′)1−aEb(z, a, χ)(3.3)

−(2b− 1)−1Im(σ−1
b z′)1−aEb(z, b, χ).

Consequently

GY
ab(σaz, σbz′, χ) ¿ e−2π(y′−y) for y′ > y > Y

and, (using the symmetry Gab(z, z′, χ) = Gab(z′, z, χ))

GY
ab(σaz, σbz′, χ)+ [ small things ]

−(2a− 1)−1(y′)1−aEb(σaz, a, χ) ¿ e−2π(y−y′) for y > y′ > Y

implying that

(3.4) GY
ab(σaz, σbz′, χ) ¿ yae−2π max{y′−y,0} for y, y′ > Y.

To see how this changes (3.2) we compute
∫

Fb(Y )

Gab(z, z′, χ)E∗
a(z′, s, χ) dµz′ =

∫

Fb(Y )

GY
ab(z, z′, χ)E∗

a(z′, s, χ) dµz′

+(2a− 1)−1Eb(z, a, χ)
∫

Fb(Y )

Im(σ−1
b z′)1−aE∗

a(z′, s, χ) dµz′

−(2b− 1)−1Eb(z, b, χ)
∫

Fb(Y )

Im(σ−1
b z′)1−bE∗

a(z′, s, χ) dµz′.

Now
∫

Fb(Y )

Im(σ−1
b z)1−aE∗

a(z, s, χ) dµz =
∫ 1

0

∫ ∞

Y

Im(z)1−aE∗
a(σbz, s, χ) dµz

=
∫ 1

0

∫ ∞

Y

y1−a(φ∗ab(s, χ)y1−s + · · · )
dxdy

y2

=φ∗ab(s, χ)
∫ ∞

Y

y−a−s dy

=φ∗ab(s, χ)
Y 1−a−s

a + s− 1
.

So

−νab(s)E∗
a(z, s, χ) =

∫

F
GY

ab(z, z′, χ)E∗
a(z′, s, χ) dµz′

+
Y 1−a−s

(2a− 1)(a + s− 1)

∑

b∈cusps

φ∗ab(s, χ)Eb(z, a, χ)

− Y 1−b−s

(2b− 1)(b + s− 1)

∑

b∈cusps

φ∗ab(s, χ)Eb(z, b, χ)

+
∫

F
G∗ab(z, z′, χ)Ea(z′, s, χ) dµz′,
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and we’ll denote the right-hand side of the last equality R(Y ). Next, to remove the
appearances of φ∗ab(s), we take a linear combination of the last equation with Y
replaced by Y , 2Y and 4Y . To be precise we use

R(Y )− 2s−1(2a+2b)R(2Y ) + 22s−2+a+bR(4Y )

=(2s−1+a − 1)(2s−1+b − 1)
(−νab(s)E∗

a(z, s, χ)
)

=
∫

F
G(z, z′, χ)E∗

a(z′, s, χ) dµz′

+ (2s−1+a − 1)(2s−1+b − 1)
∫

F
G∗ab(z, z′, χ)Ea(z′, s, χ) dµz′

where G(z, z′, χ) =
(
GY

ab − 2s−1(2a + 2b)G2Y
ab + 22s−2+a+bG4Y

ab

)
(z, z′, χ) and Y is

a fixed large number. This implies that

(2s−1+a − 1)(2s−1+b − 1)νab(s)E∗
a(z, s, χ)

=
−1

νab(s)

∫

F

G(z, z′, χ)
(2s−1+a − 1)(2s−1+b − 1)

× (2s−1+a − 1)(2s−1+b − 1)νab(s)E∗
a(z′, s, χ) dµz′

+ (2s−1+a − 1)(2s−1+b − 1)
∫

F
G∗ab(z, z′, χ)Ea(z′, s, χ) dµz′.

This can be rewritten neatly as

(3.5) h(z, s) = f(z, s) + λ(s)
∫

F
Hs(z, z′)h(z′, s) dµz′

when 3 < Re(s) + 1 < b < a with, (suppressing dependence on χ, a, b)

h(z, s) = (2s−1+a − 1)(2s−1+b − 1)νab(s)E∗
a(z, s, χ),

λ(s) =
−1

νab(s)
=

(a− s)(a + s− 1)(b− s)(b + s− 1)
(b− a)(a + b− 1)

,

Hs(z, z′) =
G(z, z′, χ)

(2s−1+a − 1)(2s−1+b − 1)
,

f(z, s) = (2s−1+a − 1)(2s−1+b − 1)
∫

F
G∗ab(z, z′, χ)Ea(z′, s, χ) dµz′.

Compare (3.5) with equation (3.1). To control the growth of H in the z variable
we use Selberg’s trick. Multiply through by η(z) = e−ηy(z) with 0 < η < 2π where
y(z) is the invariant height of z. It is not hard to see that η(z) is continuous. Our
restriction on η ensures that the term

(
η(z)η(z′)−1Hs(z, z′)

)
appearing in (3.6)

below is bounded, (see inequality (3.4)).
Define

Br = {s ∈ C : |s| ≤ r}.
Then Theorem 1.3 tells us that Ea(z, s, χ) is meromorphic for s ∈ C and can be
written

Ea(z, s, χ) =
Aa(z, s, χ)
Aa(s, χ)
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with both Aa(z, s, χ) and Aa(s, χ) analytic for s in some ball, Bc . Thus, multiplying
(3.5) through by Aa(s, χ) should eliminate the poles of f(z, s) for s inside this ball.

Set f̃(z, s) = Aa(s, χ)f(z, s) and h̃(z, s) = Aa(s, χ)h(z, s). Choose c < b − 1,
then for 2 < Re(s) and s ∈ Bc.

(3.6) η(z)h̃(z, s) = η(z)f̃(z, s) + λ

∫

F

(
η(z)η(z′)−1Hs(z, z′)

)(
η(z′)h̃(z′, s)

)
dµz′.

Our plan of attack is to use Fredholm’s Theorem to express h̃ as an integral de-
fined on the entire disc Bc and then to show this integral is in fact meromorphic.
Increasing the size of the disc will give the continuation to the whole plane.

Proposition 3.2. The function f̃(z, s) is bounded for (z, s) ∈ F× Bc and contin-
uous.

This will require several lemmas. To begin with we need to study G∗ab by com-
puting its Fourier expansion. Let c(a, b) = min{Cab} for Cab as defined in section
1.

Lemma 3.3. If δ > c(a, b)−2, yy′ > δ and ε > 0 then

G∗ab(σaz, σbz′, χ) ¿ (yy′)1−b for 2 + ε ≤ b < a

with the implied constant depending on δ, ε and b, (along with Γ, f).

Proof: By employing techniques described in [Iw], Chapter 5 we find that for
y′ > y with yy′ > δ > c(a, b)−2 and σ = Re(s) > 2

(2s− 1)G∗s(σaz, σbz′, χ) = φ∗ab(s, χ)(yy′)1−s

+ y1−s
∑

m6=0

φ∗ab(m, s, χ)Ws(mz′)(3.7)

+ (y′)1−s
∑

n6=0

ψ∗ab(n, s, χ)W s(nz)

+ (2s− 1)
∑

mn 6=0

Z∗s (m,n, χ)Ws(mz′)W s(nz),

where φ∗ab(m, s, χ) is defined by (1.3) and similarly

ψ∗ab(n, s, χ) =
πs

Γ(s)
|n|s−1

∑

c∈Cab

S∗ab(0, n, χ, f ; c)
c2s

.

Also

2
√
|mn|Z∗s (m,n, χ) =

∑

c∈Cab

c−1S∗ab(m,n, χ, f ; c) ·





J2s−1

(
4π

c

√
mn

)
mn > 0

I2s−1

(
4π

c

√
|mn|

)
mn < 0

where I2s−1(y) and J2s−1(y) are the standard Bessel functions. We must show that
the first term on the right of (3.7) dominates.

Choose a constant C such that for all y ≥ 0 we have (s = σ + it),

|I2s−1(y)|, |J2s−1(y)| ≤ Cy2σ−1ey.

We also require
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Lemma 3.4.
∑

c∈Cab

c−2sS∗ab(m,n, χ, f ; c) = O(1) for σ ≥ 2 + ε,

the implied constant depending on ε, f and Γ.

Proof: Consider the series

E+
a (z, s; f) =

∑

γ∈Γa\Γ
|〈 γ, f 〉|Im(σ−1

a γz)s.

This series is absolutely convergent for Re(s) > 2 giving a holomorphic function of
s. E+

a (z + 1, s; f) = E+
a (z, s; f) so we can develop its Fourier expansion. We are

interested in the constant term:
∫ 1

0

E+
a (x + iy, s; f) dx =

√
πy1−s Γ(s− 1

2 )
Γ(s)

∑

c∈Cab

S+
ab(0, 0, f ; c)

c2s
,

where
S+

ab(0, 0, f ; c) =
∑

γ∈Γ∞\σ−1
a Γσb/Γ∞

γc = c

|〈σaγσ−1
b , f 〉|.

Thus, for σ ≥ 2 + ε

∑

c∈Cab

|S∗ab(m,n, χ, f ; c)|
c2σ

≤ Γ(2 + ε)
Γ(2 + ε− 1

2 )
√

π

∫ 1

0

E+
a (x + i, 2 + ε; f) dx,

because the left side is a decreasing function of σ. ¥

Now we can see that

φ∗ab(m, s, χ) ¿ |m|s,
ψ∗ab(n, s, χ) ¿ |n|s

and Z∗s (m,n, χ) ¿ e
4π

c(a,b)

√
|mn|.

With the additional estimate Ws(mz) ¿ e−2πmy, we have
∑

m 6=0

φ∗ab(m, s, χ)Ws(mz′) ¿ e−2πy′ ,

∑

n 6=0

ψ∗ab(n, s, χ)W s(nz) ¿ e−2πy,

∑

mn 6=0

Z∗s (m,n, χ)Ws(mz′)W s(nz) ¿ e−2π(y+y′).

Combining our estimates proves that, for Re(s) > 2,

G∗s(σaz, σbz′, χ) ¿ (yy′)1−s

when y′ > y and yy′ > δ. For G∗ab we can remove the restriction y′ > y by using
the fact that G∗s(w, w′, χ) = −G∗s(w

′, w, χ) and noting that G∗ab is continuous at
y = y′. This completes the proof of Lemma 3.3. ¥
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Lemma 3.5. The product

G∗ab(w,w′, χ)Aa(s, χ)Ea(w′, s, χ)

is bounded for (w, w′, s) ∈ F× F× Bc when 3 < c + 1 < b < a.

Proof: First define
yΓ = min

z∈H
y(z),

where y(z) is the invariant height of z, see (1.0). Clearly yΓ > 0 and we can put
T = δ/yΓ, (the same δ as in Lemma 3.3). There are three cases:

Case 1: (w, w′, s) ∈ F(T )× F(T )× Bc.
G∗ab(w, w′, χ)Aa(s, χ)Ea(w′, s, χ) is bounded on this set since the set is compact
and this function is continuous on it.

Case 2: (w, w′, s) ∈ Fb(T )× F× Bc.
Let σbz = w. We have that Im(z) ≥ δ/yΓ. For each w′ ∈ F we can choose a cusp τ
such that στz′ = w′ and Im(z′) ≥ yΓ. By Lemma 3.3, G∗ab(σbz, στz′, χ) ¿ (yy′)1−b.
As σbz′ approaches the cusp b, Ea(σbz′, s, χ) ≈ δaτ (y′)s + φaτ (s, χ)(y′)1−s and the
product is bounded. Also Aa(s, χ) cancels any poles of Ea so we’re done.

Case 3: (w, w′, s) ∈ F(T )× Fb(T )× Bc.
Similar proof to case 2. ¥

Therefore f̃(z, s) is bounded on F × Bc since the volume of F is finite. Lastly
Lebesgue’s theorem on dominated convergence can be applied to establish continu-
ity. This completes the proof of Proposition 3.2. ¥

We are now in a position to apply Fredholm’s theorem to (3.6). The result is:

η(z)h̃(z, s) = η(z)f̃(z, s) +
λ

D(λ)

∫

F
Dλ(z, z′)η(z′)f̃(z′, s) dµz′,

thus

(3.9) h̃(z, s) = f̃(z, s) +
λ

D(λ)

∫

F
η(z)−1η(z′)Dλ(z, z′)f̃(z′, s) dµz′

for each s ∈ Bc such that D(λ) 6= 0. Recall that h̃(z, s) is just the product of a
meromorphic function and E∗

a(z, s, χ). Our final task is to demonstrate that the
right-hand side of (3.9) is meromorphic in s. We need a proposition giving criteria
for the analyticity of the types of integrals we’re encountering. The next result is
based on [G], Theorem 8-1-5.

Proposition 3.6. Let F be a region in C with
∫
F dµz = V < ∞. Let r and R be

the radii of closed balls Br and BR with r < R. Assume φ : F × BR → C has the
following properties:

(i) for fixed s, φ(z, s) is a continuous function of z (except perhaps for z in a
set of measure zero),

(ii) for fixed z, φ(z, s) is analytic in s,
(iii) φ is bounded on F× BR.



PROPERTIES OF EISENSTEIN SERIES FORMED WITH MODULAR SYMBOLS 17

Then ψ(s) =
∫
F φ(z, s) dµz is analytic on Br and d

dsψ(s) =
∫
F φs(z, s) dµz where

φs(z, s) = d
dsφ(z, s).

Remark. The proposition remains true if the condition V < ∞ is dropped.

Corollary 3.7. For each z, f̃(z, s) is analytic for s ∈ Bc.

Proof: Let φ(z, s) = G∗ab(w, z, χ)Aa(s, χ)Ea(z, s, χ). Then G∗ab is continuous in z
by Prop. 2.8 and Ea is continuous in z by Theorem 1.3. So condition (i) holds.
We know that Aa(s, χ)Ea(z, s, χ) = Aa(z, s, χ) on Bc with Aa(z, s, χ) analytic in s,
(Theorem 1.3), so condition (ii) holds. Finally condition (iii) is Lemma 3.5. ¥

It remains to prove that
∫
F η(w)−1η(z)Dλ(w, z)f̃(z, s) dµz is analytic in s. Since

η(z) and f̃(z, s) are both continuous in z, analytic in s and bounded, to apply Prop.
3.6 we need only check that Dλ(w, z) has these properties.

D(λ) and Dλ(w, z) are constructed from the kernel

Ks(w, z) = η(w)η(z)−1Hs(w, z)

occuring in equation (3.6) as follows. Define

Ks

(
w1, . . . , wn

z1, . . . , zn

)
= det

(
Ks(wi, zj)

)
,

for 1 ≤ i, j ≤ n and put

n! dn(s) =
∫
· · ·

∫
Ks

(
z1, . . . , zn

z1, . . . , zn

)
dµz1 · · · dµzn,

n! dn(w, z, s) =
∫
· · ·

∫
Ks

(
w, z1, . . . , zn

z, z1, . . . , zn

)
dµz1 · · · dµzn

where the multiple integrals are over F and let

D(λ) =1 +
∞∑

n=1

dn(s)(−λ)n,

Dλ(w, z) = Ks(w, z) +
∞∑

n=1

dn(w, z, s)(−λ)n.

Recall that Ks(w, z) is bounded by K, say, for (w, z, s) ∈ F × F × Bc. We use
Hadamard’s inequality

|det(aij)|2 ≤
∏

i


∑

j

|aij |2

 ,

to bound the coefficients
∣∣∣∣Ks

(
w1, . . . , wn

z1, . . . , zn

)∣∣∣∣ ≤
(√

nK
)n

,
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implying that n! |dn(s)| ≤ (√
nKV

)n (where again V is the volume of F). Thus
D(λ) is analytic in s and D(λ) ¿ exp(3|λ|KV )2. Similarly we can see that

n! |dn(w, z, s)| ≤ (√
n + 1K

)n+1
V n.

This inequality shows that the series converges uniformly and is bounded. Each
term in the series is analytic in s for s ∈ Bc and continuous in z except on the set

⋃

b∈cusps

{σb(x + iY ), σb(x + i2Y ), σb(x + i4Y ) : 0 ≤ x ≤ 1}

where we truncated Gab in (3.3). Therefore D(λ)h̃(z, s), by the last proposition, is
analytic on Bc for any fixed z.

Theorem 3.8. Let Γ be a Fuchsian group of the first kind with cusps. For each
cusp a the Eisenstein series E∗

a(z, s) has a meromorphic continuation to the entire
s-plane. More precisely for any c > 0 with c + 1 < b < a there exist non-zero
functions A∗a(z, s, χ) : F × Bc → C and A∗a(s, χ) : Bc → C such that the following
hold:

(i) A∗a(s, χ) and A∗a(z, s, χ) are analytic in s of order ≤ 8,
(ii) A∗a(s, χ)E∗

a(z, s, χ) = A∗a(z, s, χ) for s ∈ Bc and 2 < Re(s),
(iii) (4z + s(1− s))A∗a(z, s, χ) = 0,
(iv) A∗a(γz, s, χ) = χ(γ) [A∗a(z, s, χ)− 〈 γ, f 〉Ea(z, s, χ)] for all γ ∈ Γ,
(v) A∗a(z, s, χ) is real analytic in (z, s),
(vi) A∗a(z, s, χ) ¿ eηy(z) for any η > 0,

where the implied constant depends on η, s and of course Γ and f .

Proof: We set

A∗a(s, χ) = (2s−1+a − 1)(2s−1+b − 1)D(λ)Aa(s, χ)

and A∗a(z, s, χ) = −λD(λ)h̃(z, s)

where h̃(z, s) is given by (3.9). Parts (i) and (ii) have been shown. Parts (iii)
and (iv) are true by analytic continuation. Part (vi) can be seen by noting that,
for a fixed s, the only unbounded term occuring in A∗a(z, s, χ) is η(z)−1. Part (v)
is harder to prove. It follows from the theory of partial differential equations, in
particular the theorem on the analyticity of the solutions of an elliptic operator
with dependence on a parameter. To see that A∗a(z, s, χ) is at least continuous in
(z, s), use equation (3.9), Proposition 3.2 and that Ks(z, z′) is continuous in (z, s).

Finally, by increasing c, the continuation can be extended to the entire complex
s-plane. ¥

We can deduce a number of results from Theorem 3.8:
• The Fourier coefficients φ∗ab(s, χ) and φ∗ab(n, s, χ) can be meromorphically

continued to all of C.
• The Fourier expansion (1) is valid for all s with A∗a(s, χ) 6= 0.
• We have the bound

E∗
a(σbz, s, χ) = φ∗ab(s, χ)y1−s + O(e−2πy)

as y →∞ when A∗a(s, χ) 6= 0, the implied constant depending on s.
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4. The Functional Equation

Define E(z, s, χ) to be the column vector
(
Ea(z, s, χ)

)
as a varies over all in-

equivalent cusps. Similarly E∗(z, s, χ) =
(
E∗

a(z, s, χ)
)

and we have the ‘scattering’
matrices

Φ(s, χ) =
(
φab(s, χ)

)
, Φ∗(s, χ) =

(
φ∗ab(s, χ)

)
.

Two more pieces of notation: define A(Γ\H, χ) to be the set of all functions f on
H satisfying f(γz) = χ(γ)f(z) for all γ ∈ Γ. The set of such f that also satisfy

(4+ s(1− s)
)
f = 0

we’ll call As(Γ\H, χ). Now, assuming the meromorphic continuation of E and E∗
to the entire s-plane, we can show the following

Theorem 4.1. E∗(z, s, χ) satisfies,

Φ(s, χ)E∗(z, 1− s, χ) = E∗(z, s, χ)− Φ∗(s, χ)Φ(1− s, χ)E(z, s, χ)

for all s ∈ C and

Φ(s, χ)Φ∗(1− s, χ) = −Φ∗(s, χ)Φ(1− s, χ).

Proof: For Re(s) > 2 we know that

E∗
a(γz, s, χ) = χ(γ)

(
E∗

a(z′, s, χ)− < γ, f > Ea(z′, s, χ)
)

and (4+ s(1− s))E∗
a(z, s, χ) = 0, so by analytic continuation they remain valid for

all s ∈ C. Assume, for the remainder, that Re(s) > 2. Consider

F(z, s, χ) = E∗(z, s, χ)− Φ(s, χ)E∗(z, 1− s, χ).

We compute

F(γz, s, χ) = E∗(γz, s, χ)− Φ(s, χ)E∗(γz, 1− s, χ)

= χ(γ)
[(E∗(z, s, χ)− < γ, f > E(z, s, χ)

)

−Φ(s, χ)
(E∗(z, 1− s, χ)− < γ, f > E(z, 1− s, χ)

)]

= χ(γ) [E∗(z, s, χ)− Φ(s, χ)E∗(z, 1− s, χ)

− < γ, f >
(E(z, s, χ)− Φ(s, χ)E(z, 1− s, χ)

)]

= χ(γ) [F(z, s, χ)− < γ, f > ·0] = χ(γ)F(z, s, χ).

(We used the functional equation for E(z, s, χ), [Se],Theorem 7.3). Therefore we’ve
shown that

Fa(z, s, χ) = E∗
a(z, s, χ)−

∑

b

φab(s, χ)E∗
b(z, 1− s, χ) ∈ A(Γ\H, χ).

Also

(4+ s(1− s))Fa(z, s, χ) = 0 implies that Fa(z, s, χ) ∈ As(Γ\H, χ).
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Fa(z, s, χ) ¿ eεy(z) for ε > 0 by Theorem 3.8 so, invoking [Se], Lemma 7.1, it must
be a linear combination of Eisenstein series,

Fa(z, s, χ) =
∑

b

Υab(s, χ)Ea(z, s, χ).

Hence

(
φ∗ac(s, χ)y1−s + · · · )−

∑

b

φab(s, χ) (φ∗bc(1− s, χ)ys + · · · )

=
∑

b

Υab(s, χ)
(
δbcy

s + φbc(s, χ)y1−s + · · · ) .

Equating coefficients of ys and y1−s we get

−
∑

b

φab(s, χ)φ∗bc(1− s, χ) =
∑

b

Υab(s, χ)δbc = Υac(s, χ)

and φ∗ac(s, χ) =
∑

b

Υab(s, χ)φbc(s, χ).

We know, (because E(z, s, χ) = Φ(s, χ)E(z, 1− s, χ)), that

Φ(s, χ)Φ(1− s, χ) = I.

Consequently we arrive at the following formulas

− Φ(s, χ)Φ∗(1− s, χ) = Υ(s, χ) = Φ∗(s, χ)Φ(1− s, χ),

E∗(z, s, χ)− Φ(s, χ)E∗(z, 1− s, χ) = Υ(s, χ)E(z, s, χ).

Therefore

Φ(s, χ)E∗(z, 1− s, χ) = E∗(z, s, χ)− Φ∗(s, χ)Φ(1− s, χ)E(z, s, χ),

or perhaps more simply,

E∗(z, 1− s, χ) = Φ(1− s, χ)E∗(z, s, χ) + Φ∗(1− s, χ)E(z, s, χ).

These equalities are true for Re(s) > 2 but extend to all s ∈ C by analytic contin-
uation. ¥

The scattering matrix Φ∗(s) plays an important role in the theory. We already
know that Φ(s) is symmetric.

Proposition 4.2. For Γ a Fuchsian group of the first kind, Γ ⊂ PSL2(R) or
−I ∈ Γ ⊂ SL2(R), the scattering matrix Φ∗(s) with character χ = 1 is skew
symmetric.



PROPERTIES OF EISENSTEIN SERIES FORMED WITH MODULAR SYMBOLS 21

Proof: Recall that Cab =
{

c > 0 :
( ∗ ∗

c ∗
)
∈ σ−1

a Γσb

}
. If γ ∈ σ−1

a Γσb then

γ−1 ∈ σ−1
b Γσa. Also note that γc =

(−I γ−1
)
c

implying that Cab = Cba. Then, by
a simple calculation,

S∗ba(0, 0; c) =
∑

δ∈Γ∞\σ−1
b Γσa/Γ∞

δc = c

〈σbδσ−1
a , f 〉

=
∑

δ∈Γ∞\σ−1
a Γσb/Γ∞

δc = c

〈σb(−I δ−1)σ−1
a , f 〉

=
∑

δ∈Γ∞\σ−1
a Γσb/Γ∞

δc = c

−〈σaδσ
−1
b , f 〉

= − S∗ab(0, 0; c).

Thus, for Re(s) > 2, Φ∗(s) = −tΦ∗(s). The Proposition then follows. ¥
Corollary 4.3. For Γ as above, φ∗aa(s) = 0, for each cusp a.
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