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Abstract. In this paper we present an integral operator that arises in the context of linear 
dynamical systems, which describes the time evolution of the state probability density function. 
We propose a finite rank approximation to this integral operator and show that this finite rank 

operator converges in norm to the integral operator. We discuss Markov chains arising from this 

finite rank approximation, and show that the eigenvalues of the transition matrices of these Markov 
chains converge to the eigenvalues of the integral operator as the number of divisions in the state­
discretization is increased. 
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1. Introduction. This work is part of a program of study related to the approx­

imation of discrete-state systems by linear continuous-state systems. The motivation 

for this approximation is the computational complexity of discrete-state algorithms 

when the number of states becomes large (e.g. the Viterbi algorithm), as opposed to 

the simplicity of the continuous state counterparts (e.g. the Kalman filter). We are 

interested in having a characterisation of the class of discrete-state systems which are 

amenable to such an approximation, and as part of this characterisation we have be­

gan by studying the inverse process. Specifically, we have investigated the properties 

ofdiscrete-state models that arise in the state-discretization of continuous-state linear 

systems. In particular, this paper examines a finite rank approximation to transition 

operators for continuous-state systems. For the continuous-state systems studied here, 

the transition operator is given by an integral operator. As a result of the finite rank 

approximation, a state-discretization is performed, yielding a discrete-state Markov 

chain. For the latter, the transition operator is given by a transition matrix. The 

limiting properties of the eigenvalues and eigenvectors of these transition matrices are 

shown to be related to the ones of the continuous-state transition operator. 

In order to simplify the notation and to facilitate the presentation of the main 

ideas, we present here the case of first order continuous state systems. These results 

can be extended to the general case in a straightforward manner [1], although the 

notation in that case is far more complicated. Related work can be found in [3], 

[5] and [8] in a more general setting. However, since our work, as reported here, 

is restricted to linear continuous-state systems, we are able to provide more specific 

information about the structure of the discrete-state approximation. 

The paper is organised as follows. In section 2 we present an integral opera­

tor that describes the time evolution of the state probability density function for 

continuous-state linear systems. Eigenvalues and eigenfunctions of this operator are 

also presented. In section 3 we propose a finite rank approximation to this integral 

operator. The proposed approximation consists of a partition of the state space into 
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subintervals and a piecewise constant approximation of the kernel of the integral op­

erator. We prove that this approximation converges to the integral operator in norm. 

In section 4 we relate the finite rank approximation to Markov chains obtained as a 

result of the state space discretization. In particular, we show that the eigenvalues of 

the transition matrix of the Markov chain and those of the finite rank operator are 

the same. In section 5 we show that the eigenvalues of the transition matrices have 

limiting points, as the state discretization becomes finer and finer, in a subset of the 

eigenvalues of the integral operator. We illustrate this convergence by an example 

and in section 6 we present the conclusions. 

2. Integ:raJ operators in linear dynamical systems. We consider a first 

nrrl _;f linear autoregressive model 

(2.1) 

where t E z+ represents a discrete-time index, Xt, Xf+l E lR are the states at times 

t and t + 1 respectively. Vt E lR is an independent and identically distributed (iid) 

sequence of random variables with finite variance, and the initial state x0 is assumed 

to have arbitrary distribution save that it has finite variance and is independent of Vt 

for all t. The coefficients a and b are assumed to satisfy: 0 -:f. < 1 and b -:f. 0. 

We will denote the density function (pdf) of a random variable y, 

evaluated at the point of the real line y1 , . We will assume that all the pdf's 

of interest have support inside the interval [-A, of the real where 

A is arbitrarily large. This is necessary in the proofs to follow. From 

an engineering perspective, it covers most distributions of interest. Other common 

distributions can be arbitrarily closely a distribution with "'"'"""'"'" 

support. We also assume that the to £ 2 A]). 
The of xt+1 can be expressed in terms of those of Xt and Vt (for example by 

using the auxiligry variables method, see e.g. [7]) the following integral operator: 

(y)dy g, 

where the kernel is given k(x,y) = fv (we omit the notation in fv, 

since Vt is iid). Eq. defines a convex operator on the convex space of pdf's. Since 

we are interested in spectral properties, we Twork with the extension of this operator 

to the linear space .C2 ([-A, A]). Note that this extension is the linear operator Ton. 

£ 2 ([-A, defined by (2.2). 

Since Vt is Hd and lal < 1, there exists a pdf, denoted 

in Eq. (2.2) for example Theorems 2.3 and 2.7 in for a proof of the more 

general case where the coefficients in the autoregressive model are random). 

We now concentrate on the spectral properties of the operator T which are, as 

shown in the following sections, directly related to the spectrum of the Markov chains 

resulting from the state discretization. The following lemma gives some of these prop­

erties. 
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Lemma 2.1. The complex numbers AT and the functions VT given by: 

(2.4) 

(2.5) 

are eigenvalues and eigenfunctions of the operator T, where n is an arbitrary nonneg­

ative integer. 

Proof. Note first that Eq. (2.2) can be written as the convolution: 

(Tfx.)(x) = ,:bl fv (~) * fxt (~), (2.6) 

and hence, by (2.3) we have 

(2.7) 

Then, the operator T applied to the nth derivative of fxoo can be evaluated as follows: 

(2.8) 

where the second equality follows from the chain rule, the third equality from linearity 

of the convolution and the last from Eq. (2.7). D 

REMARK 2.1. Since the operator Tis compact ([2]), the set of eigenvalues ofT 

is countable and AT = 0 is the only possible point of accumulation of the set ([4]). 
From this, we conjecture that the set given by (2.4) is the set of all the eigenvalues of 

T. 

3. Finite rank approximation. The integral operator T defined by Equation 

(2.2) provides the time evolution of the continuous-state probability density functions. 

We are interested now in obtaining a finite rank approximation to this operator. Since 

we have assumed that all the pdf's of interest have compact support inside the interval 

[-A, A] we will restrict our study to this bounded interval, and write the operator T 
as: 

(T f)(x) = /_: k(x, y)f(y)dy, (3.1) 

for f E £ 2 ([-A,A]). 
To discretize the region [-A, A] of the state space we use the idea of refine­

ments ([5], [8]), i.e. we divide [-A, A] into N subintervals of length 2AfN denoted 
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e1.e2,··· ,eN. We also use ki,j to denote the scaled integral of k(x,y) over the cell 

ei x ei: 

ki,j = (~r L 1; k(x,y)dydx, 

and define a piecewise-constant function on [-A, A] x [-A, A] by 

N N 

nt(x, y) = L L ki,jXe, (x)Xe; (y), 

i=l j=l 

(3.2) 

(3.3) 

namely, a scaled piecewise-constant approximation of the kernel, averaged over a finite 

::>1cment. In Eq. (3.3), Xe, (-) is the indicator function: 

X ( ) { 1 if x E ei 
e; X = 0 otherwise (3.4) 

and analogously for Xe; ( ·). 

We now define the finite rank approximation TN of the operator T as the integral 

operator with kernel nt(·, ·). Direct computation from (3.2) and (3.3) shows that the 

image of the operator TN, applied to f E .C2 ([-A,A]), is constant over each cell ei 

taking the value: 

(TNJ)(x) ~ /_: nt(x,y)f(y)dy 

= ~ t, [ (L L k(x, y)dydx) ( ~ L f(z)dz)] ; fo, x E e;.(3.5) 

Lemma 3.1. TN converges toT in the natural norm of operators on .C2 ([-A, A]). 

Proof. From the Holder inequality it can be shown from (3.1) and (3.5) that: 

(3.6) 

If the function k is continuous, it is uniformly continuous in the compact interval 

[-A, A] x [-A, A]. It follows that the functions nt converge uniformly to k. Thus, 

in the case of continuous k, it follows from the inequality II· ll2 ~ 2AII·IIoo that the 
right-hand side of Equation (3.6) converges to zero as the number of divisions N tends 

to infinity. For an arbitrary k E .C2 ([-A, A] x [-A, A]), we can approximate k in the 

2-norm by a continuous function g (i.e. Ilk- gll2 ~ 0). For any N, the corresponding 

discrete approximations nt and n!Jv, given by (3.2) and (3.3), satisfy: 

lint- n!Jvll~ = /_: /_: ~ Xe, (x)Xe; (y)lki,j- gi,jl 2dydx 

t,J 

= t: ( ~ )' I ( ~ )' ~~ ( (k(x, y) - g(x, y))X., (x)X,, (y)dydx 
2 

(3. 7) 

~ ~ (~) 2
ll(k- g)Xe,Xe;llr 

t,J 
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Now, writing the identity (k- g)Xe,XeJ = [(k- g)Xe,Xei][Xe,XeiJ, and applying the 

Holder inequality gives 

lln:V- n}vll~ ~ 2: (~) 2
ll(k- g)Xe,Xej II~IIXe,Xej II~ 

>,J 

= 2.: ll(k- g)Xe,Xej ~~~ =Ilk- 911~· (3.8) 
i,j 

Since we have already seen that lln}v- gll2 --7 0 for the continuous function g, and 

since from (3.8) we have 

lln:V- kll2 ~ lln:V- n}vlh + lln}v- 9112 + IIY- klb 
~ 2llk- Yll2 + lln}v- 9lb, (3.9) 

we deduce that lln:Z,- kll2 --7 0. Therefore, we conclude from (3.6) that the operator 

TN converges toT in norm. D 

4. State-discretization: Markov chains. From the approximation of the last 

section we can perform a state-discretization of system (2.1), and define a Markov 

chain (see definitions in, for example, [5] and [7]) on the resulting discrete state space, 

as follows. 

The probability vectors of the Markov chain are given by: 

Pt ~ (P{xt E ei},··· ,P{xt E eN})T (4.1) 

where P{xt E ej} = 1. fx, (x)dx. 

' 

The transition matrix between timet and t + 1, Qt = {q~l}, 1 ~ i,j ~ N, is 

defined as: 

where fx,+ 1 ( • lxt E ej) is the conditional probability of the random variable Xt+l 

given that the random variable Xt belongs to the subinterval ej (see e.g. [7] for this 

notation). Notice that we have made explicit the dependence of Qt on t. If this is 

not the case, we say that the Markov chain has stationary or homogeneous transition 

probabilities, and denote by Q the corresponding transition matrix. The pdf fx,+ 1 in 

(4.2) is computed from Eq. (2.2). Also, we simplify the computation of the matrix 

Qt by approximating the pdf's fx, by functions fx, that assume piecewise-constant 

values in each subset ei. This approach has the advantage that the transition matrices 

are stationary (see the independence from tin the last expression ofEq. (4.3)). Using 

the definition of the matrix Q in Eq. (4.2), fx,+ 1 defined by (2.2) and the properties 

of conditional probabilities and of the piecewise-constant approximation fxk , it can 
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be shown that the elements of the transition matrix are: 

qij = l (I: k(x, y)Jx, (ylxt E ej)dy) dx 

= { { k(x,y) ( f:,(Y) ) dydx 
Je; le; fe; fx,(z)dz 

(4.3) 

= ~ 1.1; k(x,y)dydx, 

where we have omitted the reference tot in qij since k(·, ·)is independent oft. Notice 

from (3.2) and (4.3) that qij is a scaled version of the values kij which, in turn, 

generate n~(·, ·),the piecewise-constant approximation of the kernel k(·, ·). 

Lemma 4.1. The eigenvalues of the operator TN and those of the matrix Q 
are the same, and the eigenfunctions of TN are given by the piecewise-constant held 

versions of the eigenvectors of Q, i.e. functions of the form: 

/vq(x)=vQi if xEei, i=1,2,···,N, 

where fvq represents an eigenfunction ofTN and {vQJ; 1:::; i:::; N; is an eigenvector 

of the matrix Q. 

Proof. From (4.3) we have that the ith element of the product of the matrix Q 
and a vector p = {pj}; 1:::; j:::; N; is given by: 

(Qp), ~ 2: t, [ (!.. L (4.4) 

Let VQ = {vQJ; 1 :::; i:::; N; be an eigenvector of the matrix Q which corresponds 

to the eigenvalue AQ, i.e. Q, VQ and AQ satisfy: QvQ = AQVQ. Now, consider a 

function /vq constructed by holding each value of VQ constant over the correspond­

ing subset (i.e. = Li VQiXei, with Xei given (3.4)). Then, noticing that 

~ fei fvo.(z)dz = VQi' it can be seen from (3.5) and (4.4) that TN is constant 

over each subset ei with value: 

(TNfvq)(x) = (QvQ)i; for x E ei 

= AQVQi ; for x E ei 

= AQ/vq(x); for x E ei 

(4.5) 

Hence (TNfvq)(x) = AQ!vq(x) \:fx, and we conclude that AQ is an eigenvalue of TN 

whose corresponding eigenfunction is f vq. D 

REMARK 4.1. In the next section, the functions fvq are illustrated for an ex­

ample. In figure 5.3 we show four eigenfunctions of TN for different values of N, the 

number of subintervals in the state discretization. 
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5. Limiting properties of the eigenvalues of the transition matrices. We 

denote by >.r the eigenvalues of the operator T and by AQ(N) the eigenvalues of the 

transition matrix Q obtained with a partition of N cells. Notice that the spectrum 

of Q, u(Q), has N points. We are interested in the accumulation (or limit) points of 

these sets as N --+ oo. The following theorem provides a connection between these 

accumulation points and the eigenvalues of the operator T. 

Theorem 5.1. The set of non-zer·o limit points, as N --+ oo, of eigenvalues 

AQ(N) is a subset of the set of eigenvalues AT of the operator T. 

Proof. In Lemma 4.1 we proved that the eigenvalues of Q are the same as the 

eigenvalues of the operator TN defined in (3.5). Thus, we need to establish that the 

set of non-zero limit points of the eigenvalues of the operator TN is a subset of the 

set of eigenvalues of the operator T. For this purpose, let's suppose that ). -j:. 0 is a 

limit point of a sequence of eigenvalues AN of TN, then we have to show that A is 

an eigenvalue ofT. In Lemma 3.1 we proved that the operator TN converges to T 

in the natural norm of operators on .C2 ([-A, A]). Hence, C>w I - TN) converges to 

(>.I-T) in norm. Since the set of invertible operators is open ([9] Theorem 10.12), if 

( >w I - TN) is not invertible (i.e. AN belongs to the spectrum of TN) for all N then 

(>.._I - T) is not invertible (i.e. >. belongs to the spectrum ofT). Since the operator 

T is compact ([2]), and for a compact linear operator every spectral value, with the 

possible exclusion of zero, is an eigenvalue ([4] Theorem 8.4-4), the theorem is proved. 

D 

EXAMPLE 5.1. In order to illustrate the convergence of eigenvalues and eigenvec­

tors let's consider the model in (2.1) with a= 0.5, b = 1, Vt ""'Uniform[-2, 2] and 

iid, and x 0 "" Uniform[-10, 10] and independent of Vt for all t. 
Notice from (2.4) and (2.5), that the eigenvalues and eigenfunctions of the oper­

ator T defined by (3.1) are given, respectively, by: 

where fx= is the stationary pdf which satisfies fxoo = T fxoo. In figure 5.1 the station­

ary pdf fxoo and its three first derivatives are shown. The eigenfunctions are ordered 

according to the magnitude of the corresponding eigenvalue (i.e. the first eigenfunction 

corresponds to the larger eigenvalue, etc.). 

Since all distributions in this example have compact support equal or contained 

in the interval [-10, 10] of the real line, the region in the state space to be discretized 

is chosen as the interval (-10, 10]. This interval is divided into N subsets of size 

20/N and a Markov chain is defined on the discrete state space { e1, e2, · · · , eN}. The 

transition probability matrix Q is computed using Equation (4.3). 

In figure 5.2 the eight larger eigenvalues of the matrices Q corresponding to 

different values of N (denoted AQ(N)) are shown on a logarithmic scale. Notice that 

they converge to the eigenvalues 0.5n corresponding to the continuous-state operator 

T: 

log(>.._Q(N)) --+ log(0.5n) = n; for n = 0, 1, ... , 7 
log(0.5) log(0.5) -

(5.1) 
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First eigenfunction 
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)( 

FIG. 5.1. Eigenfunctions of the operator T corresponding to the four eigenvalues of larger 

magnitude {1, 0.5, 0.25 and 0.125 respectively). 

as N -> oo. Notice also that the number of points N needed for convergence of the 

successive eigenvalues is exponentially increasing. The reason for this can be found in 

figure 5.1. The successive eigenfunctions have peaks, the number of which increases 

proportionally to the powers of two of the eigenfunction order. Therefore, in order to 

have a faithful representation of them with the eigenvectors of the Q matrices, the 

number of turning points of the eigenvectors increases as powers of two. In general, 

for a particular N, unless an eigenfunction of TN approximates one of T, we cannot 

expect the corresponding eigenvalues to be dose approximations. 

FIG. 5.2. Eight larger eigenvalues of matrices Q on logarithmic scale log(>.Q (N))flog(0.5) as 

a function of the number of subintervals N. 
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In figure 5.3 the eigenfunctions corresponding to the four eigenvalues of larger 

modulus of the operators TN for N = 10, 100, 200 and 300 are shown to illustrate their 

convergence to the eigenfunctions ofT depicted in figure 5.1. The eigenfunctions are 

ordered, as in figure 5.1, according to the magnitude of the corresponding eigenvalue. 

0.2 

0.1 

0 

-1 

-10 

First eigenvector 

X 

Third eigenvector 

10 
)( 

0 

-1 

2 

0 

-2 

-10 

Second eigenvector 

X 

Fourth eigenvector 

10 
)( 

FIG. 5.3. Eigenfunctions of the finite rank operators TN corresponding to the four eigenvalues 

of larger magnitude for N = 10, 100, 200 and 300 subintervals. 

6. Conclusions. An integral operator that represents the time evolution of the 

state probability density function for linear dynamical systems, together with its eigen­

values and eigenvectors, has been presented. A finite rank approximation to the inte­

gral operator has been discussed and it has been shown that the finite rank operators 

converge in norm to the integral operator. Markov chains arising from the finite rank 

approximation have also been presented. It has been shown that the eigenvalues of 

the transition matrices of the Markov chains converge to the eigenvalues of the inte­

gral operator as the number of divisions in the state-discretization is increased. This 

latter fact has been illustrated by an example. The results presented can be extended 

to the case of higher order systems and this has been reported in (1]. 
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