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ABSTRACT

We analyse parallel N-body simulations of three Cold Dark Matter (CDM) universes
to study the abundance and clustering of galaxy clusters. The simulation boxes are
500h−1Mpc on a side and cover a volume comparable to that of the forthcoming Sloan
Digital Sky Survey. The use of a treecode algorithm and 47 million particles allows us
at the same time to achieve high mass and force resolution. We are thus able to make
robust measurements of cluster properties with good number statistics up to a redshift
larger than unity. We extract halos using two independent, public domain group find-
ers designed to identify virialised objects – ‘Friends-of-Friends’ (Davis et al. 1985) and
‘HOP’ (Eisenstein & Hut 1998) – and find consistent results. The correlation function
of clusters as a function of mass in the simulations is in very good agreement with
a simple analytic prescription based upon a Lagrangian biasing scheme developed by
Mo & White (1996) and the Press-Schechter (PS) formalism for the mass function.
The correlation length of clusters as a function of their number density, the R0–Dc

relation, is in good agreement with the APM Cluster Survey in our open CDM model.
The critical density CDM model (SCDM) shows much smaller correlation lengths than
are observed. We also find that the correlation length does not grow as rapidly with
cluster separation in any of the simulations as suggested by the analysis of very rich
Abell clusters. Our SCDM simulation shows a robust deviation in the shape and evo-
lution of the mass function when compared with that predicted by the PS formalism.
Critical models with a low σ8 normalization or small shape parameter Γ have an excess
of massive clusters compared with the PS prediction. When cluster normalized, the
SCDM universe at z = 1 contains 10 times more clusters with temperatures greater
than 7keV, compared with the Press & Schechter prediction. The agreement between
the analytic and N-body mass functions can be improved, for clusters hotter than 3
keV in the critical density SCDM model, if the value of δc (the extrapolated linear

theory threshold for collapse) is revised to be δc(z) = 1.685 [(0.7/σ8)(1 + z)]
−0.125

(σ8

is the rms density fluctuation in spheres of radius 8h−1Mpc). Our best estimate for
the amplitude of fluctuations inferred from the local cluster abundance for the SCDM
model is σ8 = 0.5 ± 0.04. However, the discrepancy between the temperature func-
tion predicted in a critical density universe and that observed at z = 0.33 (Henry et

al. 1998) is reduced by a modest amount using the modified Press-Schechter scheme.
The discrepancy is still large enough to rule out Ω0 = 1, unless there are significant
differences in the relation between mass and temperature for clusters at high and low
redshift.

Key words: cosmology– clusters– general– large scale structure of the universe.
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1 INTRODUCTION

Clusters of galaxies, by virtue of being both relatively rare
objects and the largest gravitationally bound systems in the
Universe, provide stringent constraints on theories of struc-
ture formation. The two cluster properties that are most
commonly discussed in this context are the abundance and
the spatial clustering. The model predictions depend sen-
sitively on the cosmology and on the value of σ8, the rms
density fluctuations on the scale of 8 h−1 Mpc. (Here and
throughout this paper, h is the present-day Hubble constant
in units of 100 km/s/Mpc.) Comparisons between observa-
tions and model predictions have been used to place con-
straints on cosmological parameters (Strauss et al 1995, Eke,
Cole & Frenk 1996, Viana & Liddle 1996; Mo, Jing & White
1996, Borgani et al 1997, De Theije, Van Kampen & Sli-
jkhuis 1998, Postman 1998 ).

It has long been known that clusters of galaxies are
much more strongly clustered than galaxies (see, for exam-
ple, Hauser & Peebles 1973 and review by Bahcall 1988). The
two-point correlation function for the clusters is roughly a
power law: ξcc(r) = (r/R0)

−1.8. Bahcall & West (1992) ar-
gue that the correlation length, R0, obeys the scaling rela-
tion

R0 ≈ 0.4Dc, 20h−1 Mpc < Dc < 100h−1 Mpc, (1)

where Dc ≡ n
−1/3
c is the mean intercluster separation and

nc, is the mean space density of clusters. The combined set
of results based on the analysis of the spatial clustering of
an X-ray flux-limited sample of clusters (Lahav et al. 1989;
Romer et al. 1994, Abadi, Lambas & Muriel 1998), of clus-
ters containing cD galaxies (West & Van den Bergh 1991),
of richness class R ≥ 0, R ≥ 1, R ≥ 2 Abell clusters (Pea-
cock & West 1992; Postman, Huchra & Geller 1992), and
of the cluster samples extracted from the APM Galaxy Sur-
vey (Dalton et al. 1992) and Edinburgh-Durham Southern
Galaxy Catalogue (Nichol et al. 1992) all give results that
are roughly consistent with the above scaling relation.

However, on scales greater than Dc ≈ 40h−1 Mpc, the
evidence in favour of the scaling relation hinges just on
the analyses of the R ≥ 1 and R ≥ 2 Abell cluster sam-
ples, which give R0 ≈ 21h−1 Mpc for Dc ≈ 55h−1 Mpc and
R0 ≈ 45h−1 Mpc for Dc ≈ 94h−1 Mpc, respectively. Several
authors (e.g. Sutherland 1988; Dekel et al. 1989; Sutherland
& Efstathiou 1991) have suggested that these correlation
lengths have been biased upward by the inhomogeneities
and projection effects in the Abell catalogue. However, this
suggestion has been rejected by, for example, Jing, Plionis
& Valdarnini (1992) and Peacock & West (1992). More re-
cently, Croft et al. (1997) have analyzed the correlation
properties of a sample of “rich” APM clusters and find that
the cluster correlation length saturates at R0 ≈ 15h−1 Mpc
(R0 ≈ 20h−1 Mpc if the analysis is done in redshift-space —
see Croft et al. 1997) for Dc > 40h−1 Mpc. The controversy
regarding the correlation length of rich clusters: i.e. if the
R0 vs Dc flattens at large scales is as of yet still unresolved.

In an effort to resolve this issue, several authors
(e.g. Bahcall & Cen 1992; Watanabe et al. 1994; Croft &
Efstathiou 1994, 1997; Walter & Klypin 1996, Eke et al.
1996) have turned to large numerical simulations. Bahcall
& Cen (1992) investigated the cluster correlation properties
in large N-body simulations of the standard CDM model

(SCDM) and two low-Ω0 models ( Ω0 is the density pa-
rameter), one spatially flat and one open. They claim to
find a linear relation between R0 and Dc over the range
30h−1 Mpc < Dc < 95h−1 Mpc in all the models but that
only in the low-density models is the R0-Dc relation steep
enough to be consistent with the suggested scaling relation
(1). More recent works (Croft & Efstathiou 1994, Watan-
abe et al. 1994) have confirmed that the SCDM model is
incompatible with the observed degree of clustering on all
scales and for all normalizations. However, no general agree-
ment was reached on the clustering strength at large scales
for the other models investigated.

In summary, apart from the general agreement that the
SCDM model fails to account for the observed cluster cor-
relations, results obtained from the numerical studies, due
to lack of consistency, have been singularly unhelpful in re-
solving the cluster correlation controversy.

If cluster correlations are going to be used to constrain
models of structure formation and place limits on the values
of the fundamental cosmological parameters, it is important
to understand why these numerical studies give such dis-
crepant results. This is a necessary step before a meaningful
comparison between theoretical (numerical) predictions and
observations is possible. There are several factors that can
affect numerical results and cause the discrepancy described
above. Among these are differences in the mass and force
resolution of the simulations as well as the overall volume of
the simulations. Rich clusters tend to be rare objects and,
therefore, simulation studies of the properties of such ob-
jects must necessarily span large cosmological volumes. Of-
ten, computational limitations require that such simulation
studies compromise on the resolution (mass and/or force).
However, this can have serious effects on the results. Watan-
abe et al. (1994), have shown that degrading the mass reso-
lution tends to bias the correlation lengths downward. Con-
sequently, there is a definite need for analysis of a sample
of simulated clusters extracted from a simulation with high
mass and force resolution, large number of time steps, and
covering a sufficiently large cosmological volume.

In addition to differences in resolution and size, there
is the issue of how to identify clusters in the simulations.
Bahcall & Cen (1992), Watanabe et al. (1994) and Croft et
al. (1994; 1997) used different algorithms to identify clus-
ters in their simulations. Using a Ω = 1 SCDM model Eke
et al. (1996b) explored the possibility that different algo-
rithms could indeed give different results. They identified
and ranked the clusters in their simulations in various dif-
ferent ways, and found that each algorithm/selection criteria
imprints its own particular set of biases on the cluster sam-
ple; for a fixed value of Dc, the clustering length can vary
up to a factor of ∼ 1.5.

In this paper, we report on our analysis of cluster cor-
relations in simulations of both critical density (Ω = 1) and
open (Ω0 = 0.3 and Ω0 = 0.4) CDM cosmogonies and use
our results to explore the questions raised above. As de-
scribed in the next section, both the force and mass reso-
lution of our simulations are better than those of previous
studies. Moreover, our simulated volumes are comparable
with the Sloan Digital Sky Survey (Loveday 1998) and are
larger than the 2dF survey (Colless & Boyle 1998).

We investigate the present-day abundances and tem-
poral evolution of the abundances in the three CDM mod-

c© 1998 RAS, MNRAS 000, 1–20
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els. Specifically, we are interested in testing the validity of
the widely-used analytic Press-Schechter expression for the
cluster mass function. The combination of the present-day
abundance of clusters and the rate at which the abundance
evolves as a function of time place strong constraints on Ω0

and σ8. (White, Efstathiou & Frenk 1993; Viana & Liddle
1996; Eke, Cole & Frenk 1996). Since real clusters of galaxies
are the product of non-linear gravitational and gas dynami-
cal processes, the most direct way of constraining the range
of Ω0 and σ8 is to carry out large-scale numerical simula-
tions of different models that have the necessary dynami-
cal range and include (poorly known) gas–stellar physics,
then “observe” the resulting model universe and compare
the simulated observations with the real ones. Computa-
tionally, this route is prohibitively expensive at present. A
more economical approach involves using the analytic Press-
Schechter (PS) formalism (Press & Schechter 1974; Bond et
al. 1991) to compute the cluster mass function, map the
mass function into an abundance distribution as a function
of the observable parameter, and then compare the latter to
observations in order to determine the appropriate values of
Ω0 and σ8. Setting aside the uncertainties in the correspon-
dence between mass and an observable quantity, the validity
of the analytic approach rests entirely on the assumption
that the PS formalism yields an accurate description of the
cluster mass function. The analytic expression for the cluster
mass function has been extensively tested against numerical
simulations in the past (see, for example, Carlberg & Couch-
man 1989; Lacey & Cole 1994; Klypin et al. 1994, Cole,
Weinberg, Frenk & Ratra 1997, Cen 1998) and most studies
have found a good agreement between the analytical and
the numerical results. However, there have also been some
interesting claims to the contrary. Gross et al. (1998), for
example, have drawn attention to a discrepancy between the
PS predictions and numerical results at small masses, and
Bertschinger & Jain (1994) claim that the PS mass function
systematically underestimates the number density of high
mass halos. Estimates of parameters such as Ω0 and σ8 are
usually derived from fitting the analytic cluster mass func-
tion to the observed distribution. If the PS mass function is
indeed failing at the high mass end and this failure is not
taken in account, it can affect the determinations of Ω0 and
σ8

In this paper our aim is to determine the halo mass
function on group and cluster scales in our set of simula-
tions, and use these to assess the reliability of the analytic
PS mass function. Each of our volumes contains several hun-
dred ‘Coma–like’ clusters at the present time. This, in con-
junction with our high mass and force resolution, allows us
to map out the cluster mass function to high precision out
to z ∼ 1, i.e. over a larger redshift range than previously
possible.

The lay-out of the paper is as follows: In §2, we discuss
our numerical simulations and the procedure for construct-
ing cluster catalogs. We use these catalogs to extract the
cluster mass function and to study their spatial correlation
properties. In §3, we present the results of our correlation
analyses and in §4, we discuss the cluster mass function. In
both sections we compare our numerical results to analyt-
ical approximations. Adopting a simple mapping between
mass and X–ray temperature, we transform our numerical
mass function into a temperature function and highlight the

main differences between this temperature function and the
one based on the standard Press-Schechter mass function.
Finally, we summarize our results and briefly discuss their
relevance for future cosmological tests in §5.

2 NUMERICAL SIMULATIONS AND

CLUSTER SELECTION

We have simulated structure formation within a periodic
cube of comoving length L = 500h−1 Mpc for two “fidu-
cial” cosmological models: A critical density cold dark mat-
ter models (Ω0 = 1, h = 0.5 with σ8 = 1.0 at z = 0 ( here-
after we refer to the σ8 = 0.7 output as SCDM07 and to
the σ8 = 1 as SCDM10, respectively. Of course each output
of the SCDM run can be rescaled to a different z changing
the present day σ8 normalization) and an open (Ω0 = 0.3,
h = 0.75, σ8 = 1.0 at z = 0 — hereafter referred to as
O3CDM) cold dark matter model. The z = 0.58 output
of O3CDM simulation can, with appropriate rescaling, be
identified as an Ω0 = 0.4, h = 0.65, σ8 = 0.79 CDM simula-
tion (hereafter referred to as O4CDM) of comoving length
L = 433.3 h−1 Mpc. The same set of simulations was used
by Szapudi et al. (1998) to study the higher order corre-
lation properties of galaxies. The initial conditions were set
using the Bardeen et al (1986) transfer function for CDM.
The simulations were computed using PKDGRAV, a par-
allel treecode that allows for periodic boundary conditions
and individual time steps (Stadel & Quinn, in preparation).
These are among best studied cosmological models (Davis
et al. 1985, Jenkins et al. 1997), our choices for the normal-
ization (σ8) of the open models correspond roughly to those
inferred from the present-day cluster abundance (see, e.g.,
Eke et al. 1996 and references therein), while we analyzed
the SCDM simulation data on a σ8 range that goes from σ8

= 1 (roughly COBE normalized) to σ8 = 0.35 (correspond-
ing to z = 1.85 for a σ8 = 1 at z = 0 model, and to z = 0.43
for a cluster normalized SCDM universe with σ8 = 0.5 at z
= 0) . A cubic spline force softening of 50h−1 kpc (43h−1

kpc for O4CDM) was used so that the overall structure of
clusters could be resolved. Accurate forces were maintained
by using a cell opening angle of θ < 0.8 (or better at high
z) and expanding the potentials of cells to hexadecapole or-

der. Timesteps were constrained to ∆t < 0.3
√

ǫ/a, where
ǫ is the softening length and a is the magnitude of the ac-
celeration of a given particle. See Quinn et al. (1997) for a
discussion and tests of this timestep criterion. In each run
47 million particles were used, arranged on a 3603 grid. Each
run took several hundred hours on 256 nodes of a Cray T3E
supercomputer, and about a thousand timesteps. The parti-
cle mass is 7.4×1011ηΩ0h

−1 M⊙, where η = 1 for SCDM and
O3CDM models and η = 0.65 for O4CDM. Simulations were
started at z = 49. The extremely large volumes simulated,
coupled with a reasonable mass resolution and the very good
force resolution made possible by the use of a treecode, allow
us to study in detail the evolution of structures ranging in
size from groups of galaxies, made up of several tens of par-
ticles each, to very rich clusters that contain a few thousand
particles. In our analyses, we only consider halos consist-
ing of 64 particles or more. This is a stricter constraint than
used in most previous work, and was imposed to ensure that
our results were not influenced by small-number effects. Fi-

c© 1998 RAS, MNRAS 000, 1–20



4 F.Governato et al.

nally, we verified that in these simulations both the initial
and present–day power spectrum were in close agreement
with theoretical expectations ( see Peacock & Dodds 1996).

2.1 Cluster Identification and Selection

Theoretical treatments generally define virialized halos at
a given epoch as structures with a mean density averaged
over a sphere of ∼ 200 times the critical density at that
epoch (see, for example, Lacey & Cole 1994 and references
therein). The mass contained in the sphere is taken to be
the mass of the halo and the radius of the sphere is usually
identified as the virial radius of the halo.

In numerical simulations, halos are identified using a
variety of schemes. Of these, we have chosen to use two that
are available in the public domain: FOF⋆ (Davis et al. 1985),

and HOP† (Eisenstein & Hut 1998). These schemes are dis-
cussed in the next subsection. Other halo finders that are of-
ten used in literature to find virialized halos are DENMAX
(Gelb & Bertschinger 1994), the “spherical overdensity al-
gorithm ” or SO, that finds spherically averaged halos above
a given overdensity (Lacey & Cole 1994) and the scheme re-
cently developed by Gross et al (1998). The algorithms that
we opted to use are those in the public domain and hence,
in common use. We felt that it was important to ascertain
the extent to which these schemes may bias our results.

2.2 Friend of Friends: FOF

The FOF algorithm (Davis et al. 1985) is one of the most
widely used. It is based on a nearest neighbor search. The
main advantages of this algorithm are its simplicity and the
lack of assumptions about the shape of halos. In this scheme,
all particle pairs separated by less than b times the mean in-
terparticle separation are linked together. Sets of mutually
linked particles form groups that are then identified as dark
matter halos. In the present study, we adopted the linking
length that Lacey & Cole (1994) arrived at to identify viri-
alized halos with mean densities of ≃ 200 times the critical
density at the epoch under consideration. The linking length
is 0.2Ω(z)−1/3 times the mean comoving interparticle sep-
aration. Moreover in the low Ω models, the scaling of the
linking length as a function of redshift was further modi-
fied as the mean halo density associated with virialization
is a function of redshift (see for example, Kitayama & Suto
1996). The resulting halos also have a mass–radius relation
that agrees reasonably well with the theoretical relation for
virialized halos (see Lacey & Cole 1994; also, Eke, Cole,
Frenk & Navarro 1996). The objects identified by the FOF
algorithm are the kinds of objects that the PS formalism
refers to (apart from the lack of spherical symmetry) and
therefore, we should be able to make a meaningful compari-
son between the distribution of halos in the simulations and
the PS distribution. Several authors have reported the ten-
dency of FOF to link together close binary systems of similar
mass especially if the two happen to be loosely connected
by a bridge of particles. This pathology can, in specific cases

⋆ http://www-hpcc.astro.washington.edu/tools/FOF/
† http://www.sns.ias.edu/eisenste/hop/hop.html

(see for example Governato et al. 1997), give rise to biased
results. We have verified that our results are largely unaf-
fected by this problem.

We note that in their study, Lacey & Cole (1994) com-
pared the properties of the halo population defined by FOF
and with those of a sample generated using the SO algo-
rithm. They found that at least over the mass range that
they could probe using their simulations, the two algorithms
gave very similar results.

2.3 HOP

HOP is a recently introduced algorithm (Eisenstein & Hut
1998) based on an hybrid approach. The local density field is
first obtained by smoothing the density field with an SPH–
like kernel using the n nearest neighbours (we used 16). The
particles above a given threshold are linked with their high-
est density neighbors until, after several “hops”, they are
connected to the one particle with the highest density within
the region above the threshold. All particles linked to the lo-
cal density maximum are identified as a group. Like FOF,
HOP is well suited to identifing virialized structures once the
density threshold is specified to be the local density at the
virial radius. Eisenstein & Hut (1998) claim good agreement
with the FOF method at masses above the smoothing scale.
However, HOP can be tuned to separate binary halos—
binary systems loosely connected by one–dimensional parti-
cle bridges—thereby avoiding the (rare) FOF pathology.

2.4 FOF vs. HOP

In Figure 1 we show the mass functions obtained by apply-
ing the two halo finders described to the O3CDM run. The
results for SCDM runs are qualitatively similar. The FOF
and HOP mass functions agree quite well over the entire
mass range probed, with most massive HOP clusters show-
ing a systematic offset of about 7% toward larger masses.
This offset can be easily adjusted changing b or the density
threshold for HOP. However, as discussed in the above para-
graph the parameters used are the most physically meaning-
ful and the small offset is a measure of the kind of biases
that you get using different halo finders.

We have found this general agreement to hold for dif-
ferent models and at all redshifts. This result, coupled with
results of Eke et al.’s (1996) comparison of the FOF and
SO algorithms, strongly indicates that regardless of the ac-
tual details of the scheme used to identify the halos, if the
resulting halos are independent virialized entities then the
statistical properties of the halo populations will be very
similar. Figure 1 also shows the PS prediction as a compar-
ison. We defer the comparisons of the theoretical curve to
the numerical results in §4.

3 THE TWO-POINT CLUSTER

CORRELATION FUNCTION

The output of our cosmological simulations was processed
using the two halo identification algorithms (HOP & FOF)
described in the preceding section. We ordered the lists ac-
cording to halo mass and then generated cluster catalogs by

c© 1998 RAS, MNRAS 000, 1–20
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Figure 2. Real-space correlation functions of clusters extracted from the SCDM07 output and O3CDM at z=0 using either (F)OF
or (H)OP algorithms. The two left panels show the correlation functions for clusters with masses greater than the specified threshold.

The numbers in the parenthesis are the Dc ≡ n
−1/3
c values for the cluster samples. The two right panels show correlation functions for

samples with the cluster number density given the specified value of Dc.

applying a fixed lower mass cutoff. We also generated clus-
ter catalogs based on the ordered list with a specific number
density of clusters (labelled by the corresponding value of
Dc).

For each cluster catalog, we compute the real space two-
point correlation function using the direct estimator:

ξcc(r) =
Np(r)

n2
cV (δV )

− 1, (2)

where Np(r) is the number of cluster pairs in the radial bin
of volume δV centered at r, nc is the mean space density of
the cluster catalog and V is the volume of the simulation.
We use all the clusters in our catalogs, taking advantage of
the periodic boundary conditions.

The 1σ error bars for the correlations are estimated
using the formula

δξcc(r) =
3

2

1
√

Ncc(r)
(1 + ξcc(r)) , (3)

where Ncc is the number of distinct cluster pairs in the radial
bin at r. We have increased the size of the Poisson error
bars by 50% because these errors do not take into account
clustering and so are likely to underestimate the true errors
(Croft & Efstathiou 1994; Croft et al. 1997).

The correlation functions are not well described by a
single power-law over the entire range of pair separations
sampled. To estimate the correlation length, we fit a func-
tional form

ξcc(r) =
(

r

R0

)−γ

(4)

over the range 4.5h−1 Mpc < r < 25h−1 Mpc, which brack-
ets the point where ξcc = 1. We estimate the value of R0 by
both fixing the value of γ in the above equation to −1.8 (see

c© 1998 RAS, MNRAS 000, 1–20



6 F.Governato et al.

Figure 1. Differential mass function (number density per unit
mass) of groups and clusters extracted from the z = 0 O3CDM
simulation volume using FOF (continous line) and HOP (dot–
dashed line) algorithms. The dotted line shows the analytic Press-
Schechter prediction for the mass function.

equation 1) and by allowing γ to be a free parameter. Since,
the fit is done over a restricted range in r, both schemes
yield similar values of R0.

In Figure 2, we show real-space correlation func-
tions of clusters in catalogs defined by two different lower
mass thresholds (Mcut = 4.6 × 1013h−1 M⊙ and 2.5 ×

1014h−1 M⊙) and two different cluster abundance require-
ments (Dc = 15h−1 Mpc and 40h−1 Mpc). The clusters are
extracted from the simulations using either the FOF or HOP
algorithms. Figure 2 shows the results for clusters extracted
from the SCDM07 output and the O3CDM simulation at
z=0; the clustering trends of O4CDM and SCDM10 clusters
are the same.

At both low and high mass thresholds, the correlation
functions of FOF and HOP clusters are virtually identical,
especially in the range 4.5h−1 Mpc < r < 25h−1 Mpc. The
abundances of FOF and HOP clusters (or equivalently, their
Dc value) are also the same, as expected from results shown
in Figure 1. As the mass threshold increases, or the number
density is decreased, the clustering amplitude increases, but
the shape of the correlation function remains the same. This
reflects the fact that massive, rare peaks tend to be more
strongly clustered in all CDM models. This result is shown
in Figure 3.

Given the good match between the halo catalogs we will
mainly discuss results for the FOF clusters. Unless specified,
results for FOF clusters hold for the HOP clusters as well.

3.1 Cosmology and Normalization of the Mass

Power Spectrum

The real-space z = 0 correlation functions of FOF clus-
ter samples from the various simulations are compared in
Figure 4. Considering the SCDM10 and SCDM07 as two
z=0 outputs results in the model with the higher amplitude
(SCDM10) developing structure on group and cluster scales
at an earlier epoch, having a higher density of very massive
halos and a more strongly clustered mass density field at the
present epoch.

In spite of the above mentioned differences, the cluster
correlations for the SCDM models with different normali-
sations are virtually identical in shape and amplitude for
cluster samples with both high as well as low mass thresh-
olds. In the case of massive clusters, this has been previously
noted by both Croft & Efstathiou (1994) and Eke et al.
(1996). Since for the SCDM models, studying the changes
(or lack thereof) in the correlation functions due to varia-
tions in the normalization of the amplitude of the primordial
density fluctuations is equivalent to studying the evolution
of the clustering property as a function of time, we defer the
discussion of the above-mentioned until §3.3.

The correlations for the two open models are also very
similar to each other, both in shape and amplitude. These
two models differ not only in their values of Ω0 and h but
also in the normalization of the amplitudes of the primordial
mass fluctuations as defined by σ8. The two OCDM models
do, however, have the same value of Ω0h

2. Since it is this
parameter that defines the position of the peak in the CDM
power spectrum characterizing the initial Gaussian random
fluctuations in density field, it is perhaps not surprising that
the cluster correlations are similar.

In comparison to the cluster correlations in a critical
universe, the OCDM cluster correlation functions have a sig-
nificantly higher amplitude. This occurs because the peak in
the power spectrum for the OCDM models is displaced to-
wards larger scales and therefore, for a similar value of σ8,
the OCDM models have more power on large scales than the
SCDM models.

3.2 Redshift Evolution

In Figure 5, we plot the present-day and z = 0.43, z =
0.58 cluster correlations, in comoving coordinates, for two
cluster samples defined as (M > 4.6 × 1013h−1 M⊙ and
M > 1.5 × 1014h−1 M⊙) drawn from the SCDM10 and
O3CDM models respectively.

Before we discuss the results, let us consider what is
expected. Given a sample of halos with masses greater than
some threshold Mcut, the correlation function of the halos
can be related to that of the total mass distribution via the
bias parameter:
ξCC(r; M > Mcut) = b2

eff (Mcut)ξρρ(r). At a given epoch
the bias parameter becomes larger as Mcut is raised, as we
have already shown. For a fixed Mcut and a critical universe,
the bias parameter is expected to decrease asymptotically
to unity as a function of time (Tegmark & Peebles 1998) as
the underlying mass distribution becomes more clustered.
The time evolution of ξCC(r; M > Mcut) depends on the
competition between these two trends.

Turning to Figure 5, we note that for both low and high
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Figure 3. Real-space correlation functions of clusters samples defined by either imposing different mass thresholds (top two panels)
or by demanding that the sample clusters have some predefined number density (bottom two panels). The clusters have been extracted
from the SCDM07 output and O3CDM at z=0 using the FOF algorithm.

mass thresholds, there are no significant differences between
the comoving correlation functions at z = 0 (σ8=1) and
z = 0.43 for the SCDM clusters. This implies that over the
mass and redshift ranges considered here, the rate of increase
in the clustering of the mass distribution is closely matched
by the rate at which the bias parameter decreases.

For the O3CDM model, the correlation function at
the earlier epoch has a slightly higher amplitude for both
low and high threshold samples. The comoving correlation
length at z = 0.58 is a factor of 1.1–1.2 greater.

To summarize, the comoving group/cluster correlation
functions are either constant or change very little over the
redshift range 0 < z < 0.5 and in proper coordinates, the
group/cluster correlation length decreases with increasing
redshift over the redshift range studied. In the SCDM case,
this decrease is given by R0 ∝ (1 + z)−1 and in the O3CDM
model, by R0 ∝ (1 + z)−0.86.

Table 1. The bias parameter for SCDM07 cluster samples. b1
is computed using the standard PS mass function. The second
column gives the mass cut in units of the characteristic mass,
M∗ = 4 × 1013h−1 M⊙. The final column gives the Lagrangian
radius of the halo, which is the smallest separation where the
assumtpions in the calculations are valid.

Mcuth−1 M⊙ Mcut/M∗ b1 rLh−1 Mpc

5.7e+14 16.2 3.3 7.9
2.8e+14 7.0 2.4 6.2
2.1e+14 5.2 2.2 5.7
7.0e+13 1.7 1.5 3.9
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Figure 4. Real-space z = 0 cluster correlation functions
extracted from our simulations (SCDM07, SCDM10, O3CDM,
O4CDM) using the FOF algorithm.

Table 2. The bias parameter for O3CDM cluster samples. as in
Table 1. In this case M∗ = 1.4 × 1013h−1 M⊙

Mcuth−1 M⊙ Mcut/M∗ b1 rLh−1 Mpc

2.7e+14 19.3 2.7 9.2
1.9e+14 13.6 2.4 8.2
1.1e+14 7.8 2.0 6.8
9.0e+13 6.4 1.9 6.4
1.8e+13 1.3 1.2 3.7
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Figure 5. Correlation functions of SCDM10 and O3CDM clus-
ters computed at two different epochs and plotted in comoving
coordinates.

3.3 Comparison with analytic calculations

To date, most studies of cluster correlations have utilized
numerical simulations. Such numerical simulations are very
expensive to generate, a constraint that renders a systematic
exploration of different cosmological models impractical; it
also makes it rather difficult to explore and identify the gen-
eral physical mechanisms underlying the clustering proper-
ties of clusters and group halos viz a viz that of the mass dis-
tribution. Consequently, various authors (e.g. Kaiser 1984;
Bardeen et al. 1986; Mann et al. 1993; Mo & White 1996;
Mo, Jing & White 1996, Catelan et al. 1998) have devel-
oped analytic schemes to compute the cluster correlation
function.

The first method to compute cluster correlation func-
tions analytically that we discuss is based on the Press-
Schecter formalism and its extensions. This was originally
developed by Cole & Kaiser (1989) and Mo & White (1996)
to derive a model for the spatial correlation of dark mat-
ter halos in hierarchical models. The calculation consists of
three steps (see Baugh et al. 1998).

• Compute the nonlinear power spectrum for the cos-
mology and σ8 in question using the transformation of the
linear power spectrum suggested by Peacock and Dodds
(1996).

• Calculate an effective bias parameter, beff for the
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dark matter halos above the specified mass cut as outlined
by Mo & White (1996).

• Fourier transform the nonlinear power spectrum to get
the nonlinear correlation function of the mass, then multiply
by the square of the halo bias factor, to get the real-space,
nonlinear, cluster correlation function: ξCC(r) = b2

effξρρ(r).
The cluster correlation function thus computed has

been tested, against N-body results by Mo & White (1996)
and Mo, Jing & White (1996) and is found to hold even
in the mildly nonlinear regime where ξ(r) > 1 as long as

r > rL where rL = (3M/4πρ0)
1/3 is the Lagrangian radius

of the dark matter halos (rL ∼ 10h−1 Mpc for rich clusters
of galaxies) and ρ0 is the present mean density. Recently
Jing (1998) has shown that the Mo & White formula sys-
tematically underpredicts the bias of low mass halos, but it
is in good agreement with numerical simulations in the mass
range considered here.

The bias parameter for a dark matter halo that con-
tains a single galaxy is given by the formula derived by Mo
& White (1996) and was written down for any redshift in
Baugh et al. (1998):

b(M, z) = 1 +
1

δc

[

(

δc

σ(M)D(z)

)2

− 1

]

(5)

Here D(z) is the linear growth factor, normalized to
D(z = 0) = 1, σ(M) is the rms linear density fluctuation
at z = 0 and δc is the extrapolated linear overdensity for
collapse at redshift z. This gives the bias factor for the halo
when the clustering is measured at the same epoch that the
halo is identified.

For a sample of halos with different masses, the effective
bias is given by

beff (z) =

∫

N(M, z) b(M, z) dM
∫

N(M, z) dM
(6)

where N(M, z) dM is the number density of halos with
mass M in the sample. For the cluster samples that we
have constructed, N(M, z) can either be set equal to the
Press-Schechter mass function (with δc set to the canonical
value defining collapse for the cosmology under considera-
tion) or to the cluster mass function computed directly from
the cluster catalogs. However the results shown here are al-
most insensitive to this choice.

The effective bias parameters for samples whose corre-
lation functions are plotted in Figure 6 are given in Tables
1 (SCDM07) and 2 (O3CDM). The mass cuts applied corre-
spond to halos of different rarity in the two cosmologies; this
is quantified by comparing the mass cut to the characteris-
tic mass M∗, which is defined later in §4. All the mass cuts
considered correspond to objects that are greater than M∗,
and so these halos are biased tracers of the dark matter dis-
tribution (Mo & White 1996). The cluster sample with the
highest mass cut for both O3CDM and SCDM07 is predicted
to have a correlation function that is ∼ 10 times higher than
that of the dark matter.

The PS-based analytic correlation functions are shown
in Figure 6 as solid curves. There is little difference between
the correlation functions computed using the standard PS
mass function and the numerical mass function discussed
in §4. The analytic correlations are in excellent agreement
with our numerical correlation functions. The agreement be-

tween the numerical and analytic results is further confirmed
by the match between the analytic and numerical R0–Dc

curves. The analytic R0–Dc curve is plotted in Figures 7
and 8 as the light solid curve.

We consider next the scheme developed by Mann et al.
(1993). This is based on the method devised by Couchman
& Bond (1988; 1989) that combines the theory of the statis-
tics of peaks in Gaussian random fields with the dynamical
evolution of the cosmological density field.

In this scheme, the time evolution of the density field
is followed using the Zel’dovich approximation (Zeldovich
1970). At the epoch of interest, a particular class of objects
is defined by the pair Rs and δc. These are, respectively, the
smoothing scale that is applied to the cosmological density
field and the linearly extrapolated amplitude of the density
fluctuations at the time of collapse. Mann et al. (1993) set
the values of these two parameters by choosing an appro-
priate value for δc (δc = 1.686, corresponds to collapse of
spherical density perturbations in an Ωo = 1 universe) and
then adjusting Rs until the number density of peaks with
overdensities greater than δc corresponds to number density
of objects under consideration. Full details can be found in
Mann et al. (1993).

In Figure 6, we plot the correlation functions of some
of our cluster samples and show the corresponding analytic
peaks-based correlation functions computed assuming δc =
1 and δc = 1.7 (dashed curves) according to Mann et al.
(1993)’s prescription.

As noted by Mann et al. (1993), the correlation func-
tions computed using δc = 1.7 consistently overestimate the
correlation amplitudes on all scales of interest. The correla-
tion functions for δc = 1 are in excellent agreement with the
numerical results for Dc ≤ 30h−1 Mpc (however, a value of
δc ∼ 1 is rather unphysical). For larger values of Dc, the an-
alytic results tend to overestimate the correlations, with the
discrepancy first becoming obvious on small scales and then
propagating out to larger scales as Dc continues to increase.
For a given Dc, the discrepancy is more severe for SCDM07
clusters than for O3CDM clusters.

The tendency for the peak scheme to overestimate the
correlations on scales where ξCC(r) ≥ 1 by a margin that
grows larger with increasing Dc suggests that the peaks-
based method will overestimate the correlation lengths of
samples with large values of Dc. Both Mann et al. (1993)
and Watanabe et al. (1994) have computed the R0–Dc rela-
tion predicted by the peaks method. Comparing their R0–Dc

curves for O3CDM-like models with our numerical results
we find that for cluster samples with Dc ≈ 80h−1 Mpc,
the correlation length predicted by the peaks-based analytic
scheme is R0 ≈ 28h−1 Mpc whereas the simulation result
is R0 ≈ 22h−1 Mpc, very close to the PS based prediction.
The breakdown in the peak scheme may be due to several
factors. The simplest possibility is that that the method uses
the number density of clusters in a sample as a constraint
rather than some physical properties of the clusters such as
their masses. Other possible causes of the breakdown are:
the manner in which the different filtering scales are chosen,
the simplistic nature of the prescription defining the relation
between peaks in the smoothed density field and “clusters”,
and the requirement that the large–separation asymptotic
limit of the statistical contribution to the cluster correla-
tion function matches the statistical peak–to–peak corre-
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Figure 6. Analytic correlation functions compared against our numerical results. The two dashed curves are the peaks-based correlation
functions computed according to the prescription of Mann et al. (1993). The curve with the higher correlation amplitudes on small
scales corresponds to δc = 1.7. The other curve corresponds to δc = 1.. The two solid curves are the PS-based correlation functions
computed as described in §3.5. The correlation functions are computed assuming either the standard PS mass function or the numerical
cluster mass function (see §4). The two are very similar.

lation function (Mann 1998, private communications). The
latter two tend to magnify any minor discrepancy caused by
any of the other factors.

3.4 Correlation Length and the Cluster

Abundance

In Figures 7 and 8, we plot correlation length (R0) as a func-
tion of cluster abundance in terms of Dc, the mean cluster
separation, for the FOF clusters in the SCDM07 output and
O3CDM model at z=0. For comparison, we also show the
scaling relation (Equation 1); the numerical results of Bah-
call & Cen (1992) and Croft & Efstathiou (1994) the obser-
vational data for R≥ 0, R≥ 1, R≥ 2 Abell clusters (open
triangles) from Bahcall & Soneira (1983) and Peacock &
West (1992) and the data for the APM clusters (open cir-

cles) given by Dalton et al. (1992) and Croft et al. (1997).
In neither of the SCM07 nor O3CDM models is the R0–
Dc relation for clusters consistent with the scaling relation
R0 = 0.4Dc.

However, it should be noted that the numerical results
show the R0–Dc relation for the real-space correlation func-
tion whereas the correlation lengths for the observed clus-
ters are derived from redshift-space correlation functions.
Redshift–space correlation lenghts are generally larger than
their real-space correlation length counterparts. For exam-
ple, in the case of their low-density spatially flat CDM
model, Croft & Efstathiou found that their real-space R0-Dc

relation saturates at R0 ≈ 15h−1 Mpc for large values of Dc,
whereas the redshift-space R0-Dc saturates at R0 ≈ 21h−1

Mpc. An increase of this kind, however, is not sufficient to
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Figure 7. Cluster correlation length as a function of Dc, the mean cluster separation, for clusters extracted from the SCDM07 output
using FOF (heavy solid curve). The error bars show the 1σ errors in R0 derived from fitting the correlation functions with a −1.8
power-law as described in the text. The solid line corresponds to the scaling relation between R0 and Dc (equation 1) advocated by
Bahcall & West (1992). The dot–dashed line shows the R0–Dc that Bahcall & Cen (1992) derived from their numerical study. The
short-dashed curve corresponds to the numerical results of Croft & Efstathiou (1994). In addition, the open triangles show the results
for R≥ 0, R≥ 1 and R≥ 2 Abell clusters (Bahcall & Soneira 1983; Peacock & West 1992) and the open circles show the results for APM
clusters (Dalton et al. 1992; Croft et al. 1997). The light solid curve is the R0–Dc relation derived from analytic PS-based correlation
functions computed according to the prescription in Baugh et al. (1998) — see §3.5.

bring our numerical R0–Dc relation into agreement with the
scaling relation of equation 1.

Consistently with all previous findings, the R0-Dc curve
for clusters extracted from the SCDM universe (Figure 7)
does not match either the APM or Abell results. On the
other hand, the results of our O3CDM model are in good
agreement with the APM and richness R> 0, R> 1 Abell
cluster data, even if the effect of redshift distorsions increas-
ing the length scale R0 a few Mpc were included.

The seriously discrepant datapoint is for R> 2 Abell
clusters. If this measurement is correct, it suggests that
clustering on very large scales may have been modulated
by non-Gaussian processes (see Mann et al. 1993; Croft &
Efstathiou 1994) as it is very difficult to conceive of a Gaus-
sian model that can produce the requisite clustering at these
scales. It would also imply that the very rich APM clus-
ters with their comparitively large correlation lengths are
not really rich or massive systems but rather are systems
comparable to R> 1 Abell clusters whose number densities
have been biased downward by the cluster identification al-
gorithm. The agreement between our analytic results and

our numerical results for clusters in the O3CDM model and
the APM results leads us to believe that it is the R> 2 Abell
result that is most likely incorrect, biased upward by the in-
homogeneities and contamination due to projection effects
in the Abell catalog as argued by Sutherland (1988) and
Sutherland & Efstathiou (1991).

In comparing our numerical results for SCDM07 to
those of Bahcall & Cen (1992), we find that for 25h−1 Mpc
< Dc < 40h−1 Mpc, our R0-Dc results are consistent with
theirs. For Dc > 40h−1 Mpc, our curve rises less steeply
than that of Bahcall & Cen and appears to saturate for
Dc > 50h−1 Mpc. From analytic results (light solid curve),
which we discuss further in the next subsection, we expect
the R0-Dc curve to continue to rise but much more gently
than the Bahcall-Cen result. Since both we and Bahcall &
Cen (1992) used the FOF algorithm to identify clusters in
the simulations, the cluster selection algorithm cannot be
responsible for the differences. Furthermore, our correlation
lengths were determined in the same way as Bahcall & Cen
(1992).

Comparing our O3CDM results to those of Bahcall &
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Figure 8. Same as Fig. 7 but for O3CDM model.

Cen’s (1992) low-Ω models, we find that the two are in good
agreement for Dc < 35h−1 Mpc and also in a rough agree-
ment with the scaling relation. However as the cluster abun-
dance decreases and Dc increases, the correlation lengths of
our cluster samples do not increase as quickly. Our numeri-
cal results at large values of Dc are in good agreement with
those derived analytically to the scales probed by our simu-
lations. (see §3.3)

In comparing our σ8 = 0.7 result to Croft & Efstathiou’s
(1994) rc = 1.5h−1 Mpc σ8 = 0.59 SCDM model, we once
again find smaller correlation lengths for Dc < 30h−1 Mpc.
For higher values of Dc, the Croft & Efstathiou (1994)’s re-
sults are consistent with ours in spite of the fact that we
have used FOF to identify the clusters and Croft & Efs-
tathiou (1994) results are based on a very different scheme.
Comparing our O3CDM results to those of Croft & Efs-
tathiou’s (1994) 1.5h−1 Mpc, σ8 = 1.0 low-Ω spatially flat
CDM model, we find that within the uncertainties in the two
curves, they are in excellent agreement with each other. The
flattening in Croft & Efstathiou’s curve for Dc > 50h−1 Mpc
(at R0 ≈ 15h−1 Mpc) is not real. As indicated by both our
numerical and analytic results, the correlation continues to
rise, albeit gently, reaching R0 ≈ 22h−1 Mpc at Dc = 80h−1

Mpc and is still rising. The flattening trend is likely an
artifact of the finite simulation volume or even the poor
mass/force resolution.

4 THE CLUSTER MASS FUNCTION

According to the analytic PS formalism, the comoving num-
ber density of dark matter halos of mass M in the interval
dM is

N(M) =

√

2

π

ρ̄

M2

δcD
−1

σ

∣

∣

∣

d ln σ

d ln M

∣

∣

∣
exp

[

−
δ2

cD−2

2σ2

]

, (7)

where ρ̄ is the comoving density of the Universe and σ(M)
is the linearly extrapolated present-day rms density fluctu-
ation in spheres containing a mean mass M . The redshift
evolution of N(M) is controlled by the density threshold
for collapse, δc/D(z), where D(z) is the linear growth fac-
tor normalized to unity at z = 0 (Peebles 1993) and δc is
the linearly evolved density contrast of fluctuations that are
virializing at z = 0. The growth factor, D(z), depends on Ω0

and Λ whereas δc has only a weak dependence on Ω0. For
spherical density fluctuations, δc = 1.686 for Ω0 = 1 and
1.65 for Ω0 = 0.3.

The PS description of structure formation in the Uni-
verse leads naturally to the definition of a characteristic
mass M∗(z) such that

σ(M∗)D(z) = δc . (8)

M∗(z) is then the characteristic mass of halos that are virial-
izing at redshift z. Its evolution tracks the manner in which
structure forms. In bottom-up hierarchical clustering mod-
els, such as CDM models, M∗(z) increases as a function of
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time as lower mass structures are incorporated into progres-
sively more massive halos. In a critical universe, the growth
factor evolves as D(z) = (1 + z)−1 and to first order, this
implies a strong evolution in M∗. In an open or a flat, low-Ω0

universe, D(z) ceases to evolve as strongly, and the evolu-
tion of the characteristic mass is greatly suppressed, once
Ω(z) deviates significantly from unity. Hence, the evolution
of the dark halo mass distribution is also greatly suppressed.
A clear detection of the presence or absence of strong dy-
namical evolution in the cluster population can be used to
put stringent limits on the underlying cosmology.

The actual value and the details of the evolution of
M∗, and therefore of the mass distribution especially for
M > M∗, depends sensitively on δc. The standard practice
is to use the value of δc for collapse of spherical perturba-
tions. Typical perturbations in CDM models, however, are
not spherical and therefore, the actual value of δc will dif-
fer from the spherical value. Moreover, Heavens & Peacock
(1986), argue that δc is likely to be lower (1 ≤ δc ≤ 1.68)
because typical proto-structures in a Gaussian random field
tend to be triaxial. A lower (higher) value of δc results in
more (fewer) high mass objects. A detailed discussion of δc

and the asphericity of the density perturbations is given by
Monaco (1995, 1998), who finds that when the assumption
of spherical collapse is relaxed, δc becomes a function of the
local shape of the perturbation spectrum. In most cosmo-
logical models, the power spectrum of the primordial per-
turbations over the scales of interest deviates, albeit gently,
from a simple power law shape and it becomes debatable
whether a constant value of δc is a fair description of the
evolving cosmic mass function at all masses and redshifts.
Here we allow the collapse threshold to be a free parameter
depending on redshift, calibrating at each epoch using the
high mass end of the mass distribution. As discussed in §1
and §2.3, the halo mass function derived using the PS for-
malism is a measure of the abundance of collapsed, distinct,
halos characterized by their virial radius and mass. Conse-
quently, it is appropriate to use catalogs generated using the
FOF and HOP cluster finding algorithms.

4.1 Computing the halo mass function

We construct the differential mass function by sorting the
halos according to their masses in bins of size ∆log(M) =
0.1. We have verified that our results are insensitive to this
choice of bin size. Due to the large size of our simulations, we
are able to study also the differential cluster mass function
instead of the cumulative distribution, as is usually done.
This means that the individual bins are independent and
the results more robust. We estimate the uncertainty in the
number of objects in each bin using Poisson statistics. It
is useful to remember that the SCDM run can be rescaled
freely to a different σ8 normalization, The redshift of each
given output is then rescaled to a redshift z’: 1 + z′ = (1 +
z)/σ8.

4.2 Effects of numerical resolution and cosmic

variance

To study the effects of degrading the numerical resolution,
we examined a lower resolution run of our SCDM07 volume.

This run used the same phases, 3 million particles, a soften-
ing length of 160h−1 kpc and a third of the timesteps used in
our fiducial run. Both force and spatial resolution are there-
fore significantly poorer. Halos represented by 128 particles
in our fiducial run have only 8 particles in the low resolu-
tion simulation. While there is good agreement at the high
mass end, the low mass end of the mass function is severely
affected by the poorer resolution, showing a significant de-
crease in the number density of halos below 3×1014h−1M⊙.
This test indicates that at least 30 particles are needed to
correctly assign a mass to individual halos. Our choice to
include in our analyses only halos with N> 64 is then a
conservative one.

Finally, we also explored the effects of cosmic vari-
ance on the cluster number density. We divided our z = 0
SCDM07 volume into several subvolumes and measured the
local δc over the same mass range as we did for the whole
volume. As expected, cosmic variance produces a scatter in
δc when measured in smaller volumes. However the scatter
is not significant for volumes as little as 1/8-th of the origi-
nal simulation volume (i.e. cubes with 250h−1Mpc per side):
we find δc = 1.68 ± 0.02. This is close to the error associ-
ated with a single measurement and similar to the value we
get from the whole volume, suggesting that the value of δc

for a given halo finder has (almost) converged when the full
volume of the simulation is considered.

4.3 Press-Schechter Predictions vs Numerical

Results

In Figures 9 and 10, we show the differential mass func-
tions from the SCDM and O3CDM simulations, respectively.
The corresponding PS curves, computed using the canonical
value of δc for spherical perturbations, are also shown. We
only show the FOF results. Generally, the HOP and FOF
results are very similar, with HOP having a slightly larger
number of massive clusters.

In the case of the SCDM model, we find that the shape
of the differential PS mass function is roughly consistent
with the shape of the numerical mass function only at σ8 = 1
At lower σ8 (or alternatively, higher z) the PS mass func-
tion underestimates the number density of rich clusters in
the simulation. The excess at the high mass end is about a
factor of a few in number density per mass bin. At σ8 0.7 or
larger the PS approach overestimates the number of small
halos (M < 1014h−1 M⊙). The deficit of low mass halos
(which we will only touch upon briefly here) has been well-
documented in numerical works by Carlberg & Couchman
(1988) and more recently, by Lacey & Cole (1994), Gross et
al. (1998) and Somerville et al. (1998). This deficit arises
independently of the choice of algorithm used to define the
halos in the simulations (see Figure 1) and has been as-
sociated with merger events not accounted for by the PS
formalism (see Cavaliere & Menci 1997 and Monaco 1997).
The fact that the two halo finders agree extremely well in
this regime makes the result very robust.

Apart from the above-mentioned deficit, most other
studies that have tested the analytic PS mass function
against numerical results have reported a good agreement
between the two (e.g. Eke et al. 1996) with the notable ex-
ceptions of Bertschinger & Jain (1994) and Sommerville et
al. (1998), who found a systematic excess of massive halos
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Figure 9. The N-body mass distribution for the SCDM run — shown as points — at four different outputs as well as the standard PS
mass function (computed using δc = 1.686) — shown as lines — for the same four outputs: σ8 = 1 (filled circles, solid line), σ8 = 0.7
(circles, dotted line),σ8 = 0.47 (squares, dashed line), σ8 = 0.35 ( triangles, long dashed line). The error bars correspond to 1σ Poisson
errors.

Figure 10. The same as Figure 9 but for O3CDM model at z=0,0.58,1.
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in numerical simulations as compared to the PS prediction.
These numerical results, however, are derived from simula-
tions that have lower resolution and probe smaller cosmolog-
ical volumes than our simulations. These simulations, con-
sequently, contain only a small number of massive clusters
and this, in conjunction with cosmic variance, has resulted
in numerical mass functions with large uncertainties at the
high mass end. Eke et al. (1996), found a good agreement
with the PS mass function on the scale of 5 × 1014h−1M⊙

but with a large error bar.
The large volumes used in our work allow us to confirm

the good agreement between the numerical and the analyt-
ical mass function found for high values of σ8. The excess
of massive clusters at lower σ8/higher redshifts suggest that
the cluster mass function for the SCDM model evolves more
slowly than the PS mass function. At σ8=0.35, the number
density of Coma–like clusters exceeds the standard PS pre-
diction by almost an order of magnitude. Allowing δc to be
a free parameter at each epoch, we perform a χ2 fit of the
PS formula to the numerical results assuming Poisson errors
for each bin. Since observations tend to be biased towards
the high-mass end, we include in our fit only clusters with
temperature T>3keV, (the M–T relation is defined in §4.4)
to allow the use of this formula in theoretical predictions for
X-ray clusters. This formula will underestimate slighlty the
number of very (T>7keV) hot clusters for high σ8 models.

For the SCDM cluster mass function at σ8=0.7 , the
best–fit δc coincides with the canonical value of 1.686 ! For
z > 0 and for our FOF selected halos, the best-fit value of
δc as a function of redshift and σ8 is :

δc(z) = 1.686
[(

0.7

σ8

)

(1 + z)
]−0.125

(9)

as shown in Figure 11, whereas the canonical value of
δc is a constant. (in Figure 11 errorbars are 3 σ errors). For
HOP selected halos δc is offset toward even lower values,
i.e. toward a larger cluster excess: δc = 1.6 at z=0. (for the
SCDM model at σ8 = 0.7). However, a similar evolution of
δc(z) is found, with a (1 + z)−0.1 dependence. In principle
the fitting procedure should keep into account that the mass
associated with a given temperature depends on z and that
the same output can be associated with different z depending
on σ8. However the fitting formula is not affected by this for
values of present day σ8 between 1 and 0.5 and eq. 9 can be
used safely.

In the O3CDM model case , the PS mass function is in
fair agreement with the numerical mass function, especially
at low redshifts. At z = 0, the high mass end of the numer-
ical halo mass function agrees within 2σ with the analytical
curve computed using the canonical (spherical) value of δc

= 1.651. The uncertainties in the number densities of mas-
sive clusters are slightly larger in the O3CDM case because
of the smaller physical volume/h igher H0 of the simulation.
As shown in Figure 11, the best-fit δc(z) for FOF halos can
be well-approximated as

δc(z) = 1.775(1 + z)−0.07 (10)

HOP results shows an even weaker evolution in z. As the
result is more significant in the SCDM case we will mainly
focus on the analysis of results for the critical case.

From these results however, it is not clear if the devia-

Figure 11. The points show best fit values of δc(z) required
to match the numerical mass function for clusters with T> 3
keV at different redshifts. The squares show the results for the
SCDM07 model and the triangles show the results for O3CDM
model. The horizontal light solid curve and the nearly horizontal
dashed lines show the canonical values of δc(z) for the SCDM07
and the O3CDM models respectively. The lines across the points
are the power-law interpolation to the points (see text). Bars are
3 σ errors.

Figure 12. The points show the best-fit values δc(z) for SCDM07
(continuous) and O3CDM (dashed) at z=0 (black dots) and z=1
(i.e σ8 = 0.35 for SCDM) (open squares) as the mass range over
which the PS functional form is fitted to the numerical FOF mass
function is varied. The abscissa corresponds to the lower mass
threshold of the mass range over which the fit is demanded.
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tion from the standard PS mass function is due to just one
or rather both of the following effects:

• at lower σ8 and for a fixed temperature T we study
more extreme clusters i.e. we look at a different region of
the mass function, which maybe still be self similar, albeit
different from the canonical PS.

• the shape of the mass function evolves with time
and/or depends on the power spectrum

As discussed above, the best-fit δc(z) were determined
by fitting the functional form of the PS mass function to the
numerical results for clusters with T> 3 keV, i.e. on mass
scales M ≫ M∗, where M∗ corresponds to 4 × 1013 h−1M⊙

for SCDM07 and 1.5 × 1013 h−1M⊙ for O3CDM. It is of
interest to relax this constraint and explore how the δc varies
as the minimum mass of the halos included in the fit is
lowered and approaches the mass of the smallest halos (64
particles) in our catalog. We carried out the above exercise
at two different epochs/normalization and the results are
shown in Figure 12. The value of δc changes dramatically as
the mass range over which the fit is carried out moves toward
smaller masses (the fit is dominated by the smaller mass
bins as they contain most of the halos used in the fitting).
The trend for both SCDM and O3CDM is for δc to become
larger as the mass threshold is lowered. This is precisely
what one expects given the deficit of low-mass halos in the
simulations. This shows that the shape of the N–body mass
function differs from the PS prediction, and the exact value
of δc is a function of the mass interval considered.

This plot shows also that, at a given mass, δc is a func-
tion of redshift. To prove that the shape of the mass func-
tion evolves with time we take advantage of the fact that
within the PS framework the cumulative fraction of mass in
collapsed halos is invariant when plotted vs the variance of
the density field at a given mass/lenght scale. I.e. at a given
value of σ (which corresponds to different mass/lenght scales
depending on cosmology and z) the fraction of mass in col-
lapsed objects is always the same. This is shown in Figure
13.

It is interesting to interpret this change in terms of dif-
ferent power spectra. SCDM models can be rescaled to mod-
els with different Γ′ (or τCDM models) rescaling the box by
Γ/Γ′ and choosing as the final output the one with the cor-
rect present–day normalization at the scale corresponding
to the 8h−1Mpc scale. The sequence of outputs with de-
creasing σ8 and increasing excess of massive objects can be
reinterpreted as a sequence of models with smaller Γ param-
eter and the same normalization, revealing the dependence
of the shape of the mass function from the power spectrum.
An excess of massive halos for a more negative local spec-
tral index (as the case with larger Γ) had been predicted by
Monaco (1995).

This rescaling allowed to compare our mass functions
with that obtained from the so called “Hubble Volume Sim-
ulation” (HVS) (Colberg et al. 1998), a τCDM with Γ=0.21
and normalization of σ8 = 0.6 Their final output can be
rescaled to a SCDM model with a σ8 = 0.285. The HVS
mass function lies nicely along our sequence of mass func-
tions (Cole & Jenkins 1998, private communication) showing
a slightly larger excess of halos compared to our σ8 = 0.35
output (our output with the lowest σ8).

The two simulations used completely independent soft-
ware to generate the initial conditions, evolve the density

field and analyze the data. The agreement found is quite
satysfying and shows that the results of both simulations
are free of hidden systematic effects.

We can conclude that for critical CDM models the nu-
merical mass function compared to the PS analytical predic-
tion has an excess of halos for M≫ M∗ and a deficiency
for masses M ≪ M∗. The excess at large masses is larger
for models with smaller Γ (or more negative local spectral
index).

These deviations for the canonical predictions are sig-
nificant and cosmological tests based on the number density
of a particular class of objects need to use the appropriate
value of δc to make robust predictions. Our fitting formula
eq. 9 can easily be modified for other critical models with a
different shape parameter.

4.4 Effects on the Cluster Temperature

distribution

X-ray observations allow one to directly determine the clus-
ter temperature or the cluster luminosity function. Of the
two, the temperature of the intracluster gas is thought to
be the more robust measure of the depth of the cluster po-
tential well and to a good approximation, is expected to
be very strongly correlated with the cluster mass. In this
section, we examine the impact on the cluster temperature
function of the excess of massive clusters found in the simu-
lation as compared with the predictions of the standard PS
mass function.

We follow Eke, Cole & Frenk (1996) and adopt the fol-
lowing simple relation for estimating the temperature of the
intracluster medium of a cluster of mass M :

kT = 7.75M
2/3
15 (1 + z)

(

Ωo∆c

Ω(z)178

)1/3

. (11)

∆c is the average density contrast at virialization with re-
spect to the critical background density. This relation as-
sumes that the intracluster medium is isothermal. M15 is
mass in units of 1015M⊙h−1

The cumulative temperature function N(> T ) consid-
ering the SCDM07 model as the present time is shown in
Figure 14. The corresponding cumulative temperature func-
tion based on the standard PS mass function is shown by
the dashed lines. The bottom panel shows the ratio between
these two mass functions. At z = 0, the two are very similar.
At z ∼ 1, however, the number density of clusters with tem-
peratures kT > 7 keV (the temperature of rich, Coma-like
clusters) is more than a factor of 3 greater than the canonical
PS prediction and in the case of exceptionally hot clusters
(kT > 10 keV), the discrepancy is an order of magnitude.
This discrepancy increases for a universe with a lower, more
realistic normalization.

One implication of this is that the cumulative temper-
ature function obtained from the simulation evolves more
slowly over the redshift range 0 < z < 1 than PS theory pre-
dicts. Since we choose a fixed temperature range, at higher z
we are observing more extreme (massive) clusters, i.e. a re-
gion of the mass function with a stronger excess compared
with the anlytical formula. In principle it may be more dif-
ficult to challenge a high Ω model on the basis that the
observed cluster temperature function does not vary signif-
icantly over the redshift range 0 < z < 0.3, especially if
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Figure 13. The plot shows the cumulative fraction of mass in collapsed halos as a function of the variance of the density field. The PS
prediction (invariant with redshift and cosmology) is the thick continuous line. The SCDM results are shown at diffferent outputs: σ8 = 1:
dot–long dashed; σ8 = 0.7: dot–short dashed; σ8 = 0.47: dottted line; σ8 = 0.35: dashed. The numerical mass function is obviously not
invariant and shows evidence of evolution.

Figure 14. Upper panel: PS (thick lines) vs numerical (thin lines) cumulative temperature function N(>T) for the SCDM07 model at
z = 0 (continuous line), z = 0.5 (dotted), and z = 1.0 (dashed). Bottom panel: shows the ratio of clusters above a given temperature
between the numerically-based temperature function and the PS-based temperature function at z = 0.5 (dotted), and z = 1.0 (dashed).
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this effect is coupled with a significant scatter in the M–T
relation. The higher number density of hot clusters in the
simulations also suggests that attempts to estimate σ8 by
fitting the canonical PS-based temperature function may in
principle lead to systematically high results.

Following Eke et al. (1996, 1998) we reanalysed the
low redshift cluster data of Henry & Arnaud (1991) and the
new data in Henry et al. (1997) to produce a cumulative
cluster temperature function. We then compared it with PS
prediction modified using our inferred values for δc(z). This
leads to a small revision of the amplitude of fluctuations
inferred from the local cluster abundance for Ω0 = 1, to a
value of σ8 = 0.5 ± 0.04 if FOF halos are used. The use of
HOP halos results suggests σ8 = 0.48 ± 0.04.

With a σ8 = 0.5 normalization and including the rescal-
ing of δc (eq 9) the excess of hot clusters with kT > 7 keV
compared to the standard PS prediction amounts almost to a
factor of 10 at redshift of 1. Clearly, claims that rule out crit-
ical density models on the basis of the detection of a single
massive cluster at high z (Donahue et al. 1998) must then
be taken with caution. However, the discrepancy between
the temperature function predicted in a critical density uni-
verse and that observed at z = 0.33 is reduced by a modest
amount using the modified Press-Schechter scheme. The dis-
crepancy there is still large enough to rule out Ω0 = 1, unless
there are significant differences in the relation between mass
and temperature for clusters at high and low redshift that
make equation 11 invalid.

5 CONCLUSIONS AND DISCUSSION

We have analyzed parallel N–body simulations of three
CDM models: a critical density model (h=0.5) and two open
models (Ω0 =0.3 and 0.4). These three models, span a large
range of different properties (models COBE and cluster nor-
malized, different amounts of large scale structure, high and
low H0) to cover the wide range of cosmological models
presently considered. We simulated very large volumes –
500h−1Mpc per side – and used 47 million particles for each
run. Having good mass, force and spatial resolution, these
datasets allow a robust determination of two very important
quantities for cosmological studies: the correlation function
of galaxy clusters and the shape and evolution of the cosmic
mass function on cluster mass scales. In particular, we have
focused on how results from simulations compare with pre-
dictions from analytical methods based on the PS approach.

• Halo finders We have assessed if cluster correlations
and mass functions are affected by the biases introduced by
using different halo finders. This is an important step both
for comparing the simulation results with theoretical predic-
tions as well as with observational data. We used two halo
finders available in the public domain: FOF and HOP. We
found that the two halo finders, once set to select virialized
structures based on a local overdensity criterion, produced
very similar halo catalogs. While a small mass offset is de-
tectable, (of the order of 5–7% for massive clusters) our con-
clusions do not depend on the particular choice of the halo
finder. In most of our work we conservatively used FOF,
which gives results closer to the analytical approach.

• Cluster correlation function We were able to deter-
mine the clustering properties of halos spanning nearly two

orders of magnitude in mass, ranging from groups and poor
clusters to very rich massive clusters. Our analysis has shown
that the comoving correlation functions, for a wide range of
group/cluster masses, do not change significantly over the
redshift range 0 < z < 0.5. Of the two analytic schemes we
used (peaks-based and PS-based) for computing cluster cor-
relations functions, we found that the correlation functions
derived using the PS-based scheme (Mo, Jing & White 1996,
Baugh et al. 1998) were in excellent agreement with the nu-
merical correlation functions.

• Cluster Correlation Length and Number Density We
compared our results for the cluster R0–Dc relation in dif-
ferent models against both observations and results of pre-
vious numerical studies. Firstly, we have confirmed that the
SCDM model does not have sufficient large scale power to
account for the observed clustering of clusters. The R0–Dc

relation for clusters in the low density models, is consistent
with the scaling relation R0 = 0.4Dc for Dc < 50h−1 Mpc.
On larger scales the cluster correlation length increases more
slowly than the cluster number density. We also found that
generally our R0–Dc results were consistent with those of
Croft & Efstathiou (1994) in spite of the fact that we used
FOF to identify the clusters in the simulations and Croft
& Efstathiou (1994) used a very different algorithm. The
one difference between our results and those of Croft & Ef-
stathiou (1994) is that in their low Ω0 run that R0 becomes
constant for large values of Dc whereas we found that R0

continues to increase, albeit gently. The analytic R0–Dc re-
lation based on the PS approach agrees with our numerical
results. The flattening of the R0–Dc is qualitatively expected
in CDM models, where the bias of halos depends rather
weakly on mass (a factor of ∼ 2 when the mass changes by
a factor of 100, see Table 2, while at the same time the num-
ber density of massive clusters decreases exponentially fast.
This implies that, as clusters of increasing mass ( i.e. larger
Dc) are considered, R0 (which is linked to the bias) grows
slower than requested by the Bachall & West relation.

Finally, we found that the R0–Dc relation for our low-
density CDM model is consistent with the results for rich-
ness R> 0 and R> 1 Abell clusters as well as those for the
APM clusters, including those for the very rich APM clus-
ters. The only disagreement is with the single datapoint for
R> 2 Abell clusters; the correlation length for this sample
is too large compared with the APM measurements and the
N-body results. This would suggest some strong systematic
differences (or selection criteria) between rich APM clusters
and rich Abell clusters with the same number density. As
discussed above, it does not seem possible to reconcile CDM
models with the Bachall & West relation, unless some exotic
process has boosted the bias of massive clusters compared to
the dark matter distribution. These considerations hold also
for flat models with a cosmological constant, as suggested
by preliminary results by Colberg et al. (1998).

• Cluster mass function The analytical PS predic-
tion differs from the N-body mass function both at the
low and high mass ends (i.e. for both M/M∗ << 1 and
M/M∗ >>1). These discrepancies are more significant in
the critical SCDM universe. Consequently, the analytic cu-
mulative cluster temperature function based on the standard
PS mass function underestimates the abundance of hot clus-
ters. The discrepancy gets larger with lower σ8 and/or lower
values of Γ ( large scale structure studies suggest Γ ∼ 0.25
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(Maddox et al. 1990)). At z = 1 (assuming a SCDM clus-
ter normalized model with σ8 = 0.5) the number of clusters
with kT> 7 keV is underestimated by almost a factor of ten.
Claims that rule out critical density models on the basis of
the detection of massive clusters at high z (Donahue et al.
1998) should then be taken with some caution. The temper-
ature function obtained from our simulations evolves more
slowly than the standard PS temperature function. These
results however, are not sufficient to bring the cluster tem-
perature function for Ω0 = 1, CDM models in agreement
with that observed at z = 0.33 by Henry et al. 1998).

Our results show there is no evidence to support the
notion of a universal value for δc in a given cosmology for
different power spectra. Our results strongly support the
idea that δc(z) is a function of cosmology, and also of redshift
and of the mass range under consideration. It is then harder
to attach a simple physical meaning to the value of δc(z). We
give a fitting formula for δc(z), valid for groups and clusters
that improves the agreement between the PS and numerical
mass functions. It is tempting to interpret the excess of high
mass objects found in the SCDM simulation as a deviation
of the gravitational collapse from the idealized spherically
homogeneous collapse model (Monaco 1995).

One important, general consideration that can be ex-
tracted from our analysis is the primary importance of
comparing results on homogeneous grounds. In particular,
it is crucial to define cluster samples on the basis of the
same, physically motivated quantity. If clusters are defined
in terms of the mass within the virial radius, then both an-
alytical and numerical results can be directly compared and
the resulting differences understood. This makes theoretical
predictions much more robust and easier to compare with
observational results.

It appears that collisionless large scale structure simula-
tions are now in their maturity. Simulations even larger than
ours are currently being analyzed (see Colberg et al. 1998).
The statistical results appear to be robust and stable, allow-
ing a fruitful comparison with observational data, which at
the same time, are about to experience a manifold growth.
We are optimistic that a close interplay between theoreti-
cal and observational results about the internal physics of
galaxy clusters and their large scale distribution will help to
improve our knowledge of the physical state of our Universe.
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