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Abstract: Theterm gluten intolerance may refer to three types of human disorders: autoimmune

celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of

prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided

into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the

groups possess similar structures and properties. All gluten proteins are evolutionarily connected

and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by

proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which

cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity

and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides:

the most common is gluten-free diet (GFD), which has proved its effectiveness; prevention programs,

enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with

reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and

detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for

treatment of gluten-related disorders.

Keywords: gluten; celiac disease; NCGS; wheat allergy; gluten intolerance; gliadin; glutenin; hordein;

secalin; avenin

1. Introduction

Gluten intolerance is an umbrella term integrating three major types of gluten-related disorders:

autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS) [1–3].

Although these disorders possess similar symptoms, which include bloating, vomiting and diarrhea,

a number of principle differences of their pathogenesis are remarkable (Table 1).

Celiac disease is an autoimmune enteropathy caused by genetic and environmental factors,

with an estimated worldwide prevalence of about 1%. The huge prevalence of CD in the Saharawi

people (5.6%) probably indicates that events linked to wheat domestication 10,000 years ago were a

‘founder effect’ related to the positive selection of HLA-DQ2 haplotype [4].

CD is usually diagnosed by serological examination [5]. Duodenal biopsy is not necessary for

the diagnosis of CD but is necessary for the treatment [6]. Disease is induced by gluten-containing

food in people carrying HLA-DQ2 or DQ8 haplotype (human leukocyte antigen Class II with DQ2

and/or DQ8 molecules on antigen-presenting cells). CD is not only characterized by gastrointestinal

symptoms but also by extraintestinal manifestations, some of which are a direct consequence of
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autoimmunity responses—for example, dermatitis herpetiformis or gluten ataxia—while others are an

indirect consequence of anaemia, such as osteoporosis, short stature and delayed puberty [7].

After gluten enters into the digestive system, glutamine and proline-rich gluten composing

proteins are partially hydrolyzed by proteases presented in the gastrointestinal tract [8] (Figure 1).

The upregulation of intestinal peptide zonulin, involved in tight junction regulation, appears to be

partly responsible for the increased permeability characteristic of the gut [9]. As a result, generated

gluten-derived peptides reach the lamina propria (mucosa) by transcellular or paracellular transport

where they are modified by tissue transglutaminase (tTG) enhancing their affinity to MHC II molecules,

and thereby making them toxic and immunogenic in HLA-DQ2 or DQ8 containing patients [10].

The repetitive presence of glutamine and proline residues determines the gluten-derived peptides as a

preferred substrate for tTG. tTG-mediated modifications occur in two ways: deamidation (cleavage of

the ε-amino group of a glutamine side chain) or more frequently transamidation (cross-linking of a

glutamine residue from the gliadin peptide to a lysine residue of tTG). Further peptides presentation

by HLA-DQ2/DQ8 protein subunits in the surface of dendritic cells to gluten-specific T cells induces

two levels of immune response: the innate response and the adaptive (T-helper cell mediated) response

with the production of interferon-γ and IL-15. As a result, it causes immune-mediated enteropathy,

intestinal inflammation, followed by the atrophy of villi, crypt hyperplasia and increased infiltration

by intraepithelial lymphocytes [11]. It also produces weight loss and chronic diarrhea. Although the

causative agent is a dietary protein, the disease has marked autoimmune features, which are indicated

by the presence of autoantibodies against tTG. Cross-linking between gliadin and tTG is covalent

resulting in the formation of new epitopes, which trigger the primary immune response, and by which

the autoantibodies against tTG are developed [12].

Table 1. Comparative major characteristics of gluten intolerance manifestations.

Celiac Disease Allergy NCGS

Underlying cause
Genetic: HLA-DQ2 or/and
–DQ8 haplotype

Atopy (100%)
Probably, genetic: DQ2
and/or DQ8 (up to 50%
of patients)

Laboratory markers

IgA (IgG) anti-tTG,
IgA(IgG) anti-endomysium
(anti-EMA), anti-deamidated
gliadin peptides antibodies

Specific IgE for wheat, specific IgE
for ω-5 gliadin, specific IgE for
non-specific lipid transfer proteins

IgG antigliadin antibodies
(in only a part of
the patients)

Histopathological
intestine symptoms

Atrophy of villi, crypt
hyperplasia, increased
infiltration by
intraepithelial lymphocytes

Any mucosal damage or increased
infiltration by intraepithelial
lymphocytes or atrophy of villi
and crypt hyperplasia

Any mucosal damage or
increased infiltration by
intraepithelial lymphocytes

Allergy to wheat is represented by a food IgE-mediated allergy, which is most frequently based

on the sensitization to wheat protein allergens. It has been shown that wheat ω5-gliadin is the main

allergen of gluten, inducing wheat-dependent exercise-induced anaphylaxis [13]. Furthermore, some

data suggest that α- and γ-gliadins are IgE-binding proteins [14]. Allergy occurs within a few hours

and causes no permanent gastrointestinal or other organ damage.

One more gluten-related disorder has recently been proposed—NCGS—and its pathogenesis is

still not clear. Gluten ataxia (GA) is one of a number of different neurological manifestations attributed

to CD, but Rodrigo et al. have suggested that it is related to NCGS [15]. Recently, special criteria aimed

at optimizing the clinical care in clarifying the core of NCGS have been accepted [3].

Gluten triggers all kinds of gluten related disorders and represent proteins of wheat, barley,

rye and, probably, oat. The gluten proteins of different species are the major subject of this present

review along with the currently used proposed gluten detoxification strategies and the development

of effective prevention and treatment of gluten related disorders.
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Figure 1. Schematic representation of major pathways in celiac disease (CD) pathogenesis. MICA,

NKG2D—stress molecules on enterocytes, IEL—intraepithelial lymphocyte, DC—dendritic cell.

2. Classification and Structure of Gluten Proteins

Gluten is a mixture of seed storage proteins found in grains such as wheat, rye, barley and oat.

Wheat, rye and barley are closely related members of the Triticeae tribe. They contain kindred groups

of proteins. Rye (Secale cereal L., genome composition RR) and barley (Hordeum vulgare L.) are diploid,

while wheat is represented by the most widely studied hexaploid bread wheat (Triticum aestivum L.,

genome composition AABBDD), tetraploid pasta wheat (Triticum durum L., genome composition

AABB) and diploid wheat (Triticum monococcum L., genome composition AA). Oat (Avena sativa L.) is

the most closely related cereal to the Triticeae and belongs to a separate Aveneae tribe within the same

sub-family (Festucoideae).

Gluten proteins appear to be prolamins due to the significant amount of glutamine and proline

amino acid residues present in their primary structures. Prolamins are the major endosperm storage

proteins in grains. Prolamin genes are present in the A, B and D genomes of wheat, and, consequently,

hexaploid and tetraploid wheat prolamin fractions consist of more individual components than in

barley and rye. There is also a difference in the number and properties of prolamin polypeptides.

Despite these variations, all prolamins are related and, usually referred to as three broad groups:

sulphur-rich (S-rich), sulphur-poor (S-poor) and high molecular weight (HMW) prolamins (Table 2) [16].

They comprise the Prolamin Superfamily, along with the prolamins of oat, maize and rice, (Figure 2).

The proteins and polypeptides within these groups possess similar structures: signal peptide

for translocation into cellular compartments, a non-repetitive N-terminal region, a non-repetitive

C-terminal region and a long repetitive central region (Figure 3). The central region contains

glutamine-rich and proline-rich repeat units unique to each group. It has been shown that the motifs
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in central region of S-rich and S-poor groups are clearly related and the cysteine positions in HMW

proteins and S-rich group prolamins are highly conserved. Thus, the conclusion was that all these

groups have a common evolutionary origin [17]. Now, we will discuss every prolamin group in detail.
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Figure 2. Prolamin Superfamily composition.

Table 2. Classification of gluten prolamins.

Grain Species Components
Molecular Weight

(% Total)
Polymers or Monomers

HMW Prolamins

Wheat HMW subunits of glutenin 65–90 kDa (6%–10%) Polymers

Barley D-hordeins >100 kDa (2%–4%) Polymers

Rye HMW secalins >100 kDa (2%) Polymers

S-rich prolamins

Wheat

γ-gliadins

30–45 kDa (70%–80%)

Monomers

α-gliadins Monomers

B- and C-type LMW subunits of glutenin Polymers

Barley B-hordeins and γ-hordeins 32–45 kDa (80%)
Aggregated type, monomers
or single chain polypeptide

Rye γ-secalins 40–75 kDa (80%) Polymers

S-poor prolamins

Wheat
ω-gliadins

30–75 kDa (10%–20%)
Monomers

D-type LMW subunits of glutenin Aggregated type, polymers

Barley C-hordeins 40–72 kDa (10%–15%) Monomers

Rye ω-secalins 48–55 kDa (10%–15%) Monomers

Other gluten prolamins

Oat avenins 18.5–23.5 kDa (10%) Monomers

2.1. Wheat

Wheat prolamins appear to be the first identified gluten proteins. According to their solubility

they are usually divided into two classes: alcohol-soluble fraction named gliadins (monomeric) and

insoluble—glutenins (polymeric, soluble in dilute acids and bases) [18]. It has been shown that gliadins

contribute to the cohesiveness and extensibility of the gluten, whereas glutenins play a role in the

maintenance of the elasticity and strength of the gluten [18]. Integrally, these proteins represent

80%–85% of gluten proteins and define viscoelastic properties of dough.
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Figure 3. Schematic representation of typical structure of prolamin group members: S-rich, S-poor,

HMW and avenins. S—signal peptide; A, B, C—conserved regions, lines—disulfide bonds,

red circles—unpaired cysteine residue, I2–I4—variant regions; parallel lines—contracted repetitive

region. (A) Typical structure of S-rich prolamin. It contains conservative domains, repetitive region

and is able to form intrachain disulfide bonds; (B) Typical structure of S-poor prolamin. It lacks

conservative domains and cysteine residues, and is therefore not able to form any disulfide bonds;

(C) Typical structure of HMW prolamin. It contains conservative domains, repetitive region and is able

to form intra- and interchain disulfide bonds; (D) Typical structure of avenin. It contains conservative

domains, repetitive regions and is able to form interchain disulfide bonds only.

This difference in solubility largely reflects the ability of these proteins to form inter- or

intramolecular disulfide bonds. Gliadins are monomeric proteins and are connected to each other

through intrachain disulfide bonds (α/β-, and γ-gliadins), or not connected at all (ω-gliadins) [19].

It has been reported that C and D groups of LMW glutenin subunits (LMW-GS) are mainly composed

of α-, β-, γ-, and ω-gliadins but mutated in cysteine residues. It means that LMW-GS can act as chain

extenders depending on how many bonds it may form, and gliadins may serve as chain terminators [20].

The polymeric form contributes to the strength of gluten and improves dough quality.

(1) Gliadins

Gliadins are represented as single chain polypeptides, and it is accepted that gliadins are divided

into four major groups (from fastest mobility to slowest): α-, β-, γ-, and ω-gliadins, according to

their electrophoretic mobility in SDS-PAGE at low pH [18]. Precisely, ω-, α/β-, and γ-gliadins exist.

Proteins from α- and β-groups are similar, so this group is referred to as α-gliadins [21]. ω-gliadins

can be arranged into three types, which will be discussed further.
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Genes encoding gliadin proteins are located on the short arms of Groups 1 and 6 chromosomes

at three homologous loci—Gli-A1, Gli-B1, and Gli-D1 (Group 1) and—Gli-A2, Gli-B2, and Gli-D2

(Group 6) [22]. Some of the α- and γ-gliadins are encoded by Gli-2 genes. The estimated copy number

of α-gliadins in hexaploid wheat is between 25 and 150 copies. Gli-1 contains genes encoding not only

γ- and ω-gliadins but also LMW-GS, so there is a tight linkage between them [23].

Gliadins of different types bear distinct secondary structure. Thus, ω-gliadins contain randomly

coiled β-turns without α-helices or β-sheets. In contrast, α/β- and γ-gliadins possess α-helices and

β-sheets, which, in turn, allow these proteins to not only stabilize by disulfide bonds but also by the

support of hydrogen bonds within their helices and sheets [24].

Gliadins are monomers but they are able to form intramolecular disulfide bonds. Free SH groups

of glutenin, generated by β-elimination from cysteine, initiate SH–SS interchain reaction between

gliadin and glutenin. This mechanism was proposed by Schofield et al. [25], which postulates that

these SH–SS interchange reactions cause transformation from intra- to intermolecular SS bonds of

gliadins [26]. Even the addition of free SH groups, such as cysteine, starts gliadin polymerization

according to first-order reaction kinetics [27]. Such polymers are used as biodegradable films.

Gliadins are transported via the Golgi to the protein storage vacuole, whereas others,

principally glutenins, are retained within the ER [16]. The precise mechanism determining the

transportation of prolamins is not clear. There are no classical signal peptides targeting proteins

neither to ER nor to vacuole.

(1.1) α- and γ-gliadins

α- and γ-gliadins are very similar in their amino acid sequences. These types of proteins belong to

S-rich group of prolamins and have similar structures (Figure 3). α- and γ-gliadins contain a relatively

high composition of cysteine and methionine, but few glutamine, proline and phenylalanine residues.

Eight cysteine residues allow the formation of intrachain disulphide bonds responsible for its folding

(Figure 3) [28]. α- and γ-gliadins are able to form three and four intramolecular disulfide bonds,

respectively. Their folded structures determine further non-covalent interactions, including hydrogen

bonds and hydrophobic interactions [29].

N-terminal domain of α-gliadins consists of five residues and the central domain is about 113–134

amino acid residues. Central domain contains proline- and glutamine-rich heptapeptide PQPQPFP

and pentapeptide PQQPY. This domain contains the most characteristic immunogenic fragment:

33-mer peptide comprising six overlapping epitopes significant for CD pathogenesis. Based on

the differences in epitopes comprising 33-mer peptide, α-gliadins can be divided into six types.

Only Type 1 encompasses proteins including 33-mer peptide (from hexaploid wheat), whereas other

types do not [30].

C-terminal segment of α- and γ-gliadins is about 150 residues. In α-gliadins, almost all the

glutamic acid and aspartic acid residues are present in amide forms [31]. γ-gliadins contain a 12 residues

signal peptide and have more cysteine residues in their primary structure than α-gliadins. All these

cysteine residues are involved in intrachain disulfide bonds formation (Figure 3).

Recently, a conformational equilibrium toward a beta-parallel structure was reported in the case of

33-mer peptide of α/β-gliadins under physiological conditions [32]. Gliadin nanoparticles formation

was reported in distilled water (probably at pH 6–7) [33]. Then, self-organization capabilities of 33-mer

peptide were investigated under gastrointestinal environment [34]. The spontaneous self-organization

at pH 3.0 leads to the formation of aggregates such as micelles of amphiphilic molecules. Then,

on increasing the pH to 7.0, gliadin nanostructures repulsion decreases due to proximity to the

isoelectric point.

(1.2) ω-gliadins

This group differs from other groups of gliadins. It is related to S-poor group of proteins lacking

methionine or cysteine residues in their primary structure. Thus, ω-gliadins are incapable of disulfide
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bonds formation (Figure 3). As a result, no compact structure exists for these proteins. Proline,

glutamine and phenylalanine residues comprise the majority of amino acids (80%) in ω-gliadins.

They are more polar than α- and γ-gliadins [35].

On the basis of the N-terminal sequences, three different types of ω-gliadins have been

distinguished from wheat proteins and related proteins from other species such as C-hordeins and

ω-secalins: ARQ-, KEL-, and SRL-types depending on the first three amino acids [36]. The KEL-type

differs from the ARQ-type by the absence of the first eight residues in its structure.

(2) Glutenins

Glutenins consist of subunits and are usually divided into two classes according to their molecular

weight defined by SDS-PAGE: high molecular weight glutenin subunits (HMW-GS) and low molecular

weight glutenin subunits (LMW-GS) (Table 2) [37]. They are encoded by Glu-1 loci on the long arms of

1A, 1B, 1D chromosomes of wheat.

Each HMW-GS locus contains two tightly linked genes encoding larger x-type (82–90 kDa) and

smaller y-type (60–80 kDa) subunits, respectively [38]. Both types of subunits have similar structures

(Figure 3). Repetitive central region is the cause of the difference between HMW-GS and LMW-GS.

It may have various lengths provided by three types of repeat units: tripeptides (GQQ), hexapeptides

(PGQGQQ), and nonapeptides (GYYPTSLQQ), and it is worth mentioning that the tripeptide units only

exist in the x-type subunits, and both x- and y-type subunits possess hexapeptide and nonapeptide

units [39]. The y-type glutenin subunits possess more cysteine residues than x-type subunits, and,

are therefore capable of more inter- and intramolecular disulfide bonds formation, which mediates

the aggregation of HMW-GSs with the involvement of LMW-GSs and results in an improved dough

quality [16].

LMW-GS are classically subdivided into B, C, and D-type on the basis of their SDS-PAGE mobility

and pI (Table 2) [40]. The B-type is the major group of LMW-GS. It represents the most numerous of

LMW proteins. C-type proteins are the fastest moving type and the later discovered proteins comprise

the D-type group. The B- and C-type subunits are encoded by genes located in the Gli-3, Gli-1 and

Gli-2 loci on the short arm of homologous Groups 1 and 6 chromosomes. Genes at the Gli-1 loci encode

D subunits [41].

LMW-GS can be divided into two groups: one of which contains subunits with methionine as

N-terminal amino acid (LMW-m) in their amino acid sequences, whereas the other group contains

serine as N-terminal amino acid (LMW-s). In B- and C-types of LMW, there are both m- and s-types.

D-type subunits are the less abundant group of LMW-GS. It has been shown that they could be formed

by the mutation in one or more genes encoding ω-gliadins, resulting in the appearance of a single

cysteine and allowing for the formation of an additional interchain disulfide bond in the glutenin

macropolymer [42].

2.2. Barley

Hordeins are the major storage proteins in barley, and these proteins, like gliadins, are also

alcohol-soluble prolamins and appear to be rich in glutamine and proline residues but poor in charged

amino acids. Hordein polypeptides are not glycosylated. Two-dimensional polyacrylamide gel

electrophoresis (with immobilized pH gradients in first dimension) of barley seed proteins reveal

the occurrence of A, B, γ, C and D hordeins depending on their molecular mass and amino acid

composition [43]. The A hordeins are of low molecular weight and do not seem to be true storage

proteins. B and γ-hordeins are rich in sulfur and account for about 80% of the total hordein amount.

They belong to S-rich prolamin group (Table 2, Figure 3); the C hordeins belong to S-poor group,

and the D hordeins to HMW protein group. B and C hordeins collectively account for over 95% of

barley seed storage proteins and are encoded by linked loci Hor 2 (B hordein) and Hor 1 (C hordein)

located on the short arm of the chromosome 5 [44]. D hordeins and γ-hordeins are encoded by

structural loci Hor 3 and Hor 5 located on the long arm of chromosome 5.
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It has been suggested that B and C hordeins belong to common evolutionary origin due to the

shared short tandem repeats [45]. The occurrence of two distinct domains in B hordein (one is related

to C hordein and one is not) suggests that an unusual evolutionary pathway links these two groups of

prolamin storage proteins.

The structural features of hordein proteins are similar to those of wheat proteins and are

indicated in Figure 3. Three conserved regions (A, B, C) are present in all hordeins, except C hordein.

These three regions also show a homology with each other, and contain cysteine residues that may be

conserved within the groups or between the different groups of proteins. Shewry at al. concluded that

S-poor prolamins originated from S-rich group because they have similar glutamine- and proline-rich

motifs and evolved by the further amplification of repeat units and deletion on conserved regions A, B,

and C [36].

(1) B and γ-hordein

B hordeins are the orthologous prolamin family to wheat LMW-GS group [17]. It has been

estimated that B hordeins are represented by 11 different proteins and are now divided into closely

related subgroups: SDS-PAGE revealed two major bands of B1 and B3 hordeins, and minor band with

intermediate mass called B2. Three pseudogenes of B hordein have been identified [46]. Most of the B

hordein are present in monomeric form or as single polypeptide subunits within the globules of low

electron density of endosperm cells along with C, γ 1-, γ 2- and possibly γ 3-hordein polypeptides [47].

B hordeins can form a wedge or tadpole-shaped structure stabilized with interchain disulphide

bonds formed between unpaired cysteine residues in the N- and C-terminal domains [48].

γ-hordein is homologues to γ-gliadin of wheat. γ-hordein is presented in γ1-, γ2-, γ3-types.

Analysis of primary sequences revealed a distant relation between γ3-hordein to γ2- and B hordein,

while γ2-hordein is very close to γ-gliadin and γ-secalin (Figure 4) [47]. In addition, γ1- and

γ2-types have identical N-terminal sequences. Signal peptides allow γ1-, γ2-hordeins to be

co-translationally transported into the rough endoplasmic reticulum. They present in small aggregates

(hordein polypeptides) soluble in 55% isopropanol. γ1- and γ2-hordein can form intermolecular

disulfide bridges but γ3-hordein exists as a monomer only.

(2) C hordein

C hordein is a group of homologous proteins that have molecular weights of about 50 kDa. C1 and

C2 types of C hordein were identified [49]. They are homologous to wheat ω-gliadin. C hordeins lack

cysteine residues and always present in monomeric form due to their inability to form disulfide bonds.

Their primary sequences are rich in glutamine, proline and phenylalanine residues. They possess

short N- and C-terminal (unique sequence of 6 amino acid residues) domains and central domain

containing P/LQQPY and PQQPFPQQ repetitive motifs (Figure 3) [45]. Structural studies of C hordein

showed that these proteins have a conserved but unusual secondary structure—repetitive β-turns [50].

Further analysis performed by l’Anson e al. indicates that such primary structure results in a similarly

conserved supersecondary structure called “worm-like” chain. This is a loose spiral based on elements

of P-turn and poly-L-proline II helix [51]. C hordeins are located within the globules of low electron

density along with γ-hordein and B hordein [47]. These globules merge with each other in cytoplasm.

(3) D hordein

D hordein is homologous to HMW glutenins of wheat. They have been studied in detail due

to their importance in the quality and strength of dough. D hordein and polymeric B hordein are

present in polymeric form as aggregates of polypeptide subunits linked by interchain disulfide bonds.

It is always deposited in the vacuole [52]. D hordein possesses a similar amino acid composition

as HMW-GSs of wheat. It has repeat units such as tripeptides (GQQ), hexapeptides (PGQGQQ),

and nonapeptides (GYYPTSLQQ). These subunits form spiral supersecondary structure provided by

repeating β-turns [53]. Nevertheless, it has unique tetrapeptide present in C-terminal part of repetitive



Nutrients 2016, 8, 644 9 of 27

domain. D hordein has an extended rod-like structure. In addition, D hordein differs from HMW-GS

in terms of the number and distribution of cysteine residues.

2.3. Rye

Rye is one of the major cereal species along with wheat and barley. Prolamins of rye are called

secalins and are divided into three classes: HMW secalins, γ-secalins and ω-secalins (Table 2) [17].

(1) HMW secalin subunits (HMW-SS)

These high molecular weight proteins are encoded by two genes of Sec-3 (Glu-R1) locus located

at the long arm of 1R rye chromosome [54]. As HMW glutenins are subdivided into x- and y-types,

Sec-3 also consists of two paralogous alleles (Glu-R1x and Glu-R1y) of duplication origin. They encode

x-(more abundant) and y-types of subunits [55]. HMW-SS are always present as one or two individual

subunits similar to D hordeins and in contrast to five to six subunits of wheat HMW-GS.

HMW-SS are homologous to HMW-GS but there is a significant difference in the properties and

structural parameters determining gluten formation (see below, Triticale).

Repetitive domain of HMW-SS contains tripeptide, nonapeptide and hexapeptide consensus

motifs discussed in Section (2) Glutenin section. Scanning tunnelling microscopy of a purified HMW

secalin subunit demonstrated aligned rods with a diameter of about 1.9 nm containing diagonal

striations (presumably corresponding to turns of the spiral) and having a pitch of about 1.5 nm [56].

(2) γ-secalins

γ-secalins are encoded by five to 10 genes of Sec-1 and Sec-2 loci at 1R and 2R chromosomes of

rye, respectively. The structures of γ-secalin and other γ-type prolamins are alike (Figure 3). It has

eight cysteine residues involved in intramolecular disulfide bonds formation and unpaired cysteine

residue involved in intermolecular bonds formation. Rye also encodes 75 kDa γ-secalins that have

no analogues in other cereals. It amounts to about 50% of total seed proteins in rye and is sometimes

separated from other secalins into distinct types.

(3) ω-secalins

Sec-1 locus is a gene region of ω-secalins located at the short arm of chromosome 1RS.

This arm contains Sec-1 disease resistant genes tightly linked to leaf, stem and stripe rusts and

powdery mildew [57]. This linkage results in some dough quality defects such as marked stickiness,

reduced strength and intolerance to overmixing. Clarke et al. reported that the Sec-1 locus of rye

consists of approximately 145 kb of DNA containing a tandem gene array of 15 ω-secalin gene

units [58]. FISH analysis shows that the sizes of the Sec-1 region range from 131 to 164 kb on the DNA

fiber specimen [59]. Rye genome contains not only ω-secalin genes with ORFs but also pseudogenes,

which may be the subject of a reduced selection pressure [60].

ω-secalins are related to S-poor group of prolamins and possess a typical structure for this group.

These proteins are monomers and cannot form interchain disulfide bonds like the other proteins in

this group: C-hordeins and ω-gliadins. This was discussed earlier for C hordein, ω-secalin has no A,

B or C conservative domains. Repetitive domain of ω-secalin is flanked by short unique sequences

of N-terminal 12 amino acid residues and four amino acids on its C-terminus. Repetitive region of

ω-secalin also has an unusual supersecondary structure similar to that in C hordein of barley.

2.4. Triticale

Hybrid species triticale (X Triticosecale Wittmack) also contains gluten, and originates from species

durum wheat (Triticum durum L., AABB genome) and rye (Secale cereal L., RR genome). The hexaploid

triticale genome (AABBRR) encodes three sets of HMW glutenins (1A and 1B chromosomes),

HMW secalins (1R), 75K γ-secalins (2R) of rye and LMW glutenins (1A and 1B). This complex was
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named “secaloglutenin”, while “secalogluten” refers to the hydrated network of secaloglutenin with

some monomers [61]. This network is weak and incohesive and the dough strength is between the

dough strength of Triticum durum L. and Secale cereale L. and requires less mixing time. Currently,

many papers focus on the elucidation of possible methods for the improvement of triticale dough.

2.5. Oat

Prolamins in oat (Avena sativa L.) are represented by avenins. Oat avenins differ from other grain

prolamins in the lower amount of proline. Furthermore, oats contains a relatively low content of

storage proteins; approximately 10% only of the total grain protein amount compared with 40%–50% in

wheat, barley, and rye [62]. This is a cause of the inability to divide oat prolamins into HMW proteins,

S-rich and S-poor groups in a manner of Triticeae tribe. Avenins were shown to be homologous to

α/β-gliadin and γ-gliadin of wheat, B-hordein of barley and γ-secalin of rye (S-rich group) [63].

Avenins can be well analyzed with HPLC technique, and contain insoluble and soluble

fractions. Insoluble in alcohol but soluble in reducing solution fraction named “glutelin fraction” [64].

The molecular weight of avenins is about 18.5–23.5 kDa and contain two blocks of glutamine- and

proline-rich repeated sequences, whose length varies from six to 11 residues (Figure 3). Avenins are

monomers and only contain interchain disulfide bonds [62].

Although avenins are very similar [65], only differing by point mutations, they are subdivided

into A, B and C groups according to the neighbor-joining phylogeny method [66]. Avenin sequences

belonging to B and C groups possess eight cysteine residues, whereas sequences from A group

bear 9. Thus, avenins from group A are capable of interchain disulfide bonds formation and a

polymer in a wheat glutenin manner with a use of unpaired nineth cysteine. Generated polymer

may consist of only A avenins or from other prolamins resulting in heteropolymer formation. It has

been proposed that A avenins are LMW-GS-like (glutelin fraction). B and C avenins show up to be

α- and γ-gliadins-like proteins. The expression levels of avenins of different groups have not yet

been well studied, but it is clear that α- and γ-gliadins-like proteins (group C and B) expression is

greater than that of LMW-GS-like avenins from group A [66]. Avenins are synthesized and assembled

into vacuolar protein bodies in developing endosperm tissue along with globulin storage proteins.

Immunogold staining of this tissue demonstrated that prolamins were located in the light-staining

regions. These proteins appear to aggregate within the rough ER, while most of the globulin appear to

aggregate in the vacuole [67].

3. Gluten Evolution

Although the prolamin superfamily seems to be a relatively unique group of proteins, there is

evidence of a relationship between these proteins and other seed protein groups. First, proteins within

one group (S-rich, S-poor or HMW) have a similar structure. For example, comparison of prolamin

C-terminal domain sequences from S-rich group of proteins (wheat, barley and rye) including oat

avenins showed significant similarity. Particularly, three conserved regions of length about 30 residues

were identified and called A, B and C (Figure 3) [17]. They include a conserved number and position

of cysteine residues. It is interesting that these regions share some similarity indicating the probable

triplication of a short ancestral sequence (Figure 4) [62]. Moreover, such short similar sequences were

found not only in gluten prolamins but also in other seed and non-seed proteins.

Comparison of regions of A, B and C conserved domains (Figure 3, see I2–I4) identified subgroups

within S-rich group: α-type and γ-type, B hordein [68]. γ-type is considered to be the most ancient

among the gluten proteins. It is worth mentioning that regions A, B and C are also present in the HMW

prolamins, although in this case regions A and B are located within the N-terminal domain while

region C is within the C-terminal domain indicating that proteins of S-rich and HMW groups arose

from a single ancestor by insertion of I2–I4 blocks and repeated sequences. It has been shown that

α- and γ-gliadins are both related to LMW-GS. Moreover, it has been suggested that C and D groups

of glutenins are mainly composed of α-, β-, γ-, and ω-gliadins but mutated in cysteine residues [20].
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Proteins of S-poor group of prolamins do not contain conserved regions. It is also clear that

repeated sequences of S-poor prolamins (ω-type, C hordein) are related to repeated sequences in S-rich

prolamins indicating that S-poor group of proteins originated from S-rich group through amplification

of repeats and deletion of C-terminal domain. The evolutionary events leading to emergence of

prolamin superfamily are summarized in Figure 4.

             

            ‐              
                 

 
                           

                     
                                 

  ‐                          
          ‐               ‐      
                           

       

  ‐        

                           
  ‐                              
              ‐          
                                ‐

    ‐   ‐     ‐                    
                            ‐

                ‐              
                             

                               
                    ‐      

                             
                           
          ‐    ‐ ‐     ‐            
                   

      ‐                        
ω ‐                     ‐ω ‐          γ ‐

   γ ‐      γ ‐                 ‐  
‐                    γ ‐   γ ‐
     γ ‐   ‐    ω ‐                  

Figure 4. Summary of evolutionary events that probably contributed to the divergence of

Prolamin Superfamily proteins. A, B, C—conserved regions, S—signal peptide, I2–I4—variant regions.

(A) Conservative domains A, B and C of prolamins are thought to originate from the ancestral domain

by triplication. S-rich and HMW prolamins emerged after insertions of repetitive regions in a manner

showed on a Figure; (B) S-poor prolamins are suggested to originate from S-rich prolamins by deletion

of conserved A, B and C regions, and by multiplication of repeated sequences.

4. Gluten Intolerance Pathogenesis

4.1. Cross-Reactivity between Gluten Proteins

Primarily, gluten is a source of flour and, consequently, bread and flour products. Consumption

of gluten-containing food makes such food an immune system target. Digested gluten is a reason for

the emergence of different antigens and immunogens. Cross-reactivity implies the reaction between an

antibody and an antigen that differs from the immunogen, and it has been shown in glutenin-specific

and gliadin-specific T-cells. Such T-cells could respond to gliadin and glutenin and vice versa due to

their directivity to repetitive sequence highly homologous in these proteins [69]. Such cross-reactivity

contributes to the development and spread of T-cell response and inflammation. It is also known

that CD is characterized not only by inflammation and small intestine tissue remodeling but also by

neurologic defects such as axonal neuropathy and cerebellar ataxia [70,71]. It has been shown that such

neurological implications may occur partly due to the cross-reactivity between antigliadin antibody

and synapsin I protein [72]. This protein is a cytosolic phosphoprotein found in most neurons of the

central and peripheral nervous systems. Although gliadins are not homologous to synapsin I, there is

a glutamine- and proline-rich-region in C-terminal sequence of synapsin I, which includes PQP and

PQQP motifs similar to those in gliadin.
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Evidence of the cross-reactivity of prolamin proteins was also reported in the course of allergy.

ω5-gliadin is the major wheat allergen. It was shown that anti-ω5-gliadin antibodies bind to rye

γ70-secalin, rye γ35-secalin and barley γ3-hordein [73]. In about 90% of patients with wheat-dependent

exercise-induced anaphylaxis, IgE antibodies against these proteins were found. Rye γ70- and

γ35-secalin and barley γ3-hordein cross-react with ω5-gliadin. This probably happens due to the

fact that IgE antibodies bind to structurally similar epitopes; found proteins are related to the same

evolutionary group of γ-type prolamins.

Even though there is no cross-reactivity between allergens in oat and other gluten species,

avenins show immunological cross-reactivity to γ-secalin due to their considerable homology [74].

First immunogenic peptides in hordein, secalin and avenin were revealed on the basis of T-cell

cross-reactivity against wheat gluten proteins [75]. Epitopes defined in hordein and secalin were

recognized by α-gliadin-reactive T-cell lines in vitro while avenin epitopes were not. That explains

why rye and barley were considered to be pathogenic for CD patients, whereas oat was included in

the “gluten-free” group of food.

Later, it was shown that oat consumption is safe for the majority of CD patients [76], even for

children [77]. It is well known that the greater the proline residues in storage protein the more

pathogenic this protein is for CD patients [78]. Low proline content may be the reason why oat avenins

are less immunogenic compared to wheat prolamins but may still be toxic in large quantities. However,

there was no direct (in vivo) evidence of the activation of gluten-reactive T-cells following ingestion of

oats. Hardy et al. provided in vivo evidence that ingestion of oats activates avenin-specific T-cells in

10% of CD patients [79]. Moreover, they showed T-cells to be cross-reactive against hordein and avenin.

After oral challenge with barley (and not wheat or rye) the majority of HLA-DQ2.5 CD patients harbor

T-cells capable of being activated by avenin peptides ex vivo, but the ingestion of oats itself provides

rather weak antigenic stimulation for this population of T-cells. Avenins are probably less stimulatory

because they do not contain proteolytically resistant peptides longer that 10 amino acid residues.

They have reduced binding stability to HLA-DQ2.5 compared to hordein peptides. This means that

avenin-reactive T-cells are activated by the consumption of barley rather than oat.

4.2. Celiac Disease

As described in the introduction, gluten is impregnable by the gastric, pancreatic and intestinal

digestive proteases of people carrying HLA-DQ2 or/and DQ8 haplotype. HLA-DQ is a part of the

MHC class II antigen-presenting receptor system and distinguishes its own and foreign cells. HLA-DQ

protein consists of two subunits, which are encoded by the HLA-DQA1 and HLA-DQB1 genes located

on the short arm of the 6 chromosome. Mainly, people with celiac disease have DQ2 or DQ8 isoforms

because these receptors bind to gliadin peptides more tightly than other forms.

However, there are multiple DQ2 haplotypes. The most associated with celiac disease

(95% of patients) is the two-gene HLA-DQ2 haplotype referred to as DQ2.5. This haplotype is

composed of subunits α5 and β2 encoded by two adjacent gene alleles DQA1*0501 and DQB1*0201

(Figure 5). Four percent of CD patients have the DQ2.2 isoform (DQA1*0201:DQB1*0202) and the

remaining have DQ8 (encoded by the haplotype DQA1*03:DQB1*0302).

After the gluten enters into the digestive system, prolamin proteins are not fully hydrolyzed by

proteases, which results in the emergence of gluten peptides. They are deamidated by tTG enhancing

their affinity to MHC II molecules. Deamidated peptide is then recognized by DQ molecule on the

surface of a dendritic cell and is presented to T cells inducing immune response. It is interesting that

both DQ2 and DQ8 lack canonical aspartic acid residue at DQβ57. It results in the compensation of

this negative charge by negatively charged residues either in the T cell receptor or in the deamidated

peptide. Absence of aspartic acid residue leads to cross-reactive and stronger responses by T cells [80].
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Figure 5. 3D reconstruction of DQ α5-β2-binding cleft with a deamidated α-gliadin peptide (green),

using PyMOL (PBD ID 1S9V) [81].

Nowadays, it is clear that distinct gluten peptides are involved in celiac disease in a different

manner. Peptides are divided into two groups: toxic and immunogenic. Toxic peptides are capable of

inducing mucosal damage when administered in vivo on the intestine, whereas peptide is considered

to be immunogenic if it is able to specifically stimulate HLA-DQ-restricted T cell lines isolated

from peripheral blood of CD patients [82]. Peptides differ from each other in the degree of the

immunogenicity. It is remarkable that some are immunodominant, meaning that they evoke strong

T cell response in almost every CD patient, whereas the immunogenic do not. Immunogenicity is

enhanced after tTG deamidation procedure. It is worth mentioning that tTG is more likely activated

after inflammation, but it is still not clear whether the deamidation of peptides is by tTG initiates

inflammation or vice versa [82].

All gluten proteins (gliadin and glutenin from wheat, hordein from barley, secalin from rye

and avenin from oat) possess their own sets of toxic and immunogenic peptides (or epitopes) with

distinct immunogenicities. However, gliadin peptides are known to be the most toxic and numerous,

specifically derived from α- and γ-gliadin: the strongest and most common adaptive response to

gluten is directed toward an α2-gliadin fragment of 33 amino acids in length [8]. Digestion of gliadin

results in the emergence of two pieces: 25-mer (p31-55, it can be degraded to smaller peptides) and

33-mer (p57-89). Peptide p31-43 of α2-gliadin may directly induce interleukin-15 production from

enterocytes and dendritic cells. Peptide p57-89 is deamidated by tTG and presented to T cells by

HLA-DQ molecules. Glutenin peptides are also involved in T cell response [83]. Peptides may enter

the cell by endocytosis, with their entrance into the cells requiring 37 ◦C temperature and Ca2+ in the

media [84]. It has been shown that these peptides possess structural configuration characterized by a

left-handed polyproline II helical conformation that is preferred by MHC class II ligands [85].

(1) Properties of 33-mer peptide from α-gliadin

The α-gliadin 33-mer is one of the digestion-resistant gluten peptides that is highly reactive to

isolated celiac T cells and is the main immunodominant toxic peptide in celiac patients. It is located in

the N-terminal repetitive region of α-gliadin and contains six overlapping copies of three different

DQ2-restricted epitopes (Figure 6) [86].

Using RNA-amplicon sequencing (NGS) technology it was shown that α-gliadins can be separated

into six types and only one type contains all the immunogenic peptides and epitopes, whereas the other

five types do not contain all the epitopes disabling 33-mer peptide formation [30]. Thus, distinct types

of α-gliadins differ mainly in the number of repeat blocks consisting in interspersed motifs PFPPQQ

and PYPQPQ.
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Figure 6. Fragment of α-gliadin protein sequence. Main immunogenic fragments: peptides p31-43,

33-mer and DQ2.5-glia-α3 are indicated.

Six epitopes of type 1 α-gliadin are DQ2.5-glia-α1a/b and DQ2.5-glia-α2 (Figure 6). There is also

a partial overlap with 33-mer DQ2.5-glia-α3 epitope associated only with type 1 of gliadins. 33-mer is

able to self-assemble in a concentration-dependent manner through structural transition [32]. It obtains

polyproline II structure based on type II beta-turn with increase of peptide concentration.

33-mer reaches lamina propria and after deamidation plays a central role in the pathogenic cascade

of celiac disease by activating the adaptive immune response. 33-mer enters the cell by intracellular

pathway, excluding paracellular entrance. Gliadin-derived peptides can also be transcytosed from

the apical of the intestinal epithelium to the basolateral side along with transferrin and IgA, avoiding

entrance to the late endocytic compartment [87].

In vivo experiments revealed that 33-mer gliadin-derived peptide is undigested by enzymes of

the intestinal brush border. Moreover, in a monkey model of gluten sensitivity, 33-mer peptide can be

detected in the serum when the disease starts, indicating that this peptide can trespass the mucosa

intact in vivo [88].

Then, 33-mer is deamidated by tTG present in the intestinal brush border and presented by

dendritic cell to T cell (in mesenteric lymph nodes). T cells reach peripheral blood through the thoracic

duct and product interferon-γ resulting in intestine epithelial cytotoxicity, while another peptide

p31-43 has been reported to induce the innate immune response necessary to initiate the T-cell adaptive

response through production of interleukin-15.

It has been shown that 33-mer of α-gliadin is very similar to protein Prn of B. pertussis,

which causes pertussis. These results show that neither pertussis immunization nor disease induces

production of antibodies reactive against the peptide, and thus it is unlikely that either pertussis

immunization or disease contributes to CD pathogenesis on the basis of cross-reactive antibodies [89].

(2) Repertoire of gluten peptides active in CD

It has been established that deamidated forms of gluten peptides are more toxic than their

amidated forms. tTG preferably deamidates sites QXP (X—any amino acid residue), which are

abundant in immunodominant peptides. Interestingly, both DQ2 and DQ8 molecules lack the aspartic

acid residue at β57 position present in other DQ molecules. DQ2 and DQ8 molecules possess positively

charged pockets containing five anchor positions and a least three of them (P4, P6, and P7) prefer

to bind negatively charged amino acids [90]. Crystallographic structure of DQ2 complexes with

immunodominant epitope revealed that glutamic acid residue fits in the P4, P6 and P7 anchor positions

and proline residue—in the P1, P3, P6 and P8 positions [91]. Analogous report regarding DQ8

complexes revealed only two glutamic acid-preferred positions (P1 and P9). This explains the lower

number of gluten peptides active in DQ8 individuals.
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Long-term T cell lines (TCL) or T cell clones (TCC) raised against gluten are used to identifying

gluten immunogenic peptides. Anderson et al. established an approach that detects gluten-specific T

cells in the peripheral blood (peripheral blood mononuclear cells, PBMC) after 3 days of consumption of

gluten-containing food by an interferon-γ EliSpot assay [92]. A comprehensive, quantitative mapping

of T cell epitopes was used to screen all the unique 20-mer sequences of gliadins, glutenins, hordeins,

and secalins. Independently, this screening and EliSpot assay provided the set of immunodominant

epitopes from wheat, barley, and rye (Table 3) [93,94]. Almost all DQ2 immunogenic peptides of

α-gliadins map the N-terminal 57–89 region (33-mer). DQ2-restricted ω-gliadin peptides strictly

related to α-gliadin 17-mer: it contains two overlapping copies of 9-mer epitopes. Immunogenic

peptides of γ-gliadins are spread along all the sequences. Similarly, few DQ2-restricted sequences

from secalin and hordein proteins were reported to stimulate intestinal CD4+ T cell lines or clones [75].

Table 3. Number of gluten immunogenic peptides currently identified within distinct gluten proteins.

Grain Species Gluten Protein

Number of DQ2-Restricted
Peptides Identified (Confirmed
in Vitro on TCLs/TCCs or/and on
PBMCs after in Vivo Challenge)

Number of DQ8-Restricted
Peptides Identified (Confirmed
in Vitro on TCLs/TCCs or/and on
PBMCs after in Vivo Challenge)

Wheat

α-gliadins 3 3
γ-gliadins 11 4
ω-gliadins 3 4
Glutenins 3 1

Barley Hordeins 8 -
Rye Secalins 11 -
Oat Avenins 6 -

Only 3 DQ8-restricted epitopes were identified using T cell lines or T cell clones: two for α-gliadin,

γ-gliadin and one for glutenin [95]. Additional peptides were discovered as a result of the work

by Tye-Din et al. [93]. Furthermore, it was shown that HLA-DQ8-associated CD appears not to be

exclusively dependent on deamidation by tTG [95].

Avenins differ from other groups of prolamins due to their low content of proline and

glutamine residues. Nevertheless, a few gliadin-like and glutenin-like avenin-derived peptides were

identified [96]. Avenin peptides were divided into three groups: low-stimulatory short peptides

(six residues), stimulatory (27 and 10 residues) and peptides with upregulated stimulatory capacity

(10 and 14 residues). Larger peptides (27 residues) are commensurable in size with 33-mer and induce

response of dendritic cells in not only CD patients but also in control healthy patients. Whereas peptides

with the appropriate size and disposition of amino acids residues (10 and 14 residues) are likely to go

through a differential endocytic pathway.

Thus, immunogenic sequences were identified in all gluten proteins of Triticeae and oat.

These studies revealed that amongst all the DQ2-restricted peptides of wheat, barley, rye and

oat prolamins, there is a hierarchy of T cell recognition depending on the specific cereal ingested.

Furthermore, an evident redundancy in DQ2-restricted peptide recognition occurs, i.e., activated by

a dominant peptide T cells are capable of recognizing and responding to a large number of related

gluten sequences and vice versa. However, there is no clear difference in the immunogenicity strength

between DQ8-restricted peptides. Altogether, DQ8-type of HLA molecules are less strongly associated

with celiac disease, compared to DQ2. Oat peptides possess the lowest immunogenic activity though

avenin peptides are capable of inducing T cell response.

4.3. Wheat Allergy

Wheat flour triggers IgE-mediated food allergy and is one of the top eight food allergens.

Wheat allergy commonly develops in childhood [97]. When an allergen specifically binds to

IgE antibodies, it induces the activation of mast cells and basophils. In the case of wheat, it is
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believed that allergy occurs due to a breach in oral tolerance and as a consequence of Th2-biased

immune dysregulation that induces sensitization and B-cell-specific allergen IgE production [98].

Gluten proteins causing allergy include some types of ω-gliadin as well as non-gluten protein of wheat

such as profilin, serpin, α-purothionin, etc. Non-gluten flour proteins and some γ-, α/β-gliadins can

cause an occupational respiratory allergy such as baker’s asthma, which appears after the inhalation

of flour by millers or bakers. ω5-gliadins trigger another type of allergy—food allergy—referred to as

wheat-dependent exercise-induced anaphylaxis (WDEIA), which develops after the ingestion of wheat

followed by intense physical exercise.

Recently, it was shown that γ-, α/β-, ω5-, ω1,2-gliadins contain IgE-binding epitopes as well as

HMW and LMW subunits of glutenin [99] (Table 4). Nevertheless, major allergenic protein of wheat

is ω5-gliadin possessing N-terminal sequence SRLL, which can be crucial for allergy pathogenesis,

and repetitive region consists almost entirely of peptides FPQQQ and QQIPQQ [14].

Table 4. Currently identified IgE-binding epitopes in wheat gluten proteins. *—X—any amino acid.

Protein IgE-Binding Epitope Motifs

α/β-gliadin QQQFPGQQ, LQQQ
γ-gliadin QPQQPFPQ
ω5-gliadin QQXPXQQ *
ω1,2-gliadin QQPXPXQ

HMW-GS QQPGQ(GQQ)
LMW-GS QQPIQQQP

γ-gliadin, α/β-gliadin and ω1,2-gliadin are causative allergens in both WDEIA patients and those

with baker's asthma [100,101]. Epitopes QQPFP and PQQPF of gliadin are also involved in atopic

dermatitis-related wheat allergy [102] as well as QQQPP motif in LMW-GS [103].

Nowadays, 3D structure of known IgE allergenic epitopes helps to elucidate its conformation and

to produce recombinant allergens for further research.

4.4. Non-Celiac Gluten Sensitivity (NCGS)

The first reported NCGS cases were described as longstanding and previously unresolved history

of abdominal pain, discomfort, bloating, altered bowel habit and fatigue with exclusion of celiac disease.

NCGS is more frequently diagnosed in adults rather than in children [104]. In most cases, NCGS

reveals itself a few hours after gluten digestion [104]. Similarly to CD patients, patients with NCGS

suffer from nutritional deficiencies, coexisting autoimmunity, and a decreased bone mineral density

compared with the general population. The prevalence of HLA-DQ2 and/or HLA-DQ8 genotypes

is ~50% in NCGS comparable to the general population [105], but there is no anti-tTG2 antibodies

identified. Gluten only triggered an innate immune response in NCGS and provoked an additional

adaptive immune response with increased expression of IL-6, IL-21, IL-17 and IFN-γ [106]. However,

gastrointestinal symptoms other than intestinal permeability and adaptive immune responses are

not involved in the process. In NCGS, gliadins do not induce mucosal inflammation in vitro or the

activation of basophils as seen in CD [107].

It has been suggested that in NCGS gluten-related peptides enter the systemic circulation and

cause extraintestinal manifestations such as ataxia, neuropathy and encephalopathy [108]. Moreover,

it has been proposed that gluten causes depression, anxiety, autism and schizophrenia in patients with

NCGS [109], and also reported that psychosis might be a manifestation of NCGS [110].

Nowadays, gluten-related disorders have often been recognized as commonly mimicking irritable

bowel syndrome (IBS) because of the similar symptoms such as abdominal pain, bloating, bowel habit

abnormalities (either diarrhea or constipation) [111]. Indeed, both can coexist independently without

necessarily sharing a common pathophysiological basis. Furthermore, the microbiome may also

play a role in the pathogenesis of NCGS [112]. Gut microbiota composition and metabolomic
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profiles may influence the loss of gluten tolerance and subsequent onset of gluten intolerance

in genetically-susceptible individuals [113]. Gut microbiota could become a target for further

therapy [114].

Recently, a standardizing protocol was reported for the diagnostic confirmation of NCGS [3].

It implies assessment of the clinical response to GFD and consequent effect of the gluten challenge.

It is important that patients are on a normal, gluten-containing diet for proper evaluation, which is not

always possible. For these two assessment steps, a modified version of the Gastrointestinal Symptom

Rating Scale (GSRS) is used. The GSRS protocol is based on reviews and the clinical experience and

allows for evaluation of gastrointestinal and extra-intestinal symptoms. Patients name one to three

symptoms and the Numerical Rating Scale (NRS) measures the severity score from 1 to 10. However,

there are still difficulties in diagnosing and managing NCGS. Even though the precise mechanism

and biochemical markers for the NCGS disease have still not identified, this protocol could be used to

establish the prevalence of this condition.

5. Gluten Detoxification Strategies

5.1. Gluten Free Diet (GFD)

There is currently only one proven effective way of treating celiac disease and NCGS—a gluten

free diet. It means the avoidance of gluten-containing food in gluten intolerance patients’ ration.

There is little information in the literature on minimal disease-eliciting doses of gluten, which would

be safe for CD patients. Apparently, it should lie between 10 and 50–100 mg daily intake [115].

Starch-based gluten-free products contain trace amounts of gluten. However, a diet completely devoid

of gluten is unrealistic. The diet is complicated due to cross-contamination and/or the presence of

small amounts of the gluten in food and medicines.

GFD cannot be regarded as a healthy diet. Gluten-free products are usually made with starches

or refined flours characterized by low fiber content. It is known that the consumption of adequate

amounts of dietary fiber is related to important health benefits such as prevention of colon cancer,

diabetes and cardiovascular disease [116]. Thus, GFD may lead to possible nutrient deficiencies in

fiber resulting in consequent diseases. Several studies suggest using pseudo-cereal sources of fiber

instead of gluten-free products in order to maintain the necessary fiber content level [117].

GFD also leads to deficiency in Vitamins C, B12, D and folic acid [118], which is associated not only

with malabsorption caused by villi atrophy but also with low quality of GFD [117]. Consuming fruits

and vegetables rich in vitamins and antioxidant substances up to five times a day is recommended.

Some studies demonstrate that gluten-free cereal products contain lower amounts of folate compared

to their gluten-containing counterparts, so there is a need for additional folate supplementation [119].

In CD patients, malabsorption and inflammation contribute to a low bone mineral density

(BMD) [120]. CD patients have a 40% higher risk of having bone fractures compared with non-CD

healthy people. Thus, the diet plays a critical role in the maintenance of proper bone mineralization.

GFD appears to be unbalanced in terms of calcium, magnesium, zinc in male and iron in women,

and additional supplementation required [121]. Zinc is an essential trace element involved in numerous

reactions and biochemical functions. Zinc deficiency can affect protein synthesis and leads to growth

arrest [122]. Magnesium is essential for several enzymatic reactions (for DNA and RNA polymerases,

ionic pumps and calcium channels). Thus, it is recommended that gluten-free products are substituted

with other cereals such as quinoa, sorghum and amaranth, which are safe and rich in folic acid,

vitamins (riboflavin, Vitamin C and Vitamin E) and minerals [117].

At the same time, gluten-free diet contains high amounts of sugar and hydrogenated fats,

which could result in the occurrence of hyperinsulinemia and an increased obesity risk [123].

Thus, GFD appears to be an unbalanced diet inadequate in terms of both macro- and

micronutrients. In order to maintain the necessary level of all the nutrients an annual screening

for nutrient status of a patient is required and there is a need for additional nutrient supplementation.
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Thus, GFD is not an optimal and healthy way to treat all the manifestations of gluten intolerance

including CD, wheat allergy and NCGS. Even though a wheat free diet is optimal for wheat allergy

treatment, patients can eat rye, barley and oat. A wheat free diet is also probably effective for NCGS

treatment. Other directions of treatment of gluten intolerance need to be developed.

Many works focus on providing new medicinal approaches for effective gluten intolerance

treatment. Two major directions exist: prevention and treatment of gluten related disorders.

The prevention hypothesis implies that the time the gluten is introduced into the diet of infants

at risk of CD may affect the disease incidence. The Prevent CD Family Study was held in 10 European

countries. One thousand children and their mothers participated, and were followed up for a period of

1–3 years. It has been suggested that small quantities of gluten are administered gradually to induce

oral immune tolerance to gluten. It is now accepted that gluten may be introduced into the infant’s

diet at any time between 4 and 12 months of age. In children at high risk of CD, an earlier introduction

of gluten (4 vs. 6 months or 6 vs. 12 months) is associated with an earlier development of CD, but the

cumulative incidence in later childhood is similar [124]. Recently, an analogous program in Italy was

started to evaluate the at-risk infants age, at which CD-related autoimmune serological changes occur.

Data obtained in this study indicate that delaying the gluten introduction into the infants’ diet until

the age of 12 months decreases the prevalence of CD [125]. Both studies need a much longer follow-up

analysis to establish whether the timing of gluten exposure can really prevent CD or merely delay its onset.

5.2. Detoxification of Gluten Proteins with Enzymatic Therapy

This approach is based on the fact that gluten peptides are highly resistant to digestive pancreatic

and brush border proteases. Fortunately, many organisms (e.g., bacteria, fungi, plants etc.) encode

proteolytic enzymes possessing distinct features compared to endogenous proteases presented

in human [126–128]. Thus, it has been proposed that exogenous enzymes can be employed for

additional enzyme supplement therapy to promote the complete digestion of cereal proteins, and thus

destroy T-cell gluten epitopes, in particular [129,130]. A number of peptidases possessing glutenase

activities were isolated from germinating cereals (Hordeum vulgare L., Triticum aestivum L.), bacteria

(Flavobacterium meningosepticum, Sphingomonas capsulate, Myxococcus xanthus), fungi (Aspergillus niger,

Aspergillus oryzae), and stored-product pest yellow mealworm (Tenebrio molitor) [131–135]. One of them

is ALV003 enzyme—modified recombinant EP-B2 enzyme from barley, and prolyl endopeptidase

from bacteria Sphingomonas capsulate—was shown to be effective in vitro and in vivo, non-toxic and

without allergic reactions [136,137]. Gluten-containing food can also be treated with bacterial-derived

peptidases, in particular, proteases of certain lactobacilli present in sourdough are able to proteolyze

proline-rich gluten peptides [138].

5.3. Modified Grains

There are several studies targeted at developing grains with reduced pathogenicity. On the basis

of knowledge of peptide immunogenicity hierarchy, site-directed mutagenesis of wheat, which would

not affect the baking properties, has also been proposed. However, hexaploidity of wheat seriously

complicates this process. Nevertheless, successful transformation of bread wheat Triticum aestivum

Butte 86 was reported [139]. In this paper, a subclass of ω-gliadins genes, encoding proteins that

cause food IgE-mediated allergy, were silenced in order to decrease the level of ω5-gliadins in grain.

Transgenic wheat has reduced allergenicity without influencing the dough quality. Similar work was

performed to reduce the toxicity in CD patients of all gliadin proteins through the shutdown of these

genes by RNA interference [140]. Genes of γ-, α- and ω-gliadins were down-regulated in these plant

lines. This has led to the production of wheat lines with very low levels of toxicity for CD patients.

As discussed above, the gluten of barley and rye is also highly pathogenic for patients with

gluten intolerance. Thus, a number of works describe modifications introduced into barley genome:

for example, deletion of B and C hordeins resulted in 20-fold reduced immunotoxicity compared to

wild type [141].
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Nowadays, the wheat genome is modified in order to improve the dough quality. However,

different modifications may introduce known or clinically cross-reactive allergens into genome.

It was suggested that bioinformatic methods can be used to prevent such allergen introduction

and assess the safety and allergenicity of modified crops, using a comprehensive database [142].

5.4. Corrections of Gluten Pathogenicity Pathways

tTG is very important in CD pathogenesis. For this reason, it has become a target for suppression

by the design of potent and selective inhibitors. Inhibition of tTG2 by cystamine in vitro and in situ

was confirmed by means of abolished reactivity of gliadin-specific T-cell response [143]. Recently,

Keillor et al. reviewed the latest and most applicable inhibitors of tTG2 designed on the basis of the

conformational effects and crystallographic structures of inhibited tTG2 [144].

Zonulin, one of the TJ regulatory proteins involved in the proper functioning of intestinal

epithelial permeability, controls the passage through the mucosal barrier. The inhibition of zonulin

overexpression can prevent it trespassing the gut barrier. The effective synthetic peptide inhibitor was

developed and named as AT1001 or Larazotide acetate [145]. There is now a novel therapeutic agent

targeting TJ regulation in patients with CD.

Peptides themselves are undoubtedly major CD participants. Peptide analogues of gliadin

epitopes can be engineered with antagonistic effects of native peptides. Nexvax2® (Immusan T, Inc.,

Cambridge, MA, USA) is the peptide-based therapeutic vaccine based on desensitization therapy

principles [146]. This product encompasses three peptides that respond to a substantial proportion of the

T-cell reaction to gluten in HLA-DQ2-carring patients. Nexvax2 is currently undergoing clinical trials.

6. Conclusions

Nowadays, gluten intolerance is an important issue. The number of people diagnosed with

gluten intolerance is increasing. Thus, there is a need for more effective and novel approaches to

treat gluten-related disorders. Externally, it is caused by the consumption of gluten prolamin proteins

present in wheat, barley and rye. In the present paper, we have summarized the knowledge on the

classification, properties, structure, evolution and role of gluten proteins in the pathogenesis of gluten

intolerance manifestations. Even though gluten proteins—gliadins, glutenins, hordeins, secalins and

avenins—share similar features and evolutional origins, they possess different pathogenicities.

A detailed understanding of the principal properties of gluten intolerance causative agents open

ups the possibilities for the development of novel therapeutic approaches such as with improved

low pathogenic wheat, barley and rye plant lines; renewed therapeutic enzymatic drugs and

vaccines. This will obviate the need for GFD and improve the quality of life of people suffering

from gluten intolerance.
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Abbreviations

CD celiac disease
NCGS non-celiac gluten sensitivity
HLA human leukocyte antigen
MHC major histocompatibility complex
tTG tissue transglutaminase
IgA (IgG, IgE) immunoglobulin A (G, E)
IEL intraepithelial lymphocyte
TJ tight junction
DC dendritic cell
GA gluten ataxia
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HMW high molecular weight
LMW low molecular weight
HMW-GS high molecular weight glutenin subunits
LMW-GS low molecular weight glutenin subunits
HMW-SS high molecular weight secalin subunits
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
ER endoplasmic reticulum
DNA deoxyribonucleic acid
RNA ribonucleic acid
FISH fluorescence in situ hybridization
HPLC high-performance liquid chromatography
PDB protein data bank
NGS next-generation sequencing
IFN-γ interferon-γ
IL interleukin
TCL T cell line
TCC T cell clone
PBMC peripheral blood mononuclear cells
WDEIA wheat-dependent exercise-induced anaphylaxis
GFD gluten-free diet
IBS irritable bowel syndrome
GSRS gastrointestinal symptom rating scale
NRS numerical rating scale
BMD bone mineral density
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