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Abstract

Let H denote the class of functions f which are harmonic and uni-
valent in the open unit disc D = {z : |z| < 1}. This paper defines and
investigates a family of complex-valued harmonic functions that are ori-
entation preserving and univalent in D and are related to the functions
convex of order f(0 < < 1), with respect to conjugate points. We
obtain coefficient conditions, growth result, extreme points, convolution
and convex combinations for the above harmonic functions.
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1 Introduction

A continuous complex-valued function f = u+iv defined in a simply connected
complex domain F is said to be harmonic in F if both u and v are real harmonic
in £/. There is a close inter-relation between analytic functions and harmonic
functions. For example, for real harmonic functions v and v there exist analytic

functions U and V' so that u = Re (U) and v = I'm (V). Then

f(z) = h(z) +9(2)
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where h and g are, respectively, the analytic functions (U+V)/2 and (U-V")/2.
In this case, the Jacobian of f = h + g is given by

Jp = W(2)]" = |g'(2)|".

The mapping z — f(z) is orientation preserving and locally one-to-one in E
if and only if J; > 0 in E. See also Clunie and Sheil-Small [1]. The function
f = h + 7 is said to be harmonic univalent in £ if the mapping z — f(2) is
orientation preserving, harmonic and one-to-one in . We call h the analytic
part and g the co-analytic part of f = h+7.

Let 'H denote the class of functions f = h+g which are harmonic and univalent
in D with the normalization

h(z) =z+ Z a,z", g(z) = Z bn2", a, >0, b, >0,]b;| < 1. (1)
n=2 n=1

Also let H be the subclass of H consisting of functions f = h + G so that the
functions h and g take the form

h(z) =2z =Y lan]2", g(z) =—=>_ |ba|z", a, >0, b,>0,b] <1. (2)
n=2 n=1

Now, we define new class of functions as follows:

Definition 1.1 Let f € H. Then f € HC.(5) is said to be harmonic convex
of order 3, with respect to conjugate points, if and only if, for 0 < 3 <1,

(3)

Re {2 2H(2) + 21 (2) + 22g"(2) + 29'(2)] } > 3.
2N (2) — zg'(2) + 20 (Z) — 2¢'(Z)

Also, we let HC.(8) = HC.(3) N'H.

The following theorem proved by Jahangiri in [2] will be used throughout in
this paper.

Theorem 1.1 ([2]) Let f = h+ g with h and g of the form (1). If

= n(n —p) o n(n + )
Zﬁ\@n\ﬂL;ﬁ!bn! <1, (4)

n=2

then f is harmonic, orientation preserving, univalent in D and f € HI(3).
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2 Results

We begin the results with a sufficient coefficient condition for functions in

HC.f3).
Theorem 2.1 Let f = h +§ be of the form (1). If

y =) |n| Z ’”; bl < 1, (5)
n=2 n=1

then f is harmonic, orientation preserving, univalent in D and f € HC.(53).

Proof. Since condition (5) hold, it follows from Theorem 1.1 that f € HC(f)
and hence f is harmonic, orientation preserving and univalent in D. Now, we
only need to show that if (5) holds then

2h'(2) — zg'(2) + 2l (Z) — 24'(Z)

Using the fact that Re (w) > § if and only if |1 — 84+ w| > |1 + 3 — w|, it
sufficies to show that

[A(z) + (1 = 8)B(2)] = |A(2) = (1 + ) B(2)| = 0, (6)

where

A(z) =2 [z2h"(z) + 20/ (2) + 229" (2) + zg’(z)]

and

B(z) = zh/(2) — z¢'(2) + 2l (Z) — z¢'(Z).
Substituting for A(z) and B(z) in (6), we obtain

|A(2) + (1 = B)B(2)| — [A(2) — (1 + B)B(2)|
= |2+2(1-p) z—l—z 2n+2(1 - B)] a,, 2"
+Z 2n — 21— B)] b 27| = |2 - 2(1 + B))=

+Z 2n — 2(1 + B)] ay 2" +Z 2n +2(1+ 3)] by,

> @421 )l - i nf2n + 201~ B)] lan] |2]"

- Z 2n = 2(1 = B)] [ba] [2]" = (2(1 + ) = 2)|]



1034 Aini Janteng and Suzeini Abdul Halim

oo

Z [2n = 2(1+ B)] lan| |2]" = >_nl2n+ 2(1 + B)] [ba] |2]"

n=1
o0

(1= )l {1 = 3 0 D - 32 20 Dl )
> 0, by(5). O

v

The harmonic functions

[e.9]

—z+§j B +n1nn+ﬂyf" (7)

where Y2, [z, + 30, |yn] = 1, show that the coefficient bound given in
Theorem 2.1 is sharp.

The functions of the form (7) are in HC.(3) since

— " a, — " b, = . =1,
St ) T 2w gyl = el T 2l =1

Next, we show that the bound (5) is also necessary for functions in HC.(53).

Theorem 2.2 Let f = h+7 with h and g of the form (2). Then f € HC.(3)
if and only if

o~ (n = B) n(n+ 5)

—lay, —1b,| < L. 8

3 el + 3 M 0
Proof. In view of Theorem 2.1, we only need to show that f is not in HC.(53) if
condition (8) does not hold. We note that a necessary and sufficient condition
for f = h+7 given by (2) to be in HC.(3) is that the coefficient condition (3)
to be satisfied. Equivalently, we must have

{ 2[th”(z)+zh’(z)+z2g”(z)+zg/(z)] }
€ —— — [
zh!(2) =29 (2)+2h'(2)—29'(2)

_ S 2 nl 2 — o0 2 AL
— Re {1_22"03” lan| 2"~ 332° | 7? [bu = _5}

n |an| z"—f—zn:l n|by|z ™
s {(1&)2?2 n(n=p) lan] 1% % n(nt6) [bu| 2" }
1—

o m |an|zn—1+§zn_1 \bn\ zn—1

> 0.

The above condition must hold for all values of z, |z| = r < 1. Upon choosing
the values of z on the positive real axis where 0 < z = r < 1, the above
inequality reduces to

(1-8) =¥ nn=P) |an| v~ = 552 n(n + ) ba| 7"~

L= onay| =t + 300 n|b,| r!

>0, (9)
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If condition (8) does not hold then the numerator in (9) is negative for r
sufficiently close to 1. Thus there exists zy = ry in (0,1) for which the quotient
(9) is negative. This contradicts the required condition for f € HC.(3) and so
the proof is complete. O

The growth result for functions in HC,.(3) is discussed in the following theorem.

Theorem 2.3 If f € HC.(3) then

1F(2)] < (14 |ba])r + (2(12—_56) _2(12+ﬁ),b1\> e =r<1

and

1-8 148
22-p8) 2(2-p

Proof. Let f € HC.(3). Taking the absolute value of f we have

V@HEU—MMT—< )mgr,yd:r<1

P < @t bir+ 3 (o] + [bal) +

< u+MMr+§y%wmeﬁ

- (b + 55=5 i <2(12__§)|an| + 2220 |bn|> 2

< (14 ||)r+
1-8 & (nn—B),  nln+p)
2@—@2%(1 ﬁ‘"“‘l ﬁ’bQ

< (b g (1 1gl) o

- a+me+@éj@,—%2 inl)

and
G > u—me—fy%H+w>r

> u—MMr—fy%H+w>ﬁ

= e g £ (e ) o

> (1 by
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18 & (nn=p) | ot d)
= 5 (T )
> (- g (1 1 ﬁmo

O

1-0 1+ 0 9
- “_wmr_<%zwn‘2@—ﬁﬂ“)r

The bounds given in Theorem 2.3 for the functions f = h + g of the form (2)
also hold for functions of the form (1) if the coefficient condition (5) is satisfied.
The upper bound given for f € HC.(3) is sharp and the equality occurs for
the function

ﬂ@=z+MV+<1_ﬁ 1+ﬁlm>2,ﬂﬂﬁl_ﬁ

22-0) 2(2-5) 1+6

Next, we determine the extreme points of closed hulls of HC.(3) denoted by
clcoHC.(3).

Theorem 2.4 f € clcoHC.(3) if and only if f(2) = 32 (Xphp+Yngn) where

hi(z) =z, hp(z) = 2 — n(ln;—ﬁﬁ) 2" (n=2,3,...),
=2z — 10 b z" (n=
gn(2) = n(n+ B) ( 1,2,...),

©(Xn+Y,)=1 X,>0andY, > 0.

Proof. For h, and g, as given above, we may write

f(2> = Z(thn+yngn>
n=1
B fe’e) [e'e] " [e'e] 1_5 .
= e Zgn 6 T
B B [e%s) 6 [e'e) .
= z ;;n( ﬁan nz_:ln ﬁYnz .

Then
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. n(lnjﬂm (n(ln_fﬂ) Y”)

n=1
= §:~X%‘+'§:-Y%
n=2 n=1
— 1——)(1
< 1

Therefore f € clcoHC.(f3).

Conversely, suppose that f € clcoHC.(3). Set

X, = n(f%f—ﬁﬂ)‘an, (n=234,..),
and
Y, — Mw L (n=1,2,3,.),

11—
where Y>>° (X, +Y,) = 1. Then

f(z) = h(z)+g(2)

(e 9] [e.9]

= 2= |aglz" = > |ba|z"

n=2 n=1
B © 1-7 W o= 11— .
= z—nz:;in(n_m)(nz _;7n(n+ﬁ)ynz
= z+ Z(hn(z) —2)X, + Z(gn(z) —

n=2 n=1

= Y (Xuhy + Yogs). O
n=1

For harmonic functlons f(z) = S0 o lan|z™ = >0 |ba]z ™ and F(z) =
2= 300 o |Au|z" = 302 | Balz ™, we define the convolutlon of f and F as
(f*F)(z —Z—Z|anA | 2" —Z|bB| (10)

In the next theorem, we examine the convolution properties of the class HC.(3).

Theorem 2.5 For 0 < a < 3 <1, let f € HC.(3) and F € HC.(«). Then
(f % F) € HC.(B) C HC.(a).

Proof. Write f(z) = 2—30%, |a,|2" =302, |by]|Z " and F(z) = 2—30%, | A, | 2" —
> |Bn]z ™. Then the convolution of f and F is given by (10).
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Note that |A4,| < 1 and |B,| < 1 since F' € HC.(a). Then we have

[e.9]

Z B)lanlAn !+Z (n+ 3)|bal| Byl

Z |an|+Z (n+ B)|bs].

Therefore (f x F) € HC.(3) C HC.(c) since the right hand side of the above
inequality is bounded by 1 — # while1 — <1 — a. O

Now, we determine the convex combination properties of the members of

HC.(B).
Theorem 2.6 The class HC.(3) is closed under convex combination.

Proof. For i =1,2,3, ..., suppose that f; € HC.(3) where f; is given by

filz) =2z— Z |, i| 2" — Z |bnilZ "

n=2

For 372, ¢; =1, 0 < ¢; <1, the convex combinations of f; may be written as

oo oo oo oo oo
Z ¢ifi(z) = az-— Z c1lan1|z" — Z c1bn1|Z ™ + oz — Z calan2|2" — Z calbp2|Z ...
=1 n=2 n=1 n=2 n=1
oo oo oo
- S 5 (Seiod) s 3 (e
n=2 \i=1 n=1 \i=1
o0 o0 o0 o0
= oo 3 (S ) 3 (bl
n=2 \i=1 n=1 \i=1

Next, consider

n=2 =1 =1
= 012 B)|ana| + - +cmz — B)anm| + -
n=2
+c12 (n+ B)|bna] + . +cmz (n + B)|bnm| + -
n=1

= Zcz{z |am|+z n+ﬁ|bm}.

n=2
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Now, fi; € HC.(f3), therefore from Theorem 2.2, we have

o0

n(n = B)lans] + 3 nn+ B)fbus] <15
n=1

n=2

Hence

ez (n(n = B) [22324 cilan,||) + 3521 (n(n + B8) |22 cilbnil])
<A-8XZia
—1-§.

By using Theorem 2.2 again, we have 33°, ¢; fi € HC.(3). O
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