Properties of Harmonic Functions which are Convex of Order β with Respect to Conjugate Points

Aini Janteng

School of Science and Technology Universiti Malaysia Sabah, Locked Bag No.2073 88999 Kota Kinabalu, Sabah, Malaysia aini_jg@ums.edu.my

Suzeini Abdul Halim

Institute of Mathematical Sciences Universiti Malaya, 50603 Kuala Lumpur, Malaysia suzeini@um.edu.my

Abstract

Let \mathcal{H} denote the class of functions f which are harmonic and univalent in the open unit disc $D = \{z : |z| < 1\}$. This paper defines and investigates a family of complex-valued harmonic functions that are orientation preserving and univalent in \mathcal{D} and are related to the functions convex of order $\beta(0 \leq \beta < 1)$, with respect to conjugate points. We obtain coefficient conditions, growth result, extreme points, convolution and convex combinations for the above harmonic functions.

Keywords: harmonic functions, convex of order β with respect to conjugate points, coefficient estimates

1 Introduction

A continuous complex-valued function f = u+iv defined in a simply connected complex domain E is said to be harmonic in E if both u and v are real harmonic in E. There is a close inter-relation between analytic functions and harmonic functions. For example, for real harmonic functions u and v there exist analytic functions u and v and v to that u = Re(u) and v = Im(v). Then

$$f(z) = h(z) + \overline{g(z)}$$

where h and g are, respectively, the analytic functions (U+V)/2 and (U-V)/2. In this case, the Jacobian of $f = h + \overline{g}$ is given by

$$J_f = |h'(z)|^2 - |g'(z)|^2.$$

The mapping $z \mapsto f(z)$ is orientation preserving and locally one-to-one in E if and only if $J_f > 0$ in E. See also Clunie and Sheil-Small [1]. The function $f = h + \overline{g}$ is said to be harmonic univalent in E if the mapping $z \mapsto f(z)$ is orientation preserving, harmonic and one-to-one in E. We call h the analytic part and g the co-analytic part of $f = h + \overline{g}$.

Let \mathcal{H} denote the class of functions $f = h + \overline{g}$ which are harmonic and univalent in \mathcal{D} with the normalization

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = \sum_{n=1}^{\infty} b_n z^n, \quad a_n \ge 0, \ b_n \ge 0, |b_1| < 1.$$
 (1)

Also let $\overline{\mathcal{H}}$ be the subclass of \mathcal{H} consisting of functions $f = h + \overline{g}$ so that the functions h and g take the form

$$h(z) = z - \sum_{n=2}^{\infty} |a_n| z^n$$
, $g(z) = -\sum_{n=1}^{\infty} |b_n| z^n$, $a_n \ge 0$, $b_n \ge 0$, $|b_1| < 1$. (2)

Now, we define new class of functions as follows:

Definition 1.1 Let $f \in \mathcal{H}$. Then $f \in \mathcal{HC}_c(\beta)$ is said to be harmonic convex of order β , with respect to conjugate points, if and only if, for $0 \le \beta < 1$,

$$Re \left\{ \frac{2\left[z^2h''(z) + zh'(z) + \overline{z^2g''(z) + zg'(z)}\right]}{zh'(z) - \overline{zg'(z)} + z\overline{h'(\overline{z})} - \overline{z}\overline{g'(\overline{z})}} \right\} \ge \beta.$$
 (3)

Also, we let $\overline{\mathcal{H}}\mathcal{C}_c(\beta) = \mathcal{H}\mathcal{C}_c(\beta) \cap \overline{\mathcal{H}}$.

The following theorem proved by Jahangiri in [2] will be used throughout in this paper.

Theorem 1.1 ([2]) Let $f = h + \overline{g}$ with h and g of the form (1). If

$$\sum_{n=2}^{\infty} \frac{n(n-\beta)}{1-\beta} |a_n| + \sum_{n=1}^{\infty} \frac{n(n+\beta)}{1-\beta} |b_n| \le 1, \tag{4}$$

then f is harmonic, orientation preserving, univalent in \mathcal{D} and $f \in \mathcal{HK}(\beta)$.

2 Results

We begin the results with a sufficient coefficient condition for functions in $\mathcal{HC}_c\beta$).

Theorem 2.1 Let $f = h + \overline{g}$ be of the form (1). If

$$\sum_{n=2}^{\infty} \frac{n(n-\beta)}{1-\beta} |a_n| + \sum_{n=1}^{\infty} \frac{n(n+\beta)}{1-\beta} |b_n| \le 1,$$
 (5)

then f is harmonic, orientation preserving, univalent in \mathcal{D} and $f \in \mathcal{HC}_c(\beta)$.

Proof. Since condition (5) hold, it follows from Theorem 1.1 that $f \in \mathcal{HC}(\beta)$ and hence f is harmonic, orientation preserving and univalent in \mathcal{D} . Now, we only need to show that if (5) holds then

$$Re \left\{ \frac{2\left[z^2h''(z) + zh'(z) + \overline{z^2g''(z) + zg'(z)}\right]}{zh'(z) - \overline{zg'(z)} + z\overline{h'(\overline{z})} - \overline{z}\overline{g'(\overline{z})}} \right\} = Re \frac{A(z)}{B(z)} \ge \beta.$$

Using the fact that $Re(w) \ge \beta$ if and only if $|1 - \beta + w| \ge |1 + \beta - w|$, it sufficies to show that

$$|A(z) + (1 - \beta)B(z)| - |A(z) - (1 + \beta)B(z)| \ge 0,$$
(6)

where

$$A(z) = 2\left[z^{2}h''(z) + zh'(z) + \overline{z^{2}g''(z) + zg'(z)}\right]$$

and

$$B(z) = zh'(z) - \overline{zg'(z)} + z\overline{h'(\overline{z})} - \overline{z\overline{g'(\overline{z})}}.$$

Substituting for A(z) and B(z) in (6), we obtain

$$|A(z) + (1 - \beta)B(z)| - |A(z) - (1 + \beta)B(z)|$$

$$= \left| (2 + 2(1 - \beta))z + \sum_{n=2}^{\infty} n[2n + 2(1 - \beta)] a_n z^n \right|$$

$$+ \sum_{n=1}^{\infty} n[2n - 2(1 - \beta)] b_n \overline{z}^n \Big| - \Big| (2 - 2(1 + \beta))z$$

$$+ \sum_{n=2}^{\infty} n[2n - 2(1 + \beta)] a_n z^n + \sum_{n=1}^{\infty} n[2n + 2(1 + \beta)] b_n \overline{z}^n \Big|$$

$$\geq \left(2 + 2(1 - \beta)\right) |z| - \sum_{n=2}^{\infty} n[2n + 2(1 - \beta)] |a_n| |z|^n$$

$$- \sum_{n=1}^{\infty} n[2n - 2(1 - \beta)] |b_n| |z|^n - (2(1 + \beta) - 2)|z|$$

$$-\sum_{n=2}^{\infty} n[2n - 2(1+\beta)] |a_n| |z|^n - \sum_{n=1}^{\infty} n[2n + 2(1+\beta)] |b_n| |z|^n$$

$$\geq 4(1-\beta)|z| \left\{ 1 - \sum_{n=2}^{\infty} \frac{n(n-\beta)}{1-\beta} |a_n| - \sum_{n=1}^{\infty} \frac{n(n+\beta)}{1-\beta} |b_n| \right\}$$

$$\geq 0, \quad by (5). \quad \Box$$

The harmonic functions

$$f(z) = z + \sum_{n=2}^{\infty} \frac{1-\beta}{n(n-\beta)} x_n z^n + \sum_{n=1}^{\infty} \frac{1-\beta}{n(n+\beta)} \overline{y}_n \overline{z}^n,$$
 (7)

where $\sum_{n=2}^{\infty} |x_n| + \sum_{n=1}^{\infty} |y_n| = 1$, show that the coefficient bound given in Theorem 2.1 is sharp.

The functions of the form (7) are in $\mathcal{HC}_c(\beta)$ since

$$\sum_{n=2}^{\infty} \frac{1-\beta}{n(n-\beta)} |a_n| + \sum_{n=1}^{\infty} \frac{1-\beta}{n(n+\beta)} |b_n| = \sum_{n=2}^{\infty} |x_n| + \sum_{n=1}^{\infty} |y_n| = 1.$$

Next, we show that the bound (5) is also necessary for functions in $\overline{\mathcal{H}}\mathcal{C}_c(\beta)$.

Theorem 2.2 Let $f = h + \overline{g}$ with h and g of the form (2). Then $f \in \overline{\mathcal{H}C_c}(\beta)$ if and only if

$$\sum_{n=2}^{\infty} \frac{n(n-\beta)}{1-\beta} |a_n| + \sum_{n=1}^{\infty} \frac{n(n+\beta)}{1-\beta} |b_n| \le 1.$$
 (8)

Proof. In view of Theorem 2.1, we only need to show that f is not in $\overline{\mathcal{HC}}_c(\beta)$ if condition (8) does not hold. We note that a necessary and sufficient condition for $f = h + \overline{g}$ given by (2) to be in $\mathcal{HC}_c(\beta)$ is that the coefficient condition (3) to be satisfied. Equivalently, we must have

$$\begin{split} ℜ \ \left\{ \frac{2 \left[z^2 h''(z) + z h'(z) + \overline{z^2 g''(z) + z g'(z)} \right]}{z h'(z) - \overline{z g'(z)} + z \overline{h'(\bar{z})} - \overline{z g'(\bar{z})}} - \beta \right\} \\ &= Re \ \left\{ \frac{z - \sum_{n \equiv 2}^{\infty} n^2 |a_n| |z^n - \sum_{n = 1}^{\infty} n^2 |b_n| |\overline{z}|^n}{z - \sum_{n = 2}^{\infty} n |a_n| |z^n + \sum_{n = 1}^{\infty} n |b_n| |\overline{z}|^n} - \beta \right\} \\ &= Re \ \left\{ \frac{(1 - \beta) - \sum_{n = 2}^{\infty} n(n - \beta) |a_n| |z^{n - 1} - \overline{z}|}{1 - \sum_{n = 2}^{\infty} n |a_n| |z^{n - 1} + \overline{z}|} \sum_{n = 1}^{\infty} n(n + \beta) |b_n| |\overline{z}|^{n - 1}} \right\} \\ &\geq 0. \end{split}$$

The above condition must hold for all values of z, |z| = r < 1. Upon choosing the values of z on the positive real axis where $0 \le z = r < 1$, the above inequality reduces to

$$\frac{(1-\beta) - \sum_{n=2}^{\infty} n(n-\beta) |a_n| r^{n-1} - \sum_{n=1}^{\infty} n(n+\beta) |b_n| r^{n-1}}{1 - \sum_{n=2}^{\infty} n |a_n| r^{n-1} + \sum_{n=1}^{\infty} n |b_n| r^{n-1}} \ge 0.$$
 (9)

If condition (8) does not hold then the numerator in (9) is negative for r sufficiently close to 1. Thus there exists $z_0 = r_0$ in (0,1) for which the quotient (9) is negative. This contradicts the required condition for $f \in \overline{\mathcal{HC}}_c(\beta)$ and so the proof is complete.

The growth result for functions in $\overline{\mathcal{H}}\mathcal{C}_c(\beta)$ is discussed in the following theorem.

Theorem 2.3 If $f \in \overline{\mathcal{H}}\mathcal{C}_c(\beta)$ then

$$|f(z)| \le (1+|b_1|)r + \left(\frac{1-\beta}{2(2-\beta)} - \frac{1+\beta}{2(2-\beta)}|b_1|\right)r^2, \quad |z| = r < 1$$

and

$$|f(z)| \ge (1 - |b_1|)r - \left(\frac{1 - \beta}{2(2 - \beta)} - \frac{1 + \beta}{2(2 - \beta)}|b_1|\right)r^2, \quad |z| = r < 1.$$

Proof. Let $f \in \overline{\mathcal{H}}\mathcal{C}_c(\beta)$. Taking the absolute value of f we have

$$|f(z)| \leq (1+|b_{1}|)r + \sum_{n=2}^{\infty} (|a_{n}| + |b_{n}|) r^{n}$$

$$\leq (1+|b_{1}|)r + \sum_{n=2}^{\infty} (|a_{n}| + |b_{n}|) r^{2}$$

$$= (1+|b_{1}|)r + \frac{1-\beta}{2(2-\beta)} \sum_{n=2}^{\infty} \left(\frac{2(2-\beta)}{1-\beta}|a_{n}| + \frac{2(2-\beta)}{1-\beta}|b_{n}|\right) r^{2}$$

$$\leq (1+|b_{1}|)r + \frac{1-\beta}{2(2-\beta)} \sum_{n=2}^{\infty} \left(\frac{n(n-\beta)}{1-\beta}|a_{n}| + \frac{n(n+\beta)}{1-\beta}|b_{n}|\right) r^{2}$$

$$\leq (1+|b_{1}|)r + \frac{1-\beta}{2(2-\beta)} \left(1 - \frac{1+\beta}{1-\beta}|b_{1}|\right) r^{2}$$

$$= (1+|b_{1}|)r + \left(\frac{1-\beta}{2(2-\beta)} - \frac{1+\beta}{2(2-\beta)}|b_{1}|\right) r^{2}$$

and

$$|f(z)| \geq (1 - |b_1|)r - \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^n$$

$$\geq (1 - |b_1|)r - \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^2$$

$$= (1 - |b_1|)r - \frac{1 - \beta}{2(2 - \beta)} \sum_{n=2}^{\infty} \left(\frac{2(2 - \beta)}{1 - \beta}|a_n| + \frac{2(2 - \beta)}{1 - \beta}|b_n|\right) r^2$$

$$\geq (1 - |b_1|)r -$$

$$\frac{1-\beta}{2(2-\beta)} \sum_{n=2}^{\infty} \left(\frac{n(n-\beta)}{1-\beta} |a_n| + \frac{n(n+\beta)}{1-\beta} |b_n| \right) r^2$$

$$\geq (1-|b_1|)r - \frac{1-\beta}{2(2-\beta)} \left(1 - \frac{1+\beta}{1-\beta} |b_1| \right) r^2$$

$$= (1-|b_1|)r - \left(\frac{1-\beta}{2(2-\beta)} - \frac{1+\beta}{2(2-\beta)} |b_1| \right) r^2. \quad \square$$

The bounds given in Theorem 2.3 for the functions $f = h + \overline{g}$ of the form (2) also hold for functions of the form (1) if the coefficient condition (5) is satisfied. The upper bound given for $f \in \overline{\mathcal{HC}}_c(\beta)$ is sharp and the equality occurs for the function

$$f(z) = z + |b_1|\overline{z} + \left(\frac{1-\beta}{2(2-\beta)} - \frac{1+\beta}{2(2-\beta)}|b_1|\right)\overline{z}^2, |b_1| \le \frac{1-\beta}{1+\beta}.$$

Next, we determine the extreme points of closed hulls of $\overline{\mathcal{H}}\mathcal{C}_c(\beta)$ denoted by $clco\overline{\mathcal{H}}\mathcal{C}_c(\beta)$.

Theorem 2.4 $f \in clco\overline{\mathcal{H}}\mathcal{C}_c(\beta)$ if and only if $f(z) = \sum_{n=1}^{\infty} (X_n h_n + Y_n g_n)$ where

$$h_1(z) = z, \ h_n(z) = z - \frac{1-\beta}{n(n-\beta)} z^n \ (n = 2, 3, ...),$$

$$g_n(z) = z - \frac{1-\beta}{n(n+\beta)} \bar{z}^n \ (n = 1, 2, ...),$$

$$\sum_{n=1}^{\infty} (X_n + Y_n) = 1, \ X_n \ge 0 \ and \ Y_n \ge 0.$$

Proof. For h_n and g_n as given above, we may write

$$f(z) = \sum_{n=1}^{\infty} (X_n h_n + Y_n g_n)$$

$$= \sum_{n=1}^{\infty} (X_n + Y_n) z - \sum_{n=2}^{\infty} \frac{1 - \beta}{n(n-\beta)} X_n z^n - \sum_{n=1}^{\infty} \frac{1 - \beta}{n(n+\beta)} Y_n \bar{z}^n$$

$$= z - \sum_{n=2}^{\infty} \frac{1 - \beta}{n(n-\beta)} X_n z^n - \sum_{n=1}^{\infty} \frac{1 - \beta}{n(n+\beta)} Y_n \bar{z}^n.$$

Then

$$\sum_{n=2}^{\infty} \frac{n(n-\beta)}{1-\beta} |a_n| + \sum_{n=1}^{\infty} \frac{n(n+\beta)}{1-\beta} |b_n|$$

$$= \sum_{n=2}^{\infty} \frac{n(n-\beta)}{1-\beta} \left(\frac{1-\beta}{n(n-\beta)} X_n \right)$$

$$+\sum_{n=1}^{\infty} \frac{n(n+\beta)}{1-\beta} \left(\frac{1-\beta}{n(n+\beta)} Y_n \right)$$

$$= \sum_{n=2}^{\infty} X_n + \sum_{n=1}^{\infty} Y_n$$

$$= 1 - X_1$$

$$\leq 1.$$

Therefore $f \in clco\overline{\mathcal{H}}\mathcal{C}_c(\beta)$.

Conversely, suppose that $f \in clco\overline{\mathcal{H}}\mathcal{C}_c(\beta)$. Set

$$X_n = \frac{n(n-\beta)}{1-\beta} |a_n|, (n=2,3,4,...),$$

and

$$Y_n = \frac{n(n+\beta)}{1-\beta} |b_n|, (n=1,2,3,...),$$

where $\sum_{n=1}^{\infty} (X_n + Y_n) = 1$. Then

$$f(z) = h(z) + \overline{g(z)}$$

$$= z - \sum_{n=2}^{\infty} |a_n| z^n - \sum_{n=1}^{\infty} |b_n| \overline{z}^n$$

$$= z - \sum_{n=2}^{\infty} \frac{1 - \beta}{n(n-\beta)} X_n z^n - \sum_{n=1}^{\infty} \frac{1 - \beta}{n(n+\beta)} Y_n \overline{z}^n$$

$$= z + \sum_{n=2}^{\infty} (h_n(z) - z) X_n + \sum_{n=1}^{\infty} (g_n(z) - z) Y_n$$

$$= \sum_{n=2}^{\infty} (X_n h_n + Y_n g_n). \quad \Box$$

For harmonic functions $f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n - \sum_{n=1}^{\infty} |b_n| \bar{z}^n$ and $F(z) = z - \sum_{n=2}^{\infty} |A_n| z^n - \sum_{n=1}^{\infty} |B_n| \bar{z}^n$, we define the convolution of f and F as

$$(f \star F)(z) = z - \sum_{n=2}^{\infty} |a_n A_n| z^n - \sum_{n=1}^{\infty} |b_n B_n| \bar{z}^n.$$
 (10)

In the next theorem, we examine the convolution properties of the class $\overline{\mathcal{HC}}_c(\beta)$.

Theorem 2.5 For $0 \le \alpha \le \beta < 1$, let $f \in \overline{\mathcal{H}}\mathcal{C}_c(\beta)$ and $F \in \overline{\mathcal{H}}\mathcal{C}_c(\alpha)$. Then $(f \star F) \in \overline{\mathcal{H}}\mathcal{C}_c(\beta) \subset \overline{\mathcal{H}}\mathcal{C}_c(\alpha)$.

Proof. Write $f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n - \sum_{n=1}^{\infty} |b_n| \bar{z}^n$ and $F(z) = z - \sum_{n=2}^{\infty} |A_n| z^n - \sum_{n=1}^{\infty} |B_n| \bar{z}^n$. Then the convolution of f and F is given by (10).

Note that $|A_n| \leq 1$ and $|B_n| \leq 1$ since $F \in \overline{\mathcal{H}}\mathcal{C}_c(\alpha)$. Then we have

$$\sum_{n=2}^{\infty} n(n-\beta)|a_n||A_n| + \sum_{n=1}^{\infty} n(n+\beta)|b_n||B_n|$$

$$\leq \sum_{n=2}^{\infty} n(n-\beta)|a_n| + \sum_{n=1}^{\infty} n(n+\beta)|b_n|.$$

Therefore $(f \star F) \in \overline{\mathcal{H}}\mathcal{C}_c(\beta) \subset \overline{\mathcal{H}}\mathcal{C}_c(\alpha)$ since the right hand side of the above inequality is bounded by $1 - \beta$ while $1 - \beta \leq 1 - \alpha$.

Now, we determine the convex combination properties of the members of $\overline{\mathcal{H}}\mathcal{C}_c(\beta)$.

Theorem 2.6 The class $\overline{\mathcal{H}}\mathcal{C}_c(\beta)$ is closed under convex combination.

Proof. For i = 1, 2, 3, ..., suppose that $f_i \in \overline{\mathcal{H}C_c(\beta)}$ where f_i is given by

$$f_i(z) = z - \sum_{n=2}^{\infty} |a_{n,i}| z^n - \sum_{n=1}^{\infty} |b_{n,i}| \bar{z}^n.$$

For $\sum_{i=1}^{\infty} c_i = 1$, $0 \le c_i \le 1$, the convex combinations of f_i may be written as

$$\begin{split} \sum_{i=1}^{\infty} c_i f_i(z) &= c_1 z - \sum_{n=2}^{\infty} c_1 |a_{n,1}| z^n - \sum_{n=1}^{\infty} c_1 |b_{n,1}| \bar{z}^n + c_2 z - \sum_{n=2}^{\infty} c_2 |a_{n,2}| z^n - \sum_{n=1}^{\infty} c_2 |b_{n,2}| \bar{z}^n \dots \\ &= z \sum_{i=1}^{\infty} c_i - \sum_{n=2}^{\infty} \left(\sum_{i=1}^{\infty} c_i |a_{n,i}| \right) z^n - \sum_{n=1}^{\infty} \left(\sum_{i=1}^{\infty} c_i |b_{n,i}| \right) \bar{z}^n \\ &= z - \sum_{n=2}^{\infty} \left(\sum_{i=1}^{\infty} c_i |a_{n,i}| \right) z^n - \sum_{n=1}^{\infty} \left(\sum_{i=1}^{\infty} c_i |b_{n,i}| \right) \bar{z}^n. \end{split}$$

Next, consider

$$\sum_{n=2}^{\infty} \left(n(n-\beta) \left| \sum_{i=1}^{\infty} c_i |a_{n,i}| \right| \right) + \sum_{n=1}^{\infty} \left(n(n+\beta) \left| \sum_{i=1}^{\infty} c_i |b_{n,i}| \right| \right)$$

$$= c_1 \sum_{n=2}^{\infty} n(n-\beta)|a_{n,1}| + \dots + c_m \sum_{n=2}^{\infty} n(n-\beta)|a_{n,m}| + \dots + c_1 \sum_{n=1}^{\infty} n(n+\beta)|b_{n,1}| + \dots + c_m \sum_{n=1}^{\infty} n(n+\beta)|b_{n,m}| + \dots$$

$$= \sum_{i=1}^{\infty} c_i \left\{ \sum_{n=2}^{\infty} n(n-\beta)|a_{n,i}| + \sum_{n=1}^{\infty} n(n+\beta)|b_{n,i}| \right\}.$$

Now, $f_i \in \overline{\mathcal{H}C_c(\beta)}$, therefore from Theorem 2.2, we have

$$\sum_{n=2}^{\infty} n(n-\beta)|a_{n,i}| + \sum_{n=1}^{\infty} n(n+\beta)|b_{n,i}| \le 1 - \beta.$$

Hence

$$\sum_{n=2}^{\infty} (n(n-\beta) |\sum_{i=1}^{\infty} c_i |a_{n,i}||) + \sum_{n=1}^{\infty} (n(n+\beta) |\sum_{i=1}^{\infty} c_i |b_{n,i}||)$$

$$\leq (1-\beta) \sum_{i=1}^{\infty} c_i$$

$$= 1 - \beta.$$

By using Theorem 2.2 again, we have $\sum_{i=1}^{\infty} c_i f_i \in \overline{\mathcal{H}}\mathcal{C}_c(\beta)$.

References

- [1] Clunie, J. and Sheil Small, T. (1984). Harmonic univalent functions. Ann. Acad. Aci. Fenn. Ser. A. I. Math., 9. 3-25
- [2] Jahangiri, J.M. (1998). Coefficient bounds and univalence criteria for harmonic functions with negative coefficients. *Ann. Univ. Marie Curie-Sklodowska Sect. A*, **52**. 57-66

Received: May 20, 2007