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This study presents the effects of recycled concrete aggregate (RCA) on the key fresh and hardened properties 

of concrete. RCA was used to produce high-workability concrete substituting 0–100% natural coarse aggregate 

(NCA) by weight. The slump and slump flow of fresh concretes were determined to ensure high workability. In 

addition, the compressive, flexural and splitting tensile strengths, modulus of elasticity, and permeable voids of 

hardened concretes were determined. The test results revealed that RCA significantly decreased the workability 

of concrete. RCA also affected the compressive strength, modulus of elasticity, and permeable voids of concrete. 

At the age of 28 days, the concrete with 100% RCA provided 12.2% lower compressive strength and 17.7% lesser 

modulus of elasticity than the control concrete. Also, 100% RCA increased the permeable voids of 28-day old 

concrete by 8.2%. However, no significant negative impact of RCA was observed on the flexural and splitting 

tensile strengths of concrete.
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1. Introduction

Construction developments are on its peak in the 21st century 

around the globe. There are numerous sky-scrapers, bridges, roads, 

underground tunnels, and deep-water structures all over the world. As 

well, there are many other types of structure being constructed every 

year. To accommodate new structures, many structures built in the 

past centuries are being demolished and destroyed due to their limit 

of life span, unsuitable position in an ever-growing city, and damaged 

condition caused by natural disaster. The demolition of structures is 

generating concrete rubbles and causing environmental problems due 

to unplanned disposal and scarcity of landfill site. A large portion 

of the potentially useful demolition waste is disposed of in landfill 

site. The transport and disposal of this waste are economically and 

environmentally not sustainable. The similar problems are caused by 

the tested field-cast and excess concretes, which can be categorized 

under construction waste. In addition, the harvesting of aggregates 

for construction is depleting the natural sources and damaging the 

ecological balance. The quarrying activities and processes involved in 

the harvesting of virgin aggregates are also polluting the environment. 

To alleviate these problems, nowadays alternative aggregates are 

drawing more interest in the construction industry. In recent years, 

the rubbles generated from the demolition of old concrete structures1, 

the unused concrete returned from construction site2, and the concrete 

tested in laboratory or field3,4 have been recycled as aggregate and 

reused for new construction in many regions of the world. The 

aggregates processed from concrete rubbles, returned concrete, and 

tested concrete are well known as recycled concrete aggregate (RCA).

The major benefits of using RCA in new construction include 

lower environmental pollution, reduction in the need for valuable 

landfill space, and conservation of resources for natural aggregates1,4,5. 

Moreover, the use of RCA can be more economical than natural 

coarse aggregate (NCA) due to lower transportation cost and reduced 

energy consumption5,6. This is because the transportation cost can 

be decreased due to the availability of RCA near to the construction 

sites. The energy needed for obtaining RCA is also much less than 

that required for the harvesting and processing of NCA.

Using RCA in concrete is economically and environmentally 

viable. However, RCA obtained from crushing of old concrete 

can exhib it inconsistent properties depending on the composition, 

particularly the water to cement (W/C) ratio and cement content 

of the original concrete. The quality of RCA is generally inferior 

to that of NCA7. RCA contains not only the original aggregate, but 

also hydrated cement paste adhered to the surface of this aggregate. 

This paste makes RCA more porous than NCA. The higher porosity 

of RCA leads to a higher porosity and water absorption in concrete8. 

Also, RCA can contain various contaminants such as chlorides, 

sulphates, carbonates, organic matters, etc., depending on the 

source of parent concrete. Despite the inferior quality of RCA, 

many researchers have shown that it can be a reliable alternative of 

NCA in construction, particularly for non-structural or lower level 

application1,9,10. Levy and Helene11 as well as Poon et al.12 have graded 

RCA as potentially good for use in new concrete. Properly processed 

RCA can be used in new concrete for pavements, shoulders, barriers, 

embankments, sidewalks, curbs, gutters, and bridge foundations; it 

can also be used in structural grade concrete, bituminous concrete, 

and soil-cement pavement bases8. However, the RCA obtained 

from demolished concrete must be strictly scrutinized to pass the 

acceptability criteria set in relevant specifications for a particular 

use. It is generally recommended that RCA should have a total 

contaminant level lower than 1% of the bulk mass13.
The concrete rubbles generated from demolished old buildings, 

and removed or demolished infrastructures such as bridges, 
pavements, and airport runways are the major sources of RCA1,14. 
In addition to the demolition concrete wastes, the excess concrete 
returned to the ready-mixed plant2 and the rejected precast concrete 

Materials Research. 2011; 14(2): 248-255 © 2011

DOI: 10.1590/S1516-14392011005000039



Properties of High-Workability Concrete with Recycled Concrete Aggregate

elements15 are the significant sources of RCA. The tested laboratory-
cast3 and field-cast4 concrete specimens are also the considerable 
sources of RCA. The construction industry normally uses six cube or 
cylinder specimens for testing the compressive strength of concrete 
from a mixture truck. An average of 2–4 m3 of concrete is used from 
1000 m3 concrete pour for fabricating concrete test specimens4. After 
testing, these concrete specimens are discarded, thus increasing the 
dosposal load for landfill site. Instead of disposing, the tested field-
cast concrete specimens can be crushed and recycled as RCA to 
produce concrete in an economically and environment-friendly viable 
way. Furthermore, the tested field-cast concrete specimens provide 
RCA with a much lower level of contaminants, thus making it more 
attarctive due to a greater degree of acceptability.

The RCA obtained from the above-stated sources has mostly 
been used to produce ordinary or normal-workability concrete1-6,9,11-15. 
In contrast, limited studies have been carried out to produce 
high-workability concrete using the RCA obtained from tested 
field-cast concrete and other sources. In this research, the RCA 
obtained from the tested field-cast concrete specimens was used to 
produce high-workability concrete substituting 0, 30, 50, 70 and 
100% NCA by weight. The slump and slump flow of freshly mixed 
concretes were determined to ensure high workability. In addition, 
the compressive strength, splitting tensile strength, flexural strength, 
modulus of elasticity, and permeable voids of hardened concretes 
were determined to observe the effects of RCA.

2. Research Significance

Construction and demolition wastes generated from demolished 
buildings and infrastructures form one of the largest waste streams 
in many developed countries. The excess and tested concretes also 
constitute a considerable portion of construction waste, particularly 
in developing countries. The recycling of construction and demolition 
wastes as RCA resolves disposal problem, reduces landfill space, 
conserves natural resources, decreases transport costs, diminishes 
environmental pollution, and protects ecological balance. This 
study reports the use of RCA obtained from the tested field-cast 
concrete specimens to produce new concrete. The experimental 
research has emphasized the effects of coarse RCA on a range 
of fresh (slump, slump flow), mechanical (compressive, splitting 
tensile and flexural strengths, modulus of elasticity), and durability 
(permeable voids) properties, and thus assessed its suitability for use 
in high-workability concrete. The research findings are expected to 
encourage the sustainable development by using RCA in structural 
and non-structural concretes.

3. Materials and Methods

3.1. Materials

Crushed granite stone (5 mm < aggregate size ≤ 20 mm), RCA 
(5 mm < aggregate size ≤ 20 mm), quartz river sand (size ≤ 5 mm), 
ordinary portland cement (OPC), a polycarboxylate based high-range 
water reducer (HRWR), and normal tap water (W) were used to 
produce the concretes. Crushed granite stone was used as NCA and 
quartz river sand (S) was used as fine aggregate (FA). The tested Grade 
30 concrete cubes obtained from I-Mix Concrete Sdn. Bhd., Selangor, 
Malaysia were the source of RCA. The cubes were hammered and 
then the crushed fine and coarse particles were separated by 5-mm 
sieve. The coarse RCA particles with a nominal maximum size of 
20 mm were collected and used as coarse aggregate. NCA, RCA and 
FA or S collectively formed the skeleton of total aggregates (TA). 
OPC acted to bind the aggregates after reacting with water, whereas 
HRWR functioned to maintain high workability. The specific gravity 
of cement was 3.12 and that of HRWR was 1.06. The HRWR used 
was in liquid state and had a solid content of 13.5%.

The sieve analysis of NCA, RCA, and FA was carried out 

according to BS 812-103.116 to check whether they meet the BS 

grading requirements, and to determine their fineness modulus. 

The gradation (size distribution) of NCA and RCA is presented in 

Figure 1. It can be seen from Figure 1 that RCA did not strictly meet 

the BS grading requirement for coarse aggregate as specified in BS 

88217. The size fraction passing 10-mm sieve was below the specified 

lower limit. It suggests that RCA contained a lower fraction of fine 

particles. A higher fineness modulus of RCA also suggests that it had 

lesser fine particles than NCA.

The RCA obtained from crushed field-cast concrete cubes was 

more angular and had more surface roughness than NCA, as noticed 

during visual inspection (Figure 2). Also, the surface of RCA was 

more porous due to adhered cement paste. The key physical properties 

of RCA, NCA and FA are given in Table 1. The moisture content 

of NCA, RCA and FA was determined according to BS 812–10918. 

The open porosity of RCA and NCA was determined based on the 

cold-water method described in ASTM C 642–0619. The angularity 

of RCA and NCA was quantified in accordance with BS 812-120. The 

specific gravity, bulk density and water absorption of all aggregates 

were determined according to BS 812–221. The aggregate impact value 

of both RCA and NCA was determined following the test procedure 

given in BS 812–11222. RCA had higher open porosity and water 

absorption than NCA due to porous surface. The angularity number 

of RCA was 9.50 and that of NCA was 7.50. Hence, RCA was more 

angular than NCA. RCA was also lighter than NCA. This is because 

the specific gravity and bulk density of RCA were lower than those 

of NCA. In addition, RCA was weaker than NCA and therefore 

provided a relatively high aggregate impact value. Thus, the physical 

properties of RCA were significantly different from those of NCA. 

Similar differences between the physical properties RCA and NCA 

were reported from earlier research23,24.

3.2. Concrete mix proportions

Nine (9) trial concrete mixes using NCA were prepared with 

different W/C ratios (0.50, 0.60, and 0.65) and HRWR dosages to 

ensure high-workability. The basic mix proportions (without HRWR 

dosage) of these concretes were determined based on the British 

Figure 1. Gradation of RCA and NCA.
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Using the same W/C ratio, S/A ratio and HRWR dosage of 

control concrete, four different concretes were designed with RCA 

substituting 30, 50, 70 and 100% NCA by weight. The W/C ratio, 

S/A ratio and HRWR dosage of these concretes were kept the same 

as used in the control mix to observe the effects of RCA on the 

concrete properties. The basic mix proportions of these concretes were 

calculated based on the absolute volume of constituent materials and 

2% entrapped air content. Before preparing the concretes, the basic 

mix proportions were corrected considering the water absorption 

and moisture content of aggregates, and the water contribution of 

HRWR. The corrected mix proportions of control and RCA concretes 

are given in Table 2. The concretes were designated based on the 

RCA content. For example, the CRCA50 designation was used for 

a concrete including 50% RCA as a partial replacement of NCA.

3.3. Preparation and testing of fresh concretes

A rotary pan mixer was used to prepare the concretes. The mixer 

was dampened to prevent the loss of mix water during mixing. Coarse 

and fine aggregates were put in the mixer pan and homogenized for 

1 minute in dry condition. The mixer was covered with a lid to prevent 

dust from fluttering. Then the first half of the mix water was added into 

the mixer and the mixing was continued for 1 minute. Thereafter, the 

mixer was stopped for 1 minute to allow the absorption of water into 

aggregates. Then the cement was added and the mixing was resumed 

for another 1 minute. Later the second half of the mix water blended 

with HRWR dosage was introduced and the mixing was continued 

for 2 minutes followed by 2 minutes rest. Finally, the concrete was 

mixed for additional 2 minutes to complete the mixing operation. The 

net mixing time excluding the rest periods was 7 minutes.

Immediately after the completion of mixing, the slump and 

slump flow of fresh concretes were determined to ensure high 

workability. The slump test was carried out in accordance with BS 

1881–10226. Using the same sample that collapsed during the slump 

test, the slump flow was also determined by measuring the largest 

and corresponding perpendicular diameters of concrete spread. The 

slump flow was determined to clearly observe the effect of RCA on 

the workability of concrete.

3.4. Preparation of test specimens and testing of hardened 

concretes

Cube, prism and cylinder specimens were cast after testing the 

fresh concretes. 100 mm cubes, Ø100 × 200 mm cylinders, and 

100 × 100 × 500 mm prisms were cast in two layers, instead of three 

layers, due to relatively high workability. However, Ø150 × 300 mm 

cylinder specimens were cast in three layers because of a larger 

depth. In all cases, multi-use metal (cast iron) moulds were used. 

The specimens were de-moulded at the age of 1 day and immersed 

in water for curing until the day of testing. At the day of testing, 

several Ø100 × 200 mm cylinder specimens were cut to prepare 

Ø100 × 50 mm cylinders needed for testing the permeable voids 

of concrete. While cutting, thin sections from top and bottom were 

discarded to minimize the end effects. Three Ø100 × 50 mm cylinder 

specimens were obtained from each Ø100 × 200 mm cylinder.

The compressive, flexural and splitting tensile strengths, static 

modulus of elasticity, and permeable voids of hardened concretes were 

examined at the age of 7 and 28 days. The compressive strength test 

was performed in accordance with BS1881–11627 using 100 mm cube 

specimens. The splitting tensile strength test was carried out according 

to BS 1881–11728 using Ø150 × 300 mm cylinder specimens. The test 

procedure given in BS1881–11829 was used to determine the flexural 

strength using 100 × 100 × 500 mm prisms. The static modulus of 

elasticity was determined in accordance with BS 1881–12130 using 

Ø150 × 300 mm cylinders. The permeable voids were determined 

Figure 2. Appearance of NCA and RCA.

Table 1. Basic physical properties of fine and coarse aggregates.

Physical property RCA NCA FA

Nominal maximum size (mm) 20 20 5

Fineness modulus 6.79 6.76 2.88

Bulk density in compacted condition (kg.m–3) 1250 1510 1620

Saturated surface-dry based specific gravity 2.53 2.62 2.69

Oven-dry based specific gravity 2.48 2.53 –

Open porosity (vol. (%)) 5.03 1.55 –

Absorption (wt. (%)) 2.03 0.60 1.32

Moisture content (wt. (%)) 1.57 0.17 0.31

Angularity number 9.50 7.50 –

Aggregate impact value (wt. (%)) 12.7 10.0 –

DoE (Department of Environment) mix design method25. From the 

trial concrete mixes, a suitable control mix (0% RCA) satisfying 

the requirements for high workability (slump > 250 mm, slump 

flow > 500 mm) was decided. The W/C ratio, S/A (FA/TA) ratio and 

HRWR dosage of the selected control mix was 0.60, 0.50 and 1.5% 

(by weight of cement), respectively.
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by testing Ø100 × 50 mm cylinder specimens according to the test 

procedure described in Safiuddin and Hearn31. Triplicate specimens 

were used in all tests.

4. Results and Discussion

4.1. Fresh properties

4.1.1. Workability

The workability of concrete was evaluated with respect to slump 

and slump flow. The slump ranged from 255 to 275 mm, which 

indicate a high workability of concrete. The slump flow results also 

reveal that the concretes were highly workable. In this study, the slump 

flow varied in the range of 505–620 mm. High-workability concrete 

generally provides a slump higher than 200 mm and a slump flow 

greater than 500 mm32. Adequate HRWR dosage was used to maintain 

high workability. The polycarboxylate-based HRWR dispersed 

the cement particles by its steric hindrance effect induced by long 

grafted side-chain, thus reducing the loss of water due to entrapping 

in cement flocks. Therefore more free water was available in freshly 

mixed concrete to maintain high workability.

The use of RCA decreased the slump and slump flow of concrete, 

as can be seen from Figures 3 and 4, respectively. In general, the 

overall slump and slump flow results reveal that a higher RCA content 

produced a lower workability. Similar results were observed in earlier 

research on normal-workability concrete3,15,23. This is credited to 

the physical characteristics of RCA particles. The RCA used in the 

present study was more angular and porous, and much rougher than 

NCA due to the adhered cement paste. The rough-textured RCA 

particles increased the harshness of concrete mix, and thus decreased 

its workability, particularly at a greater content. In addition, the 

deficient gradation of RCA contributed to decrease the workability 

of concrete. The RCA had much coarse but less fine particles than 

NCA (Figure 1). The dispersion of aggregates consisting of relatively 

a high content of coarse particles can be lower due to increased inter-

particle collisions33. The loss of cement paste into the surface pores 

of RCA also decreased the workability of concrete.

Among four RCA concretes, 30 and 50% RCA contents provided 

slightly better slump and slump flow than 70 and 100% RCA contents. 

This is highly credited to the reduced contents of fine and coarse 

aggregates (refer to Table 2). The deformability of concrete improves 

at a lower aggregate content34. However, this effect was nullified 

in case of 70 and 100% RCA contents due to the adverse physical 

characteristics (angularity, surface roughness, open porosity, etc.) of 

RCA. Therefore, the lowest level of workability was observed for the 

concretes including 70 and 100% RCA contents.

4.2. Hardened properties

The hardened properties reported in this study are for the 

concretes including coarse RCA, which was obtained from a single 

Table 2. Mix proportions of different concrete mixes.

Mix NCA

(kg.m–3)

RCA

(% CA†)

RCA

(kg.m–3)

FA

(kg.m–3)

OPC

(kg.m–3)

W

(kg.m–3)

HRWR

(% C‡)

CRCA0 910.1 0 0 904.9 342 213.6 1.5

CRCA30 609.1 30 260.9 864.7 342 213.1 1.5

CRCA50 433.1 50 433.0 861.3 342 213.2 1.5

CRCA70 258.8 70 603.5 857.5 342 213.2 1.5

CRCA100 0 100 856.6 851.9 342 213.1 1.5
†CA = NCA + RCA; ‡C = OPC.

Figure 3. Slump of concrete for different RCA contents.

Figure 4. Slump flow of concrete for different RCA contents.

source. Similar results with identical trends are expected for the 

other sources of RCA whose physical properties are equivalent to the 

physical properties of RCA used in the present study.

4.2.1. Compressive strength

The test results for the 7 and 28 days compressive strengths 

of concretes are presented in Figure 5. This figure shows that the 

28 days compressive strength was higher than the 7 days compressive 

strength. This is due to the increased amount of hydration products 

with the longer curing age. However, the increase in compressive 

strength was not very significant at the age of 28 days. The 7-day 

compressive strength is generally 60–80% of the 28-day compressive 
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strength in the case of normal concrete cured under standard moist 

or water curing35-36. In this study, the maximum increase in the 

compressive strength at 28 days was only about 13.2% as compared 

with 7 days compressive strength. A similar result was obtained in 

an earlier research31. The concretes produced in the present study 

contained comparatively high cement content at a higher W/C ratio. 

The recommended minimum cement content is 270 kg.m–3 for normal 

strength high-workability concrete37. The cement content used in 

the present study was 342 kg.m–3, which is relatively high. A high 

cement content contributes to produce a greater early-age compressive 

strength38. In addition, high-workability concrete generally provides 

a greater early-age compressive strength than normal-workability 

concrete due to enhanced strength development and better 

compactability39. The results of permeable voids (see Section 4.2.5.) 

also suggest that the pore structure of concrete was not improved at the 

age of 28 days due to relatively less additional hydration products and 

leaching out of portlandite (calcium hydroxide, Ca(OH)
2
). Therefore, 

no significant improvement in the microstructure of concrete occurred 

after 7 days to produce a substantially greater compressive strength 

at 28 days.

RCA had no significant negative impact on the compressive 

strength of concrete, as evident from Figure 5. The concretes with 

and without RCA provided a similar compressive strength, except 

for 100% RCA. The concrete with 100% RCA provided a lower 

compressive strength than the control concrete, particularly at 

28 days. However, the reduction in the 28-day compressive strength 

observed in the present study was only 12.2% in comparison with 

the control concrete. A similar finding was reported in the case of 

normal-workability RCA concrete2,3,40. Although RCA was inferior 

to NCA due to porous surface caused by adhered cement paste, it did 

not significantly decrease the compressive strength of concrete. This 

is due to a better interfacial bond between aggregate and cement paste 

in the presence of rough RCA6,9. In addition, a better interlocking 

of aggregates can be obtained because of angular RCA. These two 

effects may contribute to counterbalance the decrease in compressive 

strength due to less strong RCA. It is apparent from Table 1 that RCA 

was more angular than NCA. Also, a visual inspection of coarse 

aggregates revealed that RCA had a greater surface roughness than 

NCA (refer to Figure 2). Both of these properties are conducive to 

the compressive strength of concrete. Nevertheless, the weakness of 

RCA due to porous adhered cement paste prevailed over its surface 

roughness and angularity at 100% RCA, thus showing a decrease 

in the compressive strength of concrete. In addition, the deficient 

gradation of RCA contributed to provide a lower compressive strength 

by affecting the physical packing of concrete at a lower workability.

4.2.2. Flexural strength

The test results for the flexural strength of concrete are presented 

in Figure 6. In general, 28 days flexural strength was greater than 

7 days flexural strength. The maximum increase in the flexural 

strength at 28 days was 17.3% as compared with 7 days flexural 

strength. This is due to the additional hydration products, as 

mentioned in the case of compressive strength. It is also obvious from 

Figure 6 that RCA did not produce any significant negative impact 

on the flexural strength of concrete. Identical results were noticed in 

earlier research on normal-workability RCA concrete3,15. It is due to 

the similar reasons as discussed in the case of compressive strength. 

The aggregate characteristics (surface roughness, angularity, etc.) of 

RCA contribute to produce better interfacial bond and mechanical 

interlocking. In addition, the coarse aggregates are generally oriented 

with their larger dimension along the length of the prism specimen. It 

implies that the interfacial bond is more effective along the specimen 

length. Therefore, a greater restraint to the flexure (bending) occurred, 

thus compensating the negative impact of the weakness of RCA on 

the modulus of rupture (flexural strength) of concrete. As a result, 

the comparable flexural strength was obtained for the concretes with 

and without RCA.

4.2.3. Splitting tensile strength

The results for the splitting tensile strength are shown in 

Figure 7. This figure shows that 28 days splitting tensile strength 

was significantly greater than 7 days splitting tensile strength. The 

maximum increase in the splitting tensile strength at 28 days was 

40.3% in comparison with 7 days splitting tensile strength. The 

increase in 28 days splitting tensile strength was relatively high in 

the presence of RCA. It is due to the combined effect of increased 

hydration products and favourable physical characteristics of RCA. 

Figure 7 also reveals that RCA produced no significant negative 

impact on the splitting tensile strength of concrete, particularly 

at the age of 28 days. Similar findings were reported from earlier 

research on normal-workability RCA concrete9,15,24. This is because 

of the similar reasons as discussed in the cases of compressive and 

flexural strengths. An equivalent or better splitting tensile strength 

Figure 5. Compressive strength of concrete for different RCA contents. Figure 6. Flexural strength of concrete for different RCA contents.
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can be obtained in the presence of RCA owing to good interfacial 

bond between aggregate and mortar matrix9. Also, Tavakoli and 

Soroushian41 mentioned that the splitting tensile strength can be 

higher for RCA concrete if the RCA is derived from a concrete, 

which was produced for a compressive strength higher than that of 

control concrete. In the present study, the parent concrete of RCA and 

control concrete had identical compressive strength. Hence, the RCA 

concretes produced in this study are not expected to provide a higher 

splitting tensile strength than the control (non-RCA) concrete. Indeed, 

the present study shows that there was some decrease in the splitting 

tensile strength at the age of 7 days. This may be due to the reason 

that the immature concrete was weaker in the facture plane because 

of porous microstructure in the presence of RCA. Nevertheless, this 

effect became less detrimental with the maturity of concrete. As a 

result, the 28 days splitting tensile strength was comparable for the 

concretes with and without RCA (refer to Figure 7).

4.2.4. Modulus of elasticity

The test results for the modulus of elasticity of concretes are 

presented in Figure 8. These results are consistent with the strength 

results. A higher modulus of elasticity is generally obtained with a 

greater strength. Therefore, the modulus of elasticity at 28 days was 

higher than that at 7 days. However, the increase in the modulus 

of elasticity was not as significant as the increases in flexural and 

splitting tensile strengths. The maximum increase in 28 days modulus 

of elasticity was 11.8% in comparison with 7 days modulus of 

elasticity. The reasons are the same as explained before in the cases 

of strength properties.

The effect of RCA on the modulus of elasticity of concrete is 

evident from Figure 8. This figure shows that relatively low values 

of modulus of elasticity were obtained for the RCA concretes. This 

is because RCA was more porous and less strong than NCA (see 

Table 1). The modulus of elasticity decreased with the increase in 

RCA content. Similar results were obtained in earlier studies on 

normal-workability RCA concrete2,15. In the present study, the lowest 

modulus of elasticity at both ages was obtained for the concrete 

with 100% RCA. In this case, the reduction in the 28-day modulus 

of elasticity was 17.7% as compared with the control concrete. 

According to Hansen42, the modulus of elasticity of RCA concrete 

can be 15–50% lower than that of non-RCA concrete. Also, Aïtcin 

and Mehta43 reported that the concrete produced with less strong 

aggregates possesses a lower modulus of elasticity.

The modulus of elasticity of concrete is influenced by the moduli 

of hardened cement paste and aggregate. In the present study, the 

effect of the modulus of elasticity of hardened cement paste was 

unlikely, since the paste parameters (paste volume, W/C ratio, cement 

content, and water content) remained the same for all concretes. 

It suggests that the modulus of elasticity of combined aggregates 

affected the modulus of elasticity of concrete due to the presence of 

RCA. Since RCA is more porous and less strong than NCA, it would 

have a lower modulus of elasticity15. A lower modulus of elasticity 

of aggregate decreases the modulus of elasticity of concrete36. As a 

result, the RCA concretes exhibited a lower modulus of elasticity.

4.2.5. Permeable voids

The permeable voids of different concretes are presented in 

Figure 9. In general, no reduction in the permeable voids of concrete 

occurred after 7 days. In fact, the 28 days permeable voids slightly 

increased in all cases. The compressive strength results suggest 

that no significant pore refinement occurred after 7 days due to the 

relatively high W/C ratio. The volume of capillary pores and their 

connectivity significantly increase for a W/C ratio greater than 

0.4044,45. It suggests that the pore connectivity was substantially higher 

Figure 7. Splitting tensile strength of concrete for different RCA contents.

Figure 8. Modulus of elasticity of concrete for different RCA contents.

Figure 9. Permeable voids of concrete for different RCA contents.
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at the W/C ratio of 0.60 used in the present study. The increased 

pore connectivity enhanced the leaching out of portlandite (calcium 

hydroxide, Ca(OH)
2
, which is liberated from cement hydration) from 

the specimens immersed in water. Also, no saturated lime water was 

used during curing; it accelerated the leaching out of portlandite, thus 

leaving some pores in concrete. Consequently, there was no decrease 

in the permeable voids of concrete at the age of 28 days.

The permeable voids of concrete gradually increased with the 

increase in RCA content, as evident from Figure 9. The highest level 

of permeable voids was obtained for the concrete with 100% RCA. 

At the age of 28 days, it provided 8.2% more permeable voids than 

the control (non-RCA) concrete. Limited research investigated the 

effect of RCA on the permeable voids of concrete. However, a number 

of published papers reported that the absorption and permeability 

properties of concrete increase in the presence of RCA2,9,15. These 

findings suggest that the RCA concrete possesses a higher volume of 

permeable voids. The increase in the permeable voids is mostly due 

to the higher porosity of RCA. The RCA contained adhered cement 

paste, which makes the RCA porous and thereby increases the overall 

porosity of concrete. As a result, the measured permeable voids at 

both ages were greater for the RCA concretes.

5. Conclusions

RCA can overcome the shortage of NCA, eliminate the harvesting 

cost of NCA, and reduce the construction and demolition wastes 

in landfill site. In addition, it will eradicate the transportation 

cost for gathering NCA to construction site, and for disposing 

the construction and demolition wastes to landfill site. RCA was 

used in the present study as partial and full replacements of NCA 

to produce high-workability concretes. The effects of RCA on the 

workability, compressive strength, flexural strength, splitting tensile 

strength, modulus of elasticity, and permeable voids of concrete were 

investigated. The following conclusions can be drawn based on the 

findings of the experimental investigation:

1. RCA reduced the workability of concrete; the decreases in 

slump and slump flow were higher at a greater RCA content. 

The angular and rough-textured RCA particles increased the 

harshness of concrete mix, and thus decreased its slump and 

slump flow. In addition, the deficient gradation of RCA was 

partly responsible to reduce the workability of concrete;

2. In general, no significant improvement in compressive strength 

and modulus of elasticity occurred at the age of 28 days, as 

the concretes were produced with relatively a high W/C ratio. 

Also, the leaching out of portlandite during water curing may 

be partly responsible for no significant improvement in these 

two hardened properties after 7 days. Due to the similar reasons, 

no decrease in the permeable voids of concrete occurred at the 

age of 28 days;

3. RCA produced no significant adverse effect on the compressive 

strength of concrete; the maximum decrease in 28 days 

compressive strength was only 12.2% for 100% RCA. Although 

RCA was weaker than NCA and had a deficient gradation, 

the enhanced interfacial bond and mechanical interlocking 

contributed to overcome these drawbacks, thus producing no 

substantial negative impact on compressive strength;

4. The flexural strength of concrete was not affected in the 

presence of RCA due to the better mechanical interlocking 

and interfacial bond resulting from angular and rough-textured 

RCA. Also, a greater restraint to the flexure (bending) occurred 

due to more effective interfacial bond along the specimen 

length;

5. The splitting tensile strength of concrete at the age of 28 days 

was not affected in the presence of RCA, particularly at the age 

of 28 days. This is due to the enhanced mechanical interlocking 

and interfacial bond produced by the increased angularity and 

surface roughness of RCA;

6. The modulus of elasticity of concrete decreased when RCA 

was used as a partial or full replacement of NCA; a higher RCA 

content caused a greater decrease in the modulus of elasticity. 

This is attributed to the lower elastic modulus of RCA, since 

it was weaker and more porous than NCA;

7. The permeable voids of concrete increased with the increase 

in RCA content. This is mostly credited to the higher porosity 

of RCA; the adhered cement paste made the RCA porous and 

thus increased the overall permeable voids of concrete; and

8. RCA can be used in producing new concrete with acceptable 

fresh and hardened properties, thus encouraging the sustainable 

development.
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