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Abstract

This paper provides a mathematical analysis of higher order vari-

ational methods and nonlinear diffusion filtering for image denoising.

Besides the average grey value, it is shown that higher order diffusion

filters preserve higher moments of the initial data. While a maximum-

minimum principle in general does not hold for higher order filters, we

derive stability in the 2-norm in the continuous and discrete setting.

Considering the filters in terms of forward and backward diffusion, one

can explain how not only the preservation, but also the enhancement

of certain features in the given data is possible. Numerical results show

the improved denoising capabilities of higher order filtering compared

to the classical methods.

1 Introduction

Variational methods [3, 34, 39, 7] and nonlinear diffusion filtering [35, 5, 50]
are two frequently used methods for image simplification and denoising. Vari-
ational approaches have first been proposed in the context of statistics as
graduation method by Whittaker [53] in 1923 and became popular as regu-
larisation method for inverse problems starting with the work by Tikhonov
[44] in 1963. They have been introduced to the field of image processing by
Bertero et al. [3] in 1988 and later on studied in many publications including
[39, 8, 37, 38]. Linear diffusion filters have been introduced in image pro-
cessing by Iijima in 1962 [24], and the nonlinear counterparts by Perona and
Malik [35] in 1990. Since this filter yields results of high quality, it has given
rise to many approaches based on partial differential equations for image pro-
cessing [5, 50, 4, 46]. The high quality of the resulting images is accompanied
and justified by interesting theoretical properties of nonlinear diffusion filter-
ing like maximum-minimum principle, well-posedness results, average grey
value invariance, and the existence of Lyapunov functionals [50]. In terms of
local forward and backward diffusion it can be explained how these processes
can adaptively smooth images regions and enhance edges [35]. The similarity
of the results obtained by variational methods and diffusion filtering is not
a coincidence: There are also close theoretical relationships between both
method classes which habe been explained by Scherzer and Weickert [38].
In practical results, Perona-Malik filters have one major drawback: Since the
results contain piecewise constant regions, linear grey value transitions in the
initial image are hard to recover. Usually the filters tend to oversegment them
in constant stairs which gives rise to the name staircasing for this artefact.
In Figure 1 one can see a practical example for staircasing. The stopping
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Figure 1: Left: Original image, 128 × 128 pixels. Middle: With additive
Gaussian noise, standard deviation σ = 20. Right: Regularised total varia-
tion diffusion g(s2) = (s2 + λ2)−1/2 with λ = 0.01, stopping time t = 20.75.

Figure 2: Higher order nonlinear diffusion with g(s2) = 1/(1 + s2/λ2). Top
left: Original image, 256 × 256 pixels. Top right: With additive Gaussian
noise, standard deviation σ = 10. Bottom left: Method by You and Kaveh
[55] without postprocessing, λ = 2.5, t = 100. Bottom right: Method by
Lysaker et al. [27] λ = 0.01, t = 6.

time has been chosen such that the mean squared error with respect to the
original image was minimised in this case. The visualisation shows some
artificial stairs introduced by the second order total variation filter.
The most promising idea to overcome the problem of staircasing is to intro-
duce higher derivative orders in the filter models [37, 47, 49, 55, 6, 27, 10,
14, 28, 25, 11, 13]. As an example, Figure 2 shows some denoising results
with the methods by You and Kaveh [55] and Lysaker et al. [27]. Recently,
methods with higher order derivatives have also proved their usefulness for
other computer vision applications like shape from shading [48]. Even if the
motivation was different, interestingly already Whittaker’s publication [53]
from 1923 uses regularisation with higher derivatives.
So far, all of these methods have been presented independently from each
other, and there is no general model for higher order approaches. Also an
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overview of properties that can be transferred from lower to higher order
approches is still missing. Additionally, most of the publications are more
interested in modelling than in the numerical implementation.
The goal of the present paper is to present a general framework for vari-
ational methods and nonlinear diffusion filters for image processing with
higher derivative orders. This framework includes several well-known filters
as special cases. We explicitly deal with the discretisation of the higher order
models. We investigate the properties of these models both in the continuous
and discrete setting in comparison to the classical low-order case. Numerical
examples juxtapose the practical behaviour of higher order filters with their
classical low-order counterparts.
The paper is organised as follows: Section 2 introduces some necessary no-
tations and shortly sketches the background on the calculus of variations.
This knowledge will be immediately applied in the following Section 3 to
characterise possible minimisers for a certain class of nonlinear higher or-
der regularisation functionals. The necessary conditions for such minimisers
are PDEs that directly lead us to higher order nonlinear diffusion equations.
These are the central filter class this paper is concerned with. We will for-
mulate possible discretisations for these diffusion equations in Section 4 and
prove they have analogue properties than in the continuous setting. An inter-
esting property, namely local feature enhancement, will be discussed in detail
in Section 5. Some numerical results are displayed in Section 6 showing the
behaviour of fourth order filtering and comparing the denoising capabilities
with second order filters. The paper is concluded with a summary and an
outlook in Section 7.

2 Notations and Calculus of Variations

First we review necessary conditions for general variational problems involv-
ing higher derivatives. Of special importance for us will be the natural bound-
ary conditions, since they will allow to prove some important properties of
image filtering methods later on.
Let Ω ⊂ R

n be an open set such that the boundary ∂Ω is piecewise smooth
and x = (x1, . . . , xn)T ∈ Ω. We start with a general variational functional

E (u) :=

∫

Ω

E(x, u,Du, . . . ,Dpu) dx (1)

which depends on a function u : Ω −→ R and its partial derivatives up
to the order p ∈ N. In the following, we will shortly write [x, u, p] :=
(x, u,Du, . . . ,Dpu) for the arguments of the integrand E. Let V := {x1, . . . , xn}
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be the set of variables and β = (β1, . . . , βp) ∈ V p a vector of p components
in this set. For a function u the partial derivative will be denoted by

Dβu := ∂βm
· · · · · ∂β1u .

The derivative order is then |β| := p. We explicitly do not use multiindices
here, since we have to take care of the order of the derivatives for the bound-
ary conditions. The revearsal of β will be denoted by β̃ := (βp, . . . , β1).
Having these notations at hand, we can formulate necessary conditions for a
minimiser of E :

Proposition 2.1 (Euler-Lagrange Equations)
A minimiser of the energy functional (1) necessarily satisfies the so-called
Euler-Lagrange equations

∑

|β|≤p

(−1)|β|Dβ̃EDβu([x, u, p]) = 0 . (2)

This proof for this result can be found in [18, 16], for example. If no other
conditions are specified in advance by the model, one can find a natural set
of boundary conditions accompanying the Euler-Lagrange equation [18, 16]:

Proposition 2.2 (Natural Boundary Conditions)
If no other restrictions are imposed at the boundary, the minimiser u natu-
rally satisfies the following property: For all k ∈ {1, . . . , p} and all γ ∈ V k−1

∑

k≤|β|≤p

(β1,...,βk−1)=γ

(−1)|β|−k
(

∂βk+1
. . . ∂β|β|

EDβu

)

νβk
= 0 (3)

on ∂Ω.

With these results we are able to consider variational methods with higher
derivative orders for images in n spatial dimensions. In the next section,
we will turn our attention to a very special class of representatives of these
methods which comprises many classical approaches.

3 Higher Order Regularisation and Diffusion

For higher order nonlinear regularisation we are searching for a minimiser of
the energy functional

E (u) =

∫

Ω

( m∑

i=1

(u − f)2 + α Ψ
( ∑

|β|=p

|Dβu|2
))

dx (4)
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Table 1: Possible choices for penalising functions Ψ.

Ψ(s2) shape source

s2

quadratic regu-
larisation,
Whittaker [53],
Tikhonov [44]

2λ2

(√

1 + s2

λ2 − 1

)
nonquadratic
regularisation,
Charbonnier et
al. [7]

log
(
cosh

(
s
λ

))
nonquadratic
regularisation,
Green [19]

|s| total variation,
Rudin et al. [36]

√
λ2 + s2 − λ

regularised total
variation,
Acar and Vogel
[1]

min(s2, λ2)
robust statistics,
Hampel et al. [21]

for α > 0. The regulariser depends here on the sum of the squared derivatives
of order p. This can be motivated by the fact that the smoothness term
vanishes if u is a polynomial of degree p − 1. Table 1 shows several possible
choices for the penaliser functions Ψ. More examples can be found in [7, 33],
for example. Special cases of this functional for p = 2 are considered by
Lysaker et al. [27], for example.
With Proposition 2.1 we obtain the following Euler-Lagrange equations:

u − f

α
= (−1)p+1

∑

|β|=p

Dβ̃
(

Ψ′
(∑

|γ|=p

|Dγu|2
)

Dβu
)

(5)

as necessary condition for this minimiser. The corresponding natural bound-
ary conditions are given by Proposition 2.2: For all k ∈ {1, . . . , p} and all
γ ∈ V k−1 we have

∑

|β|=p

(β1,...,βk−1)=γ

(−1)p−k
(
∂βk+1

. . . ∂βp
EDβu

)
νβk

= 0. (6)
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It is possible to use these Euler-Lagrange equations directly to determine
possible minimisers for the energy functional. Let us now turn our attention
to some properties of these minimisers. Preservation of the average grey
value is a basic feature of classical regularisation techniques. We will see
that there is even a more general property for higher regularisation orders:

Proposition 3.1 (Moment Preservation of Regularisation)
All moments up to the order p − 1 of the regularisation solution u do not
change with α > 0.

Proof: Choose a monomial m(z) := xl1
1 · · · · · xln

n of degree smaller than p,
i. e.

∑n
k=1 lk < p. Then we have Dβm = 0 for all |β| = p. We multiply

the Euler-Lagrange equation (5) with m and integrate over the domain Ω to
obtain

∫

Ω

m(z)u(z) dx =

∫

Ω

m(z)f(z) dx

+ α

∫

Ω

m(z)(−1)p+1
∑

|β|=p

Dβ̃
(

Ψ′
(∑

|γ|=p

|Dγu|2
)

Dβu
)

dx.

We can calculate the second integral on the right-hand side and use the
natural boundary conditions (6) to see that

∫

Ω

m(z)(−1)p+1
∑

|β|=p

Dβ̃
(

Ψ′
(∑

|γ|=p

|Dγu|2
)

Dβu
)

dx

= (−1)p+1
∑

|β|=p

(Dβm)
︸ ︷︷ ︸

=0

Ψ′
(∑

|γ|=p

|Dγu|2
)

Dβu dx

+(−1)p+1
∑

|β|=p

p
∑

k=1

(−1)p−k

∫

∂Ω

((
∂βk+1

. . . ∂βp
m
)
·

·
(
∂βk−1

. . . ∂β1Ψ
′ (. . . )Dβu

)
νβk

)
dx

= 0 .

We have abbreviated the last term by omitting the argument of Ψ′. Allto-
gether, this means that the moments up to order p − 1 remain constant. �

In the following, we will not directly use Euler-Lagrange equations for data
filtering, but we rather relate it to generalised diffusion equations, see [38].
One can understand the left-hand side of (5) as finite difference. Introducing
an artificial time variable t in our function u and setting u(·, 0) := f makes
it possible to see the left-hand side as discretisation of a time-derivative
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Table 2: Possible choices for the diffusivity function g.

g(s2) shape source flux Φ

1
linear diffusion,
Iijima [24], Witkin [54]

(

1 + s2

λ2

)− 1
2

related to the penaliser
by
Charbonnier et al. [8]

(s2 + λ2)
− 1

2

regularised total varia-
tion flow,
Feng and Prohl [15]

1
|s|

total variation flow,
Andreu et al. [2]

(

1 + s2

λ2

)−1 nonlinear diffusion,
Perona and Malik [35]

exp
(

− s2

2λ2

) nonlinear diffusion,
Perona and Malik [35]

1
s2

balanced forward-
backward diffusion,
Keeling and Stoll-
berger [26]

of u with step size α. The whole equation (5) is then an implicit time
discretisation of a nonlinear diffusion equation.
This motivates to use nonlinear higher order diffusion equations of the form

u(·, 0) = f

∂tu = (−1)p+1
∑

|β|=p

Dβ̃
(

g
(∑

|γ|=p

|Dγu|2
)

Dβu
)

(7)

with the boundary conditions given in (6) for data filtering. If we don’t want
to emphasise the variational formulation and rather tend to consider the
diffusion equation on its own, we will often write g = Ψ′ for the diffusivity
function. Possible choices for the diffusivity function g can be found in Table
2. Let us now consider some special cases for (7) which will be relevant for
us later on. In all of the following examples, we set the initial condition
u(·, 0) = f without explicitly stating it:
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Example 3.2 (Diffusion of Order 2p in 1-D)
In one spatial dimension we consider filtering on an interval (a, b) ⊂ R.
Nonlinear diffusion of order 2p then is gowerned by the equation

∂tu = (−1)p+1 ∂p
x

(

g
(
(∂p

xu)2) ∂p
xu
)

. (8)

The corresponding natural boundary conditions are in this case

∂k
x

(

g
(
(∂p

xu)2) ∂p
xu
)

(x) = 0 (9)

for k ∈ {0, . . . , p − 1} and x ∈ {a, b}. There are p constraints at each
boundary pixel as generalisation of the homogeneous Neumann boundary
conditions which are well-known from the case p = 1.

Example 3.3 (Classical Perona-Malik Diffusion)
In the case p = 1 and in two dimensions, we obtain the classical Perona-Malik
equation [35]:

∂tu = div
(

g(|∇u|2)∇u
)

(10)

with the homogeneous Neumann boundary conditions ∂νu = 0.

Example 3.4 (Fourth Order Diffusion in 2-D)
The corresponding filter for p = 2 and TV diffusivity has been considered by
Lysaker et al. [27]. Here we allow for a more general diffusivity function g,
and the corresponding PDE looks like

∂tu = − ∂xx

(

g uxx

)

− ∂yx

(

g uxy

)

(11)

− ∂xy

(

g uyx

)

− ∂yy

(

g uyy

)

.

We have omitted the argument ‖H(u)‖2
F of g for better readability. In this

case, the natural boundary conditions consist of three equations:

g uxxνx + guxyνy = 0 ,

g uyxνx + guyyνy = 0 ,

(∂x(g uxx) + ∂y(g uxy)) νx

+ (∂x(g uxy) + ∂y(g uyy)) νy = 0 on ∂Ω.

Remark 3.5 (Filtering Multi-Channel Images)
The framework shown so far can be easily transferred to multi-channel im-
ages. For variational approaches, one includes the sum of all squared deriva-
tives of the given order in the smoothness term (see Weickert and Schnörr
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[52] for first order regularisation). In the case of diffusion filtering, one has
a system of equations with one diffusion equation for each channel. The
equations are coupled via the joint diffusivity that depends on the sum of
the corresponding squared derivative of all channels (see Gerig et al. [17] for
second-order diffusion).

Remark 3.6 (Presmoothing and Well-Posedness)
For the classical Perona-Malik filter, Catté et al. [5] have shown that intro-
ducing a mollifier in the argument of the diffusivity makes it possible to prove
well-posedness. Similar methods have been applied by Greer and Bertozzi
[20] to show existence and regularity of solutions for the models by Tumblin,
Turk [47] and Wei [49]. Applied to our general model, the modified diffusion
equation reads as

∂tu = (−1)p+1
∑

|β|=p

Dβ̃
(

g
(∑

|γ|=p

|Dγuσ|2
)

Dβu
)

(12)

where uσ := Gσ ∗ u with an n-dimensional Gaussian kernel Gσ of standard
deviation σ.
Later on we will see from the numerical examples that discretisations of (7)
also work without such a regularisation. This indicates that discretisation
has a regularising effect itself, as it has been proven for the classical Perona-
Malik case by Weickert and Benhamouda [51]. Instead of presmoothing with
a Gaussian kernel, one could also use higher order linear diffusion for regu-
larisation [12].

After these remarks concerning well-posedness we consider some scale-space
properties of nonlinear diffusion. First we are interested in stability: We re-
member that classical diffusion filters satisfy a maximum-minimum principle.
One can also obtain stability in the L 2-sense as Lyapunov functional [50].
We see that for higher orders, only the latter property remains:

Proposition 3.7 (L 2-Stability)
If a classical solution u of higher order nonlinear diffusion (7) with a nonneg-
ative diffusivity function g exists which is continuously differentiable in the
time variable t and 2p times continuously differentiable in the space variable,
the L 2-norm of u(·, t) is monotonically decreasing with t ≥ 0.

Proof: We calculate the time derivative of the L 2-norm of the image u
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Figure 3: Stability of diffusion filtering and importance of boundary condi-
tions. Left: Original signal, 128 pixels. Middle: Steady state of fourth order
linear diffusion filtering with natural boundary conditions. Right: Same with
periodic boundary conditions.

using partial integration and the boundary conditions (6):

∂t

(
1

2

∫

Ω

|u|2 dx

)

=

∫

Ω

ui(∂tu)dx

= (−1)p+1
∑

|β|=p

∫

Ω

uiDβ̃
(

g
(∑

|γ|=p

|Dγu|2
)

Dβu
)

dx

= (−1)p+1
∑

|β|=p

(−1)p

∫

Ω

(Dβu)2 g
(∑

|γ|=p

|Dγu|2
)

dx

+(−1)p+1
∑

|β|=p

p
∑

k=1

(−1)p−k

∫

∂Ω

((
∂βk+1

. . . ∂βp
u
)
·

·
(
∂βk−1

. . . ∂β1g (. . . )Dβu
)
νβk

)
dx

= −
∑

|β|=p

∫

Ω

(Dβu)2

︸ ︷︷ ︸

≥0

· g
(∑

|γ|=p

|Dγu|2
)

︸ ︷︷ ︸

≥0

dx ≤ 0 .

We see that for this property, it is essential that g is larger or equal to zero.
This assumption is natural for most diffusivity functions, especially if they
can be motivated as derivatives of a penaliser Ψ. Since we assumed that the
solution is continuously differentiable in time, this shows that the L 2-norm
is monotonically decreasing. �

To illustrate this stability property, we show an example in Figure 3. It is vis-
ible that linear fourth order diffusion does not satisfy a maximum-minimum
principle and thus is not stable in the L ∞-sense. This example also gives an
additional motivation why the boundary conditions are so important for our
considerations: Using periodic boundary conditions changes the behaviour
of the process significantly.
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Besides the stability of the process, we are interested in characterisations
of the simplification behaviour. For Perona-Malik filtering, it is well-known
that the average grey value is left unchanged during the filtering process [50].
Filtering the step signal shown in Figure 3 with periodic boundary conditions
also has a constant signal as steady state. The filter with natural boundary
conditions in this case yields a linear approximation to the initial signal and
thus preserves more characteristic properties of the initial signal. The next
proposition makes this precise for the continuous setting:

Proposition 3.8 (Moment Preservation for Diffusion)
Under the assumptions of Proposition 3.7, all moments up to the order p− 1
of the solution u are constant in time t ≥ 0.

Proof: Choose a monomial m(z) := xl1
1 · · · · · xln

n such that its degree is
smaller than p, i. e.

∑n
k=1 lk < p. Then we have Dβm = 0 for all |β| = p. We

use this to calculate the time-derivative of the corresponding moment:

∂t

(∫

Ω

m(z)udx

)

=

∫

Ω

m(z)∂tudx

= (−1)p+1
∑

|β|=p

∫

Ω

m(z)Dβ̃
(

g
(∑

|γ|=p

|Dγu|2
)

Dβu
)

dx

= 0

as we have already calculated in the proof of Proposition 3.1. �

We note that for p = 1, this is the well-known average grey value preservation
of classical diffusion filters.
In the discrete setting, we are going to give an analogue to this statement
in Proposition 4.2. Before turning our attention to the discrete setting, we
are going to describe some aspects of nonlinear higher order filters that are
crucial for the quality of the results: The possibility of not only preserving,
but also enhancing features of the data such as edges.

4 Discrete Nonlinear Filtering

Let us now turn our attention to discretisations for the continuous models we
have seen so far. To this end, we consider the vectors ~f = (f1, . . . , fN)T and
~u = (u1, . . . , uN)T ∈ R

N as discretised versions of the images f and u. There
are R ∈ N matrices Dr ∈ R

M×N , r = 1, . . . , R which extract the relevant
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features for penalisation of our discrete image u. For discretising the filters
described so far, the matrices Dr approximate all partial derivatives of u. We
consider energy functions of the form

E(~u) :=
N∑

i=1

(ui − fi)
2 + α

M∑

i=1

Ψ
( R∑

r=1

((Dr~u)i)
2
)

. (13)

Note that at this stage we did not specify the arrangement of pixels, and
also the matrices Dr are just assumed to have real entries. We notice that
by doing so, the energy function (13) can handle an image domain with
several dimensions as well as multi-channel images. After showing the general
procedure, we will give some examples where all the details are specified
explicitly.
To determine a minimum of E, we are interested in critical points u with
∇E(~u) = 0. Calculating the gradient yields the necessary condition for a
minimiser

~u − ~f

α
= −

R∑

r=1

DT
r ΦD(~u) Dr~u (14)

where ΦD(~u) is defined as diagonal matrix

ΦD(~u) := diag

(

Ψ′
( R∑

r=1

((Dr~u)j)
2
)
)

j=1,...,M

. (15)

As in the previous section, we are going to write g(s) = Ψ′(s) in the following,
since Ψ′ plays the role of a diffusivity. Analogue to the continuous case, we
can again regard the left-hand side as forward difference approximating a first
derivative in an artificial time variable with a time step size t = α. Equation
(14) is then an implicit discretisation for the vector-valued nonlinear ordinary
differential equation

∂t~u = −
R∑

r=1

DT
r ΦD(~u) Dr~u . (16)

Let us choose a time step size τ > 0. We describe three common ways to
discretise (16) in time:
Explicit Euler Forward Discretisation:
The simplest scheme is given as

~u0 = f

~uk+1 = ~uk − τ

R∑

r=1

DT
r ΦD(~uk) Dr~u

k (17)
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where k ∈ N denotes the iteration index. It is called explicit since we can
calculate the variable at the new time step as matrix-vector multiplication
with the known data ~uk.
Semi-Implicit Discretisation:
In the semi-implicit scheme, we calculate the matrix with the help of the
known vector ~uk:

~uk+1 =

(

I + τ

R∑

r=1

DT
r ΦD(~uk) Dr

)−1

~uk . (18)

One has to solve a linear system of equations in order to obtain the next
iterand.
Implicit Discretisation:
Even if we have not used it for experiments, we also mention the fully implicit
discretisation for completeness:

~uk =

(

I + τ
R∑

r=1

DT
r ΦD(~uk+1) Dr

)−1

~uk+1 (19)

where also the matrix is determined from the new values ~uk+1. This scheme
requires in each iteration the solution of a nonlinear system of equations and
is thus computationally the most expensive one of the three schemes.

4.1 Properties of the Discrete Filters

In the following, we are going to investigate the basic properties of the discrete
filtering methods. For a matrix A ∈ R

M×N , let ‖A‖ denote the spectral norm

‖A‖ = max
{√

|λ| | λ eigenvalue of AT A
}

.

We are going to use the fact that the spectral norm is the corresponding
matrix norm to the ℓ2 vector norm (see [23, 43], for example). We will see
that in order to achieve ℓ2-stability (the discrete analogue of the L 2-stability
from Prop. 3.7) with an explicit scheme, we have to choose the time step
size τ relatively small while the semi-implicit scheme and the implicit scheme
allow arbitrary large time step sizes:

Proposition 4.1 (ℓ2-Stability Condition)
The explicit scheme (17) is stable in the ℓ2-norm if the time step size τ
satisfies the condition

τ ≤ 2

(

sup
s∈R

g(s)
R∑

r=1

‖Dr‖2

)−1

. (20)

13



The semi-implicit discretisation (18) and the implicit discretisation (19) are
stable in the ℓ2-norm for arbitrary time step sizes τ > 0.

Proof: From definition (15) and the property g(s) = Ψ′(s) ≥ 0 for all
s ∈ R we see that ΦD(~u) is positive semi-definite for arbitrary ~u ∈ R

N .
The symmetric multiplication with Dr does not change this property, and so
DT

r ΦD(~uk)Dr is positive semi-definite and symmetric for all r. Since the set
of all positive semi-definite matrices is closed under addition, the whole sum
∑R

r=1 DT
r ΦD(~uk) Dr has eigenvalues in the interval

[

0, sup
s∈R

g(s)
R∑

r=1

‖Dr‖2

]

.

The complete matrix of the explicit scheme

I − τ

R∑

r=1

DT
r ΦD(~uk) Dr

then has eigenvalues in the interval

[

1 − τ sup
s∈R

g(s)
R∑

r=1

‖Dr‖2, 1

]

.

If the condition

1 − τ sup
s∈R

g(s)
R∑

r=1

‖Dr‖2 ≥ −1

⇐⇒ τ ≤ 2

(

sup
s∈R

g(s)
R∑

r=1

‖Dr‖2

)−1

is satisfied, the scheme is ℓ2-stable.
There is no such restriction for the corresponding semi-implicit and implicit
schemes: The matrix

I + τ

R∑

r=1

DT
r ΦD(~u) Dr

has eigenvalues larger or equal to one for all vectors ~u ∈ R
N . The eigenvalues

of its inverse thus lie in the interval (0, 1], and the ℓ2-norm of the image ~uk

can not increase. �

Besides these different restrictions due to numerical stability, the following
property is common to all three discretisation methods: We now give the
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discrete analogon to Proposition 3.8 concerning moment preservation. In the
discrete case, the statement is formulated slightly more general, since we have
used general matrices in our discrete regularisation and diffusion approaches.

Proposition 4.2 (Invariant Subspace)
The discrete necessary condition (14) for a minimiser, the corresponding
semi-discrete equation (16) as well as the fully discrete schemes (17), (18)

and (19) leave the subspace
R⋂

r=1

ker(Dr) of R
N invariant.

Proof: It is well-known that ran AT = (ker A)⊥ for all real matrices A ∈
R

M×N . For our matrices Dr, it follows that

ran
R∑

r=1

DT
r ΦD(~u)Dr ⊆

R⋃

r=1

ran DT
r =

R⋃

r=1

(ker Dr)
⊥

⊆
(

R⋂

r=1

ker Dr

)⊥

.

For the above mentioned schemes and equations this means that the changes
can only affect the subspace orthogonal to the intersection of all kernels. �

When our matrices implement appropriate finite difference approximations of
derivatives, the point evaluations of polynomials are in the kernels of all Dr.
In this case, this proposition ensures the preservation of discrete moments up
to a certain order. In that sense, it is a discrete analogue to the Propositions
3.1 and 3.8 and a generalisation of the discrete preservation of the average
grey value in [50]. Again the boundary conditions in the discrete setting
have a strong influence with respect to the answer of the question whether
the polynomials are in the kernel or not, see Figure 3 for an example and
[10] for details in the one-dimensional case.
In the following, we give some examples how the matrices Dr can be chosen
to implement filtering methods in practice, for example with (17) or (18).
We have restricted ourselves here to finite difference derivative approxima-
tions since they are acting locally. An alternative would have been to use
spectral methods ([45, 10], for example) that obtain a global estimate for
the derivative. Nevertheless, they are numerically more expensive and not
well-suited to the case of signals with discontinuities. Since our goal is edge
preservation and enhancement, we use finite differences here.

Example 4.3 (Diffusion of Order 2p in 1-D)
We consider discretisations for the filter class introduced in Example 3.2:
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Natural boundary conditions:
For natural boundary conditions, the strategy is to approximate the deriva-
tives in the smoothness term only at those points of the pixel grid where
the whole approximation stencil still fits in. This does not impose any condi-
tions at the boundary, and in this sense the necessary conditions as described
above then lead to natural boundary conditions. Let h > 0 denote the spatial
step size. In the one-dimensional case, the multiplication of the matrix

DN
1,N :=

1

h








−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1








∈ R
(N−1)×N (21)

with a vector yields an approximation of the first derivative. Here the super-
script N stands for natural boundary conditions while the subscripts denote
the derivative order and the number of pixels. For higher derivatives, we can
simply use the corresponding products

DN
p,N = DN

1,N−p+1 · · · · · DN
1,N . (22)

We note that DN
p,N ∈ R

(N−p)×N is not a quadratic matrix. The kernel of
DN

p,N is given by point evaluations of polynomials of degree p−1. An explicit
scheme for one-dimensional nonlinear diffusion of order 2p reads as

~uk+1 = ~uk − τ
(
DN

p,N

)T
ΦDN

p,N
(~uk) DN

p,N~uk (23)

for k ∈ N and u0 = f . It realises a discretisation with natural boundary
conditions; details can be found in [10]. Since ‖DN

p,N‖ ≤ 2p/hp, we see with
Proposition 4.1 that the scheme is ℓ2-stable for time step sizes

τ ≤ h2p

sups∈R
g(s) 22p−1

.

As a typical example, let us assume a spatial step size h = 1 and choose the
Perona-Malik diffusivity g with |g| ≤ 1. For an explicit discretisation, one
has to choose τ ≤ 1/2 for order p = 1, τ ≤ 1/8 for p = 2, and τ ≤ 1/32 for
p = 3 in this case.
Periodic boundary conditions:
Since it will be useful in the next chapter, we also write down the discreti-
sation for diffusion with periodic boundary conditions. We use the circulant
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matrix

DP
1,N :=

1

h











−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0

0
. . . 0 −1 1

1 0 . . . 0 −1











∈ R
N×N (24)

to approximate the first derivative and its p-th power

DP
p,N :=

(
DP

1,N

)p
(25)

for higher derivative orders. Here, P denotes periodic boundary conditions.
We notice that for larger values of p the higher derivative approximations
are obtained at shifted positions by half of the derivative order. This does
not influence the correctness of the result since for the outer derivative in the
diffusion equation, we use the transposed matrix which effects a shift in the
other direction by exactly the same amount.
The limits for the time step size are the same as for natural boundary condi-
tions. We would like to mention that independent of the order p, the matrix
DP

p,N always has the kernel span{(1, . . . 1)T} of constant signals.

The effect of these different boundary conditions and the resulting different
kernels of the matrices has already become visible with the filtering example
in Figure 3.
The discretisation of filtering equations in 2-D follows the same principle
while it is slightly more technical. A possible discretisation with both an
explicit and semi-implicit scheme can be found in appendix A.

4.2 Total Variation Regularisation and Splines

With the results shown above we have a formal analysis for discrete regu-
larisation and diffusion filters. The property of leaving higher moments un-
changed already indicates that the filtering results are closely connected to
polynomials. In the special case of discrete regularisation with the ℓ1-norm as
penalising function, one can even formalise these connections [41, 42, 40]: It
can be shown that the results are discrete splines as described by Mangasar-
ian and Schumaker [30, 31]. In that sense, ℓ1-regularisation yields discrete
spline approximations of the given data where the number and position of
spline knots are determined adaptively by the given data and the regularisa-
tion weight.
One can see that the knots can be found as contact points of a taut string
with fixed end points within a tube of width α around the discrete p-th
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integrand of the initial data. For the minimisation procedure, one can use
the very efficient taut-string algorithm as introduced by Mammen and van
de Geer [29]. Further information about these so-called tube methods can
be found in [9, 22].

There is no proof for similar properties in the case of the Perona-Malik dif-
fusivity: This case is more complicated to describe since the corresponding
penaliser is not convex and has an additional contrast parameter. However,
the numerical experiments in the next section indicate that with a suitable
choice of the scale parameter, one can also obtain results that are at least
closely related to piecewise polynomial approximations.

5 Local Feature Enhancement

Though classical nonlinear diffusion simplifies signals or images, it may also
enhance important local features such as edges. This section discusses higher
order diffusion from this point of view. We are going to work only with
equations in the one-dimensional case in this subsection. As it can be seen
with the numerical experiments later on, this does not mean that the results
are restricted to 1-D. Even in higher dimensions, an image locally can be
decomposed in 1-D feature directions: Let an edge in a 2-D image serve as
example. Locally one can decompose the image in the two directions along
the edge where the grey value does not change, and across the edge where the
change it maximal. This clearly works with other low-dimensional features
such as ridges as well. In that sense one can use the reasoning given in this
subsection to explain the behaviour of filters in higher dimensions, too.

5.1 Second Order Filtering and Edge Enhancement

We have already shortly sketched this case in Section 1. To determine the
possibility of edge enhancement for special diffusivities g one usually consid-
ers the flux function Φ(s) := g(s2)s. One can rewrite the one-dimensional
second-order nonlinear diffusion equation (8) for p = 1 yielding

∂tu = ∂x

(

Φ(∂xu)
)

= Φ′ (∂xu) ∂2
xu

=
(
2g′
(
(∂xu)2) (∂xu)2 + g

(
(∂xu)2)) ∂2

xu .

In regions where Φ′(∂xu) > 0 this equation behaves like a forward diffusion
equation while in regions with Φ′(∂xu) < 0 there is backward diffusion possi-
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ble. In these regions with backward diffusion, an edge enhancing behaviour
is plausible and can also be observed in practice [35].

5.2 Fourth Order Filtering

Now we take a closer look at the fourth order diffusion equation, i. e. we set
p = 2 in (8) yielding

∂tu = −∂2
x

(

g
((

∂2
xu
)2
)

∂2
xu
)

.

We expand the right-hand side of this equation and rewrite it as

∂tu =
(

2
(
∂3

xu
)2

Φ1

(
∂2

xu
))

∂2
xu − Φ2

(
∂2

xu
)
∂4

xu (26)

using
Φ1(s) := −2g′′(s2)s2 + 3g′(s2)

and
Φ2(s) := 2g′(s2)s2 + g(s2) .

Analogue to the second order case our argumentation is that (26) locally
behaves similar to the linear equation

∂tu = a ∂2
xu − b ∂4

xu

if the signs of the factors a and b are equal to the signs of Φ1 and Φ2. For
Φ1(∂

2
xu) > 0 we expect some second order forward diffusion influence on

the solution, whereas Φ1(∂
2
xu) < 0 leads to second order backward diffusion.

Similarly, Φ2(∂
2
xu) > 0 ensures fourth order forward diffusion, and Φ2(∂

2
xu) <

0 fourth order backward diffusion.
It should be mentioned that Φ2 always coincides with the function Φ in the
second order case presented in Subsection 5.1. Also for orders higher than
four, the sign of this function determines the diffusion property (forward or
backward) of the highest order term which implies a certain similarity in the
behaviour of several filtering orders. The main difference is the argument: Φ
depends on the p-th derivative for 2p-th order filtering.

5.3 Application to Commonly Used Diffusivities

After showing the general approach for fourth order diffusion in the last
section we now apply it to several diffusivities commonly used in practice to
describe their characteristic behaviour. In the following the diffusivities are
ordered according to their forward-backward diffusion properties:
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• Forward Diffusion:
The diffusivity g(s2) = (1 + s2/λ2)

− 1
2 can be related to the regularisa-

tion approach by Charbonnier et al. [7]. It is known to perform forward
diffusion in the second order case. By computing

Φ1(s) = 3
2λ2

(

1 + s2

λ2

)− 5
2

> 0

and

Φ2(s) =

(

1 +
s2

λ2

)− 3
2

> 0

we see that also fourth order Charbonnier diffusion always performs
forward diffusion. With the observation

(
λ2 + s2

)− 1
2 = λ

(

1 +
s2

λ2

)− 1
2

it is clear that regularised TV flow [15] using g(s2) = (λ2 + s2)−
1
2

behaves in the same way.

• Limiting Case between Forward and Backward Diffusion:
TV flow [2] comes from the diffusivity g(s2) = 1

|s|
. At all points where

the argument s is nonzero we have Φ1(s) = Φ2(s) = 0 which legitimates
to consider TV flow as the limiting case between forward and backward
diffusion.

• Forward and Backward Diffusion:
The diffusivity function g(s2) = (1 + s2/λ2)

−1
proposed by Perona and

Malik [35] leads to the conditions

Φ1(s) =
1

λ4

(

1 +
s2

λ2

)−3
(
3λ2 − s2

)
> 0

⇐⇒ |s| <
√

3λ

and

Φ2(s) =

(

1 +
s2

λ2

)−2(

1 − s2

λ2

)

> 0

⇐⇒ |s| < λ .

This really displays the adaptive nature of this diffusivity: Depend-
ing on the parameter λ > 0, the absolute value of the curvature |∂2

xu|
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leads to forward or backward diffusion. New to the fourth order case
is the presence of two conditions and the possibility that only one of
them holds, namely in regions where λ < |∂2

xu| <
√

3λ. This is qualita-
tively a novelty compared to the classical case of second-order diffusion.
Similar conditions hold for the diffusivity g(s2) = exp (−s2/(2λ2)) also
proposed by Perona and Malik [35].

• Backward Diffusion:
The balanced forward-backward diffusivity [26] defined by g(s2) = 1/s2

leads to Φ1(s
2) = −s−4 < 0 and Φ2(s

2) = −s−2 < 0 which implies that
it always performs backward diffusion. As for total variation diffusivity
we also suppose that the argument is nonzero here.

We conclude that even in the fourth order case there are diffusivities covering
the whole spectrum from pure forward to pure backward diffusion. Of special
interest are the two diffusivities by Perona and Malik since they allow for
adaptive forward and backward diffusion depending on the local absolute
value of the second derivative.

5.4 Generalisation to Higher Derivative Orders

After the generalisation of this considerations from order two to four, the
natural question is if this also works for orders higher than four. Performing
the same calculations as above for the sixth order equation

∂tu = ∂3
x

(
g
(
(∂3

xu)2
)
∂3

xu
)

(27)

one obtains the equivalent equation

∂tu =
(
2g(1)(∂3

xu)2 + g(0)
)
∂6

xu (28)

+ 2
(
4g(3)(∂3

xu)4(∂4
xu)2 + 12g(2)(∂3

xu)2(∂4
xu)2

+ 3g(1)(∂4
xu)2 + 6g(2)(∂3

xu)3(∂5
xu)

+ 9g(1)(∂3
xu)(∂5

xu)
)
∂4

xu .

Since all derivatives of the diffusivity depend on the same argument (∂3
xu)2

this has been omitted here, and we write g(j) := g(j)((∂3
xu)2) for better read-

ability. The problem now arises from the terms in the last line, since the
derivatives ∂3

xu and ∂5
xu appear here with odd exponents: Thus these sum-

mands might have arbitrary sign. This makes it impossible to distinguish
several cases as it was feasible for second and fourth order equations. Even
though we have explicitly shown here only the case of the sixth order equa-
tion for illustration, we have checked the equations up to a derivative order
of twelve: They all comprise terms where the sign cannot be determined.
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This does not mean that there the numerical behaviour of higher order filters
would be not plausible. We have already mentioned above that the nonlinear
factor in front of the highest derivative order is always the same as in the
second order case. This implies that it is possible for all p ∈ N to write

∂tu = (−1)p+1∂p
x

(

g
(
(∂p

pu)2
)
∂p

xu
)

(29)

= (−1)m+1Φ′
(
(∂2p

x u)2
)
∂2p

x u + R(u, Ψ, p) (30)

with Φ(s2) = 2g′(s2)s2 + g(s2). The term R(u, Ψ, p) involves only derivatives
of u with orders smaller than the maximal order 2p. Even if it is not possible
to transfer the complete reasoning to the higher order equation, one can see
that at least the factor in front of the largest diffusivity order term behaves
in the same way as the one for the second order.

6 Numerical Experiments

In this section we show results of higher order nonlinear diffusion filtering in
one and two dimensions with different orders.
First we start with several experiments concerning the feature enhancement
of higher order filters that has been investigated theoretically in Section 5.
Then we show some further examples where higher orders can be applied
successfully in order to obtain higher image quality in denoising applications.

6.1 Feature Enhancement and Data Simplification

In our first experiment, we consider a one-dimensional Gaussian-shaped sig-
nal and filtering results for the orders two, four and six as displayed in Figure
4. We use the equations shown in Example 3.2 with natural boundary con-
ditions here. The finite difference discretisation of the corresponding deriva-
tives and an explicit scheme has been given in Example 4.3. For 2p-th order
filtering with g(s2) = (1 + s2/λ2)

−1
the parameter λ is chosen such that there

are regions with |∂p
xu| >

√
3λ. We have seen in Subsection 5.3 that this is

expected to yield backward diffusion for the orders two and four. While
second order filtering yields enhancement of edges, the fourth order filter-
ing result tends to be piecewise linear with enhanced curvature at corner
points. This observation for fourth order filtering is further confirmed by
the almost piecewise constant derivative approximation of the filtering result
also shown in Figure 4. The sixth order filter behaves analogously yielding
a piecewise quadratic signal which can also be seen by its piecewise constant
approximation of the second derivative.
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Figure 4: Perona-Malik filtering of a Gaussian kernel with different filtering
orders. Top row: Filtering results for second, fourth and sixth order (p =
1, 2, 3). Bottom left: First derivative of second order filtering result. Bottom
middle: First derivative of fourth order filtering result. Bottom right: Second
derivative of sixth order filtering result.

In conclusion, this experiment corroborates the belief that higher order non-
linear diffusion with order 2p approximates the given signal for an appro-
priate choice of the parameter λ piecewise with polynomials of degree p − 1
on disjoint intervals. Experimentally high values of the first or second order
derivative of the initial signal determine the location of the interval bound-
aries where the filtered signal is p − 2 times continuously differentiable.
To demonstrate that this behaviour can be useful in practical applications,
we have taken stock exchange data as real-world measurements in our sec-
ond experiment. The results of simplifying this highly oscillatory data with
higher order diffusion filtering is displayed in Figure 5. We have used nat-
ural boundary conditions and a semi-implicit finite difference discretisation
(18) here. The linear systems of equations in each step have been solved
with successive overrelaxation in this case. The large stopping times come
from the fact that we use a very small value for the parameter λ in order
to obtain strong feature enhancement and backward diffusion. We see that
the higher order filters are capable to yield an almost piecewise polynomial
approximation. In this sense, they are more adaptive to the data and also
recover information about the derivatives of the initial signals.
Our third experiment shows that a similar adaptive behaviour is also pos-
sible in two dimensions. The Figures 6 and 7 show some plots where an
image is seen as surface in the three-dimensional space, and the grey val-
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Figure 5: Simplification of historic stock exchange data with higher order
diffusion filtering. Top left: Original signal showing the development of the
Dow Jones index in the years 1985 to 1988 with 500 sampling points. Top
right: Second order filtering, g(ss) := (1 + s2/λ2)−1, λ = 0.1, t = 106.
Bottom left: Fourth order filtering, same parameters. Bottom right: Sixth
order filtering, same parameters.

24



 40

 80

 120

 160

 200

 0  20  40  60  80  100  120  0
 20

 40
 60

 80
 100

 120

 0
 50

 100
 150
 200
 250

 80

 120

 160

 0  20  40  60  80  100  120  0
 20

 40
 60

 80
 100

 120

 0
 50

 100
 150
 200
 250

 0

 2

 4

 6

 0  20  40  60  80  100  120  0
 20

 40
 60

 80
 100

 120

 0
 10
 20
 30
 40
 50

 0

 40

 0  20  40  60  80  100  120  0
 20

 40
 60

 80
 100

 120

 0
 10
 20
 30
 40
 50

Figure 6: Second order Perona-Malik filtering and edge enhancement. Top
left: Original image, 128×128 pixels. Top right: Second order Perona-Malik
filtering. Bottom: Corresponding gradient norms.

ues determine the z component. In Figure 6 we see the original image and
the result for edge-enhancing Perona-Malik filtering. To better visualise the
edge-enhancement, the norm of the gradient is displayed for both the original
and filtered image.
Similar results can be seen for fourth order filtering, too: Figure 7 displays
the same original image and a filtered version with fourth order Perona-
Malik filtering. Here the relevant feature is not the gradient norm, but the
Frobenius norm of the Hessian. We see that this norm becomes zero almost
everywhere. There are only some lines in the image where the Hessian norm
is even increased. At these lines the curvature is enhanced strongly.

6.2 Denoising Experiments

Let us now take a look at the results of some denoising experiments. For the
first experiment, we use the test image from Figure 1. For better visualisa-
tion, we only display a section of size 128 × 128 pixels, but all calculations
have been performed with the entire image. We compare the results for sec-
ond and fourth order nonlinear diffusion to see if higher order filters are in
fact helpful to avoid staircasing. We have used semi-implicit schemes for
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Figure 7: Fourth order Perona-Malik filtering and piecewise linearity. Top
left: Original image, 128× 128 pixels. Top right: Fourth order Perona-Malik
filtering. Bottom: Corresponding Frobenius norms of the Hessian.

all filters. Figure 8 shows the corresponding results for the regularised total
variation diffusivity. As regularisation parameter we have used λ = 0.01, and
experiments with smaller values have shown that the results show no visible
or measurable changes. The results have been optimised in order to minimise
the ℓ1- and ℓ2-error. The resulting error norms and parameters are displayed
in Table 3. The second-order filtering results show staircasing artifacts. In
the fourth-order case, minimising the ℓ1-error leads to unsharp edges, while
the smooth grey value transitions are preserved well. With the gradient norm
approximations, the staircasing for the second order filtering is clearly visi-
ble, while the fourth order filter reconstructs the linear grey value transition
better. Using the Perona-Malik diffusivity, we obtain the results shown in
Figure 8. In general, we see that the edges are much better preserved with
this diffusivity. This is also reflected by smaller error measures. It is interest-
ing to see that for the Perona-Malik filter of second order, comparably large
values for λ are preferred: This indicates that the staircasing is so strong
for smaller values that it increases the error significantly. With the larger
values of λ we hardly see any staircasing here even for the second order filter.
Nevertheless, the linear grey value transitions are still better recovered with
the fourth order method.
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method Average ℓ1-error per pixel Mean squared error
error λ t error λ t

original image 15.990 – – 401.883 – –
reg. TV 2 2.135 0.01 15.75 13.424 0.01 20.75
reg. TV 4 2.208 0.01 43.00 26.969 0.01 16.00

PM 2 1.762 7.76 12.50 8.567 7.34 12.50
PM 4 1.159 0.20 9274.00 7.110 0.20 10483.00

Table 3: Error measures for artificial denoising example with regularised
total variation (reg. TV) and Perona-Malik (PM) diffusivities with orders
two and four.

Figure 8: Denoising results with an artificial test image (section with
128×128 pixels), parameters optimised for minimal ℓ1-error. Top row: Regu-
larised total variation diffusivity g(s2) = (s2 +λ2)−1/2 with λ = 0.01. Bottom
row: Perona-Malik diffusivity g(s2) = (1 + s2/λ2)−1. First column: Second-
order diffusion result. Second column: Corresponding approximation of gra-
dient norm. Third column: Fourth-order diffusion result. Fourth column:
Corresponding approximation of the gradient norm.
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Figure 9: Denoising of for real-world data with Perona-Malik diffusivity
g(s2) = (1 + s2/λ2)−1. Top left: Original image, 256 × 256 pixels. Bot-
tom left: With additive Gaussian noise, standard deviation σ = 10. Top
centre and right: Second order nonlinear diffusion. Bottom centre and right:
Fourth order nonlinear diffusion. Middle column: Results with optimal ℓ1-
error. Right column: Results with optimal ℓ2-error.

The second denoising experiment is dealing with the real-world test image
shown in Figure 9. The optimal results in terms of the ℓ1-error and the mean
squared error for second and fourth order Perona-Malik diffusion can also
be found there. Again we only display sections of size 128 × 128 pixels for
better visibility of the differences. For this real-world image, we see that the
visible differences are mostly concentrated on the edges: With fourth order
diffusion, the edges contain less noise and seem a bit smoother and more
natural. This is also reflected by smaller error norms, as it can be seen in
Table 4.

7 Conclusions and Outlook

We have developed a theoretical framework for generalised regularisation and
nonlinear diffusion filtering with higher derivative orders. This framework
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method Average ℓ1-error per pixel Mean squared error (MSE)
error λ t error λ t

original image 7.995 – – 99.689 – –
PM 2 3.020 3.90 8.00 19.940 3.90 8.25
PM 4 2.986 1.36 47.00 18.899 1.79 28.50

Table 4: Error measures for real-world denoising example with Perona-Malik
(PM) diffusivities and diffusion orders two and four.

is extending the classical variational methods and Perona-Malik filtering in
several ways: For example, we have shown that higher order filters preserve
higher moments both in the continuous and the discrete setting. This gen-
eralises the average grey value preservation of classical filters. The higher
order filters do no longer satisfy a maximum-minimum principle. Never-
theless, they are stable with respect to the continuous and discrete 2-norms.
Numerical experiments show that it is possible with this filtering technique to
obtain an adaptive piecewise polynomial approximation of given data. Fur-
thermore, it can enhance the denoising quality for synthetic and real-world
data.
An interesting question of ongoing and future research is whether is is pos-
sible to transfer even more properties of low-order filters to the higher order
case, like Lyapunov functionals, for example. This is not only interesting for
diffusion filters, but also for the corresponding variational methods. In this
paper, we have restricted our attention to diffusion filters where the outer
and inner derivative order are the same and therefore excluded filters like
the Tumblin and Turk model [47, 49, 20]. Since they have recently shown
to be connected to wavelet methods [13], it would be interesting to further
investigate the properties of these more general models.

Acknowledgements. We gratefully acknowledge partly funding by the
Deutsche Forschungsgemeinschaft (DFG), project WE 2602/2-3.

A Discrete Fourth-Order Filtering in 2-D

An approach how to discretise the fourth order PDE in 2-D shown in Ex-
ample 3.4 has been given by Lysaker et al. [27, 28]. They have used small
one-sided stencils with only four pixels for the approximation of the mixed
derivatives. We use another way here by using symmetric stencils since it
has shown visually good results in practice. In 2-D, we do not write down
the discretisations in matrix form, but in stencil notation. For the second-
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order derivatives with respect to one variable we use the standard second
differences with spatial step sizes hx, hy > 0 in x- and y-direction:

uxx ≈ 1

h2
x

1 −2 1 · ~u , uyy ≈ 1

h2
y

1
−2
1

· ~u .

It is well-known that the corresponding matrices Dxx and Dyy satisfy the
property ‖Dxx‖ ≤ 2

h2
x

and ‖Dyy‖ ≤ 2
h2

y
, respectively [32]. For the mixed dif-

ferences, there are several possibilities of discretisation. We use the following
stencils:

uxy ≈ 1

2hxhy

0 −1 1
−1 2 −1
1 −1 0

· ~u

and

uyx ≈ 1

2hxhy

−1 1 0
1 −2 1
0 1 −1

· ~u .

At the example of the first stencil for uxy we show how to obtain limits for
the norm of the matrix with Gershgorin’s theorem (see [23], for example):
Let us denote the matrix corresponding to the approximation of uxy with
Dxy. Applying the stencil twice gives

1

4h2
xh

2
y

1 −2 1
2 −6 6 −2

1 −6 10 −6 1
−2 6 −6 2
1 −2 1

· ~u .

In this stencil notation, we see the entries of one row of the corresponding
matrix DT

xyDxy. The sum of all absolute values of these entries without
the diagonal entry is 54. Gershgorin’s theorem shows that the corresponding

eigenvalues are in the interval
[

− 54
4h2

xh2
y
, 64

4h2
xh2

y

]

. This means the spectral norm

of Dxy is less than or equal to 4
hxhy

.

Using these discretisations, we obtain the stability limit step size

τ ≤
(

sup
s∈R

g(s)

(
2

h2
x

+
2

h2
y

+ 2 · 16

hxhy

))−1

(31)

for the time step size of the explicit scheme. For the case hx = hy = 1, this
simplifies to

τ ≤
(

36 · sup
s∈R

g(s)

)−1

. (32)
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This means that we have to choose the time step size τ ≤ 1
36

if we want to
use the Perona-Malik diffusivity. For regularised total variation with typical
values of λ = 0.01, one has the even smaller limit τ ≤ λ

3600
.

For practical purposes, this limitation for the maximal time step size is severe,
and we show how to derive semi-implicit discretisations to overcome this
drawback. In Table 5 we display the corresponding stencil for fourth order
nonlinear diffusion filtering.
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In the stencil, gij approximates g(‖H(u)‖2
F ) where the partial derivatives in

the Hessian are approximated as described above. To implement natural
boundary conditions, we have to set gij = 0 for all (i, j) at the boundary of
the discrete grid Ωh, since there we do not have enough data to approximate
‖H(u)‖F . This principle has already been described in the 1-D setting. If A
denotes the matrix corresponding to the stencil in Table 5, we have to solve
the linear system of equations

(I + τA)~uk+1 = ~uk . (33)

As solver we use successive over-relaxation (SOR). We do not give a full
description of this method here, since it can be found in many textbooks
on numerical methods, for example [56]. In the proof of Proposition 4.1, we
have seen that I +τA is positive definite. This guarantees the convergence of
the SOR method with the theorem of Ostrowski and Reich (see [43, p. 631],
for example). In practice, time step sizes τ in the order from 1 to 5 give
visually good results. SOR introduces two further numerical parameters: the
number of iterations and the relaxation factor ω. Usually we have worked
with a relaxation factor ω = 1.5 and with 25 to 50 iterations. In practice
this choice of parameters was sufficient for small residues and visually good
results.
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