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Abstract

Indoor positioning systems that make use of
received signal strength based location fingerprints
and existing wireless local area network infrastructure
have recently been the focus for supporting location-
based services in indoor and campus areas. A 
knowledge and understanding of the properties of the
location fingerprint can assist in improving design of
algorithms and deployment of position location
systems. However, most existing research work
ignores the radio signal properties. This paper
investigates the properties of the received signal
strength reported by IEEE 802.11b wireless network
interface cards. Analyses of the data are performed to
understand the underlying features of location
fingerprints. The performance of an indoor positioning
system in terms of its precision is compared using
measured data and a Gaussian model to see how
closely a Gaussian model may fit the measured data.

Keywords: indoor, measurement, modeling,
positioning system, wireless LANs

1. Introduction 

Indoor positioning systems that use location
fingerprints and existing wireless local area network 
(WLAN) infrastructure have been demonstrated for 
indoor areas [1] where the global positioning system
(GPS) does not work well [2]. The fingerprinting
technique is simple to deploy compared to techniques 
using angle of arrival (AOA) and time difference of
arrival (TDOA). Instead of depending on accurate
estimates of angle or distance to determine the 
location, location fingerprinting associates location-
dependent characteristics such as the received signal
strength (RSS) with a location and uses these
characteristics to infer the location. In this case, there
is no need for specialized hardware at the mobile
station (MS) besides the wireless network interface

card (NIC) and the existing WLAN infrastructure can
be reused easily.

Before a positioning system can estimate the 
location, a location fingerprint database or a radio
map [3] must be constructed. Each entry in the
database is a mapping between a position and a 
location fingerprint. The location fingerprint can be an
average value as in the RADAR system [1] or 
probabilistic [3]. In the average approach that we 
consider in this paper, the location fingerprint is a
vector R of the average RSS values from multiple
access points (APs) at a particular location L. A 
typical vector R = (r1, r2,…, rN)  consists of N RSS 
values from N APs. The radio map contains all such
RSS vectors for a grid of locations in the indoor area. 
For positioning, a MS obtains a sample RSS vector P
= ( 1, 2,…, N). The Euclidean signal distance 
between the P and R for each R in the database is 
computed. The location is then estimated to be that L
for which the Euclidean distance is the smallest. Note
that the vector P is random. An error is made when the 
smallest Euclidean distance occurs for a location L
that is not the one at which the sample P was
collected. Errors occur because the measured RSS
vector is a sample of a random vector while only the 
average RSS vector is stored in the radio map.

Understanding the statistical properties of the
location fingerprint (RSS vector) is important for the
design of positioning systems for several reasons. It
can provide insights into how many access points are
needed to uniquely identify a location [13] with a 
given accuracy and precision, whether preprocessing
of the RSS measurements can improve the accuracy
and so on.  Existing literature on indoor positioning
systems focuses mainly on the accuracy performance
and improvement of the location estimation algorithm
and ignores the study of the RSS random vector.
Knowledge of the RSS properties can in fact enable 
the development of better algorithms to classify a 
measured RSS vector P as belonging to a particular
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location L. Although a variety of statistical radio
propagation models exist, they were developed with
signal coverage, communications capability and data
rate in mind. Moreover, the relationship between RSS
values from multiple APs is not understood very well.
The distribution of RSS values, their standard
deviation, their temporal variation, and the
(in)dependence of RSSs from multiple access points
(APs) are important for understanding and modeling
the performance of fingerprint based indoor
positioning systems. For instance, the distribution of
the RSS is said to be normally distributed in dBm
according to the study in [5]. However, our 
preliminary study and the study in [6] showed
otherwise.

This article presents data analyses of the RSS in 
an indoor environment with positioning in mind.
Section 2 describes the measurement setup. Section 3
explores the effect of user’s body, the effect of user’s
orientation, the stationarity and time-dependence, and
the distribution of the RSS. The independence of the
RSS from multiple APs is also analyzed in Section 3.
An approximate model for the RSS is applied to the
study of the precision performance of positioning
systems in Section 4 to evaluate the suitability of a 
Gaussian approximation. We conclude the paper in
Section 5. 

2. Measurement setup 

A standard laptop computer equipped with an
Orinoco WLAN card and client manager software1

was used to collect samples of RSS from APs inside
the School of Information Sciences (IS) building at the
University of Pittsburgh. The WLAN card is plugged
into the PCMCIA slot on the right side of the laptop.
The building has 8 floors and 10 APs installed
opportunistically. The dimension of each floor is
approximately 76 ft  120 ft (23 m  37 m). All APs 
are from Lucent’s WAVELAN and are equipped with
Orinoco WLAN cards. The radio frequency channels
of IEEE 802.11b are in the 2.4 GHz band which is
shared by other equipment in the industrial, scientific,
and medical (ISM) band such as Bluetooth. The
number of non-overlapping channels for 802.11b is
three [7]. We observe that the RSS value reported by 
the WLAN card is an average value over a sampling
period and in integral steps of 1 dBm. The received
signal sensitivity of the WLAN card also limits the
range of the RSS to be between -93 dBm and 0 dBm
[8]. Nevertheless, the highest typical value of the RSS
is approximately -30 dBm at one meter from any AP. 

1 The client manager software is a site survey tool which provides
the link quality and AP monitoring capabilities.

2.1. Experimental design 

The measurement in each of the studies in Section 
3.2 is done by sampling the RSS data every one
second. The vector of RSS data at each location forms
the location fingerprint with at most three RSS 
elements in the vector. Four locations of measurement
are chosen on the fourth floor of the IS building as
shown in Figure 1 denoted as L1, L2, L3, and L4. The
user’s orientation corresponds to the arrows at each 
location in this figure. The locations of APs on this
floor are labeled as SIS401, SIS410, and SIS418. The
radio channels used for each AP are channel 11, 6, and
1, respectively. There is one more AP on the fifth floor
labeled as SIS501 with channel number 6, but there is
no AP on the third floor. The MS has a direct line-of-
sight to one of the APs only at L2. The data were
collected four times with a period of approximately
one hour each for every location and at different hours
of the day. The total number of RSS samples would be
4 locations  4 hours 3 APs = 48. However, in our
experiments only 46 RSS data samples were collected
because at L1 we can receive signals from only two 
APs at best.
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Figure 1. The fourth floor of the IS building
with the locations of APs and the orientation

of measurements

3. Properties of the received signal 
strength

Indoor radio propagation is difficult to predict
because of the dense multipath environment and 
propagation effects such as reflection, diffraction, and
scattering [9]. Multipath fading causes the received
signal to fluctuate around a mean value at particular
location. The received signal is usually modeled by the
combined effects of large-scale fading and small-scale
fading [10]. The large-scale-fading component (of
interest here) describes the signal attenuation as the
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signal travels over a distance and is absorbed by
material such as walls and floors along the way to the
receiver. This component predicts the mean of the
RSS and usually has a log-normal distribution [10].
Small-scale fading explains the dramatic fluctuation of
the signal due to multipath fading. If there is no line-
of-sight (NLOS) component, the small-scale fading is
often modeled with a Rayleigh distribution. If there is
a line-of-sight (LOS) component, the small-scale
fading is modeled with a Rician distribution. However,
these models are focused on understanding the impact
of radio propagation on receiver design and signal
coverage rather than from the perspective of indoor
positioning systems.

The investigation of RSS data in this section is 
divided into four parts. All measurements were done at
fixed locations. First, we consider the effect of the 
user’s presence on a single RSS set (this is the set of
RSS samples from one AP at a fixed location obtained
over time). Second, we investigate the statistical
properties of a single RSS set (the distribution, the
stationarity, the time-of-day dependency, etc.). Third,
we study the properties of multiple RSS sets (basically
RSS values from multiple APs). We evaluate whether
each RSS set is independent from the others and 
whether they all exhibit the same statistical properties.
We also observed that in some locations the signal
from certain APs is not present all the time. Finally,
we compare the differences between the RSS 
fingerprints (these are vectors with RSS sets as their
components) of two locations.

3.1. Effects of user’s presence on RSS

In indoor positioning systems based on WLANs,
the user typically carries the mobile station equipped
with a wireless NIC. The effect of the user’s presence
close to the antenna plays a significant role in the
mean value and the spread of the average RSS values.
An observation was made in [1] that the user’s
orientation caused a variation in RSS level up to 5
dBm.

3.1.1. Effect of user’s body. To study the effect of the
user’s body, we performed measurement of the signal
from SIS401 at location L1 inside the room IS 410a in
Figure 1. The distance between the transmitter (AP)
and the receiver (MS) is approximately 7 m and the 
MS does not have a clear line-of-sight to the AP. The
data were recorded for two hours. During first hour,
the user was present, while no user was present in the
second hour. The results were analyzed by plotting
histograms of the RSS for both hours. The results are
shown in Figure 2. 
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(a) Distribution of RSS when user is present.
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(b) Distribution of RSS when user is not present.

Figure 2. Comparison of histograms of RSS 

Figure 2-a and 2-b depict the difference between
these two distributions. The user’s body influences the
RSS distribution by spreading the range of RSS values
by a significant amount. The standard deviation is
increased from approximately 0.68 dBm to 3.00 dBm
when the user is present. The mean changes from -
70.4 dBm to -71.6 dBm with the user’s body present.
Clearly, it is essential to collect data for the radio map
based on the application. When the positioning system
is supposed to cater to real users, it is essential to have
the user present while collecting the RSS values for 
the fingerprint and to take into account the effect of 
human’s body. For applications that make use of
sensors without a human presence the data should 
reflect that environment.

3.1.2. Effect of user’s orientation. Because the
resonance frequency of water is at 2.4 GHz and the
human’s body consists of 70% water, the RSS is
absorbed when the user obstructs the signal path and
causes an extra attenuation [6]. To study the effect of
user’s orientation, we performed another measurement
at the location L2 inside the room IS 410 in Figure 1.
In this case, there is a line-of-sight between the
transmitter (SIS410) and receiver and the distance
between them is approximately 20 ft (6 m). Signals 
from SIS401 and SIS501 were also present at this
location with non line-of-sight distances of 36 ft (11
m) and 22 ft (7 m), respectively. The measurement
was done with four orientations (facing North, West,
South, and East of the building) for a period of 15
minutes each. The results of the statistics of the RSS 
values from the three transmitters are shown in Tables 
1, 2, and 3. The orientations that user body blocks the
direct path between the AP and MS are marked with 
asterisks.
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Table 1. LOS RSS (dBm) from SIS410 with
different orientation

Statistics North West South* East
Sample Mean -51.42 -49.73 -59.05 -53.18
Standard Deviation 4.89 4.98 3.69 3.93
Skewness -1.51 -0.67 -0.65 -2.30

For the LOS case (Transmitter SIS410) in Table
1, when the user was facing south and the AP was
behind the user, the sample mean of the RSS was 
lower at -59.05 dBm compared to the highest RSS of -
49.73 dBm when the user faced west. The results show
that the RSS can be attenuated by 9.32 dB in our case
due to the obstruction from the body. This suggests
that the user’s orientation is crucial and should be
included in computing the user location information as 
pointed out in [1]. The attenuation by the body of the
user can even completely block the RSS from a NLOS 
AP as shown in Table 2 when there was no RSS
information at all during the period that the person’s
back was turned towards the transmitter SIS401. This
means that the location fingerprint at the same location 
may lack one RSS value in the vector if the user’s
orientation is different. The signal from SIS501 is also
attenuated by 5.81 dB between the highest and the
lowest RSS levels in Table 3.

Table2. NLOS RSS (dBm) from SIS401 with
different orientation

Statistics North West* South East
Sample Mean -83.12 N/A -82.09 -83.45
Standard Deviation 1.84 N/A 2.24 1.51
Skewness 0.15 N/A 0.09 -0.01

Table3. NLOS RSS (dBm) from SIS501 with
different orientation

Statistics North West* South East
Sample Mean -79.95 -83.63 -77.82 -79.24
Standard Deviation 1.79 2.20 1.60 1.50
Skewness -0.86 0.56 -1.19 -0.52

In what follows, we restrict the study and focus on the
RSS properties when the user is present and facing one
direction arbitrarily.

3.2. Statistical properties of the RSS 

Traditionally, the average RSS is believed to be
log-normally distributed according to popular large-
scale fading models [10]. The mean value is generally
predictable and believed to follow one of several
standardized path loss models discussed in [9].
However, there are some conflicting conclusions

regarding the RSS distribution measured at the
software level by the wireless NIC for indoor radio
propagation in [5] and [6]. Moreover, the standard
deviation and the stationarity of the RSS are not
understood very well.

3.2.1. Distribution of received signal strength. The
results in [5] are based on a five second sampling
period over long durations of five hours, 20 hours, and
one month. Here, they conclude that the RSS is log-
normally distributed (normal or Gaussian in dB) due
to the similarity of the median, the mean, and the
mode. However, they did not indicate whether the user
was present all the time during the measurements.
Thus, we suspect that the distribution of the RSS in dB 
that could be observed in reality may not be normally
distributed as described in [5]. A recent study of a 45-
second measurement period with the user’s presence
in [6] pointed out that the RSS distribution was non-
Gaussian and asymmetric. Moreover, the histograms
in [6] depicted that there could be multiple modes with 
one dominant mode in the distribution. The means and
the modes were often different in their results.

The results of our experiment showed a similar
trend as in [6]. The histogram in Figure 2-a has two
modes with one dominant mode when the user is
present. A visual test of Figure 2-a confirms that the
RSS does not come from a normal distribution and a
norm-plot test is also nonlinear. Out of the 46 RSS 
elements that we collected from four locations (L1 to
L4), most of the histograms show that the RSS does 
not fit the normal distribution. Only a few histograms
showed a good normal approximation.

We observed that the RSS distribution tended to 
be left-skewed in our measurement results. The
histograms that are strongly left-skewed are usually
the ones with the strongest RSS out of the three APs at 
a particular location. The distribution of RSS with the
user in Figure 2-a is also skewed to the left. The left-
skew property seems to occur in most of our
measurements as reported by the skewness in Tables 
1, 2, and 3. This property is usually observed when the
data have an upper bound which is the case for the
attenuated RSS measurement. In a comparison of the
46 distributions, we saw that 39 of them had 
distributions that were left-skewed while five of them
were almost symmetric and only two of them were
right-skewed. The left-skew is the effect of the range
limitation imposed by the maximum RSS at each
location.

Because of the complexity of the radio 
propagation, the distribution of RSS is difficult to 
model and fit to well-known distributions. The authors
in [6] conclude that they rather record the distribution
of the RSS than reduce it to only the mean value. We
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believe that it would be a great benefit if we could find
a representative or approximate distribution of the 
underlying RSS process for understanding location
fingerprinting. This is part of our ongoing research.

3.2.2. The standard deviation of the RSS. The
results in Table 1, 2, and 3 also reveal an interesting
trend in the second order statistics of the RSS values.
The standard deviations are quite similar for a signal
from the same AP at a particular location except when 
the user’s orientation blocks that AP. The main
difference between the three APs is the distance to the 
measurement point L2. Comparing the three tables, the
results indicate that the farther the AP is from the MS 
or the lower the received signal level is, the smaller
the degree of standard deviation. Note that within the
same table the RSS data which is blocked by the user
has a smaller standard deviation. This occurs as a 
result of the signal attenuation by the user’s body and
the smaller range of RSS between the maximum and 
minimum receivable signal level. A linear regression
plot (Figure 3) between the sample mean of the RSS 
and the standard deviation collected from 46 
distributions illustrates the trend. This observation
suggests that the RSS values from the same AP at two
different locations may be difficult to distinguish for
positioning purposes when the RSS level is high in 
which case it tends to have a large degree of variation.
A good communications signal may not result in a
good positioning signal. On the other hand, two
nearby locations might be easily identified if both
have low RSS levels and smaller signal variations.
This good positioning case usually occurs in indoor
locations with NLOS. This is rather counter-intuitive
since the farther apart the WLAN receiver is from the
AP, the worse the measurement accuracy or the larger
the signal variation should be as suggested by [5].
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Figure 3. The relationship between average
RSS and its standard deviation

3.2.3. Stationarity of the RSS. Assuming that the
ergodic theorem is applied according to the Wiener
definition of stationarity [11], we analyze the
stationarity of the RSS element by breaking the series
of RSS measurements into separate pieces over
different time intervals. A random process is said to be 
stationary when it meets two conditions. First, its
mean and variance remain the same over time.
Second, its autocovariance function has the same
shape for each separate time-series. We investigated
this property over two time scales: pieces of 15
minutes within the same hour and pieces of one hour 
over five different hours.

After dividing the series of measurement data of
RSS in Figure 2-a within the same hour into groups of
15 minutes, the RSS distribution within each quarter is
observed to follow a similar distribution within the
same group. Table 4 lists the summary statistics within
each quarter. These results suggest that the RSS 
distribution may be stationary or time independent
since the means and the sample variances of each
quarter are very close together. The correlograms in
Figure 4 depict the same shapes for each quarter
indicating that the second condition is also met for this
time scale. 

Table 4. Mean and standard deviation of RSS 
with user (dBm)

Statistics 1st Qtr. 2nd Qtr. 3rd Qtr. 4th Qtr. 
Mean -71.71 -72.33 -71.82 -70.48
Standard Deviation 2.95 3.20 2.96 2.56
Sample Variance 8.72 10.27 8.77 6.54
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The one-hour time scale study was made for a
signal measured at L1 over different times of day.
Table 5 shows a consistent mean, but inconsistent
variance values of the RSS. Therefore, the test for the 
first condition for stationarity fails and we conclude
that the RSS random process in this case is non-
stationary.

Figure 5 illustrates sample paths of average
received signal strength values from the three access
points measured at location L3 over a period of one
hour. Observe that the sample mean from SIS410
abruptly changes to another value (-70 to -60 dBm)
which confirms our conclusion on the non-stationary
property. This is common due to the changing indoor
environment such as in this case when a person
walked into the room and sat in the middle of the room
IS 410 after approximately 30 minutes into our
experiment. Notice that the rest of the received signals 
from other APs located outside the room are not
affected by this event. Although the stationary
assumption may not be valid over all time scales, there
is some evidence that we could assume stationarity 
over small time scale for modeling purposes.

Table 5. Time dependency of RSS (dBm) from 
SIS410 with user’s presence

Statistics 10AM 12AM 2PM 8PM 10PM
Mean -62.68 -60.02 -61.85 -63.12 -63.18
Standard Deviation 2.17 1.63 2.05 3.35 2.66
Sample Variance 4.70 2.65 4.22 11.23 7.07
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Figure 5. Samples of RSS from three APs 

3.2.4. Time dependency of received signal strength.
The summary of statistics in Table 5 suggests that
there is some dependency of RSS on the time of day.
This is due to the dynamics of the indoor environment.
To understand the property better, we require more
measurements and this is part of our ongoing research
work.

3.3. Properties of multiple RSSs at a particular 
location

This subsection analyzes the dependency of 
multiple RSSs from multiple APs. This is to confirm
an intuition that the RSS from multiple APs are 
actually independent. The second part of this
subsection discusses the effect of interference on the
RSS when there is another AP transmitting in the same
frequency channel.

3.3.1. Independence of multiple RSSs. The average
of the RSS from each AP is a value of a location 
fingerprint vector. To verify statistical independence
between these values, a measurement of multiple RSS 
samples was collected at location 3 (L3) in Figure 1 
where the MS can receive signals from three APs
simultaneously during an afternoon hour. The
distances from the three APs SIS410, SIS401, and
SIS501 were approximately 8, 15, and 10 meters. We
took RSS measurements for approximately one hour
with the user’s presence and the sample paths of RSS
levels are showed in Figure 5. The standard deviations
from each AP were 5.67, 2.23, and 1.81, respectively.
The means were -64.52, -81.23, and -74.12 dBm. The 
correlation values between each pair of RSS data are 
C(SIS410,SIS401) = -0.02, C(SIS410,SIS501) = 0.13, C(SIS401,SIS501)

= -0.03. Therefore, we can conclude that the RSS from
the APs are uncorrelated.

3.3.2. Interference from multiple APs. There are two 
APs in our experiment that use the same frequency
channel number 6, which are SIS410 and SIS501. One
may think that the RSSs from both APs might interfere
with each other and cause difficulty in forming the 
location fingerprinting. However, our initial results as 
calculated by the correlation indicate that both RSSs 
are independent and do not interfere with the reception 
of each other. This is due to the way in which the
802.11 MAC operates where a transmission is either
not heard or is deferred if a competing transmission
exists.

3.4. Properties of RSS at different locations

Generally, the RSS falls linearly with the log of 
the distance between the transmitter and the receiver.
This subsection will not focus on this common
knowledge but will instead investigate how the
samples of RSS fingerprints at different locations may
look like. We plot the RSS patterns in two dimensions
in order to analyze the clustering of the RSS data. The
clustering of two RSS data at two locations is plotted
in Figure 6.
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The plot in Figure 6 contains all possible vectors
P = [ 1 2] for L2 and L3 with 1 on the x-axis and 2

on the y-axis. We see that the location fingerprints can 
be separated by some discriminant function or
clustering technique. Note that L3 consists of 3,666
samples and L2 consists of 3,465 samples. Only
certain patterns are present which implies that there
are fewer unique fingerprints for each location. Figure 
7 shows the density of each fingerprint. This visual
study suggests that we may use the center of the
cluster as a representation of the location fingerprint
instead of the distribution itself as these locations can
be clearly separated.

Figure 7 suggests that only two APs are sufficient
to distinguish between locations for a system with
small number of positions and coarse location
granularity. Two locations become difficult to identify
if their patterns are closer together and exhibit large
variations due to the nature of standard deviation of
the RSS. Increasing the number of APs is one way to
further separate two location fingerprints.
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3.5. Implications on positioning algorithms

The data analyses in the previous section have
two major implications on selecting potential
positioning algorithms. First, we observed that the
RSS sample vectors exhibit clustering (they are
concentrated around the center of a cluster with the
greatest frequency of occurrence being roughly at the
center as in Figure 7). This explains why the accuracy 
performance of all positioning algorithms evaluated in
[12] is similar. Both the support vector machines
(SVMs) approach and the k-nearest neighbors (or
equivalently Euclidean distance) approach provide
similar accuracy and precision. The reason is that 
location fingerprints can be simply represented by
vectors of average RSSs. Second, to perform any 
analytical performance evaluation of pattern
classifiers, we eventually need a model of location 
fingerprints. In the following section we suggest a 
simple model of location fingerprints and compare it
with the empirical ones from this study based on our
previous work in [13].

4. Modeling of RSS for location 
fingerprints and performance of the
Euclidean distance 

Although our preliminary finding suggests that
the RSS distribution is not normal, some of them
could be approximated by a normal distribution. In an
attempt to model indoor positioning systems [13], we 
assumed a first cut Gaussian model of the RSS. A 
location fingerprint is denoted as a vector of N features
of RSS, e.g. X = (x1, x2,…, x3). Here, we list the
assumptions made in [13] that are partially supported
by the work here.

Each RSS feature in fingerprint is normally
distributed and stationary over a small time scale. 
The sample standard deviations of all RSS
features are assumed to be constant and unique for
each RSS. (We did not model the variation in 
standard deviation for each RSS feature.)
The mean of the RSS can be used as the
fingerprint as samples of the RSS vector exhibit
clustering.
All RSS features in each location fingerprint are 
mutually independent (which is confirmed by our
measurement in Section 3.3).

We compare the location estimation performance
using this simplified model with the one using
empirical distributions obtained from the measurement
results of this paper. The simple location estimation
algorithm utilizes the Euclidean distance. The number
of access points N is three. The mathematical
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expression for the accuracy was developed in [13]. We
use the expressions to predict the performance of two
simplified positioning systems in this section.

4.1 Two-location system

As an example of a system with only two location 
fingerprints, we select the measurement data of 
locations L2 and L3 for analysis. Note that these are
nicely distinguishable. Let R = (r1, r2,…, r3) and S = 
(s1, s2,…, s3) be the location fingerprints (mean values
of the RSSs from the APs) of L2 and L3, respectively.
The actual physical distance between the two locations
is 18 ft (5.5 m). Table 6 summarizes the location 
fingerprints and their standard deviations.

Table 6. Fingerprints of two-position system
(dBm).

Location Statistics SIS410 SIS401 SIS501
Mean -43.60 -79.76 -79.68L2
STD. 3.27 1.24 1.62
Mean -57.27 -75.77 -67.97L3
STD. 2.67 1.83 1.36

Using a Monte Carlo simulation to generate the
samples of location fingerprints based on the empirical
distributions, we compare the error of location
detection given that L2 is the correct location with the
analytical mathematical formulation in [13] and
simulations with a Gaussian distribution with the same
means and standard deviations. The probability of
incorrectly picking location L3 instead of L2 is Pe. For 
a system with two positions, Pe can be found from the
probability of returning the correct location (Pc) as: 

,
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20 simulations of 10,000 samples each. The results are
summarized in Table 7. The Gaussian approximation
provides an optimistic error performance for the
system. The analytical result from (1) exactly 
calculates Pe. The empirical distributions have a 
worse performance because there are some samples of 
RSS fingerprints that are closer to the location L3’s
fingerprint than L2’s fingerprint. Figure 6, which
represents the projection of all fingerprints into the
plane of two features, clearly explains the cause of the
worse performance because there are some RSS
patterns on the left-side of the plot that may be
wrongly interpreted as corresponding to L3. Table 7 

also shows the results when we consider only two APs
(SIS410, SIS501) and one AP (SIS410) in which the
error probabilities are higher.

Table 7. Probability of returning incorrect 
location at 95% C.I. for two-location system.

Scenario 3 APs 2 APs 1 AP 
Empirical 10.22e-3

 3.24e-5
10.79e-3
 3.02e-5

16.19e-3
 3.46e-5

Gaussian 0.24e-3
 5.37e-6

0.41e-3
 5.76e-6

17.56e-3
 4.6e-5 

Analytical 0.24e-3 0.41e-3 17.5e-3

4.2 Twenty five-location system

The second system we consider consists of 25
location fingerprints where we measured the real
location fingerprints from a grid of 25 positions. The
grid spacing is approximately 1 meter. The location 
area of 16 m2 covers part of the room IS410 and part
of the corridor as showed in Figure 8.  Each position is 
labeled by the square box.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5
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1.5
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3.5

4

Soft Wall 

North

Room IS 410 

Figure 8. Grid of system with 25 locations

Due to space limitation, we will not list the
measured location fingerprints here. Note that the
measurement is done for only one orientation of the
user (facing north). Each position can receive signals
clearly from all three APs (SIS410, SIS401, SIS501)
and there are approximately 1,200 samples of each
RSS measured over five minutes at a rate of four
samples per second.

We assume that the current MS’s location is at the
center of the map. A simulation was done in the same
manner as the two location system. The results are 
summarized in Table 8. In order to find the exact
analytical expression, we need to find the joint
probability density of multiple location fingerprints
which is rather cumbersome. We argue in [13] that
this can be avoided by resorting to an approximation
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of the probability of returning an erroneous location.
This considers only the location fingerprints of MN = 8 
nearest neighboring positions in two-dimensions and
the correct location. The approximation works for a 
large number of access points and can be written as: 

NMj
jPcPe 1 . (2)

Table 8. Probability of returning incorrect 
location at 90% C.I. for 25 locations. 
Scenario 3 APs 2 APs 1 AP 

Empirical 0.67
 1.46e-3

0.82
 1.45e-3

0.84
 1.64e-3

Gaussian 0.85
 1.67e-3

0.93
 1.18e-3

0.95
 1.04e-3

Approximation 0.80 0.94 0.98

The overall performance results in this system are
worse than the previous one because there are more
locations to be compared with and the spacing
between the locations is much closer. Depending on
the standard deviation of each RSS feature, it is 
possible that the fingerprint patterns overlap. The
results with a Gaussian model are worse than those
with the empirical model and appear to be rather
pessimistic in this case. This can be explained as 
follows: the Gaussian model tends to spread the
fingerprint patterns evenly around the mean value
while the real fingerprint patterns are asymmetric and
more concentrated around their means in some cases.
The analytical approximation is highly pessimistic and 
not appropriate in this case. In summary the Gaussian
model provides a probability of an erroneous report on
the same order as one would expect with real RSS
samples, but could be either optimistic or pessimistic.

5. Conclusions 

We present an initial analysis of the RSS values
reported by an 802.11b NIC commonly used in indoor
location systems based on location fingerprinting. We
point out that the user’s presence should be taken into
account when collecting the location fingerprint for 
user related location-based services. The effect of 
user’s orientation is significant and the orientation
should be recorded in the database as demonstrated in
[1]. We also analyze the statistical properties of the
RSS and we find that it is stationary under certain 
circumstances, but in general, such a conclusion
cannot be made. The distribution of the RSS is not
usually Gaussian, it is often left-skewed and the
standard deviation varies according to the signal level.
It is clear from our measurements that signals from
multiple APs are mostly independent and the

interference from other APs using the same frequency
does not have a significant impact on the RSS pattern.
The visual presentations of the RSS patterns in Section
3.4 show that the fingerprint can be grouped together
as a set of clusters. More than one cluster may
represent one location because of the multimodal
distribution of the RSS. In such a case, using a simple
Euclidean distance as in [1] to determine the location
may classify some patterns into a wrong location
easily. This causes poor performance of a positioning
system that uses the Euclidean distance. Finally, in the
last section, we compare the error performance of a
position location system with real location fingerprints
and a first cut Gaussian model. The results indicate
that our model of location fingerprints provide some
approximations of the performance. The Gaussian
model is either optimistic or pessimistic but provides
values on the same order as a real system. The future
work is to look for alternative models for the
distribution of the RSS and to understand how they
impact position location further. The results in this
paper and our previous work could provide insight on
the mechanism behind indoor position location
systems based on location fingerprinting.

In conclusion, this study steps back and 
investigates the RSS pattern in a greater detail. This
study raises an important aspect of designing a 
location fingerprinting system that is to examine the
properties of the fingerprint itself before applying a 
pattern recognition technique to solve the positioning
problem. Simple pattern recognition techniques may
be suitable and more efficient than more sophisticated 
ones. More extensive measurement campaigns are
needed to verify some of the properties listed here.
However, the lessons learned from this study are used
to support a theoretical model of location fingerprint
which in turn can be used to create a design 
framework of an indoor positioning system [13].
Given a framework and theoretical explanation, any
future study and design of location fingerprinting
system should be more efficient and less time
consuming. We could reduce the measurement time in
order to fine tune the system performance such as
accuracy and precision to meet any required criteria.
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