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We detail numerical methods to compute the geometry of static vacuum black holes in
6-dimensional gravity compactified on a circle. We calculate properties of these Kaluza-
Klein black holes for varying mass, keeping the asymptotic compactification radius fixed.
For increasing mass, the horizon deforms into a prolate ellipsoid, and the geometry near
the horizon and axis decompactifies. We are able to find solutions with horizon radii ap-
proximately equal to the asymptotic compactification radius. Having chosen 6 dimensions,
we may compare these solutions to those of non-uniform strings compactified on a circle of
the same radius found in a previous numerical work. We find the black holes achieve larger
masses and horizon volumes than most non-uniform strings. This sheds doubt on whether
these solution branches can merge via a topology changing solution. Further work is required
to resolve whether there is a maximum mass for the black holes, or whether the mass can
become arbitrarily large.

§1. Introduction

If one day we discover that there are extra dimensions in our universe, and
these are well described by classical gravity, then they are likely (although not def-
initely1)) to be compact along the lines of Kaluza-Klein theory.2), 3) Furthermore,
if matter is confined to branes, then the radius of compactification could poten-
tially be extremely large.4), 5) The simplest regular static vacuum solutions are then
compactified uniform black strings.6), 7) Gregory and Laflamme (GL) showed that
these are stable, provided that the horizon radius is large compared to the com-
pactification scale.8)–10) However, they also discovered a new family of non-uniform
solutions emerging from the critical uniform string whose mass separates the more
massive stable strings from the less massive unstable ones. These non-uniform so-
lutions were constructed numerically, first by Gubser as a perturbation expansion
in a non-uniformity parameter λ about the λ = 0 critical uniform solution,11) and
then non-perturbatively in Ref. 12) using elliptic methods. The third class of solu-
tions expected to exist are black holes that do not wrap in the circle direction. In
4 dimensions, such solutions were found by Myers analytically13) (see also generali-
sations given in Refs. 14) and 15) with modified asymptotics) but in greater than 4
dimensions little is known,16), 17) essentially as the rotation group then has curvature.
Using the elliptic numerical methods of Refs. 12) and 18), 5 dimensional localised
black holes have recently been constructed on a Randall-Sundrum brane.19), 20) This
is a related numerical problem of considerable interest, as recent conjectures claim
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that large localised static black holes may not exist.21), 22)

Kol proposed an elegant relation between these three types of Kaluza-Klein
solutions,23) the non-uniform strings linking the uniform branch to the black hole
branch. The string to the black hole transition, also explored in Refs. 17),24)–28), is
then conjectured to be continuous and have a Lorentzian cone geometry where the
horizon becomes degenerate. This agrees very well with numerical tests on the non-
uniform string branch.29), 30) If this picture is correct, it predicts that black holes,
like non-uniform strings, have a maximum mass. While for a fixed compactification
radius, the three classes of solutions overlap at intermediate mass scales,∗) at large
masses the uniform strings would be the unique non-singular solutions in Kaluza-
Klein theory. If this picture is incorrect, it may be possible to have arbitrarily
large mass black holes, if either the geometry becomes increasingly ‘squashed’ or
decompactifies on the symmetry axis (as in pure Kaluza-Klein theory there is no
radius stabilisation). Whether this could persist in a radius stabilised theory would
then be an important phenomenological question.

Clearly Kaluza-Klein theory is a simplification of realistic compactifications.
Kol’s picture presumably remains unchanged when warping is added,33)–36) or when
black holes are charged under matter fields localised to branes.37) For additional bulk
matter, such as is necessary for stabilisation, the situation may be more interesting,
but we expect that it will inherit many features of the pure Kaluza-Klein case.

The Gregory-Laflamme instability, underlying the dynamics of these compacti-
fied horizons, has been linked to thermodynamic stability,36), 38)–45) and an analogous
classical instability has recently been conjectured for the rotating Myers-Perry so-
lution,46)–48) which is thought to be unstable for large angular momenta. The end
state of the classical Gregory-Laflamme instability is still a mystery, although there
has been interesting analytic and numerical work on this subject.49), 50) We note that
stable black strings evaporating via Hawking radiation will eventually succumb to
this classical instability, and understanding the dynamics, and in particular whether
cosmic censorship is violated, is important in order to understand the evaporation
of cosmological/astrophysical black holes below the compactification mass scale.

The objective of this paper is to numerically construct and study the non-
wrapping black hole branch of solutions. We perform this analysis in 6 dimensions
so that we can compare our results with the previous non-uniform string numeri-
cal results of Ref. 12), which for technical reasons, were performed in this number
of dimensions. We begin with a brief discussion of the numerical method, which
involves phrasing a subset of the Einstein equations in a way compatible with nu-
merical relaxation, and most importantly, showing how the remaining ‘constraint’
equations can be satisfied by appropriately choosing the boundary conditions. Since
the method has been used several times,12), 18), 19) we refrain from a detailed exposi-
tion, and instead highlight the various subtleties related to this Kaluza-Klein black
hole problem. We then go on to discuss the numerical results. We demonstrate

∗) We must consider the full asymptotic charges to distinguish the solution,26), 27) although

whether there is a unique solution with these charges is an interesting open question,28) as uniqueness

constraints apparently weaken in greater than 4 dimensions.31), 32)
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that, as expected, these solutions do exist, at least within the scope of our numerical
approximation.

We compute geometric embeddings of the spatial horizon and symmetry axis
into Euclidean space, and show that the geometry near the axis decompactifies with
increasing mass, and the event horizon deforms into a prolate ellipsoid. With the
current implementation we are unable to ascertain whether this decompactification
terminates with a maximum mass black hole that just ‘fits’ into the compact di-
rection, or whether the decompactification continues indefinitely, so that arbitrarily
large masses can be found.

The maximum size black holes that we are able to construct have horizon radii
approximately equal to the asymptotic compactification radius. We compare these
with the most non-uniform strings constructed in Ref. 12) finding the mass and
horizon volume of these modest-sized black holes already are larger than those of
the maximally non-uniform strings, and the axis decompactifies to a greater extent.
The size of the black holes we can construct is limited by numerical factors, and it
seems clear that still larger black holes exist, with the above trends continuing for
these. The implication is that it appears unlikely that the non-uniform string branch
(connected to the critical uniform string) and this black hole branch are connected
via a topology changing solution.

Various technical details and numerical checks are given in the three appendices.
We pay particular attention to ensuring and checking that the constraint equations
are indeed satisfied for the solutions.

The reader is also referred to an independent work by Kol, Piran and Sorkin,
who, we understand, have recently performed related calculations in 5 dimensions.51)

§2. Method

In order to solve the black hole geometry we are required to solve the Einstein
equations with elliptic boundary data; we wish to have a regular horizon geome-
try, for the solution to be periodic, and also asymptotically to tend to a flat space
product with a circle. We employ the methods first developed in Ref. 18) and
used to construct non-uniform string solutions,12) and later localised black holes
on branes.19), 20),∗) In this section, we outline the method and boundary conditions
appropriate for the problem. Due to its necessarily technical nature, some readers
may wish to skip to the following ‘Results’ section. For a more general discussion of
the method, the reader is referred to Ref. 12). Technical numerical details are also
provided for the interested reader in Appendix A, and important numerical checks
are reported in Appendix B to demonstrate that the method functions correctly.

The construction of non-uniform strings is a very clean situation in which to
apply these elliptic numerical methods. However, the black hole problem at hand is
substantially more difficult, primarily for two reasons.

Firstly, weakly non-uniform strings can be described as perturbative deforma-

∗) See also Ref. 52) for a method of solving static axisymmetric non-vacuum black holes in 4

dimensions that shares some features with our method.
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tions of the critical uniform string. The relaxation methods employed here require
a good initial guess, or typically no solution will be found. Thus for the strings, the
non-uniformity can be turned on ‘gently’. In analogy, a very small black hole will
appear as a 6-d Schwarzschild solution near its horizon, but it obviously must have
very different asymptotics, due to the compactification. Thus, even for a small black
hole, we do not have an exact solution from which to ‘gently’ start building larger
black holes. We tackle this issue by building in 6-d Schwarzschild behaviour at the
horizon that decays quickly away far from the horizon, and then we solve for the
correction to this, which should be small for small mass black holes.

Secondly, the axis of symmetry is exposed in the problem. The coordinate
singularity at the axis generically gives rise to problems in numerical computations
and there are various ways around this in conventional evolution problems (see for
example Ref. 53)). As discussed in Ref. 18) the elliptic method we use is very sensitive
to this coordinate singularity, which may destroy the ability of the algorithm to relax
to the solution. Furthermore the coordinate system we require to phrase a subset
of the Einstein equations in an elliptic manner introduces even worse coordinate
problems on the symmetry axis than one would normally expect. We have found
no elegant method to tackle this problem, but we do have a functional approach,
originally used in Ref. 18) and discussed here in Appendix A. Improving or evading
this problem appears to be crucial for increasing the capability of this method.

So whilst the problem is a rather delicate one, we are still able to make progress.
As in previous applications of the method, we write the static axisymmetric met-
ric in a diagonal form, retaining conformal invariance in the radial and tangential
coordinates r and z as

ds2 = gMNdxMdxN = −e2αdt2 + e2(β−γ)
(
dr2 + dz2

)
+ r2e2β+ 4

3
γdΩ2

(3) (1)

with α, β and γ being functions of r and z. The particular linear combination of β
and γ taken above is simply for later technical convenience. We take the z coordinate
to be compact with period L, and later we require the metric functions α, β and γ to
vanish for large r, and hence the physical radius of compactification becomes L. We
choose units such that the 6-dimensional Newton constant is unity: GN(6) = 1. Since
we may perform a global scaling on any solution of the vacuum Einstein equations,
for future convenience we choose to set L = π in these units.

One nice property of this form of the metric is that one can choose the position of
the boundaries in the (r, z) plane to be at any location, due to the residual conformal
coordinate transformations. A second important feature of this coordinate system
is that 3 of the 5 Einstein equations, Gt

t, (G
ρ
ρ + Gχ

χ) and Gθ
θ have elliptic second

derivatives, being just the (r, z) Laplace operators, and thus we term these the
‘elliptic’ equations. As we are so far unable to write a positive definite functional of
the metric components that can be minimized to give these equations, it is not at all
clear if the problem is truly elliptic. However one can still use relaxation methods
to solve them, specifying elliptic data on the boundaries of the problem. The most
important feature of this coordinate system is that using the contracted Bianchi
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identities, the 2 remaining ‘constraint’ equations weighted by det gMN ,

Φ̂ = det gMNGr
z, Ψ̂ =

1
2

det gMN (Gr
r − Gz

z), (2)

obey the Cauchy-Riemann (CR) relations,

∂rΦ̂ = ∂zΨ̂ , ∂zΦ̂ = −∂rΨ̂ , (3)

if the elliptic equations are satisfied. Simply relaxing the 3 elliptic equations for the
3 metric functions will generically yield a solution, but this is only consistent with
the full set of Einstein equations if the boundary data are such that the CR relations
imply both constraints are satisfied. For example, for the non-uniform strings, we
may impose the constraints by updating the elliptic boundary data such that the Gr

z

constraint is satisfied on all boundaries, and the remaining constraint (Gr
r − Gz

z)
is just imposed at one point, solving the CR problem.12) In our example here, we
in fact find it convenient to impose both constraints, but on different boundaries, in
such a way that still provides sufficient conditions to satisfy the CR problem, but
does not over determine the elliptic equations.

2.1. Boundaries and coordinates

We still have residual coordinate freedom, and we use this to tailor the coordinate
system to our problem. Instead of relaxing α, β and γ directly, we wish to perturb
about a 6-d Schwarzschild solution near the horizon,

α = Abg + A, β = Bbg + B, γ = Cbg + C, (4)

where the ‘background functions’ {A, B, C}bg suitably express this Schwarzschild
geometry at the horizon, decay away radially, and are compatible with the compact
boundary conditions; therefore we could obviously not just take the Schwarzschild
metric itself. Notice that C = 0 corresponds to conformally flat spatial sections.

Let us now consider a form for the background functions and the boundary
locations in the (r, z) coordinates. The 6-d Schwarzschild metric can easily be written
in an appropriate conformal form as

ds2 = −n(µ)dt2 + a(µ)
(
dµ2 + µ2dΩ2

(4)

)
,

= −
[
µ3 − µ3

0

µ3 + µ3
0

]2

dt2 +
[
1 +

µ3
0

µ3

] 4
3 (

dr2 + dz2 + r2dΩ2
(3)

)
, (5)

with µ2 = r2 + z2. To be suitable for the background functions, this must be
modified away from the horizon to ensure compatibility with the periodic boundary
conditions in z. However, assuming after this modification that the horizon remains
at constant µ = µ0, it will form a circle in the (r, z) coordinates. Thus, we would
wish to use boundaries of the form in Fig. 1 in order to represent the coordinate axis,
the black hole horizon, and periodic boundaries. Then we would reasonably expect
the functions A,B and C to remain finite everywhere and be small for a small black
hole, allowing us to use the initial data A = B = C = 0 for the relaxation.
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Fig. 1. Schematic illustration of the boundaries we would intuitively take in r and z coordinates.

At least for small black holes, taking the horizon boundary to be circular would ensure the

metric functions A, B and C be small and finite, as the geometry near the horizon would be

only a weak distortion of the 6-dimensional Schwarzschild geometry, which we build into the

metric ansatz via Abg, Bbg and Cbg.

Numerically, it is always convenient to have a rectangular grid. Whilst we are in
principle free to use the residual conformal transformation to fix the boundaries to
be wherever we wish, clearly to obtain a rectangular domain such a transformation
must be singular, as one right angle in Fig. 1 should be ‘flattened’ out. However,
if we find such a coordinate transformation analytically, we may separate out any
singular behaviour from A,B and C, leaving their behaviour perfectly regular. Any
conformal coordinate transformation is generated by a solution to the 2-d Laplace
equation, and choosing a solution ρ(r, z) to be that representing a point source in
the compact 2-d space (i.e. on a cylinder) we define the new coordinates (ρ, χ)

ρ(r, z) =
1
2

log
[
1
2

(cosh 2 r − cos 2 z)
]

,

χ(r, z) = tan−1

[
tan z

tanh r

]
, (6)

where χ is determined from ρ by CR relations. These essentially ‘flatten’ out the
horizon, and now χ is the compact coordinate which conveniently takes the range
of an angular coordinate (0, π/2) for half a period of the solution, z = (0, L/2) =
(0, π/2). We illustrate the isosurfaces of ρ and χ in the (r, z) plane in Fig. 2. Contours
of constant ρ, for ρ < 0, generate curves in the (r, z) plane that are very similar to
that of the horizon in Fig. 1. Note also that χ = π/2 gives both the axis of symmetry
(for ρ < 0) and the periodic boundary z = π/2 (for ρ > 0), and ρ = 0, χ = π/2 is the
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Fig. 2. Illustration of isosurfaces of ρ and χ as functions of r, z. The schematic boundaries of Fig. 1

can be mapped to constant ρ and χ values, allowing for convenient numerical implementation.

For ρ < 0, χ behaves as an angular coordinate, and ρ as a radial one, whereas for large positive

ρ, we find that ρ and χ behave as r and z, respectively. We take the horizon boundary at

constant ρ = ρ0, finding later that specifying ρ0 determines the physical size of the black hole

solution.

singular point in the conformal transformation. Thus if we use these coordinates, a
rectangle with χ = 0 to π/2 and ρ = ρ0 to ∞ will, for ρ0 < 0, give boundaries that
are similar to those in Fig. 1.

Whilst the coordinate transform is rather singular, since we have an analytic
expression for it, we may remove the singular Jacobian, J , and then write the metric
as

ds2 = −e2αdt2 + e2(β−γ)J(ρ, χ)
(
dρ2 + dχ2

)
+ r(ρ, χ)2e2β+ 4

3
γdΩ2

(3), (7)

J(ρ, χ) =
e2ρ√

1 + e4ρ + 2 e2ρ cos 2χ
,

r(ρ, χ) =
1
2

cosh−1
[
e2ρ +

√
1 + e4ρ + 2 e2ρ cos 2χ

]
,

where now α, β and γ are exactly the same functions as in (1), except now expressed
in terms of ρ and χ.

Now consider the 6-d Schwarzschild metric (5). For small µ0, near the horizon
we find e2ρ � µ2 = r2 + z2, with ρ behaving as a polar radial coordinate and χ
as an angular one. Since we wish to choose background functions to reproduce the
Schwarzschild metric near the horizon for small black holes (i.e. small µ0), and yet
to implement the compactness requirement in z, a simple choice is just to substitute
eρ−ρ0 = µ/µ0 into (5), giving

eAbg =
1 − e3(ρ0−ρ)

1 + e3(ρ0−ρ)
,

eBbg =
[
1 + e3(ρ0−ρ)

] 2
3
,
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Cbg = 0. (8)

The independence of these background functions on χ ensures that they satisfy the
periodicity requirements. The constant ρ0 tells us the coordinate position of the
horizon. We will shortly show that keeping the asymptotic compactification radius
fixed, it is the parameter ρ0 (and thus the contour ρ = ρ0 we take to be the horizon)
that we vary to change the mass of the black hole. From Fig. 2 we see that ρ0 must
be negative to give a spherical topology for the horizon. The small horizon limit is
now ρ0 → −∞. For ρ0 < 0 but closer to zero, the ansatz above gives a deformed
geometry from the Schwarzschild geometry too.∗) Since we include the vanishing of
the lapse in Abg at ρ = ρ0, we expect the metric functions, and in particular A, the
one associated with deformations of the lapse, to remain finite there. Far away from
the horizon, i.e. for ρ → ∞, or alternatively r → ∞, the background functions decay
exponentially in ρ or r. We stress that for finite negative ρ0, A,B, C = 0 is not a
solution to the Einstein equations, but for very large negative values of ρ (i.e. the
small black hole limit), A,B and C will at least be small everywhere as the horizon
tends to the Schwarzschild geometry, and by the time the metric functions ‘see’ the
compactification they will be varnishingly close to zero anyway. After the change
in coordinates, we obtain analogous elliptic equations, Gt

t, (G
ρ
ρ + Gχ

χ) and Gθ
θ and

also CR relations for the new constraint functions Φ and Ψ :

Φ = det gMNGρ
χ, Ψ =

1
2

det gMN (Gρ
ρ − Gχ

χ) (9)

so that,

∂ρΦ = ∂χΨ, ∂χΦ = −∂ρΨ. (10)

2.2. Boundary conditions from the elliptic equations

The 3 elliptic equations we are solving require various boundary conditions due
to the regular singular or periodic behaviour at these boundaries. To satisfy the
constraint equations we must impose more than just these conditions. However, let
us start by considering the basic boundary conditions from the elliptic equations.

Asymptotically we want the geometry to be a product of 5-dimensional flat space
with a circle, and thus we take A,B, C → 0. Since we earlier fixed the range of χ,
this also fixes the compactification radius to be L = π. Of course we may simply
globally scale these vacuum solutions to obtain any desired asymptotic radius. We

∗) It is interesting to compare this coordinate system with that proposed by Harmark and Obers

in Ref. 17) where the radial coordinate used follows a 6-d equipotential. Here, our coordinate follows

a 2-d equipotential. Presumably, using the higher-dimensional potential is a sensible procedure, and

it could give an improved ansatz to perturb about, which better models the horizon geometry for

larger deformed black holes. It is an interesting problem to use the ansatz of Harmark and Obers to

do numerics, particularly as the ansatz and having the horizon at a location with constant potential

were proven to be consistent for non-uniform strings in Ref. 29) and recently for black holes in

Ref. 28).
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find the asymptotic forms required by the 3 elliptic equations,

A ∼ a2

ρ2
+ O

(
1
ρ3

)
, B ∼ b1

ρ
+

b2

ρ2
+ O

(
1
ρ3

)
, C ∼ b1

ρ
+

c2

ρ2
+ O

(
1
ρ3

)
, (11)

with 3 a2 + 9 b2 − 4 c2 +
25
6

b2
1 = 0

by expanding (without linearising in the metric components) in inverse powers of
ρ ∼ r. Fourier modes with χ dependence decay exponentially (since χ � z, for large
ρ), as does the contribution from the background functions {A, B, C}bg. Thus on
our asymptotic boundary we have mixed Neumann-Dirichlet boundary conditions
for the 3 metric functions.∗)

The symmetry axis χ = π/2 with ρ < 0 requires that A and B be even in
(χ−π/2) (or alternatively r). However we also find the requirement C = 0, as there
is regular singular behaviour due to the form of the coordinate system. We might be
confused that there is no Neumann condition on C but we see later that this emerges
from the constraints.

We require that the metric functions A,B and C be finite at the horizon ρ = ρ0.
With the form of background functions {A, B, C}bg, we then find that the elliptic
equations are consistent, provided that

A,ρ |ρ=ρ0 = 0,

B,ρ +
2
3
C,ρ |ρ=ρ0 = 1 − r,ρ

r
|ρ=ρ0 , (12)

with r(ρ, χ) as given in Eq. (7).
Finally, the elliptic equations at the remaining periodic boundaries at χ = 0 and

χ = π/2 with ρ > 0 simply imply Neumann conditions on the metric functions A,B
and C.

2.3. Boundary conditions from the constraints

The constraint equations also impose conditions on the metric. We have seen
that assuming we can satisfy the elliptic equations for given boundary data, the two
constraints obey the CR relations. Thus we do not need to enforce both constraints
on all the boundaries, which naively would over-determine the elliptic equations.
Firstly we consider the extra conditions that the constraints impose, and then discuss
how best to implement them to ensure a consistent solution of the CR problem,
without over determining the elliptic data.

On the symmetry axis and periodic boundaries, we have already specified 3
conditions, one for each metric function, and consequently treating this as a boundary
value problem, we do not wish to impose any more. On the χ = 0 periodic boundary,
Gρ

χ vanishes by symmetry, and consequently so does the corresponding weighted
constraint Φ, and the remaining constraint (Gρ

ρ −Gχ
χ) is guaranteed to be even. A

∗) In practice we impose these conditions at a finite, but large ρ = ρmax and check in Appendix

B that the results are independent of ρmax.
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similar situation occurs on the χ = π/2 boundary for ρ > 0 which represents the
other periodic boundary. Indeed these periodic boundaries are fictitious in the sense
that we can consider the problem on the unwrapped covering space where these
boundaries are ‘removed’, and thus we should not need to impose any constraints
here.

For χ = π/2, but now with ρ < 0, we have the symmetry axis. Again this is
in principle a ‘fictitious’ boundary, but we must impose C = 0 here for the elliptic
equations, and it is hard to see how this would lift to a covering space with ‘no’
boundary. For this reason, we examine the situation at the axis in more detail.
Using the boundary conditions from the elliptic equations, and assuming the metric
components are regular, Gρ

χ vanishes there, but (Gρ
ρ − Gχ

χ) does not unless the
normal gradient of C vanishes. However, since the measure det gMN vanishes near
this axis, both Φ and Ψ are zero, and therefore from the point of view of solving
the CR constraint equations, we need do no more here. As discussed in the original
implementation of this method,18) this resolves the paradox that C = 0 and C has
a Neumann boundary condition, despite the fact that we solve C using a boundary
value formulation. Whilst we only impose C = 0 to be compatible with the elliptic
equation behaviour, if we consistently provide data on the other boundaries to en-
sure that the weighted constraints vanish everywhere, then this Neumann condition
follows automatically, and does not need to be explicitly imposed at the symmetry
axis.

Now let us consider the remaining boundaries, the horizon and asymptotic
boundary. At the horizon we only have 2 conditions from the elliptic equations
and require another to specify the elliptic data. Firstly at the horizon we find that
the Gρ

χ constraint implies the horizon temperature is a constant,

(A − B + C),χ |ρ=ρ0=
1
2

J,χ

J
|ρ=ρ0 , (13)

and the remaining constraint (Gρ
ρ − Gχ

χ) requires,

(A − B + C),ρ |ρ=ρ0=
1
2

J,ρ

J
|ρ=ρ0 −1. (14)

Lastly, asymptotically at large ρ (or equivalently r), due to the exponential
decay of χ (or equivalently z) dependence, the Gρ

χ constraint goes exponentially
to zero, and so the weighted constraint Φ is guaranteed to go to zero, even though
det gMN ∼ ρ3. Due to this power law growth of the measure det gMN , it is less
obvious the (Gρ

ρ−Gχ
χ) constraint weighted as Ψ goes to zero, as (Gρ

ρ−Gχ
χ) (unlike

Gρ
χ) depends on the homogeneous components of the metric, which only decay as a

power law. However, the behaviour of the homogeneous component implied by the
elliptic equations in (11) does also ensure that Ψ = 0 asymptotically.

Now we must decide how to specify data for the elliptic equations (i.e. one con-
dition for each metric function on each portion of the boundary), and also satisfy the
constraint problem. With the conditions already required by the elliptic equations,
we have sufficient data and Φ = 0 on all boundaries, except the horizon. The second
weighted constraint, Ψ = 0, is satisfied only asymptotically. At the horizon neither
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constraint is satisfied, and we require one more condition for a linear combination of
A,B and C to make up the elliptic data, as we so far only have (12).

We could impose the constant horizon temperature condition and thus set Φ to
zero on the horizon. As we have seen Φ is zero on all the other boundaries, and from
the CR relations it obeys a Laplace equation, and therefore this would uniquely set
it to zero everywhere. Ψ would then be zero following from the CR relations and the
fact it vanishes asymptotically.

However it is numerically more stable to impose the (Gρ
ρ − Gχ

χ) constraint,
and hence Ψ = 0 at the horizon instead. The (Gρ

ρ − Gχ
χ) constraint is a typical

elliptic boundary condition, whereas imposing the constant horizon temperature Gρ
χ

constraint involves ‘less local’ tangential derivatives on the horizon. Now we have
sufficient data to impose both constraints globally via the CR problem. Since at
the horizon Ψ = 0, Φ has a Neumann condition there, and it is zero on all other
boundaries. Hence it will be zero everywhere, as it obeys the Laplace equation. The
CR relations then imply that Ψ is constant, and it must be zero, as it was imposed
to be zero on the horizon.

2.4. How ρ0 specifies the size of the black hole

Taking A,B, C → 0 asymptotically, and thus the asymptotic compactification
radius to be L = π, there must be one constant entering the boundary data that
specifies the size, or the mass of the black hole. Intuitively one would imagine this
to be ρ0 as this certainly enters into the boundary data at the horizon, in Eqs. (12)
and (14).

To confirm this, we must demonstrate that ρ0 is a physical quantity, not sim-
ply a coordinate artifact. Thus we must show that there is no residual coordinate
transformation (i.e. conformal transformation on ρ and χ) that preserves the rect-
angular boundaries, the conditions on these boundaries, and the asymptotic radius
of compactification, but changes the effective ρ0 in the new coordinates. If this were
the case, ρ0 would not correspond to a physical parameter, and therefore could not
specify the size of the black hole, which certainly is a physical parameter.

Let us suppose we have a black hole solution with a particular ρ0. Now let
us construct the most general coordinate transformation that simply preserves the
rectangular boundaries. We construct new coordinates as ρ → ρ̃ = ρ̃(ρ, χ) and χ →
χ̃ = χ̃(ρ, χ), and then must solve a CR problem to build the conformal coordinate
transformation. Let us do this by specifying data for the Laplace equation that
determines χ̃. For the boundaries to remain rectangular, we must specify a constant
χ̃ = χ̃0 on the χ = 0 boundary and constant χ̃ = χ̃π/2 on the χ = π/2 boundary. At
the horizon, we must specify a Neumann condition on χ̃ and then the CR equations
guarantee that ρ̃ is constant there. Regular asymptotics then give the unique solution

χ̃ = χ̃0 +
(
χ̃π/2 − χ̃0

) χ

π/2
. (15)

This solution now completely determines ρ̃ up to a further constant of integration.
Now that we have the general transform preserving the rectangular boundaries,

let us further restrict it by making it preserve our boundary conditions. Firstly,
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since χ̃0 does not enter into any equation or boundary condition, we may freely set
it to zero. Secondly, since we have selected A,B, C → 0 asymptotically, we require
χ̃ = π/2 on the χ = π/2 boundary if we are not to change the compactification
radius L = π. Thus now, χ̃ = χ. This implies from the CR relations,

ρ̃ = δρ0 + ρ, (16)

where δρ0 is a constant of integration.
However there is a subtle point. Whilst ρ0 only enters the boundary conditions

explicitly at the horizon, the boundaries conditions change on the χ = π/2 axis
for ρ > 0 (where C has a Neumann condition imposed) to ρ < 0 (where C = 0 is
imposed). Since we have fixed this transition of the boundary conditions to occur
at ρ = 0 in the new coordinates, this will occur at ρ̃0 = δρ0. Hence, the trans-
formed solution will not satisfy∗) the boundary conditions in the new coordinates
where this transition now occurs at ρ̃ = 0. Thus, due to our fixing the transition
from the symmetry axis to periodic boundary at ρ = 0, there are no residual coor-
dinate transformations mapping solutions with horizon position ρ0 to a transformed
solution, solving the boundary conditions but with a different horizon position ρ̃0 in
the new coordinates. Therefore ρ0 does indeed specify the physical size of the black
hole.∗∗)

2.5. Thermodynamic quantities

We compute the temperature T and entropy S of the black hole solutions. These
are given as

T =
1
2π

3eA−B+C

25/3
√

J
|ρ=ρ0 ,

S =
1
4

[
2e4Bbg

∫
dΩ3

∫ π/2

0
dχ

√
Jr3e4B+C

]
ρ=ρ0

. (17)

∗) Note that if the physical solution had C = 0 and C,χ = 0 on the entire χ = π/2 boundary,

then ρ0 would not specify the solution. As discussed the constraints ensure that whilst we only

impose C = 0, C also satisfies a Neumann condition on the symmetry axis, ρ < 0 and χ = π/2.

However, for ρ > 0 on the periodic boundary, we only impose a Neumann condition and there is

no reason why C would vanish there too. Indeed in the solutions we find C does not vanish there,

although it is very small.
∗∗) It is interesting to note that the horizon must have spherical topology for this argument to

work. If we were considering a string horizon, and thus chose ρ0 > 0, then the boundary conditions

would simply be Neumann all along the χ = π/2 boundary, and the new transformed solution in the

ρ̃, χ̃ coordinates would satisfy all our boundary conditions, but with a different value of ρ̃0 (�= ρ0)

on the horizon. It is for this rather subtle reason that the boundary conditions in the non-uniform

string case of Ref. 12) must be imposed differently, using the Gρ
χ constraint equation on the horizon

(rather than (Gρ
ρ−Gχ

χ) as we use here) which, being a tangential condition, rather than a condition

on the normal derivatives, introduces a new integration constant that parameterises the mass (or

equivalently λ) for the string solution. The fact that this is a tangential condition appears to make

the algorithm ‘less local’ and to require considerable under-relaxation, whereas here we do not need

this. However, here while we need not damp the relaxation, the exposed ρ < 0 symmetry axis does

lead to the coordinate singularity induced stability problems discussed above.
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The mass may be computed by two independent methods. Firstly we may determine
the mass from the asymptotics of the metric as

M =
πL

4
(−3a2 − b2 + c2) , (18)

using the expansions (11).54) Secondly the mass may be determined by integration
from the First Law, using dM/dρ0 = T (ρ0)dS/dρ0 (which applies for fixed asymp-
totic compactification radius — see below) along the branch of solutions, and taking
M = 0 for ρ0 → −∞ to define the integration constant. Later (see Fig. 9) we see
very good agreement between these two values. This is a good indication that the
elliptic equations are well satisfied globally and the boundary conditions are imposed
correctly. An important point is that the First Law does not test whether the con-
straint equations Gr

z, (G
r
r − Gz

z) are satisfied, and we elaborate on this point in
Appendix C. Since we completely relax the elliptic equations, it is then not terribly
surprising that the First Law holds very well. What is absolutely essential is that
the constraints are also checked, to ensure they are well satisfied. They indeed are,
as seen from the tests outlined in Appendix B.

Since the black hole geometries are compactified, the mass is not the only asymp-
totic charge. This feature, shared more generally by branes, was originally discussed
in Ref. 55), and more recently in relation to the black hole/black string problem
in Refs. 26)–28). It is easy to see there must be another charge. As the geometry
becomes homogeneous at large distances from the symmetry axis, it can be dimen-
sionally reduced to Einstein-dilaton-Maxwell theory. For our regular static solutions,
the Maxwell vector can always be gauged away, but we are left with gravity and the
dilaton scalar, indicating that we should consider not only an asymptotic mass, but
also a scalar charge.

From a purely 6-dimensional point of view, the second charge can be thought of
as a binding energy per unit mass, n, resulting in a modified First Law,

dM = T dS + nM
dL

L
, (19)

with the new term representing the work done when varying the asymptotic size of
the extra dimension. In our solutions, fixing L we reproduce the usual form of the
First Law for black holes. However, we may determine n from the asymptotics of
the metric, or from the Smarr relation,

TS =
3 − n

4
M, (20)

again discussed in Ref. 55), and given explicitly for the problem at hand in Refs. 26)
and 27), where n was calculated from the asymptotics to be

n =
a2 + 3 b2 − 3 c2

3 a2 + b2 − c2
. (21)

As emphasised in Ref. 27) we may use the Smarr formula as a check of our numerics.
This is very similar to the First Law check discussed above, which only involves the
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mass, whereas Smarr’s law involves both M and n. It is important to note that for
the same reasons the First Law does not probe the constraint equations, the Smarr
formula also does not. Thus again it is no replacement for the checking of constraint
equation violations we perform in Appendix B.

2.6. Behaviour of the method

Following the above method, we may construct a unique numerical solution
for each value of ρ0. The elliptic equations can be solved very stably, once the
coordinate induced instability at the axis is dealt with (see Appendix A). Since
we have designed the coordinates and method to have A,B, C → 0 in the small
black hole limit ρ0 → −∞, the method behaves well in this limit. As the black hole
becomes larger, so that ρ0 is finite and negative, A,B and C deviate away from zero,
although they remain regular as we expect. The topology of the ρ coordinate dictates
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Fig. 3. Plots of the metric functions A, B and C for a black hole solution with ρ0 = −0.28. This

is quite near to the maximal size (ρ0 = −0.18) that we are able to construct before we become

limited by gradients and lattice resolution near the symmetry axis at χ = π/2 for ρ < 0. Already

this black hole solution has a horizon volume and mass that are equal to those of the most non-

uniform strings compactified on the same asymptotic radius. Whilst the lattice is large, being

140 × 420 in χ, ρ, since ρ0 is very close to zero the number of points along the symmetry axis

is only around ∼ 20. This is still enough to see good behaviour in the metric functions. Note

that B and C are much less than A in magnitude. The maximum ρ for the lattice is ∼ 5, and

not all the domain is shown as the functions simply go smoothly to zero at large ρ.
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ρ0 = 0 is the largest black hole that could exist. Using reasonable resolutions (up to
∼ 140× 420), we were able to find solutions with a maximum ρ0 � −0.18, yielding a
black hole horizon with typical radius comparable to the asymptotic compactification
radius. As an example we show the metric functions A,B and C for ρ0 = −0.28
in Fig. 3. Note that the magnitude of C is much less than that of A and B, and
this is increasingly true the smaller the black hole. Hence the spatial sections are
approximately conformally flat.

The larger the black hole is, the larger the gradients in the metric functions,
and for a fixed resolution the method no longer converges past a certain black hole
size. Going to a higher resolution we find the problem is removed, and the size
can be further increased, but obviously the problem then reappears at a new larger
size. The key area where we lack resolution is near the symmetry axis. For the
large black holes, with ρ0 closer to zero, there become fewer and fewer points there.
With the maximum size we could find, ρ0 = −0.18, so the coordinate distance of
the symmetry axis is 0.18, compared to the coordinate distance along the horizon
which is π/2 ∼ 1.6, and hence with our simple discretization scheme (see Appendix
A for details) the axis is allocated far fewer points. The closer ρ0 gets to zero, the
more acute this problem. Thus in our simple numerical implementation, we are
limited by resolution, and hence computation time. We present results in this paper
obtained using modest resources and simple relaxation algorithms. It is likely that
with improvements in both areas one can achieve far improved data. For example,
adaptive grid methods may allow us to circumvent the lack of resolution near the
symmetry axis, but it is a serious challenge to implement these and maintain a stable
relaxation algorithm. However, already with our simple implementation it is possible
to derive interesting physical results as we shall see.

§3. Results

The questions we wish to address are whether there is an upper mass limit
for these solutions, and whether the geometry is compatible with continuation to
the non-uniform string branch. Whilst ρ0 = 0 is the largest black hole due to the
topology of the (ρ, χ) coordinate system, obviously the metric functions A,B and
C may diverge in this limit, and consequently so might the horizon volume and
mass, and thus a priori we have no reason to assume such an upper mass limit will
exist. On physical grounds, one could argue that a black hole would not be able to
‘fit’ into the compact extra dimension, but we stress that in the unstabilised pure
Kaluza-Klein theory it is only the asymptotic radius we have fixed for the branch of
solutions, and there is nothing to prevent the geometry along the axis and horizon
from decompactifying as the black hole becomes larger.

3.1. Horizon geometry

In order to approach these questions we embed the spatial horizon geometry into
5-dimensional Euclidean space,

ds2 = dX2 + dY 2 + Y 2dΩ2
(3). (22)
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Then, matching our geometry at ρ = ρ0 implies that

Y (χ) = r eβ+ 2
3
γ |ρ=ρ0 ,

X(χ) =
∫ χ

0
dχ′

√[
J(χ′) e2(β−γ)(χ′) − (Y,χ′)2

]
ρ=ρ0

, (23)

and we interpolate the numerical data to perform the integral. Clearly for small
black holes, we expect a spherical horizon, and for larger black hole, we expect
deformation. We find excellent agreement with the horizon being a prolate ellipsoid
for all our solutions up to the maximum size available ρ0 = −0.18. In Fig. 4 we plot a
moderate and a large black hole to demonstrate the accuracy of the ellipsoid fit. We
plot the positions of the actual lattice points in the embedding coordinates, X and
Y , for our highest resolution, and against these we plot the fitting ellipse, and note
that all the points fall consistently on the fit curve. Thus from now on it is easier
for us to characterise the geometry using the major (polar) and minor (equatorial)
axis radii, which we term Rpolar and Req. Then using this elliptical fit we plot the
ellipse radii and ellipticity,

ε =
Req

Rpolar
, (24)

against ρ0 for all our solutions in Fig. 5. We see that for the largest black holes the
ellipticity decreases to only ∼ 0.87, even though the ellipsoid radius Rpolar increases
to ∼ 1.5, which is approximately the size of the asymptotic compactification half-
period L/2 = π/2. Thus it is clear from the prolateness and lack of deformation that
the geometry around the symmetry axis is decompactifying.

We now wish to characterise this decompactification. In Fig. 6, we plot a selec-
tion of black hole embeddings, now including the embedding of the symmetry axis
to show its proper length. Note that we only show half of the full period, and thus
reflecting the horizon and axis about X = 0 generates the full compact period. The
asymptotic compactification radius for half the period is L/2 = π/2 here. We term
the length of the axis for half the period, Laxis, and it is given by

Laxis =
∫ 0

ρ0

dρJeβ−γ |χ=π/2 . (25)

We see that Laxis decreases in these figures for larger black holes, but the horizon
radii increase more rapidly, resulting in an overall decompactification. In Fig. 7 we
show the maximum value of the embedding coordinate X to contain half a period of
both the horizon and the symmetry axis,

Xmax = X(π/2) + Laxis, (26)

which is essentially the same as (Rpolar + Laxis) since the ellipse is such a good fit
to the horizon geometry. We take this quantity to be the physically relevant (and
coordinate invariant) measure of the compactification length near the axis.

These plots clearly show the axis decompactifying. Since we are only able to
‘grow’ black holes to ρ0 = −0.18, it is unclear whether; i) there exists a maximal
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Fig. 4. Embedding of horizons into Euclidean space for a moderate black hole on the left, with

ρ0 = −0.71, and the maximal black hole on the right with ρ = −0.18. Whilst we interpolate

the numerical functions to determine the embedding, we plot here the actual positions of the

lattice points for our highest resolution to give an indication of how the resolution varies with

position on the horizon. For all the solutions, we may fit a prolate ellipsoid to the horizon, the

dashed line, and in all cases we find perfect agreement.
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Fig. 5. On the left we plot the equatorial and polar radii of the ellipses fitted to the horizon

embeddings, against the parameter ρ0 specifying the size of the black hole. It is unclear what

happens in the limit ρ0 → 0 where the ρ coordinate changes topology. It would be very

interesting to know if Req, Rpolar remain finite or not, and thus whether there is a maximum

mass black hole or not. Since the geometry near the axis and horizon decompactifies, even

though the largest black holes found have radii comparable to the corresponding asymptotic

half period distance L/2 = π/2, the horizons are still quite spherical. We plot the ratio of the

radii in the right-hand diagram. Again it is unclear what will occur in the limit ρ0 → 0.

mass black hole, or ii) whether the decompactification continues in such a way that
arbitrarily large black holes may exist, e.g. with Laxis → 0 or a constant in the limit
of infinite mass. If there were a maximum mass, it seems likely from the figures that
ρ0 can still be increased some way more before we would expect to reach it.

3.2. Comparison with non-uniform strings

We now compare these geometries with those of the critical uniform string
(λ = 0), and the most non-uniform strings (λ � 4) found in Ref. 12), rescaling
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Fig. 6. We show both the embedding of the horizon, and also the symmetry axis for various solutions

ranging up to the largest black hole found. These embeddings are for half a period, and should

be reflected about X = 0 to obtain the full geometry. The asymptotic radius of this half

period is L/2 = π/2. We clearly see that the total space taken up by the solutions in the

embedding X coordinate grows as the black hole increases in size, despite the fact that the

symmetry axis decreases in length, indicating that the overall geometry near the horizon and

axis decompactifies. We also see that even the largest black hole still appears to have considerable

‘room’ to increase its size still further.

the asymptotic radius appropriately, and defining λ as in that paper,

λ =
1
2

(
Rmax

Rmin
− 1

)
, (27)

where Rmax,min are the maximum and minimum horizon radii, respectively. Whilst
λ = 3.9 was the most non-uniform string found there, the geometry and also thermo-
dynamic quantities M, T and S appear to asymptote for large λ (see also Ref. 29))
and thus the λ → ∞ values are expected to be very similar to those at λ � 4,
probably only differing by a few percent. Strong evidence for this comes from the
realization that a conical geometry forms at large λ, as tested in Ref. 30). Once λ
is relatively large, say λ ∼ 2, only the geometry near the string ‘waist’ appears to
change with increasing λ as the cone forms. With the rescaling so that the asymp-
totic radius for one period of the solution is L = π, we find the following values,

Critical string Rmax,λ=0 = 0.64,

Xmax,λ=0 =
π

2
,

Mλ=0 = 1.47,

Tλ=0 = 0.250,



Properties of Kaluza-Klein Black Holes 493

�-1.5 �-1 �-0.5 0
1.4

1.6

1.8

2

2.2

2.4

2.6
Xmax

L/2
ρ0

Fig. 7. Plot showing Xmax, the ‘length’ taken up by half the horizon and the symmetry axis when

embedding into Euclidean space. This quantity offers a physical and coordinate invariant mea-

sure of the radius of compactification near the horizon. We see that as the black hole grows

with increasing ρ0, the axis decompactifies considerably. Again, it is unclear what happens in

the ρ0 → 0 limit.

Sλ=0 = 3.99.

Highly non-uniform string Rmax,λ=3.9 = 1.11,

Xmax,λ=3.9 = 1.91,

Mλ=3.9 = 3.38,

Tλ=3.9 = 0.184,

Sλ=3.9 = 12.94. (28)

Here Rmax,λ is the maximal radius of the horizon, and Xmax,λ is again the maximum
value of X when embedding half a period of the strings into Euclidean space, using
the metric (22) as for the black holes, and taking X = 0 at the maximal radius of
the horizon, so that X = Xmax at the ‘waist’, the minimum radius. Now, there is no
exposed symmetry axis, and therefore Xmax is just the change in X when traversing
the horizon for a half period. As noted in Ref. 29) the proper distance (which is not
equal to the embedding coordinate X) along the horizon increases with λ indicating
that the geometry decompactifies there.

The key observation of this paper is now evident from the previous plots of
the embedded black hole geometry. Already for ρ0 � −0.35 we see the black hole
equatorial radius Req is equal to Rmax for the highly non-uniform string (λ = 3.9),
which as stated above we take to be approximately equal to Rmax in the limit λ → ∞.
As ρ0 increases past this point, the black holes continue to become larger in radius.
In addition we see from Xmax that the geometry along the axis has decompactified
as much as that of the very non-uniform strings for even quite small black holes with
ρ0 � −1.0, and again the trend seems to continue for increasing ρ0 past this point.
The implication is clear, that it seems difficult to imagine black hole solutions making
a transition at ρ0 = 0 via a cone geometry to the most non-uniform strings, as they
simply become ‘bigger’ than the most non-uniform strings already for ρ0 � −0.35.
We may gain more insight into this result in Fig. 8 by plotting the embedding of
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the λ = 3.9 non-uniform string, and the largest black hole relaxed (ρ0 = −0.18)
into Euclidean space, including the symmetry axis of the black hole. Again we note
that with increasing λ past 3.9 we only expect the geometry in the cone region to
change, and thus the geometry of the λ = 3.9 string should be very close to that of
the limiting string at λ = ∞ (see Ref. 29) for curves of Rmax against λ).

Whilst we earlier claimed that resolution becomes limited near the horizon and
axis for large black holes, we find that the values of Req and Rpolar only vary by ∼ 1%
when the resolution is doubled from 70 × 210 to our highest resolution 140 × 420
for the solution with ρ0 � −0.35 that parallels the most non-uniform string horizon
size. The length along the axis Laxis varies only a little more, approximately ∼ 3%.
Thus while decreasing the axis resolution and increasing the black hole size limits
the ability of the algorithm to converge, the resolution is still high enough for the
accuracy of our large black hole solutions to be high. For further comparison of
quantities measured at different resolutions, see Fig. 9 and Appendix A.

Fig. 8. An illustration of the intrinsic geometries of the maximum size black hole found (ρ0 = −0.18)

compared to a highly non-uniform string (λ = 3.9) whose geometry is expected to be very close

to the limiting λ = ∞ solution, with a conical geometry near the waist of the horizon. Only

half a period of the solutions is shown, and for the full geometry one should reflect about

X = 0. Both are taken to have an asymptotic compactification half period L/2 = π/2. We see

immediately that the black hole is simply ‘bigger’ in all aspects. It has a larger equatorial radius,

and including the exposed symmetry axis, it takes up more ‘room’ in the X direction — i.e.

it has decompactified more. Indeed, we also find it has a larger mass and lower temperature.

Furthermore, it looks very much as if we can increase the black hole size further still. The

implication is that the λ = ∞ string solution presumably cannot be connected (through a

conical topology change) to this branch of black hole solutions.



Properties of Kaluza-Klein Black Holes 495

3.3. Thermodynamics

Now we turn to the thermodynamic quantities to see whether our comparison
of the black hole/string horizon intrinsic geometry is paralleled in these independent
observables. We might now reasonably expect the mass of the black holes to become
greater than that of the most non-uniform strings, and the horizon temperature to
become less. In Fig. 9 we plot the temperature, T , and mass M of the black hole
solutions, now against the horizon entropy S. The mass is computed in two ways,
firstly asymptotically from the metric [see Eq. (18)], and secondly by integration
from the First Law. We clearly see very good agreement for these as expected. As
discussed earlier in §2.5, this is a good test of the elliptic equations, but does not
test the constraints which are the really important quantities to check for this elliptic
method, as they are not imposed directly. These constraints are tested explicitly in
Appendix B.

On these plots we also show the same quantities for the non-uniform string
branch up to λ = 3.9. Again we emphasise that the λ = 3.9 point probably lies
very close to the λ = ∞ point on this diagram. Our expectations are confirmed,
with the temperature decreasing, and the mass increasing beyond those for the most
non-uniform strings already by ρ0 � −0.30, and the trend continuing for larger ρ0,
again reflecting the fact that the black holes become ‘bigger’ than the non-uniform
strings. We also plot the behaviour of a 6-dimensional Schwarzschild solution, and
find that since the axis is decompactifying, and as a consequence the black hole
horizon geometry is only slowly deforming from a sphere, the black holes closely
reproduce this Schwarzschild behaviour.

There is one further point we may observe from these plots. The non-uniform
branch presumably terminates at λ = ∞, very close to the λ = 3.9 solutions plotted.
Therefore the whole non-uniform branch of solutions λ = 0 to ∞ appears to lie very
close to the black hole curves both in M and T against S. Since the branches do
not appear to connect, we can think of no particular reason why this should be so,
and presumably it is just an interesting coincidence.

Finally we turn to the last (and truly higher-dimensional) thermodynamic quan-
tity, the binding energy n of our solutions. This turns out to be very small, and thus
prone to numerical error. Referring back to (21) we recall that n is given by a ratio
of asymptotic quantities, with numerator 3 b2 − 3 c2 + a2. In Fig. 10 we plot the
magnitudes of both a term in the numerator, and the numerator itself, and demon-
strate that the numerator is relatively very small, ∼ 10% of the terms making it
up, indicating cancellations occur between the terms. This is a problem numerically
since the asymptotic quantities a2, b2 and c2 are already difficult to measure, and
thus quantities depending on detailed cancellations between them certainly should
not be trusted. A further caveat is that for small black holes both the numerator
and denominator are small, and their ratio is consequently extremely unreliable.
Computing n from the asymptotics, we find its value to be less than ∼ 0.1 for these
solutions, but the errors appear large, and we stress simply that it is small, and we
do not feel we can give its value with certainty here. We may reassure ourselves
that whilst n is ‘noisy’ due to numerical error, this is simply because n is close to
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Fig. 9. Plot showing the black hole temperature T and mass M against entropy S calculated

by Eqs. (17) and (18). Three resolutions for the black holes are used, 36 × 106 (diamond),

70×210 (triangle) and 140×420 (star), and excellent consistency is found. In the figure for the

mass, the dashed line gives the mass computed by integrating the First Law, showing excellent

agreement with the asymptotically measured mass. The solid lines represent the behaviour of a

6-dimensional Schwarzschild solution, and for these black holes, despite the fact that their size

becomes equivalent to the compactification radius, we see little deviation from this. We also

show the same quantities plotted for the non-uniform strings as pink open squares. The dashed

and solid straight lines show the limiting values for λ = 0 and λ → ∞. We include magnifications

of the regions where the non-uniform strings exist. Interestingly, the non-uniform values lie very

close to the black hole curves, although this appears simply to be a coincidence.

vanishing, and Smarr’s law is extremely well satisfied. Also in Fig. 10 we plot the
two sides of the Smarr relation (20), TS and (3−n)M/4, against ρ0. In addition, we
also plot 3M/4, setting n = 0, on the same plot. It is seen to lie so close to the curve
with the actual measured n that it is clear n is quantitatively small, and furthermore
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Fig. 10. (Left) A plot of the magnitude of a term in the numerator of n, the binding energy, and

the magnitude of the numerator itself. We see this numerator is ∼ 10% of the value of one of

its constituent terms, and thus detailed cancellations occur, and the value of n is very small.

Since the asymptotic quantities a2, b2 and c2 are already difficult to compute accurately, we

should not trust a numerical quantity that depends on detailed differences of these, and thus

is very small in comparison. (Right) A plot of the left- (TS as a solid line) and right-hand

((3−n)M/4) as black points) sides of Smarr’s formula, confirming that whilst n is very hard to

determine accurately, Smarr’s formula is very well satisfied by our data. To confirm that n is

indeed extremely small, we show the right-hand side computed with n = 0, i.e. 3M/4 as gray

points, which gives a slightly worse fit, but only marginally.

we cannot currently expect to measure it with any accuracy as argued above. Much
higher precision would be required for this, and thus we leave determining the actual
(small) values of n for a future work.

§4. Discussion and outlook

We have shown that static black holes in pure 6-dimensional gravity compacti-
fied on a circle, i.e. Kaluza-Klein black holes, may be found using elliptic numerical
methods. As expected, for a fixed asymptotic compactification radius, the small
black holes behave as 6-dimensional Schwarzschild solutions. As they grow the ge-
ometry on the axis decompactifies relative to the fixed asymptotic radius, and the
horizon deforms into a prolate ellipsoid. Since we are limited by numerical resolu-
tion, we are currently unable to probe whether the axis decompactifies indefinitely,
and consequently black holes of any mass can be found, or whether instead there is
an upper mass limit for the black holes. This is clearly an interesting issue to resolve
in future work.

The most interesting result we find is that whilst we are only able to compute
black holes whose radii become approximately equal to the asymptotic compactifi-
cation radius, these are already sufficiently large that they are simply ‘bigger’ than
the most non-uniform string solutions constructed in Ref. 12), both in terms of hori-
zon volume and mass. For the largest black hole solutions we found the horizons
are still quite spherical since the axis geometry decompactifies, making ‘room’ for
the horizon. It therefore appears that they should be able to further increase in
size and mass, past the point where we are currently able to construct them, before
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any possible upper mass limit would be reached. Given these results, it therefore
seems rather unlikely that this black hole branch of solutions can merge with the
non-uniform strings via a conical geometry developing in the polar regions of the
horizon, as suggested by Kol.23) This is despite the fact that we have excellent nu-
merical evidence that the highly non-uniform strings do indeed exhibit the required
conical geometry at their waist, which previously lent weight to this conjecture.30)

This is then very interesting geometrically, and raises the obvious question of
whether the static non-uniform string solutions can be continued through the λ → ∞
solution with its conical waist to a new branch of black hole solutions. Obviously
while these would have horizons that do not wrap the extra coordinate, they would
be distinct solutions from those we construct here, and at low mass (if they have
a low mass limit) would presumably not look like the 6-dimensional Schwarzschild
solution.∗) Similarly, if the black hole branch we partially construct here does turn
out to have an upper mass limit, can this branch of solutions be continued through to
a new string solution, distinct from that connected to the Gregory-Laflamme critical
uniform string? We refrain from speculating on these questions (see the recent
paper28) for an interesting discussion of a variety of possibilities), deferring these
issues until improved numerics can be performed that confirm the current results,
and can extend the range of these elliptic methods so that these questions may be
tackled directly. We do make one further general comment here. As we have seen
comparing the work here with the previous work constructing the non-uniform string
solutions,12) the fact that the axis of symmetry is exposed for the black hole solutions
completely changes the boundary conditions imposed on the problem. Thus, without
proof, it would be dangerous to assume that continuation of a branch of solutions
through a topology change in a conical region must always be possible.

Whilst our computations were performed in 6 dimensions, in order to make
contact with previous work constructing the non-uniform strings, it would be good
to check whether the same behaviour occurs in 5 dimensions. Whilst the difference
between 4 dimensions and more than 4 is very large, due to the additional curvature
terms entering the Einstein equations from the rotation group of the axial symmetry,
the difference between 5 and 6 dimensions is simply in the coefficients entering these
equations. Hence, we would be very surprised if the 5 and 6-dimensional systems
behaved qualitatively differently, but to be sure, it would be good to check this point
by constructing non-uniform strings and black hole solutions in 5 dimensions and
comparing them.

Our findings appear to be strongly related to the decompactification of the ge-
ometry near the horizon and axis. The reason the black holes become larger than
the non-uniform strings is because the axis decompactifies making room for them.
Therefore in order to make contact with realistic phenomenology, and thus really
determine whether there are interesting strong gravity effects of compactification, it
is clearly important to consider the problem again, but include some radius stabilis-

∗) For example the non-uniform string branch may join a branch of black holes that then under-

goes additional topology changing, and so in the limit of small mass the horizons are Schwarzschild-

like, but with more than one horizon per compactification period.
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ing mechanism. Presumably, once stabilisation is included, an upper mass limit for
the black holes should be inevitable as the axis cannot decompactify so easily. This
is a sufficiently important phenomenological question that this should be checked
explicitly, rather than just assumed, as if it turned out not to be true, or only to
be true for certain stabilisation mechanisms, this might provide new physical and
observational constraints on compactifications that are totally independent of the
familiar weak field constraints. It may also provide an important testing ground
for the non-linear dynamics of stabilisation mechanisms. Additional matter, such
as is required for stabilisation, simply adds elliptic equations to the problem, and
no further constraints, and thus in principle can be easily incorporated. We note
that, at least with weak stabilisation, the Gregory-Laflamme instability will occur
as usual. Hence non-uniform string solutions will also exist, although of course it is
not obvious that they can be deformed to have a conical region of their horizon as in
the unstabilised case. If they do behave in the same manner as for the unstabilised
theory, and if, since the axis could not decompactify readily, the black holes are
forced to have an upper mass limit at a lower mass than those probed in this paper,
then possibly the topology change to the black hole branch that Kol suggests could
occur after all.
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Appendix A
Numerical Details

As in previous works12), 18), 19) we use a simple Gauss-Seidel method with second
order differencing to relax the elliptic equations. The non-linear source terms are
fixed, the resulting Poisson equations are relaxed, and then the sources are updated
with the new solutions, and the boundary conditions are refreshed. Repeating this,
the elliptic equations are either completely relaxed and we find a solution, or con-
vergence is lost at some point early in the relaxation, and all the metric functions
diverge dramatically, yielding nonsense. We impose the asymptotic boundary at
finite ρ = ρmax which we typically take to be ∼ 5, and thus several multiples of
the half periodic compactification radius L/2 = π/2. In the next appendix we show
data for varying ρmax and demonstrate this has been taken large enough so as to be
irrelevant.
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Essentially all of our numerical problems come from the symmetry axis r = 0.
Firstly, rather than discretising the grid in the ρ, χ coordinates, generically one gains
stability using ρ, ξ with

ξ = 4(χ − π/2)2, (A.1)

since at χ = π/2, all fields are even in (χ− π/2) and therefore linear in ξ. This was
used successfully in a black hole on an RS brane to improve stability.19) However,
even with this modification the algorithm is horribly unstable, and even for the
smallest black holes we find no convergence. The same problem was encountered in
the earliest application of this method.18) When dealing with a spherically symmetric
scalar field φ in polar coordinates, one is very familiar with terms such as 1

r∂rφ in
the equations of motion. Whilst for an elliptic relaxation these look as if they
might destroy convergence, in reality they are not a severe problem, as long as the
Neumann condition on φ is imposed at r = 0. However, the ansatz (1) or (7)
generates more singular terms in the field equations. The exact form of our metric
ansatz (7) guarantees that only one of the elliptic equations is affected, but we find
that in the equation for C, we have

J∆C =
3J

r2

(
e−10C/3 − 1

)
+ · · · , (A.2)

where J∆ = J
(
∂2

r + ∂2
z

)
= (∂2

ρ +∂2
χ). The remaining terms have the more usual 1/r

multiplying derivatives. Obviously the above term is finite as C ∼ r2 near the axis.
However since we do not impose the condition that C behaves quadratically near
the axis, and instead it emerges from a combination of the elliptic equations and the
constraints, during the early stages of the relaxation this term generically destroys
convergence.

We deal with this term as in Ref. 18). The second derivative terms in the
constraint equation Gρ

χ are simply C,ρχ and thus have characteristics compatible
with integrating C over the (ρ, χ) domain. However this equation has no singular
term like that above, and any solution for C integrated away from the r = 0 axis
has very good quadratic behaviour in r near there.∗) Thus using this constraint, we
integrate for C, but call this function C2. Since it has very good properties near
the r axis, we calculate the one singular term in the elliptic equation for C using
C2 rather than C. Whilst this seems circular in nature, and we offer no proof why
this should converge so that C = C2 finally, in practice this does indeed happen,
and the method becomes very stable. Given the characteristics we need two initial
data surfaces, one at constant χ, the other at constant ρ. For χ we fix C2 = C at
χ = π/2, which includes the r = 0 axis for ρ < 0, and this ensures that the quality
of the C2 behaviour is good near the symmetry axis. For the other initial surface
we take the horizon, and fix C2 using the condition (13) (but now for C2) that the

∗) One might imagine using just Gρ
χ and 2 elliptic equations for A and B, but we have been

unable to find a scheme like this that works in practice, due to the non-local nature of the integration

for C.
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horizon temperature is a constant, giving

C2(ρ0, χ) = (B − A) − (B − A)|χ=π/2 +
1
2

log
(

J

J |χ=π/2

)
. (A.3)

As discussed earlier, this condition is not used when solving the elliptic equations,
where we instead use the (Gρ

ρ − Gχ
χ) constraint. However, it gives a more sta-

ble initial boundary condition for the C2 integration than simply setting C2 = C
there directly (which destroys convergence). We then integrate C2 from these two
boundaries by quadrature:

C2 =
∫ ρ

ρ0

dρ

∫ χ

π/2
dχ F (ρ, χ) + C(ρ0, χ) + C(ρ, π/2) . (A.4)

Here, F is the ‘source’ term in the constraint equation.
The reason this method to compute the singular term in the elliptic equation

for C appears to work is that in practice the contribution (e−10C/3 − 1)/r2 is only
significant near the r = 0 axis, and away from there this source term dies away more
quickly than the other terms as it is suppressed by 1/r2. Thus whilst the process
appears very non-local, involving integration over the lattice during the relaxation,
which is not very ‘gentle’ and might destroy convergence, actually it only has an
effect localised at the axis. Furthermore the function C is generically much smaller
than the other metric functions, and therefore C appears to have relatively little
effect on the solution anyway.

Since we do find stable converged solutions we may check that C is equal to C2,
and indeed comparing these globally over our domain is an excellent check that the
constraint equations are enforced. In Fig. 11 we show C and C2 for a black hole
with ρ0 = −0.71, and we see that the difference between the functions is very small
compared to C, and furthermore C is very small compared to A and B. Thus, this
method, whilst appearing rather mysterious, does seem to give very good results in
practice.
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Fig. 11. Plots of the metric functions C and C2 for ρ0 = −0.71. Main error of C2 originates from

the coordinate singularity at ρ = 0, χ = π/2, but its effect for C through the elliptic equation is

small, and the difference of their magnitude is very small compared to C.
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We reconstruct the values of A,B at the coordinate singularity ρ = 0, χ = π/2
(C of course is zero), and since the ρ, χ coordinate system is singular there, it is
easiest to consider this in the non-singular r, z coordinates. Then from the axial
symmetry at r = 0 and the reflection symmetry at z = π/2, the metric functions
have the expansions

A(r, z) = k0 + k1r
2 + k2 (π/2 − z)2 + O(r4, (π/2 − z)4, r2(π/2 − z)2), (A.5)

and similarly for B, and thus using the relation between {r, z} and {ρ, χ}, we may
simply compute how to interpolate the values at the coordinate singularity r = 0, z =
π/2 from the neighbouring points in the ρ, χ grid.

Appendix B
Numerical Checks

We find second order scaling in all physical quantities such as the mass, temper-
ature and entropy. However, the resolutions are sufficiently high that increases yield
very little change in the quantities. Observe the earlier Fig. 9 where we plotted the
thermodynamic quantities for 3 different resolutions, which give extremely similar
results where multiple resolutions may be relaxed. This gives much confidence that
the accuracy of these solutions is high. Certainly our main conclusion is seen in
this figure, that the black holes become larger in mass and entropy than the most
non-uniform strings, and we see this is totally unaffected by changes in resolution.

As discussed in the main text, it is essential to explicitly test that the constraint
equations are well satisfied, as these are not imposed directly, but only via boundary
conditions and the CR relations. For ρ0 = −0.71 we plot in Fig. 12 the weighted
constraints Ψ and Φ. We see that they are suitably small, rising to their maximum
near the symmetry axis or the coordinate singularity. However, it is very difficult
to interpret these constraint violation values in terms of their physical effect. A
nice check that these small violations are sufficiently small that the physics of the
solution is unaffected by them is given in Table I where we show the average values
of the weighted constraints and C2−C (which also gives a measure of how well Gρ

χ

is satisfied) over ρ and χ for three resolutions with different ρ0. As the numerical
resolution is increased, the averaged constraint violation values decrease significantly
(not quite as quickly as second-order scaling, but then our discretisation geometry is
rather complicated, so this would not be expected), indicating that the constraints
become increasingly well satisfied, as we would hope. The geometry and other prop-
erties of the solutions vary very little as the resolution is increased, and thus the
constraint violations must be very small in terms of their physical effect.

In order to assess the absolute physical error in these small constraint violations
globally, we advocate comparing the values of C and C2 shown in the previous
appendix over the whole domain. Since these agree extremely well, this is again
excellent evidence that Gρ

χ is effectively very well satisfied, since C2 is integrated
from this constraint, and C is obviously derived from the elliptic equations. Yet
another physical test we may perform is to compute the horizon temperature as
a function of χ along the horizon. Again, the Gρ

χ constraint should ensure this is
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Fig. 12. Plots of the weighted constraint equations for ρ0 = −0.71.

constant, yet it is the (Gρ
ρ−Gχ

χ) constraint that we actually impose at the horizon for
the elliptic equations. Thus if Gρ

χ is well satisfied, then the CR constraint structure is
working well. In Fig. 13 we plot the maximum variation, δTerror = (Tmax − Tmin) /T ,
of the temperature with respect to variation in ρ0 for our highest resolution, and two
lower resolutions. These variations are small, implying the constraints are indeed well
satisfied. Furthermore they decrease very nicely with increasing resolution indicating
that the constraints behave well numerically, and are free from systematic violations.
We find maximum variation for the largest black holes, as expected as gradients build
up near the horizon at χ = π/2 due to the limited resolution at the axis. However
the variation is still only ∼ 1% for the largest black hole we relaxed.

In Table II we show the temperature, entropy and mass for a black hole us-
ing different ρmax. We see these quantities (and indeed all others) hardly change,
indicating that our choice of ρmax is sufficiently large.

Table I. This table shows averaged violations of the weighted constraint equations and C2−C for

three resolutions and three different black holes. The average of the absolute values is taken

over the whole domain.

〈|Ψ |〉 〈|Φ|〉 〈|C2 − C|〉
ρ0 = −1.1

140 × 420 4.3 × 10−5 2.9 × 10−6 1.0 × 10−5

70 × 210 6.6 × 10−5 7.2 × 10−6 3.1 × 10−5

35 × 105 1.5 × 10−4 1.8 × 10−5 8.6 × 10−5

ρ0 = −0.71

140 × 420 1.8 × 10−4 1.6 × 10−5 3.6 × 10−5

70 × 210 2.6 × 10−4 3.2 × 10−5 8.6 × 10−5

35 × 105 5.1 × 10−4 5.2 × 10−5 1.7 × 10−4

ρ0 = −0.36

140 × 420 7.1 × 10−4 1.0 × 10−4 2.2 × 10−4

70 × 210 1.2 × 10−3 2.1 × 10−4 4.3 × 10−4

35 × 105 — — —
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Fig. 13. Plot showing the variation of the temperature on the horizon, δTerror = (Tmax − Tmin) /T ,

for three resolutions: our maximum 140×420 (star), and two lower resolutions, 70×210 (triangle)

and 36 × 106 (square).

Table II. This table shows the variations of the temperature, entropy and asymptotic mass for a

black hole with ρ0 = −0.36 using different ρmax. The variation of the quantities is defined as

δT /T = 1 − T /Tρmax=5.7, dividing by T for ρmax = 5.7.

70 × 210 |δT /T | |δS/S| |δM/M |
ρmax = 4.6 3.5 × 10−4 1.3 × 10−3 1.1 × 10−2

2.5 3.6 × 10−3 1.9 × 10−2 9.3 × 10−2

1.4 5.1 × 10−2 1.8 × 10−1 4.0 × 10−1

Appendix C
Demonstration That First Law Does Not Test the Constraints

In this brief appendix we demonstrate our claim that deriving the asymptotic
mass by integrating the First Law dM = T dS along our branch of numerical solutions
(for fixed asymptotic radius) does not test whether the constraint equations are
satisfied. This is also true for the related Smarr law. Thus while it is useful to check
that the First Law is satisfied, as it checks the elliptic equations are well satisfied and
have boundary conditions imposed compatibly with their regular singular behaviour,
we should not be lulled into a false sense of security. We satisfy the elliptic equations
directly in this relaxation method, and to high accuracy, whereas the constraint
equations are imposed indirectly, via the boundary conditions. Hence these are the
equations we should worry may have numerical errors, and it is crucial to separately
check these, as was done in the previous appendix.

The First Law can be classically derived, e.g. as in Ref. 56). Here we simply
sketch the derivation, considering which components of the Einstein tensor are in-
volved, and therefore which can be numerically tested by the First Law. Consider
the expression

S̃(gµν) =
∫
M

d6x
√
−gR(gµν) (C.1)

for a manifold M with metric gµν . This is not the action, since for the action we
must subtract the Gibbons-Hawking term at the boundaries δM. Clearly S̃ (unlike
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the true action) vanishes for any solution of the equations of motion, as the Ricci
scalar will always vanish locally.

The First Law can be derived in our static case by considering gµν = g
(0)
µν +δgµν ,

where g
(0)
µν is a static solution of the Einstein equations, and the perturbation δgµν

also satisfies the static linearised perturbation equations. Thus, S̃ vanishes when
evaluated on both g(0) and g. However, in the usual way we can write,

S̃(gαβ)−S̃(g(0)
αβ ) =

∫
M

d6x

√
−g(0)Gµν(g(0)

αβ )δgµν+[Vµνδg
µν + Wµν∂nδgµν ]δM+O(δg2),

(C.2)
where ∂n is the derivative normal to the boundary, and V, W give boundary terms
that arise to eliminate derivatives of δg in the integral term. Since the first 3 terms
all vanish, we are left simply with the boundary terms, and these give rise to the First
Law, linearised in δg, when evaluated on the horizon and asymptotically. However,
let us now consider the above in our numerical context. If numerically we see that
the First Law is well satisfied, does this imply all the Einstein equations, both elliptic
and constraints, are therefore well satisfied?

Naively it appears that indeed they are. From the terms S̃(gµν) and S̃(g(0)
µν )

we test the weighted average of the Ricci scalars, R(g) and R(g(0)), and from the
linear variation term we test a weighted average of Gµν(g(0)). However, given that
our metric (1) is diagonal, and furthermore, our perturbation δg is therefore also
diagonal, these three terms then only test the diagonal components of the Einstein
tensor. Thus these weighted integrals simply do not involve the Gr

z Einstein equation
(or equivalently Gρ

χ). Even worse, due to the conformal invariance of the r, z (or
equivalently f, g) block of the metric, the perturbation is restricted such that δgrr =
δgzz, and therefore the integrals also do not involve (Gr

r − Gz
z) (or equivalently

(Gρ
ρ − Gχ

χ)).
Now it is clear that if we take any solution of the elliptic equations, g̃(0), com-

pletely ignoring the constraints, and perturb this by δg̃ which again only satisfies
the static linearised elliptic equations, we can perform exactly the same manipula-
tions to obtain the above equation, and consequently the usual First Law. Hence
for ‘solutions’ obeying only the elliptic equations we would still see that the First
Law being well observed, even though we made no attempt to satisfy the constraint
equations.

Thus, our specific form of the metric exactly ensures that the Einstein equations
that are the ‘constraints’ in this elliptic context, Gr

z and (Gr
r − Gz

z), do not affect
the First Law, even if they are not satisfied due to numerical error. For exactly the
same reasons, the closely related Smarr law also has no dependence on the constraint
equations, when using our metric choice, and similarly cannot provide a numerical
test of the constraints.
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