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ABSTRACT

Legendre expansions whose coefficients are thoze of a
geries of Stieltjes are considered. It is shown that the analy-
ticity domain of a function defined by such an expansion is the
cut plane and that sequences of approximants may be defined which
converges to the funetion in this domain, with each approximant
deterwined from a finite number of coefficients in the expansion.
These approximants are related te the 7Padé approxzimante of the
corresponding serizs of Stieltjes,

It is ghown that 1if +the coefficients satisfy a
"Froissari-Gribov" type representation with positive weight, then
they are also coefficients of series of Stieltjes. It follows
that the above results may be applied to the TW-Tr scattering
amplitude A(S,t) for certain states when Og s& 4. In particu-
lar the approximation of A(s,t} in the complex % plane, when
orly the first few pariial waves a Q(s) are known, iz discuassed
and also considered is the interpolation of the ap (s) for non-
integer t « Another consequence is that the aer(s) satisfy an

infinite set of determinantal inequalities when Ogs 4.
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1. INTRODUCTICHN

It is well known that the analytic properties of the

Legendre series

() = Z £ P

1)

are related ° to those of the corresponding power serieg

(141)

=2 n
@=L {.t ,
3 ) o n 3) X (1.2)
For example, if the radius of convergence of g(z) s r =0 that

B sup “‘nl‘h =T (1.3)

and if 91, then the Legendre serics f(z) coaverges in an ellipse

with foci at +1 and -1 and with semi-najor axes %(r+1/r).

1)

Also for =z in this ellipse f(z) hag the reprcsentation

T

fa) = L 1ql3-30) ") de (1.0

This iz arn important relation in that it allows cne to conneet the
probiem of the analytic continuatior of the Legendre expansion f(z)
cutside 1ts ellipsc of convergence to the corresponding problem of
analytically continuing the power series g(z) outside its ecircle

of convergence,

We will investigate in this paper the problem of analytical-
2
1y conitinuing f(z) when g(z) iz a series of Stleltjes °

The coefficients fn are then given by

e
{'ﬂ = [ “"thtu) ,(n=o,|,z'”m} (1.5)
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Where ﬂ(u) ig a bounded non-decreasing function taking infinitely

nany values and r 1is the radius of convergence of g(z).

In thisz case g(z) can be analytically continued to all

z 1in the complex plane cut from -r to -m» and has the represent-

b

dbiu)
a('ﬁ) J T*%—)— (1.6)

Even if r=0 so that the upper limits of the integrals in (1.5)

ation

and (1a6} are o, (106) gtill gives the definition of a function
which i1s analytic in the complex plane cut from C to -mw . This
function is formally equivalent to the power series (1.2) in the
sense that the latter may bhe obtained by expanding (TJruz:\_1 uwhder
the integral in (1.6) in powers of =z and then making the illegal

)
interchange of summation and integration 3’.

We will show in Section 2 that the Legendre expansion
f(z) has closely analogous properties when the fIl again have the
representation (1.5). For instance, we will prove that when 131,
f(z) can be continued ocutside its ellipse of convergence %o the
whole complex =z plane cut from &F{(r+1/r) to ®. For Og¢r (1
the Tegendre expansion (101) does not converge for amy 2. However,
we will be able to prove, as for the power series, that a funcfion
f(z} can he defined which is formally egquivalent to (101) in some
gense, and that this function iz analytic in the whole complex 2z

plane cut from 1 +o @.

The next topic we consider is the approximation of the
Legendre expansion f(z) where the first few of the coefficients

fn are kuown. We will define approximants to T(z) by using

1
approximations to g(z) 1in (1.4). When g(zW is a geries of

Fi

Stieltjes, an exlremely powerful method of approximation is that
due to Padé 4). The [ﬁ,N#iI Padé epproximant is defined in terms

of the coefficients f05f1,ono,f ag is described in Appendix 1

2N+
and for serieg of Stieltjes the following counvergence thecorem holds.



Theorem 1

It g(z) in a series of Stieltjes with radius of convergence

r»0 so that the coefficients fn have the representation (1.5},
the sequence !ﬁ}N+i] for Jp -1, converges as N-om +to the
anglytic function

r dpw

o Gwuw 3)
for all 2z in the complex plare cut from -r +to -m. The
theorem holds when T =0 =50 long as

Z“'; (_}n)-’/cznn)

. nip
diverges. LBoughly speaking one needs j;F‘G(En)I with C

independent of Iﬂa

We show in Section 3 that an analogous sequence [ .(z)

N,
of approximants to the Legendre szries f(z) may be deTired by
using a generalization of the Padé method 5)’6). The epproximant

f .(z) is determined, like the [ﬁ,N+i] Padé approximant, from

N,
the coefficients T f1,nno,f and sequences of the fN j(z)
¥

0’ oN+3?
will be shown to converge to f{z) for all z in the aralyticity

domain of f(z).

Another importanit property of the Padé approximants [ﬁ,N+i]
to a series of Stieltjes is that, given the coefficients fO,fT,oo-

oowsT needed to construect it, upper bounds can be obtained on

2N
the errcor between ET,I‘Hj] and g(z) for =z»0C. This result has
been extended by the author T) for the cage when r»0 to all =z

8)

to 2z in the whole complex plane cut from -r 1to -@. Analogous

in the cirele of convergence of z(z) and more recently by Baker

results hold in principle for the approximants fN j{z) and the
*
error between them and f(z), ag Tollowg from the representation

(1.4) for f(z).

It may be thought that the properties of the Legendre ex-~
pansion f(z) dizcuszed above are only of mathematical interest,

but it will become obvious from Section 4 that this is not the case.
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We congider there the gituation when the fn have the representfation

4,. = ‘1"1": a'[ Qn (x) d'q/'fl)’na 0. (1.7)

with X5 »1 and where Qn(x) are Legendre funetions of the second
kind. We will prove that if \P“(X) is a real bounded non-deecreasing
funection of x, then the £, are coefficients of series of Stieltjes
with representation (1.5) and we obtain an explicit expression for

the @{u) in (1.5) in terms of W {x). The mathematical results of
the previous sections can therefore be applied to the Legendre ex-

pansion f(z) in this case.

The peossibility of a physical application of our results is
now seen since the form (T.T) ig closely related t¢ the Froissart-
Gribov representation of partial-wave amplitudes for particle scat-
tering, and f(z) would then correspond to the total scattering

amplitude.

Making use of thig connection we apply our results in
Section © to two examples of T T scattering. For scattering in
certain isotopic spin states which will be desecribed later the partial
wave amplitudes at (s) with E =2,4,6,..0, have a representatign
like (1.7) with yr (x) bounded and non-decreasing when 0¢s¢4 ).
This property of the a Q(S) ig rigorous in that 14 ig)a conseguence

of analyticity obtainable from axiomatic field theory combined

with unitarity and crossing.

The a Q(S) then have representationsz like (1.5) from
Section 4, and it follows that there are an infinite set of determi-~
nantal inequalities between them for the above wvalues of E and s.
Crice agalr we see the strong constraints placed on the T 7w ampli-
tudes by the requirements of analyticity, unitarity and crossing 10).

*
) We use s, 1, u 12 denots the usuzl Mandelstam varisbles

throuvghcut this paper.
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In the lagt part of Section 5, we illustrate the resuits of
Section 3 concerning the properties of the approximants fN,j(Z) by
considering a gimple numerical example. We assume that the amplitudes
32(5) and a4(s) are given and thon constrict the approximant
fq’o(z) in terms of them. It is shown how hounds are obtained on the
error between f1,0(z) and f(z), and numericzal results are given

in Table 1.

Finally we investigate in Section 6 the protlem of inter-
polating the partial wave amplitudes aE (s) for non-integer values
of B when O &g ¢4. We use a methcd described by Basdevanit, Begeis
and Zinn-Justin i to obtair approximate interpeolating funections when
“the first few a (s) with P =244y4+. are given. It follows from
the represcentation (1.5 satisfizd by the a,t(s), that gequences
of these approximants may be lefined which converge to the unigue

2
gxuct Interpolation for a.e(s} 12) when Re-@? Z. T

1

nese propertiee
are illustrated by a simple numerical example where only a knowledge
of a,(s) and
Takle 2.

ured and the results are pregsnted in

o

as:

T

34(5) i
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THE ANATLYTIC CONTINUATION OF THE LECENIRE EXPANSION

As stated in the Introduction, the Legendre expansion
f(z} given in (1.1) converges ipside an ellipse with foel at 41 and
-1 ard with semi-major axis %(r+1/r) when the corresponding power
gerlies g(z) given in (1.2) has radius of counvergence r »1. f(z)
ig an analytic function of 2z 1in the ellipse with the representation

Eq. (1.471:

J'L3)=‘ J 3[ 3 - (32-4) cos v dv.

The apparent cut in f£(z) due to the term (z —1)2 is removed by
the 1ntegratlon over v, and for convenience we take the branch of

(z —1)2 in {1.4) to be that which is positive when z 1.

We now state and prove a theorem which gives the analytic

behaviour of f(z) when g(z) is a series of Stieltjes.
Theorem 2

If the coefficients £, in the definition (1.1) of £(z)
are those of a series of Stieltjes with radius of convergence
ry»l, then f(z) can be continued analytically outside its
ellipse of convergence to the whole complex plane cut from

(r+1/r) to .
Eroof
With the prescribed conditions on the £, g(z) has the

representation, [Eq. (1.61]:

Ye

- doW
33)= ]. (+uz)
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and is therefore analytic in the complex plane cut from -r to -w.,
The right-hand side of (1.4) is then analytiec for all =z for which
_z-(zz——‘l)%cosv does not lie on the cut -r to - when O gvgmw »
We now prove, using a geometric method *), that the domain of 2z for
which this condition is satisfied is the whole complex plane cut from
2(r+1/7) to +m .
1

As v rung from O to T, w =—zz(22-1)5005'v runs
O==-z—(22—1)§ to w1:=—z+(z2-1)§=
=1/wOo Let P correspond to the former point and P! +to the latter

along the gtraight line joining w

peint and let @ and Q' be their respective reflections in the
imaginary axis as indicated in Fig. 7. The lines PQ' and P'Q

pass through the origin 0 and

' !
OP.0Q = oP.oP'=1=0¢.0P =0A.0B (2.1)
where A and 3B are the points where the circle of unit radius and

centre the origin meets the real axis.

The points P, 4, P', Q, B and Q! therefore all lie
on a cirele whose centre is on the imaginary axis. The chord PP!
intersects the chord AR at the point C which must lie inside this
circle because of the relative ordering of P, 4, P' and B round
the circumference of the ¢ircle. Hence PP' does not cut the real
axis between w=-r and - and therefore -z—(22-1)%605‘v does

not lie on the cut of g(w) when QOgvEW -

The above argument holds for P in any guadrant and off
the real axis but cannct be used when - gz -1 z2nd +1 4 z‘%(r+1/r)
since P and P' are then both on the real axis. It is however

gimple to verify that PP' has no point in common with the cuf from

' We would like to thank Dr. A. Martin for suggesting this
method of proof.



We have proved that when 2z i1is in the whole complex plane
cut from %(r+1/r) to +®, then w::—z—(22—1)5005'v does not lie
on the cut of g(w) for all Ogvg W. Hence f(z) defined by

(1.4) 1s an analytic function for these same values of =z as regquired.

When O gr4&1 +the Legendre expansion (1.1) exists only in
a formal sense, but the function f(z) defined by (1.4) 8till exists

and is analytic for 2z 1in a deomain given by the following theorem,
Theorem 3

If the cocefficients fn in the Legendre expansion £(z)
are those of a series of Stieltjes g{(z) with radius of con-
vergence O&£r' 41, then the representation (1.4) for f£(z)
ig an analytic function of 2z in the whole complex plane cut

from 1 %0 @.
Proof

When O «<r'«L£1 the power series g(z) can be continued
analytiecally to the whole complex =z plane cut from -r' +to -

and has the representation
Yt
- ddiw
i (3)= . (2.2)

Qlaeul)
Even when r!' =0, g(z) defined by (2.2) is analytic in the cut

plane and is formally equivalent t¢ the power series (1.2).

Congider first of all the case when Rez g O g0 that
Re [}z—(z2-1)%:]700 In the representation (1.4) for f(z) we have
‘an integration of g(w) over a line like QQ' in Fig. 2 which
obviously does not intersgseet the cut of g(w) from -r' to -w.
Therefore, for these values f(z) given by (1.44) is an analytic

function of =z.
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_ 2
When Re z) ; then Re L-z—(zz—‘l)gj £ O and the integration
range for w——z.-(z -1 )_g_cosv in (1.4) is along a line Jlike PP' which

could intersect the cut from -r' to -m®» since OS r"h

To deal with this problem we go back to the case when Re z £0.

For each such z we define the holomorphic function of w,

.

]

t3.w') = (|+23 W wrt) (2.3)

with wK(z,w)—M for ‘W‘ —a@ and which has a cut along the straight
L

line joining its branch points —zi‘(zz—ﬂ)eo Then if r‘ is the

contour indicated in Fig. 2 and since K only differs in sign at

1)

" opposite sides of the cut we may replace (1.4) by

'}‘-—5) =5;lr7i[ K(3,u) glw)dw . (.0

It has t0o be ensured that F avoids the singularities of g(w)q

We may obtain the analytic continuation of £(z) as given
new by (2.4) for Rez &0 +to values of % with Rez2» 0 by using
the method of "deforming the contour" 13). L t P be the point
_z-(z° -1)2 and P' Dbe the point ezt (z° -1)2 with Re z30. The

analytic continuvation of {(2.4) to these wvalues of =z is

J_‘_.s) _= aml K (3 w-)g(w)dur (2.5)

where r'1 is the contour 1ndlcated in Flg. 2 and K (z,w) is de-
Tined like K(z,w) but with its cut along a curve llke ~g instead of

along the straight line Jjocining P to P'.

The representation (2.5) for f(z) is an analytic function
of =z so long as r'1 avoids the cut of g(w) as indicated. This
is possible unless 2z is real and D, 1 when one of the branch points
of KK(Z,W) lieg on the cut of g(w). The representations (2.4)
and (2.5) therefore define a function f(z) which is analytic for
all z in the complex =z plane cut from 1 to @ as required by

the theorem.
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The analytic function f(z) defined by (2.4) is formally

equivalent to the Legendre series (1.1) since we have

=L & | Kigwlrdu= Zf_ [3+t.xn) b
.-.;Zg f -P (3) (2.6)

The eguivalernce is only formal in that we have made an illegal inter-
change of summation and integration in deriving (2.6)n A similar

result holds for the representation (2.5} of f(z).
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APPROXIMANTS FOR f(z)

In this Section we investigate the problem of obtaining
approximants for f£{(z) when only the first few coefficients |
fO’f1’°"’fM of the Legendre expansion are known. We congider
first of all the case when r»1 so that for all =z in the complex
plane cut from #(r+1/r) to o, [Eq. (1.4])]

-
$i3) = 1| 9[-3-G20"wsd)dv,

An obvicus way to approximate f(z) is to replace g(w)

in (1.4) by its Padé approximants [ﬁ,N+iI and this method is

particularly useful in our case since g(w) is a series of Stieltjes
so that the [ﬁ,N+i] have known convergence properties. We nmay

write

§ |
[N N*J] Z (|+a; wr) +O'Z 9. w'? | (3.1)

where the G‘IQN’ ,3 q,N and G‘IGN"Can be determined from

f f1’00',

0’ oW+3°

Let fN ( ) be the approximant to f( ) obtained by
3
replacing g( ) by JN N+i1 in (1 4). After some elementary

integrations one finds that

: Tan
:"'",J (3) ,; El-aq..'sm-‘]'a * pw W3 (5.2)
The branch of |_1 2 &7 P Nz+d— 2:[2 used is that whlch ig positive

for 2@400 We then have the follow1ng convergence theoremo

Theorem 4

For all =z in the complex plane cut from %(r+1/r) 4o
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®, where r is the radius of convergence of the series of

Stieltjes (1.2) and r>1,

&ao -F’M(:") ='.FL-5) ‘ (3.3)

The convergence is uniform in any finite closed region of the
complex =z ©plane which does not include any point of the cut

of f(z).

Progg

The theorem follows immediately from the uniform convergence
of [ﬁ,ﬂ+i] to g(w) in any finite closed region of the complex
w plane which doeg not include a point of the cut Of g(w) and in

particular for points on the line joining —z-(z2-1)§ to ~Z+(Z2—1)§=

Corollary

The theorem holds for the cage when O‘r‘*l for gall 3z

in the complex plane cut frem 1 1o w so long as

Z‘” (:(.n )- 1/¢2ne1)

, n*0
diverges.

Proof

There is no problem when Rez €0 since f(z) again has
the representation (1.4)0 Once again the approximants fN a.(z) méy
»

be defined by (3.2) and they converge 1o f(z) as N—-wm.
When Re zbO and z not on the cut from 1 to @@,

#(z) has the representation (2,5) and we define the corresponding

approximant by

{-u,j (3) = 5?'r_t 2 K 8‘3:“’) NN+ dur (3.4)

However, by the arguments of the'previous Section, the fN j(z)
?
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defined in (3.4) for Re za,O are just the analytic continuation of

the £y j(z) defined for Rez£ 0 in (3.2) and hence have the same
¥

functional form (3.2). The corollary then follows immediately for

Re z }O from the uniform convergence of @,N+ﬂ on the contour

r,.

The approximant <, .(z) can be caleulated from the

b

Ny

1? 2’°"’f2N+j' _
can be put on the error between |_1_\T,N+j] and g(w) from a knowledge

of thesge coefficients T)’B).
(1.4) and (304) for f(z) and fN j(z) regpectively that they also
y

in principle have this property. We will illustrate this result by

coefficients fo,f As mentioned earlier, bounds

It follows from the integral forms

- an example in Secticn 5, but meanwhile we present a set of inegualities

satisfied by £y j(z) when T 91 and when 1€z z(r+1/r). They are
, .

}u*i}jts} - '}N,j('5)>/o (3.5)

!‘N,j (3) “}N-,’jﬂ{S)ZrO (3.6)
{'N’,jﬂ (3) _4N.j (3) >/o (3.7)

and follow immediately from the corresponding inequalities (A1.6)—

(A1.8) satisfied by the approximants [N,N+j] to a{w) for
-r&w €0,

It may be proved from (3.5) and {3.6) that the fN j(z) are
H

lower hounds to f(z) when 142.(%(1‘-{-‘1/1‘) and for a given even

number of the coefficients the begt bound is given by fN O(z) and
H
for a given odd number is fN ,](Z). Using (3.7) these "best"
, -
approximants satisfy the inequalities
(3.8)

bot9) ¢4, 0¢h, ¢ ¢, b adnda
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Finally, we should mention that the approximanits fN j(z)
H
defined here are egsentially a particular example of generalizations
to Padé approximants which have been defined recently by Gammel 5)

.and Baker 6 .
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THE RELATION BETWEEN THE PROISSART-GRIBOV REPRESENTATION
AND SERIES OF STIELTJES

We consgider in this Section the situation when the coef-

ficients in the Legendre series (1.1) are given by [Eq. (1.7[]
Qo

}h - .r-‘;j Q. (dym) 120,12, ... ....

Xo
with XO~,1 and 'l,f (x) bounded and non-decreasing for all x»xo.
There is & close connection between these coefficients and the
Froigsart-Gribov representation for partial wave amplitudes which

will become apparent from the next Section.

The interest of the above representation for the fn

comes from the following theorem.
Thecrem 5

The' coefficients £~ defined in (1.7) are coefficients

- 1
of a series of Btieltjes with radius of convergence xo+(Xé“1)2

Proof

We start from the following representation for Qn(x),
<0

Qn (x) = l ["- + (%*-1) 'hCMhe]w’d-Q (4.1)

which holds for all x not on the line joining -1 to +1. Substi-
tuting in (1.7)

oo S0

,i,“ = 1‘-1-; [ [x+(x=-|)""- cosLQTMdW(x)de, (4.2)

o Ay
Consider any set of real numbers { YP] « Then, for any pair of

positive numbers m, n
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n o o
2 ety = £ L Bonead ™
P40 Pro ?l]$ 010 Paso lj? (J? AW u
\Qw ' -t
1?[] 501-3'[;.*-(!‘-1)."@5[.,41- +!,‘[¥~I'll-|) ¢osl-4 }
%
'h =)
x[x + (*-1) c.oshé] dvmd&
> 0. (4.3)
It then follows from (4.3) 4) that if
':D(m,n) = '}'ﬂ "('n-n """""!‘mm
*nﬂ _ "
domtn -}H,n Ty (4.4)
then
D(m'n) > C m|n=03':2;...... (4:5)
Gonditions (4.5) are both necessary and sufficient &) for
there to exiet a bounded non-decreasing function Q(u) taking
infinitely many values for Oguga@ such that
o0
el
o= [udow  menal
The fn are therefore coefficients of series of Btieltjes as
required.
From (1.7)

(4,7)
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and using the asymptotic form for Qn for large n 14),

} \
ELm Sub ki 4 Ao + (3 =1} ¥ (4.8)
- E N v o8
O 20 $a ° A=) 4
The radius of convergence of the series of Stleltjes 1s at least

1
5

and so we have the representation,

e

:['n"" ] W dol) N=0,1,2..... (4:9)
o

Theorem 5 has therefore been proved so that the results of

2
I'=xo+(xo—1)

Sections 2 and 3 can be applied to the Legendre eXpansion

Q0
4('5)""?0 ‘I’n-Pn('S)’ (1.1)

when f  have the representation (1.7},

Yndurain has independently 15) obtained the representation

(4,9) for £ starting from (1.7)« He has derived the inequalities
(4.5) and noted the possible application of these results to T -TT

gscattering amplitudes which we also discuss in the next Section.

We now obtain an expression for ﬂ(u) in (4.9) in terms

of \V(X)o When the fn have the representation (1.7),

o0 a0
qt3) = :[.o 3 =% J L{3.2) dwa) (4.10)

where

L) = § 3" Q1)

(4.11)
L{z,x) can be continued analytically 1) as a funciion 2z to the
whole complex plane cut from X+(x2—1)§ to @ when 1&£x¢g®

and for 2z on this cut 16)
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fx [L(B'I'Le X.) L(.S -ie X):l -am(l‘ch;-rg") . (4.12)

Now from (4 9)
Y oo

- _dplu) d X (v)
363) = [Ci-u3) =I@--3l;

where aX(v)=-vag(1/v) sand == Y+(X2 )5. Therefore

Xle) = K() = H{a[v-«- -sfve] d

(4.13)
17)

= ﬁ: _.L[ lle-m-: x)- Lﬁr-t&x)}d\l/(x)du- (4.14)

€0y AT
We may interchange the order of 1ntegrat10n in (4.14) and then using

(4.12) and the fact that
) . - i =
e)it“ [Ll(lr vien) - L{v w_u)]

when v'¢ x+(x -1 ),

L (iﬂ-"v.) -

Yiw)-Ytr)=fe j rL l{[L(m,ﬂ- Ltuite.xiqlw'dw)

il
¢or UMy

o)

[ { l Cl.a., “U,;] ,,} dlp‘tx]

x4t

$lve )
= U-i + (lr’--au-gq.l),i]
'[ 9030[ de.(a,aw)

Having obiained x(v) for a particular dl{f(x), one can immediately

get af(v) = -vd x(T/v) .
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APPLICATION TOTYY - T SCATTERING

8)

- scattering E =2 and higher partial waves have a Froissart-

It has been proved 1 from axiomatic field theory that for

Gribov representation. In particular, if a%‘ (s) is the partial
wave amplitude for -1 o_rro__’“owo scattering and aoe (s) ig that
for =W - WW scattering in the isoctopic spin T =0 state then,

°'e““5) i o LQ f— -I)[ A’ Cs,*)-rztﬂ (s,-t]p.lt-(5 1)

and

ot | | P G5 sm oty

for even e; 2, The Ai(s,t) are the discontinuities of the
W-w amplitude in the +t channel for isospin T and s, t are
the usual Mandelstam variables. It follows from unitarity 9) that

Ai(s,t) ig non-negative for all t>‘4- when O.‘ s ¢4

Comparing (5.1) and (5.2) with {1.7), we see that there
iz a close connection between aoeo(s), aoe (s) and fno It is
because of thisg connection that we can apply the results of the |

previous sections to the +Ypr-Y¢ system.

Let ae () be the partial wave amplitude for either of

the above mentioned MW-W states and set

fo = ags) =24t Gy

where 1= Q/2—1. Then

'.Ln: #in Qam(*)dqft"-) | : | (5.4)

with
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with
x = ,ﬁt - ; xo - G+5
'+__ g -5

and where

0 o v o (5.5)
dya=2[ 1k o Blcuds or2 (3 Ats0e S Al elon 7

depending on the scattering state being considered.

When 048(4, d\y(x)&o from the positivity of the

Ai(s,t) and hence the determinants D(m,n) defined in (4.4) are

again positive. We thus have the following tneorem,

Theorem &

When O ¢s g4, the partial wave amplitudes at (s) for
“,O 'l\'o—) l'ro n geattering or WW — WW scattering in the

=0 gtate satisfy the inequalities

apls) QS - .- q‘?«-'e'“) S 0
Ae4als) '
gt (8) - .o Bgpls) (5.6)

for all even E y e ' with e>,2 and Q 12,0,

Corollary
There exists & bounded non-decreasing function @(u) such
that
Ye
O
Qels) = = i w” d
¢ {ie‘f') o Plu) (5.7)

1
for all even e; 2 where r= E{O+(XS—1)E_T2°
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Proof

This result is an immediate consequence of (5.6) when 1%

is seen from (5.71) and (5.2) that

-'
Bim sub | @p s |J"e = [Xo+ lx2'"]
E» o

and hence that

} In -2
Cimssp 1417 = [oos 20 '] (5.8)
I+ should be noted that the most general linear combination
of the zf}(s) and 32 (s) which corresponds to fn with the
" representation (5.4) where QI(X) ig bounded and non-decreasing
is

(142g) Qe (SY Y alts)

with 1\), -1« The results of thig and the following Section can be

applied to these linear combinations of MrP-TT partial wave ampiitudes.

We now consider the partial wave expansion of the scattering

amplitude, l.e.,

A s ) =a,8)+ Z (¢+1) Oels)'P l+2¢

even ’-h L] (509)
Thig converges when Ogs ¢4 for all x=¢2t/(4-8)-1 inside an
ellipse with foci at +1 and -1 and semi-major axis x0==(4+s)/<4—s)
For thesge values of x the amplitude A(s,t) has the representa-

1)

tion

-
L |
ﬂ (S,‘l‘) = 0,(8) + ¥ i ﬂ[‘x - () h'CoSU' de (5.10)

where

g(x) Z (ltms)-[' W = Z (Mﬂ)a (st (5.11)

We now use the representatlon (5 10) to prove the follow1ng theorem.
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Theorem 7
When the partiasl wave amplitudes ae (s) have the repre-
sentations (5.1) or (502), A(s,'t) may be continued analytical-
ly out of its ellipse of convergence to the whole complex plane
cut from x:xo to o and x=-xo tc -m when Og«s £4.
Procf
2 .
Let X=-x and define

) = L §,(x"

Then G(X) is a series of Stieltjes with radius of convergence

(5.12)

_ 1
r= )_Xo+(xg—‘r)212, and so can be continued analytically to all X
in the complex plane cut from -r +t0 - and its contlinuation

there is given by
e

G(X) - [ dé(u) |

l4 Xuw . (5.13)

Now

e o)
90 = T Cem$)I P2 2 2[4 %600 +5600) (5.14)

so that g(x) can be analytically continued to the whole complex

x plane cut from =x= ,rr- to ® and x=- JT to -®. It follows
from (5.10) by using the methods of Section 2 that for 0gs(4,
A(s,t) 1is an analytic function of x in the whole complex plane

cut from x:%( J;’H/ ﬂ) =X, t¢ @ and from x=-x te -®@.

C
QoEoDo

Then from Theorem 7 when Og€s {4, A(s,t) is analytic
in the whole complex t plane cut from 4 to @ and from -8
to -m. In fact the Froissart-Gribov representations are derived
by asguming this domain o§‘ analyticity for A(s,t) which can be
9

cbtained by other means .
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We come now to the problem of approximating A(s,t) from
a knowledge of the fPirst few partial wave amplitudes ao(s), az(s),
34(5),.=.,a2m(s) say. If m=2N+j+1 we can construct the |N,N+j]

Padé approximant to G(X) which we write in the form

N
+ “
[N‘,Nq] = L w4 i- p‘w)(q’
P=) l-f'd';‘"x % =0 4
We obtalin a correspeonding approximant for g(x) from (5.14) and

(5.15)

substituting this for g(x) in (5.10), we get the approximants
AN _(s,t) for A(s,t), where
14

N
(s, 1) = q )+ ﬁ:{l - \[ e —! .
A pz: A VT v

P LINEENNE SRS

Since the poles of |[N,N+j] are on the cut of G{X)

A
o ¢ o?’.N { e = Lx,- tx,‘-l)l"-] < |’ (5.17)

and it follows that the poles of AN j(s,t) in the complex x plane
¥

lie on the cuts, x=}c0 to +@ and X ==X to -m, of the

exact amplitude A(s,t). The branch of

Civ 205, x «03,0"

LA
used in (5.17) ig that which is pegitive for x real and between

these cuts.

We can now prove the following convergence theorem for

th A Is,E).
e N,J( H )
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Theorem 8

For all x=142t/(s-4) 1in the complex plane cut from

Xy to w and X, to - and for J »-1,

L D.jits,4) = P
g n,j (S,%) (s+). (5.18)
The convergence is uniform in any finite closed region of the

cut plane.

Proof

The amplitude A{s,t) has the representation

_ ™
Alst) = aytde | Do s o Pttt € frvgmeaas

+Sel-eiFwadY 4,

where G(X) has been defined in (5.13%). Since the Ay j(s,t) are
—_— H

obtained by replacing G(X) by its M,I\T—Fj] approximant in (5.19)

and as G]:—(X+ x =1 cosv)zj is an analytic function of its

argument for all =x 1in the cut plane and all O ¢gv W, the thesorem

follows from the uniform convergence of the E\T,N+j:l ag N-om.
When =x +takes values such that

= L4+
25 EL A er _yiexeel, (5.20)

the argument of ¢ and G' in (5.79) satisfies,

]
o » - Tx *(x‘-n)"‘cosu-] > "Bf,-r (% :-I) l"] : ==

(5.21)
for OSV,_‘““
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It therefore follows from the inequalities satisfied by
: I
¢(x), ¢'(x), [I,N+i] and [W,N+i] , +that when =x takes values
given by (5.20)

A, (st) - QN,,'(S;‘*‘)‘?" (5.22)

LT

QN“]‘ (s J-b) = g N-1, 42 (S,'b»/o (5.23)

QNJ*, (s€) - QN.J fS,-L-) 20 (5.24)

Ag previousgly the best approximants +0 A(s,t) for a given
number of partial wave amplitudes are AN O(s,t) and AN T(s,t)
H =
and these approximants satisfy the inequalities

QM" ($,%) & QN”(S,"?).{ ﬂm,,_'fs,t) < Qfs;t), (5.25)

We now illustrate how bounds may he put on the error between
an approximant AN j(s,t) and A(s,t) uaing just those zae(s)
?
needed to evaluate eet)
AN;J( X2

Congider again the case when O¢s¢4 and x satisfy
(5.20) so that Ehe argument of G{X) in {(5.19) lies between O and
_r==_[§o+(xi—1)?12. We can use the approximants (N,H+j} to G{X)

7) to give a new set of approxi-

which have been defined by the author
mants By j(s,t) te A(s,t) through (5.10) and (5.14). We note
b
that the explicit forms for the By j(s,t) are similar to the re-
H

presentations (5.16) of AN’j(s,t).

The definition and properties of the approximants [(N,N+j)
to G(X) are given in Appendix 3. In particular we can use the
inequalities (A3.4)-(43.7) given there to prove that for the values

of =, %t under consideration

A {S"t) 4 ‘BN‘,O(S:t)é ‘Bn,-q(s;t')-{ BN'I) O(SJ+) N (5.26)
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where again the BN O(s,t) and BN 1(s,t) are the "begt approxi-
H =

mants” for a given number of partial wave amplitudes.

If we are given ao(s),ag(s),.o.,azm(s) with M even
11t 1 "
we can evaluate the "best approximants AM/Q’_1(s,t) and

BM/Q_,]’O(S,JG) and have

QH& -1 ts,‘t) -‘ Q (sa+) '{3"‘",0 (sl*). (5.27)

Therefore, the error between A(s,t) and either approximant is less

than the difference between the two approximants.

Consider the case when we are given az(s) and a4(s)
with O¢€s¢ 4. The [1,0] and (0,0) approximants to G(X) can

be consiructed and are given by

E';ﬂ = a, ()
|+ &80y (5.28)

LPY{Y)

and

a, )
(00) 8 —22T — X[ﬁ:__‘i’ - a,,csi]

r+ X (5.29)
The corresponding approximants to A(s,t) are
IGIE a,tsnf‘z‘*]z :_[ ) . '
Q, (s} a‘m )% -
hd fays <3 fagis) () 5.30)
J;[ | i ] +
B" (s#) = =4 (s)+ r'o;IS)[ - (Faffx 4+ N'A T (rsarx+n i
(fF-2)e (Fex) (= '&_
Cr-2fFxei)n reafrn 41 )W

I[P - ay5)] Py | (5:31)
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They give upper and lower bounds to A(s,t) when O¢ s ¢4 for x
real and 1.(1x|(x0 ieee, 49»td4-5 and Opty-s=.

An alternative lower bound to A(s,t) for the above
values of x 1s obtained by takirg the truncated Legendre expansion

which ig in fact the approximant AO 1(s,t), -
?

Ae“ (s:) S9(s) + S'qats)'P,‘( it g—) + a“.“)E(“}_-E).(

Put from (5.25)

54%2)

Atsvrs A, 0 > Ase

s0 we gZet a better approximant than the truncated Legendre expansion

by using A1’O(s,t)o

An alternative upper bound 1o A(e,t). iz obtained by using

the property 18)

Qe
o, (&

L3

, 0¢s<y and =4 b8, ..
) (5.24)

Then

oD
A(S ) € agtdr+ Saytn Py {14 A8 w280
S£) a9+ Sa, P {1+ 4E +O“(¥%Z(a4,..)q(g)?e(|+:__t;)

$1 ga,
=afs)sSa (s (13t} (f(_:% &-WJ!&R[H}%.Q(@* —Lr.:(&:{*:ﬁ" ) }.

(5.35)

We denote the right-hand side of (5.35) by C(s,t) and then
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Atse) ¢ Cls,¢), (5.36)

A simple numerical example 1s considered to illustrate the
inequalities (5.27), (5.33) and (5.36). Let

L a ( cpq‘f%ié)
a,(s) = 2 2 (5) Oz(‘.‘:":‘z (5.37)

lece, half its maximum possible value for given a2(s), and for

convenience we taxe a2(5)= 1 and ao(s):zo. In Table 1 we give

the corresponding values of A. .(s,%t), 4, .(s,t), B. .(s,t) and
041 1,0 0,0

C(s,t) for 49»t9»2 when s=2.

It is seen that the above inequalities are well satisfied.
In particular the approximant Aq’o(s,t) is significantly bhetter
than the truncated Legendre expansion AO,1(s,t) egpecially near
the singtlarity at % =4. The approximant BO’O(s,t) is rather
poor near + =4 but it should be remembered that this 1s only the
lowest order approximant of the set. The inequalitizs (5.26)
guarantee that the upper bounds provided by the BN’j(s,t) will

improves =8 more of the partial wave amplitudes ae (s) are used,
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LNTERPOIATION OF a4 (g) FOR NON-EVEN INTLGER 4

2)

polation of aci (s) and aoeo(s) to non-even integer P when

The relations (5.1) and (5.2) give the unigue inter-
He e) 2. in this Section we lcok at the problem of aprroximating
these interpolating functions when only the first few of the ai (e)
or aoao(s) are known and we will follow & method duvue to Basdevant,
Besgis and Zinmm-Justin 1 l).

Onece again lei ae (s} Dbe the amplitude aot (5) or

aoo(s) depending or the scattering state under consideration. ILet

®
Y is) = ,E Pan (5)3“. (6.1)

Then from (5.7} we have the representation

Ye
dolw
tx) = g ..._Q_.
q’ 3= 3 ) | -u's {6.2)
so that W(z) iz analytic in the complex =z plane cut from r

To @ .

Following the above authors we write the interpolating

function a( Q ,s) Tor the =& ¢ (o) in the form

I Y3dz

alts) = Alﬂ' —3&"“ Re €53 y (6.3)

L

where C  dis a contour encireling the negative axis in the clockwise
direction lying completely in the analyticity domain of W‘ (z).

This form hasg the correet analytic and asymptotic behaviour for
Hee)v 2 and 1t 1s easy to check that one recoversg the amplitudes

ae(s) when Q :4, 6, 8’o=o
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Suppose We are given az(s),aar(s),o.o,adrﬂ(s)q Then we

can evaluate the I:N,N-ﬂ approximant to
"r
{ déln)
s (1-u}l)

and it may be written in the form

N
ey
INN-1] =2
] I - r 3
Lo Fow (6.4)
with 0¢ d"'P R ‘1/:“ 1o Substituting the corresponding approximant
for IV' (.5) in (6 3) we obtain an approximant ELN( e ,s) for the
interpolating function a( e ,s) which is given by

- 6t
Q"lt.s)" !._i%’aﬁ_ad3 = z d?u )Nh Ihb:l 6.5)

From the convergence of the LI,N—‘T] as N-m it follows
that

fr a,1t,8) = alls) Re 8>3
NP « (6.6)
Algso, when Q = 2,4, 000,40,

Q (4s) = Z'-",“ BN = 0,($)

ginze the coefficients of powers of =z 1in the expansion of
: T dgiu) '

e U-u3)
and [N,N¥-1] have to match up to the (2§-7

the approximant aN(Q ,s) coincides with the exact parti'al waves

(6.7)

)th power. Therefore,

a e(t:a) for these values of Q « We illustrate this result by a
gsimple numerical example. Suppose %he Ai(s,t) in (5.1) and (5.2)

are for 0Og s« 4 proportional to 5(15—4)., Then

QQ(S).:.QJS) OQ(.: /o k*s e;g.(GQB)

"t"
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We construct the |1.0] approximant to w {z) from ag(s) and
34(5) getting the interpolating function

wsy | %!
a,(£5) = a8 0, (4 Rel»d. (6.9
1les

In Table 2 we compare the values of a1(e ,s) and a(f ,S)
for e=2 and 2 & N 10 using once again the normalization az(s) =1,
It can be peen that 5‘1(t ,s) is a good approximation to a(E ,s)
for 2 .{E.{ 4, and gives a good extrapolation, accurate to within
10%, up to £ -6. Even when t =10 aT(e,s) ig of the same

order as a( E ,S)-
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CONCLUSIONS

We have studied the properties of +the lLegendre expansion
f(z) given in (1.1) when the coefficients fn are those of a geries
of Stieltjes g(z}. The key tool for doing this wag the relation
(1.4) giving f£{(z) in terms of g{z}. This allowed us to use the
properties of g(z), which have been studied in grezt detail, to

investigate the corresponding properties for f(z).

In fact the properties of f(z) obtained are clozely
analogous to those of g(z). For ingtance in each case the domain
of analyticity is the whole complex plane cut along part of the
negative real axis. Also there is & method of approximation for
f(z) corresponding to the powerful Padé method used 1o approximate
g(z)s It would seem te us t0 be very worth while to study Ffurther
the relations between f(z) and g(z)n

That the mathematiceal results in Sections 2 and 3 have
an immediate physical application followed from Section 4 where it
was shown that if the f = have a "Froigsart-Gribov" type represent-
ation (1.7) With.l*f(x) bounded and non-decreasing, then they are
algo coefficients of a gseries of Stieltjes. It was shown in
Sectioﬁ 5 that the partial wave szmplitudes for 17 OTTO"->TTOTT0
gcattering and W — MW scattering in isctopic spin T =0 state
and relsted states do have such a representation, ge¢ the results of
Sections 2 to 4 could be applied 1o them znd the corresponding

scabtering amplitudes.

An impeortant result was the derivation of a new infinite
get of determinantal inegqualities (5.6) for the above partial wave
amplitudes satisfied when Og'sd4. These Indicate once again how
unitarity, analyticity and crossing impose strong consgtraints on

the MW-T amplitudes.

Two cother topics investigated were in Section 5 the

approximation of the - scattering amplitude given the first few



partial waves and in Section 6 the interpolation of the partial wave
amplitudes for non-even integer E using the =ame information. The
simple numerical examples considered indicate that these methods ¢f

approximation could prove very useful.

These applications to TI- T system can only be made when
O0gs¢4 since it is only for these values of s that the partial wave
amplitudes 2p {s) have the representation (1.7) with lp‘ﬁc) having
the required proverties. It would be ugeful if one could extend our
results to other values of s. A possible tool one nmight use $o do
this 1s a generalization of the Padé method suggested recently by

19}

¥Villani and Prosperi y which takes into account the analytic
‘properties of &te(s). Bowever, no convergence theorems have been
proved yet except for a special class of potential scattering

problems,
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APPENDIX 1

The [ﬁ,N+i] Padé opproximant to the series

e &
N
(i3) = L f. ¢
{‘ 5) YY) " 3)
ig defined in the following way. It iz ths ratic of one polynomial
P(z) of degree ¥N+j divided by another (%) of degree N and
the polynomials are determined by equating coefficients of =z in

the relation

QU3 L $. 65" —Pad= A B,

and by the normalization

C\) (o) = lo | (£1.2)

Thus to determine the [ﬁ,N+i} approximant one needs to
know fo,f1,f?,...,f Yt We may write ithe [ﬁ,N+i1 approximant in
the form

3
N * Z ¥
A 1] o “_6; 3 +$=Z° P?."3 (21.3)

(the last term being abgent for i::—i), where Irom (A1.1)

Z °<?u(- Pn) +f39 —-h o Rgy (a1.4)

. ?:l‘l -

®
Z oLy (-c;‘“) = '_’(e 3¢ BEANSY , (21.5)

Nhen f(z) 18 & series of Stielfjes with the representation

fo = | 2t
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where ﬁf(u) ig bounded and non-decreasing, we have the convergence

theorem described in Section 1. The E\T,I\Hﬂ satisfy a certain set

of inequalities 4) when zp»0 and when ~rgzg£0 derivatives of

Eﬁ,lﬁ—ﬂ as well as EI,N+j:[ itself satisfy a similar system of

inequalities 7 « The latter sets are used in this paper and are

{[N'I'I,N-l-j-l-l](n’ - CN’,N+j] (n>} tl)n>,o (41.6)
n (“‘
{ [N,N-rj@r ' [IV, ij] } ("')ﬂ 20 (81.7)

s. [",N "',]] - L N'IJN-I—jn] * }{"’ ">0 (41.8)

{ *M(S) - fN,Nﬂ]m} )"0 | (A1.9)



APPENDIX 2

el

We will construct here a sequence of coefficients 4 which
have the revpresentation (4.9) with ﬁ(u) bounded znd non-decreasing
but which do not have the representation (‘!.7) with lv'(x) bounded

and non-decreasing.

Consider the function

ﬂo(3) = {' 3 -l (\fs)d (42.1)

where

Fo(ﬂ) = ';T' (9'30)[3' “("i)] y alX)=Aelut-1) a (42.2)

We take x1)x0=%(y0+1/y0) with y_  »1. Then

190

'S' .("EL(’)_, = | «" dw)

N+t — .(A2.3)

with o

{w)
d — = Po(:’.'.) = (1-uy) (1 - wote)]' (42.4)

Therefore ﬁ(u) is & bounded non-decreasing function in the interval

[@,1/y0] gso that fn have the representation (4.9)0

We consider now the function g(z) =2zgé(z)+go(z)u Then

P“\) d‘i o (a2.5)
(‘j 2)

o
3(3) = g ‘amm)_‘“sn
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- with

ply) = 25f13)+fl3) 35 [‘J "‘Nb)]. (A2.6)

The Legendre expansion

- -] o0 d
- ( " 'P - U‘d) X
{'tfo)) n‘Zo a 'H)-L 1\(3) J° ‘x-s) 5 (A2.7)

air)

o L) Qag-1-y2)h
o= (x) = s 4=1"9 tw)
m \ fgdﬁ

(a2.8)
and X :-lg(yoﬂ/yo). Substituting from (A42.6) for P (),
atx )€
'3'(1.)-'& 12‘3""[21,5 I“] OltﬂhPo‘B)] &3
d
P!
ft " a, ]all.)-é
= Ay (2 -I-‘) (y)
€0+ [ u ( ﬁj 3 °b
alx))-¢€ ‘
wC2s-- =] Mttty s 208
- b 4wt ¥,
aln,)-€

= -fb i P‘))[lll.'j ""J"] (5‘-') AAJ (A2.9)

The limit of the 1n‘begral as € ~0+ exists and since P (y))

for y;yO)T this limit is positive. Therefore @G- (X )<O and

as O‘(x) is a continuous function of x at x=x, as may be proved
from (42.8), c-(}:) is strictly negative in some interval containing

=X
* =Xy
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Suppose now thath fn has the representation (1.7) with

'q}(x) bounded and non-decreasing. Then

(3) = L (o) | Bulz) Qut)dn = § Z¥H
{3 I +.)’o (3) Gnddn = | &3) (oo

Comparing with (A2.7) we find that

dyw  _
%;— = ) A X (Ac.11)

But this gives a contradiction in the small interval about X=X,
when the left-hand gide iz pogitive and the right-hand =id: is
negative. Therefore the fr do not have the represzentation (197)

i

with Ip'(x) bounded and non-decreasing.
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APPENDIY 5

We define here the approximanits (N,N+j) to the series
of Stieltjes G(X) given by

e o0
do ) _ n
C(X)"" ‘o (H-Xu)) -"Z’o {'nL-X) . (5.13)
Thzy are obtained by writing 7
G(-X) s -(-.5_1—':“- + X EXKl(X)"' KO‘)] (£3.1)

 where K(X) ig again a series of Stieltjes with radius of convergence

r. Its power series expansion is

= N
KCX) = ,,,z, en (-x) (43.2)

where

% n" (::-T)- {fyr"“ = ‘I’M-l} . (43.3)

The (N,N+j) approximants to G{X) are defined to be those appro-
ximants obtained by replacing K(X) in (A3.1) by its [N,N+i]

Padé approximant. The convergence of the (N,N+j) to G(X) in the
cut plane follows from the convergence of the [ﬁ,N+i]. From the
inequalities (A1u6)"(A109} we can, using (A3.1), derive ths cor-

responding inequalities for the (W,N+j) when -r4X£ 0. They'are

{(N-l-l,N'!'j-rl)t“‘—(U'N-l-j)mrs&i)n\<O (A3.4)
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Therefore (N,N+j) gives an upper bound to G{(X) anda (N,N+j) a

lower bound o G'(X) for these values of X.

Alternative approximants giving upper bounds to G(X)

have been defined by Baker &)

and they give in the examples cornsidered
better upper bounds than the (N,N+j). However, for applications to
the T IT scattering amplitude A(s,t), we also need lower bounds

t0 G'(X) and we have to use the (N,N+j)‘ since Baker las not

proved any theorems on the derivatives of these alternative approximants.
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TABLE 1

Bound functions for the scattering amplitude A{s,%) when s=2

3 ho (o8] | Ay o(sst) (s,t) By, o(®t)
2.2 8,709 8.728 8.755 8.854
2.5 15.80 15.94 16416 16495
2.8 25425 25.83% 26.87 30.062
3.1 37454 39.34 43,42 57491
3.4‘ 53.22 58.00 73044‘ 128-7
3.7 T2.94 : 84.38 155.1 4370

TABLE 2

a(E,,s) and its espproximant

0 a(@,s) a,(f,5)
2.0 1.00E+C 1.00E+0
2.5 3.818-1 3.8TE-1
3.0 1.47E-1 1.50E-1
3.5 DWT3E-7 5.G0R-2
4.0 2.24E-2 22 24E-2
4.5 8.80E-3 8.69E-3
5.0 3.50E-3 3.3%6E~3
5.5 1.398-3 1.30E-3
6.0 5.50E-4 5.04E-4
7.0 5.888-5 7+55E-5
2.0 1+43E-5 1.13E-5
9.0 2.3%3E-6 1.69E-6
10.0 3.831E-7 2.048-7
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