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Abstract

Properties of low-variability periods in the time series are analysed. The theoretical
approach is used to show the relationship between the multi-scaling of low-variability
periods and multi-affinity of the time series. It is shown that this technically simple
method is capable of reveling more details about time series than the traditional
multi-affine analysis. We have applied this scaling analysis to financial time series:
a number of daily currency and stock index time series. The results show a good
scaling behaviour for different model parameters. The analysis of high-frequency
USD-EUR exchange rate data confirmed the theoretical expectations.
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1 Introduction

Perhaps the only thing which is more complicated and unpredictable than
a human mind, is the collective human mind. This collective human mind
is the driving force of financial market fluctuations. The intrinsic complexity
of the market dynamics forms the basis for the exponential growth of the
econophysics, since the publication of seminal papers of Stanley et al [1,2,3].
As in every new scientific discipline, the Econophysics is developing rapidly
in various directions. Research in those various fields has contributed several
stylized statistical properties of asset returns (which, in principle, may cease
to be valid at a certain moment of time, because the collective human mind is
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capable of learning), c.f. [4,5,6]. Most advancements in econophysics are owing
to the concepts of scale-invariance, intermittency and heteroscedasticity. So,
viable approximations for the market movements have been either based on
the continuous time random walk (CTRW) model [7,8,9,10,11,12], or derived
from it, c.f. the model of fractional Brownian motion (fBm) in multifractal
trading time (fBm-mtt) [13,14,15]. There is strong empirical evidence that
fluctuations in financial markets possess multifractal statistics [16,17,18,19,20].
Multifractality has been found to be inherent both to the currency markets
[16,18,19], and to the stock exchange markets [20]. The time series analysis is
usually based on the closing prices of two consecutive trading days, but higher
frequency data have been also used [21].

The focus of this paper is placed on the multi-scaling properties of currency
and stock exchange time series. So, we refrain ourselves from disussing the
advancements in understanding the other aspects of financial time series.

It has been recently shown that in the case of intermittent time series, the
scaling behaviour of low-variability periods can provide additional informa-
tion, as compared to a multifractal analysis [22]. Preliminary study of the
time series of stock indices and currency rates indicated that similarly to the
heart rate variability data, the financial time series are also characterized by
a multi-scaling behaviour of low-variability (i.e. “silent” or “calm”) periods
[23]. Such a behaviour has been independently verified by Kaizoji et al [24].

In this paper, analytic approach is used to derive the relationship between the
multi-scaling of low-variability periods, and multi-affinity of the time series.
Besides, a detailed analysis of the statistics of low variability periods is per-
formed for various daily stock indices and daily currency rates. The study of
the high-frequency data of the USDEUR exchange rate indicates that at the
time-scale of one day, there is a cross-over between two scaling laws for the
low-variability periods.

2 Theoretical approach to low-variability periods

Most modern studies of the variability of intermittent time series are based on
(or derived from / related to) the model of multi-affine fractional Brownian
motion (mafBm), cf. [4,13,25,26,27]. This is not surprising, because multifrac-
tal behaviour is believed to be the most universal case of scale-invariance, c.f.
[28]. Note that while CTRW and fBm-mtt models are somewhat more detailed
than a data description by multifractal formalism (by introducing the concept
of waiting- or trading time), the time series generated by both these models
can be also characterized by the multi-affine spectra and lead to the same
scaling of low-variablity periods as the model of mafBm.
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2.1 Multi-affine fractional Brownian motion

One of the disadvantages of the multi-affine analysis is neglecting the long-
term correlations in the dynamics of high-frequency variability. This claim is
motivated as follows. Consider a multi-affine time series x(t), with a lower
cut-off scale τ0. Then, each point of the time series t0 is characterized by its
own Hurst exponent h (referred to as the Lipschitz-Hölder exponent); this
exponent describes the local scaling of fluctuations,

|x(t)− x(t0)| ∼ |t− t0|
h, |t− t0| ≫ τ0. (1)

Further, the distribution of points of certain values of h is self-similar, and is
described by a fractal dimension f(h). So, according to the mafBm model, we
study the scaling of increments |x(t)− x(t0)| at |t− t0| ≫ τ0, without specific
attention to the values of them at |t − t0| ≈ τ0. In order to shed light into
this phenomenon, the method of scaling analysis of low-variability periods has
been devised [22].

On the other hand, a low-variability period of length li is defined as such a
continuous time interval Ti = [ti, ti + li] (i = 1, 2, . . .) that (a)

|x(t)− 〈x(t)〉τ | ≤ δ for t ∈ Ti (2)

where δ is a threshold parameter and angular braces denote sliding average
over a window of width τ > τ0 (in principle, the window width can be arbitrar-
ily large; however, the highest time resolution of the metod and widest scaling
range is achieved when it is as small as possible, i.e. just few cut-off scales τ0);
(b) each period has maximal possible length, implying that decreasing ti or
increasing li would lead to violation of Eq. 2. We speak about multiscaling be-
haviour, if the cumulative distribution function of the low-variability periods
(the number of periods with li ≥ n) scales as

R(n) = R0n
−α(δ,τ), (3)

where α(δ, τ) is a scaling exponent and R0 is a constant.

It should be noted that the scaling exponent α(δ, τ) can be considered as the
extension of the concept of multi-affine spectrum f(h) to the highest possible
time resolution. This is because of two circumstances. First, the effective time
resolution of the multi-affine description by Eq. 1 is limited by the required
scaling range |t − t0| ≫ τ0; meanwhile, the effective time resolution of the
description based on low-variability periods is the cut-off scale τ0. Second, in
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the case of infinite time resolution, there is one-to-one correspondence between
the spectra f(h) and α(δ, τ), see below.

The relationship between f(h) and α(δ, τ) spectra can be derived as follows.
If a time moment t is characterized by a Lipschitz-Hölder exponent h, the
mismatch between the local average and the instant value is of the same order
of magnitude as the variability amplitude of x(t) over the time window of
width τ :

|x(t)− 〈x(t)〉τ | ≈ τh. (4)

Comparing Eqns 2 and 4, we conclude that for a period Ti, all the points
are characterized by h ≤ logτ δ. Similarly, the edges ti − τ0 and ti + li +
τ0 of the period Ti are characterized by h > logτ δ. Therefore, the the low-
variability periods are the contiguous pieces which remain from the entire
time-axis after the removal of the high-variability points with h > logτ δ.
These high-variability points form a sparse Cantor-dust-like set, assuming that
logτ δ > h0, where h0 corresponds to the global maximum of the spectrum
f(h) [i.e. f(h0)=1]. Indeed, f(h) is the fractal dimension of the set of points
described by the exponent h. So, the fractal dimension of the set of points
described by exponents h > logτ δ is found as

d = sup
h>log

τ
δ

f(h) =











1, if logτ δ ≤ h0

f(logτ δ), if logτ δ > h0

. (5)

If an interval is divided into pieces by a Cantor dust of dimension d, the
cumulative length-distribution exponent of the pieces is also d (because the
number of pieces larger than n is estimated as the number of boxes of size
n required to cover the Cantor dust, according to the box-counting method).
So, we have correspondence

α(δ, τ) = f(logτ δ) if logτ δ > h0. (6)

Note that in the case of simple fBm (which is studied in more details in Ref.
[29]), there is no scaling of low-variability periods with lengths l > τ . Indeed,
for simple fBm, f(h) = 1, if h = H [otherwise, f(h) is not defined]. So, the
high-variability points either are absent (i.e. there is a single low-variability
period), or they are populated quasi-homogeneously with fractal dimension
d = 1 (then, all the low-variability periods are shorter than or of the order of
the window width τ).
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2.2 Multi-affine trading time and discussions

The approach used for mafBm can be also applied to the fBm-mtt model
with x(t) = F (T (t)), where F is a fractional Brownian function of its argu-
ment(described by the Hurst exponent H) and T (t) is a multi-affine function
of time. Indeed, in that case Eq. 4 is substituted by

|x(t)− 〈x(t)〉τ | ≈ (∆τT )
H ≈ τhH . (7)

Here, ∆τT ≈ τh is the increment of the trading time T (t) and h is the local
Lipschitz-Hölder exponent for the function T (t). Accordingly, Eq. 6 is substi-
tuted by

α(δ, τ) = f(H−1 logτ δ) if logτ δ > Hh0. (8)

So, both in the case of the mafBm and fBm-mtt models, the scaling described
by multifractal spectrum f(h) with h > h0 can be also described by the scaling
of low-variability periods. The approach to describing the Lipschitz-Hölder
exponent range h < h0 is straightforward: instead of low-variability periods,
high variability periods have to be used. Then, Eqns. 6 and 8 will remain
valid, except that the inequalities will be opposite; details of this aspect will
be analysed elsewhere. Now, we are left with two questions.

First, the multifractal dimension f(h) cannot exceed the topological dimension
one. Is it possible to have the scaling exponent of low-variability periods larger
than one? The answer is yes (examples are provided below). More specifically,
equality α > 1 assumes that the most part of the aggregated time Tagg of
the low-variability periods corresponds to shortest periods (because Tagg =
∫

n · dR(n) = R0

∫

n−α−1dn; here, the integral vanishes at large lengths n).
This assumes that the fractal dimension of the high variability periods is one,
i.e. logτ δ < h0. In that case, the low-variability moments form a Cantor-dust
like set of points. For real time series, the time resolution is always finite;
then, in the regions of high “dust density”, the “dust particles” may overlap
and form relatively long (much longer than the time resolution, but much
shorter than the total time interval) low-variability periods. Such a clustering
of small-h-points is not described by the multifractal spectrum f(h).

Second, the multifractal spectrum f(h) is a one-parameter-curve; meanwhile,
α(δ, τ) is a two-parameter-curve, which is effectively reduced to one degree of
freedom by Eq. 6 [or 8]. Is it possible to have a such a class of scale-invariant
time series, which is more generic than the class of multi-affine functions, so
that the exponent α can be arbitrary function of two independent variables δ
and τ . This question is left open for further studies.

5



To conclude, the scaling analysis of low variability periods provides a simple
and superior (in the sense of time resolution and applicability to the param-
eter range with α > 1) alternative to the traditional multi-affine analysis of
the time series. In particular, Eq. 5 provides a way to check the validity of the
assumption of multi-affinity, which requires α(δ, τ) ≡ α(logτ δ). If there is no
need for such verification, the route is even simpler, e.g. the analysis can be
performed at a fixed window length τ . All this does not mean that studying
the scaling of low-variability periods is always better than the multi-fractal
formalism. Instead, the two methods should be considered as complementing
each other, because the accuracy and applicability of both methods are sensi-
tive with respect to the width of the scaling range and specifics of the scaling
behaviour.

3 Properties of low-variability periods in financial time series

Now we apply the above developed theory to financial time series. The specifics
of long-term stock-market time series is that prices can vary by orders of
magnitude. Therefore, it makes sense to work with a logarithmic scale, and
substitute the definition of low variability (Eq. 2) as follows:

|1− P (t)/ 〈P (t)〉τ | ≤ δ for t ∈ Ti. (9)

Here, unlike in the case of Eq. 2, it is assumed that average is taken not over a
time window centered around the current moment of time t, but instead, the
large-t-edge of the window coincides with t (because for practical applications
in real time, the future is not known):

〈P (t)〉τ =
1

τ

τ−1
∑

k=0

P (t− k). (10)

So, a low-variability period is the period between two consecutive price move-
ments that are exceeding the given threshold δ. The length of a low variability
period is measured in the same units as time t — in the units of the sampling
period of the market data. The local average in Eqn 9 gives us the second
input parameter: τ that could be interpreted as a degree of “locality”. With
these two input variables we maintain the easy interpretation of the results:
threshold value δ is simply the percentage change of asset at time t compared
against the average price of that asset in preceding period with length of τ
time units. Further we measure the lengths of low-variability periods and we
count them. Then we define a cumulative distribution function R(n) that rep-
resents the amounts of periods where low-variability lasted at least n time
units. Finally, we fit the data against the scaling law given by Eq. 3.

6



Following analysis will give answers to two essential questions:

(1) Do the low variability periods obey power law and if so, what is the
scaling exponent?

(2) Assuming that there is a power law, how does the scaling exponent de-
pend on the parameters δ and τ?

3.1 Determination of Power law

We used the following data in our analysis:

Table 1
Data used in the analysis
Abbrv Description Calendar period Frequency # of data
EUR EUR / USD exchange rate 01/01/2001  31/12/2003 1. min 1106031
AUD AUD / USD exchange rate 13/12/1983  20/04/2004 Daily 5261
CAD CAD / USD exchange rate 04/01/1971  20/04/2004 Daily 8491
DEM* DEM / USD exchange rate 04/01/1971  20/04/2004 Daily 8490
FRF* FRF / USD exchange rate 04/01/1971  20/04/2004 Daily 8491
GBP GBP / USD exchange rate 04/01/1971  20/04/2004 Daily 8476
JPY JPY / USD exchange rate 04/01/1971  20/04/2004 Daily 8485
DAX German equity index - DAX 01/10/1959  20/04/2004 Daily 11169
UKX UK equity index - FTSE100 03/01/1984  20/04/2004 Daily 5134
NKY Japanese equity index - Nikkei 225 05/01/1970  20/04/2004 Daily 8492
EAFE MSCI Europe Austrasia Far East index 31/12/1969  20/04/2004 Daily 8552
World MSCI World index 31/12/1969  20/04/2004 Daily 8553
SPX Standard & Poors’ 500 30/12/1927  20/04/2004 Daily 16767
DJIA Dow Jones Industrial average 03/01/1900  20/04/2004 Daily 26206

*Remark: from January, 1st 1999 German Mark and French Franc are fixed
against Euro.

In our analysis, the scaling exponent was found by using least-squared fit for
the whole data series. For visualizations, the dependence R(n) is plotted in log-
log scale. Then, the scaling exponent α is equal to slope of the fit-line. Financial
time series are single realizations of intermittently fluctuating nonstationary
time series, which makes calculation of exact error estimation of the scaling
exponent impossible. However, rough estimates of the uncertainties have been
obtained as follows. The least-squares fitted trend-line was found as described
above, except that the slope α was not optimized, i.e. it was considered as
a fixed parameter. Further, the sum of squared residuals r(α) was calculated
as a function of α. The error estimate was found as e = (α′ − α), where α
is the least-squares fitted value of the slope, and α’ satisfies the condition
r(α′) = 2r(α). The technique used for obtaining the scaling exponent α is
illustrated in Fig 1.

Above-mentioned procedure was carried out for all of the time series and
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Fig. 1. Determination of the scaling exponent α for SPX time series under the
following conditions: δ=1.6% and τ=10 days

with different thresholds and window widths. The quality of the data fit was
measured by the correlation coefficient R2. Total 1004 measurements were
carried out with all the daily time series. In Fig 2, the validity of power law
hypothesis is demonstrated. Histogram shows that in most cases, the power
law provided a good data fit. Calculated values of α and error estimations for
currencies and equity indices for τ = 10 days are presented in tables 2 and 3
respectively.

It is important to outline two effects:

• There is reverse relationship between the correlation coefficient and the
threshold parameter δ. The reason is that the amount of large movements
is small and not representative for statistical analysis.

• There is also reverse relationship between the correlation coefficient and
the window width τ , due to similar reasons (longer averaging smoothes
time series and large movements become more frequent).

Due to these effects there is no sense to measure the scaling exponents beyond
certain parameter range, e.g. for τ = 2days and δ > 2%.
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Fig. 2. Histogram of R-squared coefficients based on the regression analysis of de-
termining scaling exponent α
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Table 2
Scaling exponents for currency time series with τ=10 days
Threshold   (%) CAD AUD GBP FRF DEM JPY
0.10 2.33 ± 0.25 3.41 ± 0.47 1.38 ± 0.07 1.38 ± 0.07 1.88 ± 0.12 1.12 ± 0.06
0.25 1.91 ± 0.09 2.60 ± 0.25 1.35 ± 0.04 1.28 ± 0.08 1.70 ± 0.11 1.43 ± 0.05
0.40 1.64 ± 0.11 2.37 ± 0.19 1.51 ± 0.05 1.23 ± 0.05 1.64 ± 0.05 1.36 ± 0.06
0.55 1.55 ± 0.09 2.27 ± 0.24 1.61 ± 0.06 1.35 ± 0.07 1.64 ± 0.07 1.48 ± 0.06
0.70 1.46 ± 0.08 1.95 ± 0.16 1.72 ± 0.08 1.35 ± 0.06 1.69 ± 0.05 1.54 ± 0.05
0.85 1.35 ± 0.09 1.98 ± 0.19 1.80 ± 0.10 1.43 ± 0.06 1.57 ± 0.07 1.58 ± 0.06
1.00 1.31 ± 0.07 1.80 ± 0.18 1.71 ± 0.08 1.46 ± 0.06 1.66 ± 0.08 1.60 ± 0.07
1.15 1.16 ± 0.06 1.67 ± 0.13 1.77 ± 0.09 1.43 ± 0.07 1.72 ± 0.08 1.65 ± 0.09
1.30 1.09 ± 0.06 1.48 ± 0.08 1.77 ± 0.11 1.38 ± 0.06 1.65 ± 0.09 1.59 ± 0.08
1.45 1.06 ± 0.08 1.59 ± 0.09 1.62 ± 0.11 1.43 ± 0.06 1.58 ± 0.07 1.47 ± 0.09
1.60 0.75 ± 0.07 1.52 ± 0.12 1.52 ± 0.10 1.49 ± 0.06 1.53 ± 0.07 1.48 ± 0.10
1.75 0.73 ± 0.07 1.39 ± 0.12 1.44 ± 0.09 1.49 ± 0.08 1.54 ± 0.08 1.47 ± 0.08
1.90 0.57 ± 0.07 1.24 ± 0.13 1.36 ± 0.11 1.51 ± 0.10 1.43 ± 0.06 1.41 ± 0.08
2.05 0.51 ± 0.06 1.27 ± 0.12 1.02 ± 0.07 1.45 ± 0.12 1.46 ± 0.08 1.27 ± 0.06
2.20 0.51 ± 0.06 1.14 ± 0.13 1.14 ± 0.09 1.19 ± 0.12 1.44 ± 0.09 1.24 ± 0.07
2.35 0.51 ± 0.05 1.13 ± 0.06 1.19 ± 0.09 1.32 ± 0.11 1.21 ± 0.07 1.26 ± 0.07
2.50 0.54 ± 0.05 1.05 ± 0.07 1.01 ± 0.06 1.34 ± 0.10 1.10 ± 0.05 1.26 ± 0.07
2.65 0.45 ± 0.04 0.95 ± 0.05 1.11 ± 0.05 1.17 ± 0.08 1.09 ± 0.06 1.24 ± 0.07
2.80 0.40 ± 0.04 0.92 ± 0.04 0.99 ± 0.05 0.97 ± 0.05 0.98 ± 0.04 1.25 ± 0.08
2.95 0.40 ± 0.04 0.79 ± 0.04 0.80 ± 0.04 0.94 ± 0.05 0.95 ± 0.05 1.22 ± 0.08

3.2 Dependence of the scaling exponent on the parameters

Two phenomena can be observed:

(1) Exponent α and threshold δ tend to be negatively related: larger δ values
correspond to lower α values.

(2) For equities, the dependence of the exponent α on the threshold δ is
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Table 3
Scaling exponents for equity index time series with τ=10 days
Threshold    (%) UKX DAX NKY EAFE World SPX DJIA
0.10 3.87 ± 0.32 4.37 ± 0.38 4.07 ± 0.49 4.27 ± 0.56 3.50 ± 0.36 4.17 ± 0.51 4.03 ± 0.57
0.25 3.02 ± 0.19 3.87 ± 0.43 3.34 ± 0.33 3.16 ± 0.49 2.98 ± 0.32 3.32 ± 0.23 3.75 ± 0.48
0.40 3.09 ± 0.30 3.07 ± 0.31 2.64 ± 0.24 2.58 ± 0.31 2.74 ± 0.37 3.04 ± 0.23 3.09 ± 0.35
0.55 2.93 ± 0.34 3.13 ± 0.35 2.75 ± 0.27 2.43 ± 0.22 2.52 ± 0.26 2.95 ± 0.31 2.84 ± 0.32
0.70 2.54 ± 0.38 2.85 ± 0.29 2.35 ± 0.20 2.43 ± 0.19 2.63 ± 0.28 2.60 ± 0.19 2.72 ± 0.40
0.85 2.44 ± 0.43 2.72 ± 0.24 2.21 ± 0.17 2.36 ± 0.21 2.34 ± 0.20 2.39 ± 0.16 2.74 ± 0.26
1.00 2.38 ± 0.26 2.54 ± 0.24 2.20 ± 0.22 1.97 ± 0.17 2.27 ± 0.17 2.33 ± 0.13 2.51 ± 0.21
1.15 2.04 ± 0.20 2.36 ± 0.23 1.91 ± 0.12 2.17 ± 0.17 2.12 ± 0.15 2.08 ± 0.11 2.37 ± 0.15
1.30 1.92 ± 0.19 2.26 ± 0.22 1.97 ± 0.13 1.86 ± 0.15 2.11 ± 0.16 2.03 ± 0.11 2.41 ± 0.17
1.45 1.76 ± 0.20 2.21 ± 0.25 1.92 ± 0.11 1.96 ± 0.17 1.90 ± 0.12 1.97 ± 0.09 2.28 ± 0.15
1.60 1.88 ± 0.23 2.26 ± 0.22 1.82 ± 0.09 1.83 ± 0.13 1.67 ± 0.11 1.95 ± 0.12 2.26 ± 0.19
1.75 1.62 ± 0.12 1.97 ± 0.17 1.60 ± 0.07 1.55 ± 0.11 1.54 ± 0.07 1.79 ± 0.08 2.19 ± 0.13
1.90 1.58 ± 0.13 1.82 ± 0.11 1.59 ± 0.07 1.39 ± 0.06 1.45 ± 0.08 1.73 ± 0.08 1.98 ± 0.10
2.05 1.70 ± 0.11 1.82 ± 0.12 1.63 ± 0.07 1.35 ± 0.05 1.47 ± 0.09 1.65 ± 0.09 1.90 – 0.13
2.20 1.59 ± 0.12 1.82 ± 0.10 1.38 ± 0.07 1.39 ± 0.06 1.36 ± 0.09 1.46 ± 0.08 1.80 ± 0.09
2.35 1.45 ± 0.11 1.78 ± 0.09 1.38 ± 0.09 1.39 ± 0.06 1.18 ± 0.11 1.68 ± 0.11 1.83 ± 0.11
2.50 1.51 ± 0.10 1.80 ± 0.11 1.32 ± 0.08 1.38 ± 0.07 1.37 ± 0.10 1.63 ± 0.14 1.77 ± 0.13
2.65 1.40 ± 0.08 1.42 ± 0.08 1.41 ± 0.07 1.31 ± 0.08 1.30 ± 0.06 1.50 ± 0.10 1.77 ± 0.15
2.80 1.38 ± 0.07 1.53 ± 0.10 1.34 ± 0.08 1.30 ± 0.07 1.30 ± 0.06 1.32 ± 0.10 1.38 ± 0.08
2.95 1.35 ± 0.08 1.53 ± 0.10 1.28 ± 0.07 1.24 ± 0.07 1.09 ± 0.05 1.42 ± 0.11 1.55 ± 0.13

relatively strong, but relatively weak for currencies.

In order to illustrate this observation, the values of α are plotted in Fig 3
against the threshold δ for DEM and SPX time series.

Fig. 3. α values for DEM and SPX under thresholds δ = 0.10% ...2.95% and τ=10
days.

Next we study the dependence of α on the window width τ using the high
frequency data of EUR-USD exchange rate. As mentioned above, low amount
of statistics becomes an issue, when the threshold parameter is too high for
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the given window width. Therefore only those values of α are plotted in Fig 4,
where R2 > 0.7.

Fig. 4. Scaling exponent α for EUR time series with different window widths τ under
thresholds δ= 0.10%...2.95%.

3.3 Discussions of the results

According to the theoretical expectations, α should be a decreasing function
of δ, owing to Eq. 6 and to the circumstance that for h > h0 (i.e. for α ≤ 1),
f(h) is a decreasing function of h. This trend is expected to held for the range
α > 1, as well, due to simple reasoning. Increasing the threshold parameter
δ leads to some fluctuations ceasing to be qualified as “large”, so that longer
low-variability periods will emerge. Increasing the number of long periods, in
its turn, corresponds to decreasing the scaling exponent α, in accordance with
the results depicted in Fig 3.

In order to study, how well the theoretically derived relationship Eq. 6 (or
Eq. 8) holds for the financial time series, the scaling exponent α(δ, τ) has been
plotted versus logτ δ in Fig. 5 (using the same data as in Fig. 4). Note that
the data-points with τ > 2880min = 2 days describe the scaling behaviour
at the time scale above one day; the data-points in the range τ ≤ 1 day are
influenced significantly by the intra-day dynamics of the exchange rate.
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Fig. 5. Scaling exponent α for EUR time series with different values of τ and δ are
plotted versus logτ δ, providing a data collapse for τ > 1 day, α < 1.

For the range of validity of Eq. 6 (α < 1), the data-points with τ ≥ 2 lay
reasonably well into a single curve, confirming the validity of Eq. 6. The data
of Fig. 5 indicate also that at the time-scale around one day, there is a cross-
over between different scaling regimes: the data with τ ≤ 1 day incorporate
a mixed dynamics (which cannot be described by mafBm model) and lay no
longer on the same curve. At the range α > 1, there is no evident reason for
the data to lay on a curve: all the corresponding data points are scattered in
a form of a disperse cloud.

4 Conclusion

In this paper a new method for time series analysis is derived and analytically
motivated. It is shown that for multi-affine time series, the scaling properties
of low-variability periods are described by scaling exponent α as a function of
threshold parameter δ and averaging window width τ . The scaling analysis of
low variability periods offers a simple alternative to the multi-affine analysis of
the time series, providing wider applicability range and somewhat higher time
resolution. An open question is about the existence of a class of scale-invariant
time series, more generic than multi-affine ones, violating Eq. 6.

Particular emphasize is paid to the financial time series. The analysis showed a
good scaling behaviour of the currency exchange rate and stock index data and
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confirmed the theoretical expectations, particularly the relationship between
the scaling exponent α and the model parameters δ and τ (c.f. Eq. 6). The
analysis of high-frequency data of EUR-USD exchange rate indicated that
there is a cross-over between different scaling regimes at the time scale of
one day. It was also observed that scaling exponent values for equity time
series tend to be more sensitive with respect to the threshold parameter than
currency time series.
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