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Abstract. The concept of lushness was introduced recently as a Ba-
nach space property, which ensures that the space has numerical index 1.
We prove that for Asplund spaces lushness is actually equivalent to nu-
merical index 1. We prove that every separable Banach space containing
an isomorphic copy of c0 can be renormed equivalently to be lush, and
thus to have numerical index 1. The rest of the paper is devoted to
the study of lushness just as a property of Banach spaces. We prove
that lushness is separably determined, is stable under ultraproducts,
and we characterize those spaces of the form X = (Rn, ‖ · ‖) with ab-
solute norm such that X-sum preserves lushness of summands, showing
that this property is equivalent to lushness of X.

1. Introduction

Let us fix first some notations. All over the paper X stands for a Banach
space, BX and SX are, respectively, its closed unit ball and its unit sphere,
X∗ is the dual space to X, and L(X) is the Banach algebra of bounded
linear operators on X. All linear spaces are over the field K, which can be
either the field R of reals or the field C of complex numbers. For a functional
x∗ ∈ SX∗ and a positive number α, the set of the form

S(BX , x
∗, α) = {x ∈ BX : Rex∗(x) > 1− α}

is called a slice of the unit ball. If A is a subset of X, we write conv(A)
for the convex hull of A and aconv(A) for the absolutely convex hull of A.
Finally, we denote by ext(A) the set of extreme points of the convex subset
A ⊆ X. Now the basic definition of our paper:
Definition 1.1. A Banach space X is said to be lush if for every x, y ∈ SX
and for every ε > 0 there is a slice S = S(BX , x

∗, ε) ⊂ BX , x∗ ∈ SX∗ , such
that x ∈ S and dist (y, aconv(S)) < ε.
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2 Lush spaces: properties and applications

Among the examples of lush spaces are the real or complex spaces C(K)
and L1(µ) (see [5] or [9, §3] for a detailed account).

The concept of lushness was introduced recently in [5] as a geometrical
property of a Banach space which ensures that the space has numerical
index 1. The numerical index of a Banach space X was introduced by
G. Lumer in 1968 (see [6]) and it is the best constant of equivalence between
the numerical radius and the usual norm of operators on L(X). Concretely,

n(X) = inf{v(T ) : T ∈ L(X), ‖T‖ = 1}
= max{k > 0 : k‖T‖ 6 v(T ) ∀T ∈ L(X)}.

Here, for T ∈ L(X), v(T ) is its numerical radius:

v(T ) = sup
{
|x∗(T (x))| : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1

}
.

Thus, a Banach space has numerical index 1 iff v(T ) = ‖T‖ for every
T ∈ L(X). It is clear from the definition that 0 6 n(X) 6 1, being these
inequalities best possible in the real case. In the complex case, it is a deep
result that n(X) is always bigger or equal than 1/e. Classical references here
are the monographs from the 1970’s [2, 3]. The state-of-the-art on numerical
indices may be found in the recent survey [9] and references therein.

The concept of lushness is proven to be a useful tool in the theory of
numerical index of Banach spaces since in [5] it helped to construct an
example showing that numerical index is not inherited in general by the
dual space, a latent question in the theory from the beginning of the subject.
Also, in [10] the lushness was applied for estimating the related concept of
polynomial numerical index in some real spaces like c0 or `1.

One major difficulty when dealing with Banach spaces with numerical
index 1 is that the definition involves operators, and one has to deal with all
operators, since the analogous property with only compact operators (called
the alternative Daugavet property) is known to be strictly weaker (see [15]).
On the other hand, there are in the literature many isometric properties
which are sufficient conditions for a Banach space to have numerical index 1,
being lushness the weakest of all of them (see [9, §3] for a detailed account).
In [14], it is shown that many of these properties are actually equivalent
to numerical index 1 for Banach spaces with the Radon-Nikodým property.
But this is not true for general Banach spaces (see [5, Example 3.4]). In
this paper we prove that Asplund spaces with numerical index 1 are lush
(section 2).

Section 3 is devoted to renorming. We prove that every separable Banach
space containing an isomorphic copy of c0 can be equivalently renormed to
be lush, and thus to have numerical index 1. Up to our knowledge, this is the
first non-trivial sufficient condition for renorming with numerical index 1.
Let us say that 1 is the only interesting value of the numerical index from the
isomorphic point of view: in [7] it was proved that “many” Banach spaces
(for instance, reflexive or separable spaces) can be equivalently renormed
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to have any possible value of the numerical index smaller than 1 (i.e. any
number in [0, 1[ in the real case and any number in [1/e, 1[ in the complex
case). On the other hand, some necessary conditions for a Banach space to
be renormed with numerical index 1 were given in [12].

The rest of the paper is devoted to the study of lushness independently of
its applications to numerical index. We show in section 4 a reformulation of
lushness which allows us to prove that it is separably determined and that
it is inherited by ultraproducts. Finally, section 5 is devoted to characterize
those spaces of the form X = (Rn, ‖ · ‖) with absolute norm such that X-
sum preserves lushness of summands (we show that this property is actually
equivalent to lushness of X).

We have to stress out that the study of lush spaces is still in its “embry-
onal” faze, and that the number of open questions is much bigger than that
of results obtained.

2. Lushness and numerical index 1

In this section we give sufficient conditions for lushness which will be
useful in the rest of the paper. Some notation is needed. Given a Banach
space X, a subset A ⊂ SX∗ is said to be norming for X if

‖x‖ = sup{|a∗(x)| : a∗ ∈ A}

for every x ∈ X. Given a completely regular Hausdorff topological space
Ω, we write Cb(Ω) to denote the Banach space of all K-valued bounded
continuous functions on Ω, endowed with the supremum norm. Finally, we
recall the fact that X is Asplund if and only if X∗ has the Radon-Nikodým
property.

Theorem 2.1. Let X be a Banach space. We consider the following asser-
tions.

(a) There is a completely regular Hausdorff topological space Ω and an
isometric embedding J : X −→ Cb(Ω) such that |x∗∗(J∗(δs))| = 1
for every s ∈ Ω and x∗∗ ∈ ext(BX∗∗),

(b) There is a norming set A ⊂ BX∗ for X such that |x∗∗(a∗)| = 1 for
every a∗ ∈ A and every x∗∗ ∈ ext(BX∗∗),

(c) For each x ∈ SX and ε > 0 there exists x∗ ∈ SX∗ such that

x ∈ S = S(BX , x
∗, ε) and BX = aconv(S),

(d) X is lush.
(e) n(X) = 1.

Then (a)⇔ (b)⇒ (c)⇒ (d)⇒ (e).

In the case when X is an Asplund space, then all the assertions above are
equivalent.
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Proof. (a) ⇒ (b). It suffices to show that {J∗(δs) : s ∈ Ω} is norming. To
do so, fixed x ∈ X we observe that

sup
s∈Ω

[J∗(δs)](x) = sup
s∈Ω

δs(Jx) = ‖Jx‖ = ‖x‖.

(b)⇒ (a). We consider the operator J : X −→ Cb(A) defined by

[Jx](a∗) = a∗(x) (x ∈ X, a∗ ∈ A),

which is isometric since the set A ⊂ BX∗ is norming. Besides, it is obvious
from the definition of J that J∗(δa∗) = a∗ for every a∗ ∈ A and, therefore,
we have that

|x∗∗(J∗(δa∗))| = 1

for every a∗ ∈ A and every x∗∗ ∈ ext(BX∗∗).

(b) ⇒ (c). Let ε > 0 and x ∈ SX be fixed. We take x∗ ∈ A such
that Rex∗(x) > 1 − ε, we define S = S(BX , x

∗, ε), and we prove that
BX = aconv(S). To do so, we define S̃ = S(BX∗∗ , x

∗, ε) and we observe
that the hypothesis gives us

BX∗∗ = aconv
(
S̃
)w∗

.

On the other hand, it is clear that S̃ ⊂ S
w∗ , which tells us that

aconv(S)
w∗

= aconv
(
S̃
)w∗

= BX∗∗ .

Finally, we deduce that

BX = BX∗∗ ∩X = aconv(S)
w∗

∩X = aconv(S)
w

= aconv(S).

(c)⇒ (d) is completely evident and (d)⇒ (e) was proved in [5, Proposi-
tion 2.2].

Finally, the case when X is Asplund follows from [5, Remark 3.5]. �

Let us point out that numerical index 1 and lushness are also equivalent
for Banach spaces with the Radon-Nikodým property. This is an immediate
consequence of [14, Theorem 1] and [5, Proposition 2.2].

Remark 2.2. Let X be a Banach space with the Radon-Nikodým property.
Then, X is lush if and only if n(X) = 1.

We are giving now two classes of spaces where Theorem 2.1 applies. The
first class consists of preduals of L1(µ) spaces. Indeed, it is clear that∣∣∫ ϕf dµ∣∣ = 1 for every f ∈ ext(BL1(µ)) and every ϕ ∈ ext(BL∞(µ)). Now,
if L1(µ) has a predual X, then the set ext(BL1(µ)) is norming for X and
condition (b) of Theorem 2.1 applies.

Example 2.3. The preduals of any L1(µ) space are lush.
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The second class of spaces in which Theorem 2.1 applies is the one of
nicely embedded spaces in Cb(Ω) spaces. A Banach space X is said to be
nicely embedded in Cb(Ω) if there exists a linear isometry J : X −→ Cb(Ω)
such that for all s ∈ Ω the following properties are satisfied:

(N1) ‖J∗δs‖ = 1.
(N2) span(J∗δs) is an L-summand in X∗.

This property was introduced in [18], where the corresponding examples
can be found. It is immediate that nicely embedded spaces fulfill condition
(a) in Theorem 2.1, so they are lush.

Example 2.4. Any Banach space which nicely embeds into a Cb(Ω) space
is lush.

We finish the section with a result concerning duals of Radon-Nikodým
spaces. It is shown in [5, Proposition 4.1] that n(X∗) = 1 if X is a Banach
space with the Radon-Nikodým property and n(X) = 1. Actually, with the
help of Theorem 2.1, it can be proved that X∗ is lush.

Proposition 2.5. Let X be a Banach space with the Radon-Nikodým prop-
erty and n(X) = 1. Then, for each x∗ ∈ SX∗ and ε > 0 there exists
x∗∗ ∈ SX∗∗ such that

x∗ ∈ S = S(BX∗ , x
∗∗, ε) and BX∗ = aconv(S).

In particular, X∗ is lush.

Proof. Following the proof of [5, Proposition 4.1], one has that

|x∗∗∗(a)| = 1
(
x∗∗∗ ∈ ext(BX∗∗∗), a ∈ A

)
where A is the set of denting points of BX viewed as a subset of BX∗∗ . Since
X has the Radon-Nikodým property, A is a norming subset of BX∗∗ for X∗
and the result follows from Theorem 2.1. �

3. Lush renormings

Our goal in this section is to prove that a separable Banach space con-
taining an isomorphic copy of c0 can be equivalently renormed to be lush
(in particular, to have numerical index 1). We need two lemmata.

Lemma 3.1. Let X be a separable Banach space containing an isometric
copy of c0. Then there is a biorthogonal system {(gn, g∗n)} ⊂ BX × (12BX∗)
such that

(1) sup
n∈N
|g∗n(x)| > 1

3
‖x‖

for all x ∈ X.
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Proof. Since a c0-subspace of a separable space is 2-complemented (Sobczyk’s
Theorem, see [1, Corollary 2.5.9] for instance), one can write down X as
c0 ⊕ Y in such a way, that for every e ∈ c0, y ∈ Y

(2)
1

6
(‖e‖+ ‖y‖) 6 ‖e+ y‖ 6 ‖e‖+ ‖y‖.

Denote by {en}n∈N the canonical basis of c0 and by {e∗n}n∈N ⊂ Y ⊥ ⊂ X∗

denote the corresponding coordinate functionals. By (2), ‖e∗n‖ 6 6 for every
n ∈ N. Now, we use the separability of Y to take a norming sequence with
norming tails {y∗n}n∈N ⊂ SY ∗ , that is

sup
n>m
|y∗n(y)| = ‖y‖

(
y ∈ Y, m ∈ N

)
.

We write ỹ∗n ∈ c⊥0 ⊂ X∗ for the natural extensions of y∗n to the whole of X.
Again, by (2), ‖ỹ∗n‖ 6 6. Let us show that gn = en, g∗n = e∗n + ỹ∗n form the
biorthogonal system we need. Indeed, consider an arbitrary x = e+ y ∈ X,
e ∈ c0, y ∈ Y . If ‖y‖ 6 1

3
‖x‖, then ‖e‖ > 2

3
‖x‖ and

sup
n∈N
|g∗n(x)| = sup

n∈N
|e∗n(e) + ỹ∗n(y)|

> sup
n∈N
|e∗n(e)| − 1

3
‖x‖ = ‖e‖ − 1

3
‖x‖ > 1

3
‖x‖.

In the opposite case of being ‖y‖ > 1
3
‖x‖, we select a sequence of indices

n1 < n2 < · · · such that
{
|ỹ∗nk

(y)|
}
−→ ‖y‖. Then

sup
n∈N
|g∗n(x)| > lim sup

k→∞
|e∗nk

(e) + ỹ∗nk
(y)|

= lim sup
k→∞

|ỹ∗nk
(y)| = ‖y‖ > 1

3
‖x‖. �

Lemma 3.2. Let X be a separable Banach space containing an isomorphic
copy of c0. Then there is an isomorphic embedding T : X −→ `∞ such that
T (X) ⊃ c0.

Proof. Remark that if X contains an isomorphic copy of c0, then X can
be renormed equivalently to have an isometric copy of c0. After this, take
{(gn, g∗n)}n∈N from Lemma 3.1 and let us define T : X −→ `∞ as follows:

T (x) = {g∗n(x)}n∈N ∈ `∞ (x ∈ X).

The inequality (1) guaranties that

(3)
1

3
‖x‖ 6 ‖T (x)‖ 6 12‖x‖ for all x ∈ X,

and the image of gn is the n-th unit vector of c0 ⊂ `∞, so T (X) ⊃ c0. �

To finish our arguments, we need to use a class of lush spaces which
was also introduced in the aforementioned paper [5], the so-called C-rich
subspaces of C(K).
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Definition 3.3. Let K be a compact Hausdorff space. A closed subspace
X of C(K) is said to be C-rich if for every nonempty open subset U of K
and every ε > 0, there is a positive function h of norm 1 with support inside
U such that the distance from h to X is less than ε.

Some examples and remarks about C-rich subspaces will be needed.

Remarks 3.4.

(a) Due to [5, Proposition 2.5], if K is a perfect compact space, then
every finite-codimensional subspace of C(K) is C-rich and, in par-
ticular, lush.

(b) If one considers `∞ as C(βN), then c0 is C-rich in `∞. Indeed, this
follows easily from the fact that N is a dense subset of βN consisting
of isolated points.

(c) If X ⊂ C(K) is C-rich, then every subspace Y ⊂ C(K) containing
X is C-rich.

(d) In particular, every subspace of `∞ containing c0 is C-rich.
(e) Let K be an infinite compact set and X be a Banach space such

that it is C-rich in C(K). Then, X contains an isomorphic copy of
c0. Indeed, we take a sequence of disjoint open sets Vn ⊂ K. Since
X is C-rich in C(K), for ε > 0 and n ∈ N we can find fn ∈ C(K)
such that

supp(fn) ⊂ Vn, fn > 0, ‖fn‖ = 1, and dist(fn, X) 6
ε

2n
.

The sequence {fn} is a c0-basic sequence in C(K), and a perturba-
tion argument gives us a basic sequence in X which is equivalent to
{fn} and so, it spans an isomorphic copy of c0.

We are now able to state the main result of the section which characterizes
isomorphically the separable Banach spaces containing c0.

Theorem 3.5. For a separable infinite-dimensional Banach space X, the
following conditions are equivalent:

(i) X contains an isomorphic copy of c0,
(ii) X is isomorphic to a C-rich subspace of `∞ = C(βN),

(iii) X is isomorphic to a C-rich subspace of some C(K).

Proof. (i)⇒ (ii). Lemma 3.2 tells us that there is an isomorphic embedding
T : X −→ `∞ such that T (X) ⊃ c0. Then, T (X) is a C-rich subspace of `∞
by Remark 3.4.d and X is isomorphic to T (X). The implication (ii)⇒ (iii)
is evident and (iii)⇒ (i) is shown in Remark 3.4.e. �

The following result is an evident consequence of the above theorem.

Corollary 3.6. Every separable Banach space containing an isomorphic
copy of c0 can be equivalently renormed to be lush and, in particular, to
have numerical index 1.
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As an easy consequence we obtain the following.

Corollary 3.7. Any closed subspace of c0 can be renormed to be lush and,
in particular, to have numerical index 1.

Proof. LetX be a closed subspace of c0. IfX is finite-dimensional, the result
is clear. Otherwise, X contains an isomorphic copy of c0 [1, Proposition
2.1.1] and the result follows from the above corollary. �

As far as we know, these are the first non-trivial sufficient conditions for
renorming with numerical index 1 appearing in the literature, and they give
a positive partial answer to Problem 21 of [9].

We finish the section with an example showing that the answer to Prob-
lem 22 of [9] (whether any Banach space such that X∗ contains an isomor-
phic copy of `1 is renormable with numerical index 1) is negative.

Example 3.8. There is a Banach space Y such that Y ∗ is isomorphic to `1

but Y does not admit an equivalent norm with numerical index 1. Indeed,
let us consider the real space Y given in [4] such that Y ∗ is isomorphic
to `1 and Y has the Radon-Nikodým property. Then, Y is an infinite-
dimensional real Banach space having the Radon-Nikodým property and
it is also Asplund, so [12, Corollary 4] shows that it does not admit an
equivalent norm with numerical index 1.

4. A reformulation of lushness

In this section we prove a useful reformulation of lushness which does not
use slices. We use it to reduces lushness of a non-separable space to the
lushness of “sufficiently many” separable subspaces and to study lushness of
ultraproducts.

Theorem 4.1. Let X be a Banach space and let G ⊂ SX∗ be a norming
rounded subset for X. Then, the following are equivalent:

(i) X is lush.
(ii)R In the real case: for every x, y ∈ SX and ε > 0, there exist λ1, λ2 > 0,

λ1 + λ2 = 1 and x1, x2 ∈ BX such that

‖x+ x1 + x2‖ > 3− ε

and
‖y − (λ1x1 − λ2x2)‖ < ε

(ii)C In the complex case: For every x, y ∈ SX , n ∈ N and ε > 0, there
exist λ1, . . . , λn > 0,

∑n
k=1 λk = 1 and x1, . . . , xn ∈ BX such that

(4)

∥∥∥∥∥x+
n∑
k=1

xk

∥∥∥∥∥ > n+ 1− ε
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and

(5)

∥∥∥∥∥y −
n∑
k=1

λk exp

(
2πik

n

)
xk

∥∥∥∥∥ < ε+
2π

n

(iii) For every x, y ∈ SX and for every ε > 0 there is x∗ ∈ G such
that x ∈ S = S(BX , x

∗, ε) and dist (y, aconv(S)) < ε (i.e. x∗ in the
definition of lushness can be chosen from G).

Proof. Let us start with the complex case.

(i) ⇒ (ii). Fix x, y ∈ SX , n ∈ N and ε > 0. Since X is a lush space, we
may find x∗ ∈ SX∗ , µj ∈ [0, 1], j = 1, . . . , N with

∑N
j=1 µj = 1, θj ∈ [0, 2π]

and yj ∈ S(BX , x
∗, ε/n) satisfying

(6) Rex∗(x) > 1− ε/n and

∥∥∥∥∥y −
N∑
j=1

µj exp(iθj)yj

∥∥∥∥∥ < ε .

Taking into account that the points
{

2πk
n

: k = 1, . . . , n
}
form an 2π

n
-net

of [0, 2π] we can represent the set of indices {1, . . . , N} as a disjoint union
of sets Ak, k = 1, . . . , n in such a way that

(7)
∣∣∣∣ θj − 2πk

n

∣∣∣∣ 6 2π

n
for every j ∈ Ak.

Let us show that

λk =
∑
j∈Ak

µj, and xk =
1

λk

∑
j∈Ak

µjyj if Ak 6= ∅

and
λk = 0, and arbitrary xk ∈ S(BX , x

∗, ε/n) if Ak = ∅
fulfill the desired conditions. Indeed, it is clear that xk ∈ S(BX , x

∗, ε/n),
which ensures validity of (4). The remaining condition (5) follows from (6)
and (7):∥∥∥∥∥y −

n∑
k=1

λk exp

(
2πik

n

)
xk

∥∥∥∥∥ =

∥∥∥∥∥∥y −
∑

k:Ak 6=∅

∑
j∈Ak

µj exp

(
2πik

n

)
yj

∥∥∥∥∥∥
6

∥∥∥∥∥∥y −
∑

k:Ak 6=∅

∑
j∈Ak

µj exp(iθj)yj

∥∥∥∥∥∥+
2π

n

=

∥∥∥∥∥y −
N∑
j=1

µj exp(iθj)yj

∥∥∥∥∥+
2π

n
< ε+

2π

n
.

(ii) ⇒ (iii). For given x, y ∈ SX and ε1 > 0, we apply (ii) with ε =
ε1/2 and n big enough to ensure that 2π

n
< ε1/2. We get λ1, . . . , λn > 0,∑n

k=1 λk = 1 and x1, . . . , xn ∈ BX satisfying (4) and (5). The first of these
conditions ensures the existence of x∗ ∈ G such that x and all the xk belong
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to the slice S(BX , x
∗, ε) ⊂ S(BX , x

∗, ε1). The second condition shows that
dist (y, aconv(S(BX , x

∗, ε1))) < ε1, which proves lushness of X.

The last implication (iii)⇒ (i) is evident.

In the real case, SR consists just of two points 1 and −1 and parameters
n and exp

(
2πik
n

)
just disappear from the statement. The proof just follows

the same lines as in the complex case. �

The following is an application of the above characterization.

Theorem 4.2. For a Banach space X the following two conditions are
equivalent:

(i) X is lush,
(ii) Every separable subspace E ⊂ X is contained in a separable lush

subspace Y , E ⊂ Y ⊂ X.

Proof. The implication (ii) ⇒ (i) is immediate from the definition of lush-
ness.

Let us prove only the more bulky complex case of (i)⇒ (ii). Let (kn, jn)
be the standard “triangle” enumeration of all pairs of naturals. Remark
that, under this enumeration, kn 6 n and jn 6 n for all n ∈ N. Let
us construct recurrently a sequence of separable subspaces E1 ⊂ E2 ⊂ . . .,
dense sequences Am = {a(m, r) : r ∈ N} ⊂ SEm and xm, ym ∈ SX as follows:
for m = 1 we take E1 = E, let A1 = {a(1, r) : r ∈ N} be a dense sequence in
SE1 such that every of its elements repeats in it infinitely many times, and
take x1 = a(kk1 , jk1) = a(1, 1), y1 = a(kj1 , jj1) = a(1, 1). If Em and Am are
already constructed, we consider xm = a(kkm , jkm) , ym = a(kjm , jjm) and
apply item (ii) of Theorem 4.1 to xm, ym with εm = 1/m for n = 2, . . . ,m.
We get λm,n,1, . . . , λm,n,n > 0,

∑n
k=1 λm,n,k = 1 and xm,n,1, . . . , xm,n,n ∈ BX

such that ∥∥∥∥∥xm +
n∑
k=1

xm,n,k

∥∥∥∥∥ > n+ 1− εm

and ∥∥∥∥∥ym −
n∑
k=1

λm,n,k exp

(
2πik

n

)
xm,n,k

∥∥∥∥∥ < εm +
2π

n
,

n = 2, . . . ,m. Define Em+1 as the linear span of Em and of all the vectors
xm,n,s, n = 2, . . . ,m, s = 1, 2, . . . , n. Select Am+1 = {a(m + 1, r) : r ∈ N}
as a dense sequence in SEm+1 such that every of its element repeats in it
infinitely many times. Put Y =

⋃
m∈NEm. Under this construction Y is

separable, contains E, and the pair (xm, ym) runs over all possible values
of (a(r, s), a(t, u)), r, s, t, u ∈ N. Indeed, for the last assertion we observe
that the map m 7−→ (km, jm) is bijective from N to N × N, so the map
(m,n) 7−→ ((km, jm), (kn, jn)) is bijective from N×N to

(
(N×N)×(N×N)

)
.
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Thus, the composition of these two maps m 7−→ ((kkm , jkm), (kjm , jjm)) is
bijective from N to

(
(N× N)× (N× N)

)
and so

{(xm, ym) : m ∈ N} =
{

(a(kkm , jkm), a(kjm , jjm))) : m ∈ N
}

=
{

(a(i, j), a(k, l)) : (i, j, k, l) ∈ N× N× N× N
}
.

Therefore, {(xm, ym) : m ∈ N} is dense in SY ×SY and every of its elements
repeats in the sequence infinitely many times. Due to our construction, this
means that item (ii) of Theorem 4.1 takes place for arbitrary x, y from the
fixed dense subset {(xm, ym) : m ∈ N} of SY × SY for all n ∈ N and with
arbitrarily small epsilons. This means that Y is lush. �

Let us comment that, since for Asplund spaces lushness is equivalent to
having numerical index 1 (Theorem 2.1), the above result improves [13,
Teorema 3], where it is proved the following. Let X be an Asplund, weakly
countably determined space with numerical index 1. Then, for every separa-
ble subspace Y of X, there is another separable subspace Z of X containing
Y and such that n(Z) = 1.

We finish the section with an application of Theorem 4.1 to ultraproducts.
Let us recall the notion of (Banach) ultraproducts [8]. Let U be a free
ultrafilter on N, and let {Xn}n∈N be a sequence of Banach spaces. We can
consider the `∞-sum of the family, [⊕n∈NXn]`∞ , together with its closed
subspace

NU =
{
{xn}n∈N ∈ [⊕n∈NXn]`∞ : lim

U
‖xn‖ = 0

}
.

The quotient space (Xn)U = [⊕n∈NXn]`∞ /NU is called the ultraproduct of
the family {Xn}n∈N relative to the ultrafilter U . Let (xn)U stand for the
element of (Xn)U containing a given family {xn} ∈ [⊕n∈NXn]`∞ . It is easy
to check that

‖(xn)U‖ = lim
U
‖xn‖.

If all the Xn are equal to the same Banach space X, the ultraproduct of the
family is called the U -ultrapower of X and it is usually denoted by XU .

Our next aim is to show that lushness is inherited by ultraproducts.
Actually, the following stronger version of lushness will be obtained for the
ultraproducts.
Definition 4.3. A complex Banach space X is said to be ultra-lush, if for
every x, y ∈ SX and n ∈ N there exist λ1 . . . λn > 0,

∑n
k=1 λk = 1 and

x1, . . . , xn ∈ BX such that∥∥∥∥∥x+
n∑
k=1

xk

∥∥∥∥∥ = n+ 1 and

∥∥∥∥∥y −
n∑
k=1

λk exp

(
2πik

n

)
xk

∥∥∥∥∥ 6 2π

n
.

A real Banach space X is said to be ultra-lush , if for every x, y ∈ SX , there
exist λ1, λ2 > 0, λ1 + λ2 = 1 and x1, x2 ∈ SX such that

‖x+ x1 + x2‖ = 3 and y = λ1x1 − λ2x2 .
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As straightforward applications of Theorem 4.1 and the definition of ul-
traproducts, we get the following results.

Corollary 4.4. Let {Xn}n∈N be a sequence of lush spaces and let U be a free
ultrafilter on N. Then E = (Xn)U is ultra-lush. Moreover, the ultraproduct
of any sequence of Banach spaces is ultra-lush whenever it is lush.

Corollary 4.5. Let X be a Banach space and U be a free ultrafilter on N.
Then, the ultrapower E = (X)U is lush if and only if X is lush.

5. Unconditional sums of lush spaces

A norm ‖ · ‖a on Rn is said to be an absolute norm if

‖(a1, . . . , an)‖a = ‖(|a1|, . . . , |an|)‖a
(
a1, . . . , an ∈ R

)
and ‖(1, 0, . . . , 0)‖a = · · · = ‖(0, . . . , 0, 1)‖a = 1. If E = (Rn, ‖ · ‖a) is a
space with an absolute norm and X1, . . . , Xn are Banach spaces, we write
X =

[
X1⊕X2⊕ . . .⊕Xn

]
E
to denote the E-direct sum of X1, . . . , Xn, that

is, X = X1 ⊕ · · · ⊕Xn endowed with the norm

‖(x1, . . . , xn)‖ = ‖(‖x1‖, . . . , ‖xn‖)‖a
We will use the fact that absolute norms are nondecreasing and continuous
in each variable. For background, we refer the reader to [3, § 21]. Easy
examples of absolute norms are the `p-norms for 1 6 p 6∞ leading to the
`p-direct sums of Banach spaces.

Definition 5.1. Let E = (Rn, ‖ · ‖) be a Banach space with an absolute
norm. We say that E respects lushness if for every collection X1, X2, . . . , Xn

of lush spaces their E-direct sum X =
[
X1 ⊕X2 ⊕ . . .⊕Xn

]
E
is lush.

Our aim in this section is to characterize those absolute norms which
respect lushness.

Theorem 5.2. A space E = (Rn, ‖ · ‖) respects lushness if and only if it is
lush itself.

Proof. The “only if” part is evident: if E respects lushness, we can take all
Xk = R and get lushness of E =

[
X1 ⊕X2 ⊕ . . .⊕Xn

]
E
.

Let us prove the “if” part. Let X1, X2, . . . , Xn be lush spaces, X =[
X1 ⊕X2 ⊕ . . .⊕Xn

]
E
. First of all, let us remark that if all Xk are finite-

dimensional, by [17, Theorem 3.1] lushness is equivalent to the following
property

|x∗(x)| = 1
(
for every x ∈ ext(BX) and every x∗ ∈ ext(BX∗)

)
.

This property can be easily verified taking into account that

ext(BX) = {(a1x1, . . . , anxn) : (a1, . . . , an) ∈ ext(BE), xk ∈ ext(BXk
)} ,
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the analogous description for ext(BX∗), and the fact that the sets of extreme
points in BE and in BE∗ admit rotation in each variable.

Now, let us turn to the general case where some of Xk are infinite-
dimensional. By a small perturbation argument, it is sufficient to prove
the property of the definition of lushness for a fixed ε > 0 and x, y ∈ SX ,
x = (x1, . . . , xn), y = (y1, . . . , yn) with non-zero xk, yk. Denote

αk = ‖xk‖, βk = ‖yk‖, x̃k =
xk
αk
, ỹk =

yk
βk
, and δ =

ε

n+ 3
.

By lushness of Xk, there is x∗k ∈ SX∗k such that

x̃k ∈ Sk = S(BXk
, x∗k, δ) and dist(ỹk, aconvSk) < δ.

This means that there is a finite number of elements uk,1, uk,2, . . . , uk,mk
∈ Sk

and a finite number of scalars λk,1, . . . , λk,mk
such that

∑mk

j=1 |λk,j| = 1, and

(8)

∥∥∥∥∥ỹk −
mk∑
j=1

λk,juk,j

∥∥∥∥∥ < δ.

We embedXk isometrically into some infinite-dimensional space X̃k (ifXk is
infinite-dimensional, then put X̃k = Xk), denote X̃ =

[
X̃1⊕X̃2⊕ . . .⊕X̃n

]
E

and select linearly independent vectors ek,1, . . . , ek,mk
∈ SX̃k

in such a way
that

(9)
mk∑
j=1

‖ek,j − uk,j‖ < δ.

We consider Yk = span{ek,j : j = 1, · · · ,mk} and introduce a new norm pk
on Yk in such a way that B(Yk,pk) = aconv

(
{ek,j : j = 1, . . . ,mk}

)
. Remark

that

(10) pk(w) > ‖w‖ for every w ∈ Yk.

Remark also that the linear map gk : (Yk, pk) −→ Xk defined by its values
on the basis {ek,j} as gk(ek,j) = uk,j, satisfies

gk
(
B(Yk,pk)

)
= aconv

(
{uk,j : j = 1, . . . ,mk}

)
and

gk
(
conv({ek,j : j = 1, . . .mk})

)
= conv

(
{uk,j : j = 1, . . . ,mk}

)
.

Moreover, thanks to (9), ‖wk − gk(wk)‖ < δ for every wk ∈ B(Yk,pk).

We introduce one more auxiliary space (Y, p) =
[
(Y1, p1)⊕· · ·⊕(Yn, pn)

]
E
.

As proved before, since (Yk, pk) is isometric to `(mk)
1 for every k, Y is a finite-

dimensional lush space and, therefore, n(Y ) = 1, implying by [11, Corol-
lary 3.7] that Y is a CL-space. This means, by definition, that BY is the
absolutely convex hull of every maximal convex subset (maximal face) of SY .
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For every w = (w1, . . . , wn) ∈ B(Y,p) we denote g(w) = (g1(w1), . . . , gn(wn)).
Then, we get that

(11) ‖w − g(w)‖X̃ < ‖(δ, . . . , δ)‖E 6 n δ

and

(12) ‖g(w)‖X 6 p(w).

Consider u = (α1z̃1, . . . , αnz̃n), where

z̃k =
1

mk

mk∑
j=1

ek,j

and v = (β1ṽ1, . . . βnṽn), where

ṽk =

mk∑
j=1

λk,j ek,j.

Then u, v ∈ SY , so there is an f = (f1, . . . , fn) ∈ S(Y,p)∗ such that f(u) = 1
and the absolute convex hull of the face F = {w ∈ S(Y,p) : Re f(w) = 1}
contains v.

We denote γk = p∗k(fk) and D = {k : γk 6= 0}. Then, we have γ =
(γ1, . . . , γn) ∈ SE∗ , α = (α1, . . . , αn) ∈ SE and

1 = Re f(u) =
n∑
k=1

αk Re fk(z̃k) 6
n∑
k=1

αkγk 6 1.

Therefore,

(13)
n∑
k=1

αkγk = 1, and fk(z̃k) = γk (k = 1, . . . , n).

So, in particular, fk/γk ∈ S(Y ∗k ,p
∗
k) is a supporting functional of the point z̃k

for every k ∈ D, i.e. fk(ek,j) = γk for all k, j.

Finally, let us introduce x∗ = (γ1x
∗
1, . . . , γnx

∗
n) ∈ SX∗ and let us prove

that the slice S = S(BX , x
∗, ε) is the one we need, namely that x ∈ S and

dist
(
y, aconv(S)

)
< ε.

The inclusion x ∈ S is simple:

Rex∗(x) =
n∑
k=1

αk γk Rex∗k(x̃k) >
n∑
k=1

αk γk (1− δ) = 1− δ.

To estimate the distance from y to aconv(S) we need the following claim:

Claim. g(w) ∈ S for every element w = (w1, . . . , wn) ∈ F .
Proof of the claim. First of all, according to (12), ‖g(w)‖ 6 1, so the only
thing we need to prove is the estimation

Rex∗(g(w)) > 1− ε.
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Denote φk = pk(wk). By the definition of F , we have

1 = f(w) =
n∑
k=1

Re fk(wk) 6
n∑
k=1

γkφk 6 1,

and, therefore,

(14)
n∑
k=1

γkφk = 1, and fk(wk) = γkφk (k = 1, . . . , n).

This means that wk/φk ∈ conv
(
{ek,j : j = 1, . . . ,mk}

)
for every k such

that γkφk 6= 0 and so, gk(wk)/φk ∈ conv
(
{uk,j : j = 1, . . . ,mk}

)
⊂ Sk.

Therefore

Rex∗(g(w)) =
n∑
k=1

γk Rex∗k(gk(wk)) >
n∑
k=1

γkφk(1− δ) > 1− ε,

which gives us the claim.

Now, let u1, u2, . . . , um be elements of the face F and let λ1, . . . , λm be
scalars such that

∑m
j=1 |λj| = 1, and v =

∑m
j=1 λjuj. Thanks to the claim,

g(uj) ∈ S. Therefore

dist
(
y, aconv(S)

)
6

∥∥∥∥∥y −
m∑
j=1

λjg(uj)

∥∥∥∥∥ 6 ‖y − v‖+

∥∥∥∥∥v −
m∑
j=1

λjg(uj)

∥∥∥∥∥ .
We continue the estimation using the definition of v and the inequalities (8)
and (11):

6 2δ‖(β1, . . . , βn)‖E +
m∑
j=1

|λj|‖uj − g(uj)‖ 6 (n+ 2)δ < ε.

This completes the proof of the theorem. �

Although the above theorem only deals with finite sums of lush spaces, on
can deduce from it the lushness of some infinite sums. Given an arbitrary
family {Xi : i ∈ I} of Banach spaces, we denote by [⊕i∈IXi]c0 (resp.
[⊕i∈IXi]`1 , [⊕i∈IXi]`∞) the c0-sum (resp. `1-sum, `∞-sum) of the family.

Proposition 5.3. Let {Xi : i ∈ I} be a family of lush spaces. Then the
c0-, `1- and `∞-sums of the family are also lush.

Proof. Let us start with the easier cases c0- or `1-sum of the family. In these
two cases, we consider the family of all finite sums (c0- or `1 respectively)
of elements of the family {Xi : i ∈ I}, viewed as subspaces of the whole
c0- or `1-sum. Then, Theorem 5.2 gives us that this is a family of lush
subspaces which is filtered and whose union is dense. The result now follows
straightforwardly from the definition of lushness.

For the `∞-sum of the family the above argument does not apply, but
it is not difficult to give a direct proof. Let X denote the `∞-sum of the
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family, let (xi), (yi) be elements in the unit sphere of X and let ε > 0 be
fixed. By the definition of X, there is i0 ∈ I such that ‖xi0‖ > 1− ε. Since
Xi0 is lush, we may find x∗i0 ∈ SX∗i0 such that, writing Si0 = S(BXi0

, x∗i0 , ε),
we have

xi0 ∈ Si0 and dist
(
yi0 , aconv(Si0)

)
< ε.

Now, defining x̃∗ ∈ SX∗ as
x̃∗
(
(zi)
)

= x∗i0(zi0)
(
(zi) ∈ X

)
,

and writing S̃ = S(BX , x̃
∗, ε), we clearly have

(xi) ∈ S̃ and dist
(
(yi), aconv(S̃)

)
< ε. �

Let us comment that the analogue of Proposition 5.3 for Banach spaces
with numerical index 1 was given in [16, Corollary 4]. On the other hand,
we do not know of any analogous result to Theorem 5.2 for Banach spaces
with numerical index 1.
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