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Abstract
The basic filters in mathematical morphology are dilation and erosion. They are defined by a structuring element that is
usually shifted pixel-wise over an image, together with a comparison process that takes place within the corresponding mask.
This comparison is made in the grey value case by means of maximum or minimum formation. Hence, there is easy access to
max-plus algebra and, by means of an algebra change, also to the theory of linear algebra. We show that an approximation of
the maximum function forms a commutative semifield (with respect to multiplication) and corresponds to the maximum again
in the limit case. In this way, we demonstrate a novel access to the logarithmic connection between the Fourier transform and
the slope transformation. In addition, we prove that the dilation by means of a fast Fourier transform depends only on the size
of the structuring element used. Moreover, we derive a bound above which the Fourier approximation yields results that are
exact in terms of grey value quantisation.

Keywords Mathematical morphology · Fourier transform · Dilation · Max-plus algebra · Slope transform

1 Introduction

Max-plus algebra [1] is a class of algebraic systems and
is obtained from linear algebra by replacing addition with
maximum and multiplication with addition. This results in
many analogues in the max-plus algebra to the conven-
tional algebra. Therefore, it is mainly used to cast nonlinear
relationships in a linear-like structure. The max-plus alge-
bra emerged from problems in graph theory and operations
research [2]. It has subsequently been used in other areas
such as discrete event systems [3–5], approaches to optimal
control [6] and dynamic systems and control [7,8]. Another
area of application for this algebra, to which we will devote
particular attention here, is mathematical morphology.

Mathematical morphology is a theory for the analysis of
spatial structures in images. It has evolved over decades to a
very successful field in image processing, see, for example,
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[9–11] for an overview.There are twomain building blocks of
usualmorphological operators. Thefirst one is the structuring
element (SE), characterised by its shape, size and centre loca-
tion. There are in addition two types of SEs: flat and non-flat
[12]. A flat SE basically defines a neighbourhood of the cen-
tre pixelwheremorphological operations take place, whereas
a non-flat SE also contains a mask of finite values used as
additive offsets. The SE is translated over an image and often
implemented as a sliding window. The second building block
is a mechanism performing a comparison of values within a
SE. The basic operations in mathematical morphology are
dilation and erosion, where a pixel value is set to the maxi-
mum or minimum of the discrete image function within the
SE centred upon it, respectively. Many morphological filter-
ing processes of practical interest, e.g. opening, closing or
top hats, can be formulated by combining dilation and ero-
sion. As dilation and erosion are dual operations, it is often
sufficient to focus on one of it for algorithm construction.

From the interaction of these two theories, a first funda-
mental question arises, namely how nonlinearmorphological
dilation relates to its linear analogue when one makes the
transition betweenmax-plus algebra and linear algebra. From
this connection arises a relation between the Fourier trans-
form in linear signal processing and the slope transform in
morphology. This relation was introduced by Maragos [13]
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and by Dorst and van den Boomgaard [14]. This suggested a
logarithmic relationship between these two transformations,
which Burgeth andWeickert, among others, analysed in their
work [15]. For this purpose, they naturally identified the
convolution in the max-plus algebra with the Laplace trans-
formation and its conjugate with the Cramer transformation.
They called the resulting connection the logarithmic connec-
tion.

We want to take up the analysis of Burgeth and Weick-
ert and investigate an alternative approach in order to find a
direct access to the logarithmic relationship without having
to take a diversion via the Laplace and Cramer transforma-
tion. To achieve this, we will replace the maximum operator
in the dilation by an approximation and show that the max-
plus algebra is still a commutative semifield (with respect to
multiplication) by this approximation. Further, we will com-
pare the resulting equations with respect to the dilation via
the Fourier or slope transformation theorem.

Another question arising from this connection with the
approximated max-plus algebra, which is still partly open,
relates to the work [16] by Kahra, Sridhar and Breuß. This
represents an extension of thework [17] ofTuzikov,Margolin
and Grenov, where the calculation of the dilation by means
of Fourier transforms for binary images was discussed, to the
case of greyscale images. They have adopted the approaches
and approximated the dilation by an approximation of the
maximum. In doing so, the authors posited that the procedure
using the approximated max-plus algebra mentioned above
does not depend on the shape or flatness of the SE, but solely
on its size. However, an analytical observation supporting
this has been missing so far.

We will therefore close this gap here by giving two esti-
mates for it. One in a heuristic sense in the form of an energy
estimate and amore direct variant identifying the convolution
with the k-norm. Both will demonstrate the presumed inde-
pendence of the method from the form of the SE. Further,
we will also address the question of when this approxima-
tion is of sufficiently good quality with respect to the exact
calculation in practice.

2 General Definitions

We will first give some basic definition concerning dila-
tion, erosion, Fourier and slope transformations. Here we
will use the discrete formulation when switching between
the plus-prod and the max-plus algebra and the continuous
formulation when referring exclusively to the Fourier trans-
form.

We start by investigating how the morphological dilation
and erosion for a greyscale image f : R2 → R with a (flat)
structuring function b : R2 → R̄ according to

( f ⊕ b)(x) := sup
y∈R2

( f (y) + b(x − y)) , x ∈ R
2 (1)

( f � b)(x) := inf
y∈R2

( f (y) − b(x − y)) , x ∈ R
2 (2)

behaves. To do this, we consider the generalisation (called
“tangential dilation”) used by Dorst and van den Boomgaard
[14]

( f ⊕̌b)(x) := stat
y∈R2

( f (y) + b(x − y)) , x ∈ R
2 (3)

with

stat
y∈R2

f (y) :=
{
f (z) : ∇ f (z) = 0, z ∈ R

2
}

,

where the following connection exists:

sup( f ⊕̌b)(x) = ( f ⊕ b)(x), x ∈ R
2. (4)

Under this premise, one considers the slope transform S,
which satisfies

S[ f ](y) := stat
x∈R2

( f (x) − 〈y, x〉) , y ∈ R
2, (5)

as a morphological analogy to the Fourier transform

F[ f ](y) :=
∫

R2

f (x)e−2π i〈y,x〉dx, y ∈ R
2, (6)

since S in a certain sense satisfies a convolution theorem
similar to the Fourier transform:

S[ f ⊕̌b] = S[ f ] + S[b]. (7)

For further details regarding the slope transform and corre-
sponding connections to other transformations, please refer
to “Appendix A.3” and the references listed there.

3 Approximation of theMax-Plus Algebra

In this section, we will look at the properties of max-plus
algebra [4]. To be more precise, we want to investigate to
what extent an approximation of the maximum preserves the
max-plus algebra properties.

To do this, we first consider a convolution in the plus-
prod algebra of f with b from the previous section. If we
now switch from the (discrete) convolution in the plus-prod
algebra to the max-plus algebra or min-plus algebra, we see
that this gives rise to two new convolutions (cf. [15]) for
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x ∈ R
2:

( f ∗d b)(x) = sup
y∈R2

( f (x − y) + b(y))

= sup
y∈R2

( f (y) + b(x − y)) = ( f ⊕ b)(x), (8)

( f ∗e b̄)(x) = inf
y∈R2

(
f (x − y) + b̄(y)

)

= inf
y∈R2

( f (y) − b(y − x)) = ( f � b)(x), (9)

where b̄(x) = −b(−x). Furthermore, we know that we
can approximate the dilation by the smooth maximum with
Fourier transforms according to [16]:

( f ⊕ b)(x) = sup
y∈R2

( f (y) + b(x − y))

= lim
n→∞

1

n
ln

⎛
⎝∑

y∈R2

en f (y)enb(x−y)

⎞
⎠

= lim
n→∞

1

n
ln

(
en f (x) ∗ enb(x)

)

= lim
n→∞

1

n
ln

(
F−1

[
F

[
en f

]
· F

[
enb

]]
(x)

)
, x ∈ R

2.

(10)

In particular, the expression in the third line of this equation
is important because it is possible to speed up these calcu-
lations using a fast Fourier transform (see [16] for greyscale
images and [18] for colour images). This was demonstrated
by the algorithm cited here, which combines advantageous
properties. Most obviously, its complexity does not depend
on the size or shape of the structuring element, but only on
the size of the input image, which distinguishes it from other
fast methods. Therefore, one can assume that it is particu-
larly suitable for large images or filters. In addition, non-flat
filters can also be used. However, since this is more indirectly
related to our result, we will revisit this topic in Sect. 5.

Remark 1 The last expression in the first line of Eq. (10)
is better known as an approach by Maslov [19], who intro-
duced it as a log-sum-exponentiation approximation of the
maximum function. However, this approach is now also used
in other areas, for example in convex analysis [20] or as a
tool in tropical geometry to convert classic polynomials into
max-plus polynomials describing geometric objects [21].

This brings us to the idea of creating a new max-plus
algebra Rmax∗

n
= (R ∪ {−∞}, 1

n ln
(∑

en·(...)) ,+,−∞, 0)
which resembles the normal max-plus algebra Rmax = (R∪
{−∞},max,+,−∞, 0) except for the change that instead of
the maximumwe use the smooth maximumwithout the limit
transition 1

n ln
(∑

en·(...)) for the link ⊕̃. For better readabil-
ity, we use ⊕̃ and ⊗̃ for the general operations of addition
and multiplication concerning the field axioms to avoid con-
fusion with the notation of dilation and erosion, respectively.

See “Appendix A.2” for more details to max-plus algebras.
To check this, we only have to prove that Rmax∗

n
is an idem-

potent commutative semifield.
For this purpose, we prove the following theorem, which

already appears in [22] but is not explicitly proved there:

Theorem 1 Let the approximated smooth maximum be given
by

max ∗
n(x1, . . . , xk)

:= 1

n
ln

(
k∑

i=1

enxi

)
, xi ∈ R, i = 1, ..., k, k ∈ N, n ∈ R>0.

ThenRmax∗
n

= (R∪{−∞},max ∗
n,+,−∞, 0) represents for

all n ∈ R>0 a commutative (with respect to multiplication)
semifield.

Remark 2 We have used the terms “smooth maximum”,
respectively, “approximated smoothmaximum”here, depend-
ing on whether we have formed the limit, respectively,
not. This expression is also called “log-sum-exponentiation”
(LSE) in convex analysis or “SoftMax” in tropical geometry
and neural networks (see the relevant references from remark
1).

Proof For this,we calculate for arbitrary a, b, c ∈ R∪{−∞}:

• a ⊕̃ (b ⊕̃ c) = 1

n
ln

(
ena + e

n
n ln

(
enb+enc

))

= 1

n
ln

(
ena + enb + enc

)

= 1

n
ln

(
e
n
n ln

(
ena+enb

)
+ enc

)
= 1

n
ln

(
ena + enb

)
⊕̃ c

= (a ⊕̃ b) ⊕̃ c

• a ⊕̃ b = 1

n
ln

(
ena + enb

)
= 1

n
ln

(
enb + ena

)
= b ⊕̃ a

• a ⊗̃ (
b ⊗̃ c

) = a ⊗̃ (b + c) = a + (b + c)

= (a + b) + c = (a ⊗̃ b) ⊗̃ c

• a ⊗̃ (b ⊕̃ c) = a + 1

n
ln

(
enb + enc

)

= 1

n
ln ena + 1

n
ln

(
enb + enc

)

= 1

n
ln

(
en(a+b) + en(a+c)

)
= (a ⊗̃ b) ⊕̃ (a ⊗̃ c)

• (a ⊕̃ b) ⊗̃ c = 1

n
ln

(
ena + enb

)
+ c

= 1

n
ln

(
en(a+c) + en(b+c)

)
= (a ⊗̃ c) ⊕̃ (b ⊗̃ c)

• −∞⊕̃ a = 1

n
ln

(
e−∞ + ena

) = 1

n
ln ena = a

• 0 ⊗̃ a = 0 + a = a = a + 0 = a ⊗̃ 0

• a = −∞ ⇒ ∃ã ∈ R ∪ {−∞} mit a ⊗̃ ã = 0 = ã ⊗̃ a :
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ã = −a ∈ R ∪ {−∞}
• a ⊗̃ b = a + b = b + a = b ⊗̃ a.

Corollary 1 Let the approximated smooth maximum be given
as in Theorem 1. Then lim

n→∞Rmax∗
n
represents a max-plus

algebra.

Proof For this, we only have to prove the idempotence with
respect to addition, since all other properties have already
been proved in Theorem 1:

lim
n→∞ a ⊕̃ a = lim

n→∞
1

n
ln

(
ena + ena

) = lim
n→∞

1

n
ln

(
2ena

)

= lim
n→∞

1

n
(ln 2 + na)

= lim
n→∞

ln 2

n
+ a = a, a ∈ R ∪ {−∞}.

Thus, Rmax∗
n
does not represent a max-plus algebra, but

at least a commutative (with respect to multiplication) semi-
field. For sufficiently large n, however, we again obtain the
property of idempotence (with respect to addition), where in
the morphological case the size of n must be considered in
relation to ln(k). Here k ∈ N represents the size of the mask
under consideration.

4 Connection of the Fourier Transform and
the Slope Transform

Next, we will deal with the logarithmic connection between
morphological and linear systems. To do this, we will use
the max-plus algebra (or min-plus algebra) to derive a con-
nection between the Fourier and slope transforms and their
analogue from convex analysis, the Legendre transform, in
particular on the basis of dilation. See “Appendix A.1” for a
short introduction to mathematical morphology and A.2 for
a connection with the max-plus algebra.

We first formulate the dilation by means of slope transfor-
mations using the smooth maximum:

( f ⊕ b)(x) = sup
y∈M

( f ⊕̌b)(x) = sup
y∈M

S−1 [S [
f ⊕̌b

]]
(x)

= sup
y∈M

S−1 [S [ f ] + S [b]] (x)

= lim
n→∞

1

n
ln

∑
y∈M

enS−1[S[ f ]+S[b]](x), x ∈ R
2,

(11)

where M := {y ∈ R
2 : ∇( f (y) + b(x − y)) = 0}. Note

that the supremum and the sum over all y ∈ M used here are
to be understood in a symbolic sense, since the expressions
do not depend directly on y but on x . The y is used here in

the stat function to ensure that the result is really unique, and
thus, Eq. (4) is fulfilled. Due to

nS−1 [S [ f ] + S [b]] (x) = n stat
y∈R2

{S[ f ](y) + S[b](y) + 〈x, y〉}

= stat
y∈R2

{nS[ f ](y) + nS[b](y) + 〈nx, y〉}

= stat
y∈R2

{
n stat
z∈R2

{ f (z) − 〈y, z〉} + n stat
z∈R2

{b(z) − 〈y, z〉} + 〈nx, y〉
}

= stat
y∈R2

{
stat
z∈R2

{n f (z) − 〈ny, z〉} + stat
z∈R2

{nb(z) − 〈ny, z〉} + 〈nx, y〉
}

= stat
y∈R2

{S[n f ](ny) + S[nb](ny) + 〈nx, y〉}

= S−1[S[n f ](ny) + S[nb](ny)](nx), x ∈ R
2,

we can also write Eq. (11) as

( f ⊕ b)(x) = lim
n→∞

1

n
ln

∑
y∈M

eS−1[S[n f ](ny)+S[nb](ny)](nx), x ∈ R
2.

(12)

If we now compare Eqs. (10) and (12) by dragging the factor
1
n into the logarithm for both and then dragging the limit
transition into the logarithm as well, we find that

lim
n→∞

⎛
⎝∑

y∈M
eS

−1[S[n f ](ny)+S[nb](ny)](nx)
⎞
⎠

1
n

= lim
n→∞

(
F−1

[
F

[
en f

]
(z) · F

[
enb

]
(z)

]
(x)

) 1
n

, x ∈ R
2.

(13)

This represents the relationship between the Fourier trans-
form and the slope transform using morphological dilation.

In the following, we will examine the case that is often
considered in practice, namely that we disregard the limit
and instead assume a fixed n. Thus, by now removing the
limit transition and subsequently performing an exponentia-
tion with n, we transform Eq. (13) into the form
∑
y∈M

eS−1[S[n f ](ny)+S[nb](ny)](nx)

= F−1
[
F

[
en f

]
(z) · F

[
enb

]
(z)

]
(x), x ∈ R

2.

By applying the Fourier transform on both sides, we get
because of the linearity of the Fourier transform

F
[
en f

]
(z) · F

[
enb

]
(z)

= F
⎡
⎣∑

y∈M
eS−1[S[n f ](ny)+S[nb](ny)](nx)

⎤
⎦ (z)

=
∑
y∈M

F
[
eS−1[S[n f ](ny)+S[nb](ny)](nx)] (z), z ∈ R

2.

(14)
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Alternatively, we can completely remove the Fourier trans-
forms again by using the convolution theorem instead of the
linearity of the Fourier transform in Eq. (14) and then apply-
ing the inverse Fourier transform to it again. This yields

F
⎡
⎣∑

y∈M
eS

−1[S[n f ](ny)+S[nb](ny)](nx)
⎤
⎦ (z) = F

[
en f ∗ enb

]
(z)

⇐⇒
∑
y∈M

eS
−1[S[n f ](ny)+S[nb](ny)](nx) =

(
en f ∗ enb

)
(x)

=
∑

y∈R2

en( f (y)+b(x−y))

or

∑
y∈M

enS
−1[S[ f ](y)+S[b](y)](x) =

∑

y∈R2

en( f (y)+b(x−y)), x ∈ R
2.

(15)

We summarise the above considerations into

Theorem 2 Let f : R2 → R and b : R2 → R are given.
Then the sequences of the functions

lim
n→∞

1

n
ln

⎛
⎝∑

y∈R2

en f (y)enb(x−y)

⎞
⎠

and

lim
n→∞

1

n
ln

∑
y∈M

enS−1[S[ f ]+S[b]](x)

coincide in every element of the sequence.

Remark 3 Equation (15) in this context reflects the relation-
ship between the convolution theorems of the Fourier and
the slope transformation with the dilation terms when the
equation is contrasted in the plus-prod algebra

∑
y∈M

en( f ⊕̌b) =
∑
y∈M

enS−1[S[ f ]+S[b]] = en f ∗ enb

= F−1
[
F

[
en f

]
· F

[
enb

]]

and in the max-plus algebra using the monotonicity of the
exponential function

sup
y∈M

S−1 [S [ f ] (y) + S [b] (y)] (x)

= sup
y∈R2

( f (y) + b(x − y)) = ( f ⊕ b)(x).

In the plus-prod algebra, we recognise a convolution
which we can express by means of Fourier transformations,
and which we can now also determine in this context by
means of the generalised dilation shown in Eq. (3). In the
case of the max-plus algebra, we see that the application of
the convolution theorem of the slope transformation leads to
an analogue of the well-known dilation.

5 Independence of the Fourier Dilation from
the Shape of the Structuring Element

At this point, we would like to take a closer look at the choice
of the smooth maximum as a substitute for the ordinary max-
imum and examine which properties result from the example
of a dilation. To do this, we look at thework ofKahra, Sridhar
and Breuß on the calculation of a fast dilation by means of
Fourier transforms and using the smooth maximum. In their
work, Kahra, Sridhar and Breuß describe that their method is
independent of the shape of the chosen structuring element
and that it does not matter for their method whether it is a
flat or non-flat structuring element. Although the correspond-
ing algorithm in [16] has been discussed in detail, they do
not give any proof of this property. Instead, they only refer
to their observations and results there. For this purpose, we
want to present two possible ways, both of which prove the
above statement, but which yield slightly different results in
the process.

To evaluate this, we estimate the error resulting from the
difference between the exact dilation and the approximated
one. As a first step, we prove the following lemma:

Lemma 1 Let fex : R
2 → [0, 255] and fapp : R

2 →
[0, 255] be the results of the exact dilation and the approx-
imated dilation of the greyscale image f : R2 → [0, 255]
with the structuring element B ⊂ R

2:

fex(x) = lim
k→∞

1

k
ln

⎛
⎝∑

y∈R2

ek f (y)χB(x − y)

⎞
⎠

fapp(x) = 1

n
ln

⎛
⎝∑

y∈R2

en f (y)χB(x − y)

⎞
⎠ , n ∈ N,

where

χB(x) =
{
1, x ∈ B

0, otherwise
.

Then applies

( fex − fapp)(x) ≤ lim
k→∞

1

k
ln

(
e(k−n) f ∗ χB

)
(x), x ∈ R

2.

(16)
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Proof We first consider

( fex − fapp)(x)

= lim
k→∞

1

k
ln

(
ek f ∗ χB

)
(x) − 1

n
ln

(
en f ∗ χB

)
(x)

= lim
k→∞ ln

[(
ek f ∗ χB

) 1
k
(x)

]
− ln

[(
en f ∗ χB

) 1
n
(x)

]

= lim
k→∞ ln

(
ek f ∗ χB

) 1
k

(
en f ∗ χB

) 1
n

(x)= ln

⎡
⎣ lim
k→∞

(
ek f ∗ χB

) 1
k

(
en f ∗ χB

) 1
n

(x)

⎤
⎦

or

e( fex− fapp)(x) = lim
k→∞

(
ek f ∗ χB

) 1
k

(
en f ∗ χB

) 1
n

(x)

≤ lim
k→∞

[(
ek f ∗ χB

)
(
en f ∗ χB

)
] 1

k

(x).

Next, we estimate the fraction by proving the followingmore
general inequality:

∑m
i=1 aibi∑m
j=1 ã j b j

≤
m∑
i=1

ai
ãi

, ai , ãi ∈ [1,∞), bi ∈ {0, 1}.

Without restriction of generality, let the bi be ordered such
that bi = 0 ∀i ∈ {1, . . . , l} for a fixed l ∈ {0, . . . ,m}. Then
it applies

∑m
i=1 aibi∑m
j=1 ã j b j

=
∑m

i=l+1 aibi∑m
j=l+1 ã j b j

=
m∑

i=l+1

(
aibi∑m

j=l+1 ã j b j

)

︸ ︷︷ ︸
≤ ai

ãi
bi

≤
m∑
i=1

ai
ãi

.

So from this, we get

e( fex− fapp)(x) ≤ lim
k→∞

(
e(k−n) f ∗ χB

) 1
k
(x), x ∈ R

2. (17)

Due to the monotonicity of the logarithm function, we finally
obtain the inequality we are looking for.

The first possibility to carry out the mentioned proof does
not represent an exact calculation in the conventional sense,
but rather a heuristic, which, however, delivers an expected
result. We summarise this calculation as

Lemma 2 Let the conditions from Lemma 1 be fulfilled and
be fex, fapp, f ∈ L2(R2). Then it holds

∥∥( fex − fapp)(x)
∥∥2
2 �

∥∥ f (x)
∥∥2
2 · A(B), x ∈ R

2, (18)

where A(B) represents the area of B ⊂ R
2.

Proof We begin with

∥∥
∫

R2

( fex − fapp)(x) e
−ixωdx

∥∥
2

(16)≤ ∥∥
∫

R2

lim
k→∞

1

k
ln

(
e(k−n) f ∗ χB

)
(x) e−ixωdx

∥∥
2

= ∥∥ lim
k→∞

1

k

∫

R2

ln
(
e(k−n) f ∗ χB

)
(x) e−ixωdx

∥∥
2

and use the Taylor linearisation of ln(x) at x0 = 1

ln(x)
·≈ ln(x0) + d

dx
ln(x)|x=x0 · (x − x0) = x − 1.

Here we almost always have the case that ln(x) ≤ x − 1

applies, so in the following we write ln(x)
·≤ x − 1. If we

substitute this into the above inequality, we get

∥∥
∫

R2

( fex − fapp)(x) e
−ixωdx

∥∥
2

·≤ ∥∥ lim
k→∞

1

k

∫

R2

[(
e(k−n) f ∗ χB

)
(x) − 1

]
e−ixωdx

∥∥
2

= ∥∥ lim
k→∞

1

k

∫

R2

(
e(k−n) f ∗ χB

)
(x) e−ixωdx

− lim
k→∞

1

k

∫

R2

e−ixωdx

︸ ︷︷ ︸
=0

∥∥
2

= ∥∥ lim
k→∞

1

k
F

[
e(k−n) f ∗ χB

]
(ω)

∥∥
2

= ∥∥ lim
k→∞

1

k

(
F

[
e(k−n) f

]
· F [χB]

)
(ω)

∥∥
2

= ∥∥ lim
k→∞

1

k
F

[
e(k−n) f

]
(ω)

∥∥
2 · ∥∥F [χB] (ω)

∥∥
2.

Next we estimate the two norms and start with the aid of
Parseval’s theorem

∥∥ lim
k→∞

1

k
F

[
e(k−n) f

]
(ω)

∥∥
2 = lim

k→∞
1

k

∥∥F
[
e(k−n) f

]
(ω)

∥∥
2

= lim
k→∞

1

k

∥∥e(k−n) f (x)
∥∥
2.

To achieve the desired result, we still need to remove the
exponential function. For this reason, we reintroduce the
logarithm that we previously removed with the Taylor lin-
earisation by performing the said linearisation backwards in
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an approximate sense (see Remark 2):

lim
k→∞

1

k

∥∥e(k−n) f (x)
∥∥
2

= ∥∥ lim
k→∞

1

k
e(k−n) f (x)

∥∥
2 = ∥∥ lim

k→∞
1

k

(
e(k−n) f (x) − 1

) ∥∥
2

�
∥∥ lim
k→∞

1

k
ln

(
e(k−n) f (x)

) ∥∥
2

= ∥∥ lim
k→∞

(
k − n

k

)
f (x)

∥∥
2

= ∥∥ f (x)
∥∥
2.

For the second norm,we also use Parseval’s theorem to derive

∥∥F [χB] (ω)
∥∥
2 = ∥∥χB(x)

∥∥
2 =

⎛
⎜⎝
∫

R2

|χB(x)|2dx
⎞
⎟⎠

1
2

=
⎛
⎜⎝
∫

R2

χB(x)dx

⎞
⎟⎠

1
2

= √
A(B)

from it. From this, we finally deduce the assertion

∥∥
∫

R2

( fex − fapp)(x) e
−ixωdx

∥∥
2 �

∥∥ f (x)
∥∥
2 · √A(B),

which results in the approximate estimate we are looking for.

Remark 4 The backward linearisationmay actually break the
chain of inequalities in an exact calculation, which is whywe
spoke of a heuristic. However, on the one hand because we
have only used equalities since the linearisation and on the
other hand because we get reasonable results in the form of
(18), it appears evident that the backward use of the same
linearisation may only slightly violate the inequality.

Anotherway (and not a heuristic) to substantiate the obser-
vation of Kahra, Sridhar and Breuß, we summarise as the

Lemma 3 Let the conditions from Lemma 1 be fulfilled. Then
it holds

( fex − fapp)(x) ≤ sup
y∈B

∥∥ f (x − y)
∥∥, x ∈ R

2, B ⊂ R
2.

(19)

Proof We start from the inequality (17) and rewrite it as fol-
lows:

e( fex− fapp)(x) ≤ lim
k→∞

(
e(k−n) f ∗ χB

) 1
k

(x)

= lim
k→∞

⎛
⎜⎝
∫

R2

e(k−n) f (y)χB(x − y) dy

⎞
⎟⎠

1
k

= lim
k→∞

⎛
⎝
∫

B

e(k−n) f (x−z) dz

⎞
⎠

1
k

= lim
k→∞

⎛
⎝
∫

B

(
e
k−n
k f (x−z)

)k
dz

⎞
⎠

1
k

= lim
k→∞

⎛
⎝
∫

B

| e k−n
k f (x−z)|k dz

⎞
⎠

1
k

= lim
k→∞

∥∥e k−n
k f (x−·)∥∥

k

= sup
y∈B

∥∥e f (x−y)
∥∥ ≤ sup

y∈B
e
∥∥ f (x−y)

∥∥
.

By applying the logarithm on both sides, we obtain the
required result.

Both inequalities (18) and (19) show that the observation
that in the approximation of the smooth maximum for the
dilation, the shape or flatness of the structuring element used
does not matter. This is particularly evident from the fact that
the error depends on the area of the structuring element, i.e.
its size, and on the original image at the searched position
or on the original image in the area given by the structuring
element. In both cases, all required values for the searched
pixel are constant and thus show the validity of the observa-
tion made.

Lemma 4 Let the conditions from Lemma 1 be fulfilled. Then
it holds

( fex − fapp)(x) ≤ ∥∥ f (x)
∥∥ + ln

√
A(B), x ∈ R

2, B ⊂ R
2.

(20)

Proof We begin by expressing, for a non-negative integrable
function h, the inequality

∫
h(x) dx =

∫
|h(x)| dx = ∥∥h(x)

∥∥
1 ≤ ∥∥h(x)

∥∥ 1
n

=
(∫

h
1
n (x) dx

)n

, n ∈ N,

due to the monotonicity of the p-norm and exponentiate it
with 1

n :

(∫
h(x) dx

) 1
n ≤

∫
h

1
n (x) dx, n ∈ N. (21)

With the help of this inequality we can now estimate as fol-
lows:

F
[
e fex− fapp

]
(ω) =

∫

R2

e( fex− fapp)(x) e−iωx dx
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(17)≤ lim
k→∞

∫

R2

(
e(k−n) f ∗ χB

) 1
k

(x) e−iωx dx

= lim
k→∞

∫

R2

⎛
⎜⎝
∫

R2

e(k−n) f (y)χB(x − y) dy

⎞
⎟⎠

1
k

e−iωx dx

(21)≤ lim
k→∞

∫

R2

⎛
⎜⎝
∫

R2

e
k−n
k f (y)χ

1
k
B (x − y) dy

⎞
⎟⎠ e−iωx dx

= lim
k→∞

∫

R2

(
e
k−n
k f ∗ χB

)
(x) e−iωx dx

= lim
k→∞F

[
e
k−n
k f ∗ χB

]
(ω)

= lim
k→∞F

[
e
k−n
k f

]
(ω) · F [χB ] (ω),

wherewehave used the convolution theorem in the last equal-
ity. We next form the norm over this inequality and estimate
the norm of the first Fourier transform using Parseval’s the-
orem:

lim
k→∞

∥∥F
[
e
k−n
k f

]
(ω)

∥∥ = lim
k→∞

∥∥e k−n
k f (x)

∥∥

= ∥∥ lim
k→∞ e(1−

n
k ) f (x)

∥∥ = ∥∥e f (x)
∥∥

≤ e
∥∥ f (x)

∥∥

and we estimate the norm of the second Fourier transform,
as in the proof of Lemma 1, with

√
A(B). By applying Par-

seval’s theorem again for the backward direction, we get

∥∥e( fex− fapp)(x)
∥∥ = ∥∥F

[
e fex− fapp

]
(ω)

∥∥

≤ ∥∥ lim
k→∞F

[
e
k−n
k f

]
(ω) · F [χB] (ω)

∥∥

≤ lim
k→∞

∥∥F
[
e
k−n
k f

]
(ω)

∥∥ · ∥∥F [χB] (ω)
∥∥

≤ e
∥∥ f (x)

∥∥√
A(B).

Furthermore,we can use this inequality to achieve the desired
result:

( fex − fapp)(x) = ln e( fex− fapp)(x)︸ ︷︷ ︸
≥0

= ln
∥∥e( fex− fapp)(x)

∥∥

≤ ln

(
e
∥∥ f (x)

∥∥√
A(B)

)

= ∥∥ f (x)
∥∥ + ln

√
A(B).

The bound derived above is apparently weaker than the
ones fromprevious result. However, it demonstrates the same
kind of independence from shape of the structuring element,
and within the proof, one may observe that it is a relatively
pessimistic (and thus unsharp) estimate.

6 Practical Error Estimation

From this context, the question automatically arises forwhich
n this error becomes negligible in practice. To answer this
question, we evaluate the error range. The largest error is in
the case that all considered k pixels have the same value,
i.e. we obtain ln(k)

n as error, see proof of Corollary 1. Con-
sequently, the smallest error results if we have a single
maximum grey value xi :

1

n
ln

k∑
j=1

enx j = xi + 1

n
ln

k∑
j=1

en(x j−xi ).

The error that occurs here can vary between

1

n
ln

k∑
j=1

en(x j−xi ) ≥ 1

n
ln

k∑
j=1

e−255n = 1

n
(ln(k) − 255n)

= ln(k)

n
− 255

and

1

n
ln

k∑
j=1

en(x j−xi ) ≤ 1

n
ln

k∑
j=1

e−n = 1

n
(ln(k) − n)

= ln(k)

n
− 1,

i.e.

1

n
ln

k∑
j=1

en(x j−xi ) ∈
[
ln(k)

n
− 255,

ln(k)

n
− 1

]
,

depending on the composition of the remaining (not maxi-
mum) grey values.

We consider an error to be negligible in practice if it is
smaller than 1

2 , because we assume natural grey values from
the interval [0, 255] and we round up or down the floating
point numbers resulting from the calculation according to the
usual rounding rules in order to continue calculatingwith nat-
ural numbers. This means that we can estimate the smallest
possible scaling factor for which the error can disappear as
follows:

ln(k)

n
− 255

!
<

1

2
⇐⇒ n

!
>

2 ln(k)

511

and for the largest error

ln(k)

n

!
<

1

2
⇐⇒ n

!
> 2 ln(k).
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Thus, in practice, it is sufficient to choose a n ∈ N which,
depending on the mask and grey value distribution, is larger
than the corresponding value from the interval

n ∈
[
2 ln(k)

511
, 2 ln(k)

]
, (22)

so that R∗
max behaves like a max-plus algebra. At this point,

wewould like to point out that the smallest possible value is of
a purely theoretical nature and will be significantly larger in
practice.Wewill deal with this inmore detail in the following
chapter.

In the following, we will test this accuracy criterion using
the example of the error observation of the previous section.
That means we have to set n > 2 ln |B|. Let p := |B| and
set n := 4 ln(p) for simplicity’s sake. Let the pixels within
the structuring element at position x ∈ R

2 be given by x j ,
j ∈ {1, . . . , p}. Furthermore, the largest greyscale value in
the neighbourhood B of pixel x should be located at position
xi , i ∈ [1, p], so that fex(x) = f (xi ). We can then estimate
the approximated dilation accordingly with

fapp(x) = 1

4 ln(p)
ln

p∑
j=1

e4 ln(p) f (x j )

= f (xi ) + 1

4 ln(p)
ln

p∑
j=1

e4 ln(p)( f (x j )− f (xi ))

≤ f (xi ) + 1

4 ln(p)
ln(p) = f (xi ) + 1

4
.

It therefore follows that |( fex − fapp)(x)| ≤ 1
4 and we also

see that the error, as expected, is less than 1
2 . Thus, when

rounding, it disappears and we get the correct result.
Example 1: Stairs

To illustrate our findings, we consider a greyscale image
of size 40 × 40 and perform a dilation with a 3 × 3 SE,
see Fig. 1. The comparison of the different scaling factors n
for the values 0.05, 0.1, 0.2 and 4.5 shows that the resulting
grey value shift becomes smaller and smaller with increasing
n and in the case of n = 4.5 even disappears completely. This
supports the inequality shown above, since 2 ln(9) ≈ 4.3944.
Example 2: Squares

In order to make the effect of the grey value shift and the
quantisation, which arises through the now more targeted
rounding, even clearer, we consider another example. For
this, we again choose a greyscale image of the size 40 × 40
and a SE with 3 × 3, see Fig. 2. The image is created by
superimposing smaller centred squares with different bright-
ness levels, where the largest square is 40 × 40 and has the
grey value 0 and the smallest in the middle is 10×10 and has
the grey value 3. The squares in between have correspond-
ing edge lengths of 20 and 30 and grey values of 1 and 2.

Fig. 1 Filtering results for dilation with a 3 × 3 SE. Original image of
size 40 × 40 (a) and exact dilated image (b). Approximated dilation
with n = 0.05 (c), n = 0.1 (d), n = 0.2 (e) and n = 4.5 (f)

Here we see in the histograms how the approximated dila-
tion with (grey) and without quantisation (dark grey) relates
to the exact dilation (light grey). For relatively small n, such
as 0.1 or 0.2, quite large deviations from the correct result
occur. The quantised approximation approaches the exact
solution more quickly and more accurately than the non-
quantised approximation, as we can see in the diagrams for
n ∈ {1, 1.5, 2, 4.5}. Here, too, the quantised approximation
finally agrees with the exact solution for n = 4.5.
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Fig. 2 Comparison of filtering results for dilation of a 40 × 40 image
of squares of graduated grey values 0,1,2 and 3 with a 3 × 3 SE. The
exact dilation is indicated in each case with light grey and the approx-
imated dilations with quantisation grey and without quantisation dark

grey.Top:From left to right:Approximationwith scaling factor 0.1,0.2
and 1.0.Bottom:From left to right:Approximation with scaling factor
1.5,2.0 and 4.5

7 Supplementary Discussion

In this section, we will discuss again one of our main results,
namely that the approximation error that occurs depends only
on the size of the SE and how much maximal values are in
the neighbourhood of the SE. Therefore, here we will look at
what happenswhenwe change themask size and themeaning
for the interval (22) of the scaling factor. Remember, this
interval tells us when the error in the grey shift can possibly
disappear. To illustrate this, we choose the bridge image and
dilate it in a first experiment with a 3 × 3 mask for different
sizes of n in Fig. 3.

Here we can again see a clear grey value shift for small n
such as n = 0.05 or n = 0.1. If we increase the factor further,
e.g. to one or higher, it becomes difficult to perceive differ-
ences with the human eye. Likewise, with our interval for this
case (k = 9), i.e. for approximately n ∈ [0.0086, 4.3944],
we cannot draw any conclusions as to whether one of these
images is necessarily error-prone or error-free, since the val-
ues 1 and 2.5 both lie in the interval mentioned.

To create a first comparison, let us look at the same image,
but this time dilate it with a larger SE, namely a 5×5 mask.
According to our previous findings, the approximate interval
for the smallest possible error-free scaling factor would be
[0.0126, 6.4378]. This would indicate that we must expect
to use larger values to obtain comparable results. Therefore,

we extend our reference images with an additional image for
n = 3.5 and summarise these images in Fig. 4.

In this case, too, we first see clear grey value shifts for
low n. In particular, we also see that the grey value shifts are
more pronounced than in the previous experiment with the
3×3 mask. This indicates that our assessment that we need a
larger scaling factor for a larger SE is correct. Larger values
such as 1, 2.5 or 3.5, however, do not seem to show a visible
grey shift. This would imply that our approximation becomes
“accurate” relatively quickly, at least for the human eye. To
better measure these possible small differences, we consider
the corresponding average error curves for these experiments
for n ∈ [0.05, 2.5], see Fig. 5.

In Fig. 5a for the range [0.05, 0.5], we see what we had
already conjectured. The two graphs have a similar shape but
the one for the 5×5SEshowsa larger difference, respectively,
takes longer to reach the same grey value difference as the
3 × 3 graph. In addition, we also see that the differences
become very small already at 0.5, so that visually one can
hardly recognise them.

By Fig. 5b, we study possible errors in higher detail. We
can still see that the curves are relatively similar, as can
be seen, for example, at 1.95, where both are almost syn-
chronous. As we can see here, the exactness may be reached,
but is not maintained up to a small numerical error. This also
continues for larger values of n, which are not shown here.
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Fig. 3 Comparison of filtering
results for dilation of the
256 × 256 bridge image with a
3 × 3 mask. Top: From left to
right: Original image, exactly
dilated image, approximately
dilated image with factor
n = 2.5. Bottom: From left to
right: Approximation with
scaling factor 0.05, 0.1 and 1

Fig. 4 Comparison of filtering
results for dilation of the
256 × 256 bridge image with a
5 × 5 mask. Top: From left to
right: Exactly dilated image,
approximately dilated image
with factor n = 3.5 and n = 2.5.
Bottom: From left to right:
Approximation with scaling
factor 0.05, 0.1 and 1

Nevertheless, these errors are so small in magnitude that we
conjecture that they can be neglected in practice. This can be
illustrated by looking at the comparatively large difference at
2.4, which has an average error of about 0.007, which means
that about every 140th pixel has a grey value shift of one,
which may be considered as of the same order as a quantisa-
tion error.

8 Conclusion

We have shown a short and simple way to demonstrate the
logarithmic relationship between the Fourier and slope trans-

forms. In doing so, we have established that a convolution
can be calculated by means of a generalised dilation in the
plus-prod algebra and that the convolution theorem of the
slope transformation in the max-plus algebra yields an ordi-
nary dilation.

We also proved that the dilation by Fourier transforms is
independent of the shape of the SE and depends exclusively
on its size. In this respect, we gave an estimate for the scaling
factor n at which point it leads to the approximated solution
not differing from the exact solution by more than half a
grey value, in the sense of a grey value scale from 0 to 255. In
particular, it becomes obvious that the grey value shift, which
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Fig. 5 Averaged error curve of approximations of Figs. 3 (continues line) and 4 (dashed line with circles) from n = 0.05 to 0.5 (a) and from
n = 1.4 to 2.5 (b) over all pixels

arises through the approximation, can be eliminated through
appropriate choice of the factor n by means of rounding off.
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Appendix A

A.1 Morphological Image Processing

We start by considering a two-dimensional, discrete image
domain � ⊂ Z

2. A single-channel, grey value image can
be represented as a function f : � → [0, 255]. In non-
flat morphology, the SE itself can be perceived as a grey
value image. A non-flat SE can thus be defined as a function
b : B → [0, 255] with

b(x) =
{
b(x), x ∈ B,

−∞, otherwise
, B ⊆ Z

2,

for B denoting a suitable set centred at the origin. A flat filter
is just a special case where b(x) = 0 for all x ∈ B. The
fundamental building blocks of mathematical morphology
are dilation and erosion. The dilation of an image f by a SE
is given by f ⊕ b : � → [0, 255], where

( f ⊕ b)(x) := max
u∈B { f (x − u) + b(u)}.

The erosion of an image f by a SE is given by f �b : � →
[0, 255] and can be computed by

( f � b)(x) := min
u∈B { f (x + u) − b(u)}.

The effects of these two basic operations can be seen in Fig. 6.
Many other morphological operations of practical interest
can be composed by dilation and erosion. For example, let us
mention here opening f ◦b = ( f �b)⊕b and closing f •b =
( f ⊕b)�b. At this point, wewould also like to briefly refer to
the methods of representation of colour morphology. There
aremany useful formats to represent a digital image [23]. The
most intuitive and simple approach to colour morphology is
to deal with the image component-wise, e.g. in the channels
of red, green and blue (RGB); see, for example, [18] for a
recent example of channel-wise scheme implementation.

A.2 Max-Plus Algebra

For this section, we refer to Baccelli et al. and refer to the
relevant book [4] for further details in this regard. The max-
plus algebra Rmax denotes the set R ∪ {−∞} with max and
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Fig. 6 Standard (MATLAB)
greyscale dilation and erosion
with a flat 5 × 5 SE. From left
to right: Original image, dilated
image and eroded image

+ as binary relations for ⊕̃ and ⊗̃ . This is sometimes also
called an ordered group. In this context, one can specify the
natural order by means of ⊕̃ :

a ≤ b ⇒ a ⊕̃ b = b, a, b ∈ R ∪ {−∞}.

In particular, Rmax fulfils all requirements for an idempotent
commutative semifield K, i.e.:

• The operation ⊕̃ is associative, commutative and has a
zero element ε = −∞;

• The operation ⊗̃ defines a group on K \ {ε} = R, it is
distributive with respect to ⊕̃ and its identity element
e = 0 satisfies ε ⊗̃ e = e ⊗̃ ε = ε;

• The first operation is idempotent, that is, if a ⊕̃ a = a for
all a ∈ K;

• The group is commutative.

At this point, we would also like to point out the connection
with mathematical morphology. By considering mappings
from R

2 to Rmax, one can define the necessary operations as
follows:

• ( f ⊕̃ g)(x) = f (x) ⊕̃ g(x) = max( f (x), g(x)), x ∈
R
2;

• ( f ⊗̃ g)(x) = supy∈R2( f (x − y) + g(y)), x ∈ R
2;

• (c ⊗̃ f )(x) = c ⊗̃ f (x) = c + f (x), c ∈ R, x ∈ R
2.

It should be noted here, however, that for arbitrary mappings
f , g : R2 → Rmax, the new “max-plus algebra” RR

max thus
declared is not closed under supremum convolution. How-
ever, by restricting ourselves to mappings that are bounded
from above (for example, greyscale images in mathemati-
cal morphology), it again becomes a max-plus algebra. This
gives us an analytical approach to the formation of dilation
or erosion in mathematical morphology.

A.3 Slope Transform

In this section, we would like to give a brief introduction to
the theory of slope transform. The concept of slope trans-

form goes back to the idea that with the tangential dilation
(3) the slopes are maintained locally and only the point that
carries the slope is translated. This translates a function with
a constant slope as a whole, which leads us to the theory
of morphological eigenfunctions, see [14] for more details.
The slope transform resulting from these considerations is
denoted by

S[ f ](y) := stat
x∈R2

( f (x) − 〈y, x〉) , y ∈ R
2,

and the inverse transform

f (x) = stat
y∈R2

(S[ f ](y) + 〈y, x〉) , x ∈ R
2.

In order to give an overview of the most important prop-
erties of the slope and Fourier transformation in this respect,
we have summarised them in Table 1. The slope transform is
also a generalisation of the Legendre transformation [14,24]
known from mathematical physics [25]:

L[ f ](y) = f (x) − yx, f ′(x) = y, x, y ∈ R.

This can be generalised to the conjugacy operation (also
called “Young–Fenchel conjugate” in [14] or “Legendre–
Fenchel transform” in [15]) in convex analysis [26]:

f ∗(x) := sup
y∈R2

(〈y, x〉 − f (y)), x ∈ R
2,

which is also closely related to the slope transform. This
yields real-valued functions in contrast to the slope trans-
form, which only yields set-valued functions. It is worth
mentioning in connection with mathematical morphology
that structuring functions in the form of paraboloids retain
their shape under the slope transform. The resulting scale
spaces for dilation and erosion were studied by Jackway and
Deriche [27].
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Table 1 Properties of the slope
and Fourier transform

Original Slope transform Fourier transform

a + f (x) a + S[ f ](y) aδ(y) + F[ f ](y)
f (x − a) S[ f ](y) − 〈y, a〉 e−2π iayF[ f ](y)
ax + f (x) S[ f ](y − a)

i

2π
δ′(y)

f (ax) S[ f ]
( y

a

) 1

|a|F[ f ]
( y

a

)

a f (x) aS[ f ]
( y

a

)
aF[ f ](y)

a f
( x
a

)
aS[ f ](y) a|a|F[ f ](ay)

− f (−x) −S[ f ](y) −F[ f ](−y)

symmetry S2[ f ](x) = f (−y) F2[ f ](x) = f (−x)

“convolution” S[ f ⊕̌g](y) = S[ f ](y) + S[g](y) F[ f ∗ g](y) = F[ f ](y) + F[g](y)
S[ f + g](y) = (S[ f ]⊕̌S[g])(y) F[ f g](y) = (F[ f ] ∗ F[g])(y)
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