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Abstract—Basic rough set model introduced by Pawlak 

in 1982 has been extended in many directions to enhance 

their modeling power. One such attempt is the notion of 

rough sets on fuzzy approximation spaces by De et al in 

1999. This basic model uses equivalence relation for its 

definition, which decompose the universal set into 

disjoint equivalence classes. These equivalence classes 

are called granules of knowledge. From the granular 

computing point of view the basic rough set model is 

unigranular in character. So, in order to handle more than 

one granular structure simultaneously, two types of 

multigranular rough sets, called the optimistic and 

pessimistic multigranular rough sets were introduced by 

Qian et al in 2006 and 2010 respectively. In this paper, 

we introduce two types of multigranular rough sets on 

fuzzy approximation spaces (optimistic and pessimistic), 

study several of their properties and illustrate how this 

notion can be used for prediction of rainfall. The 

introduced notions are explained through several 

examples. 

 

Index Terms—Rough sets, multigranulation, fuzzy 

approximation space, rain prediction. 

 

I.  INTRODUCTION 

Several models have been put forth in order to handle 

uncertainty in data. The notion of fuzzy sets introduced 

by Zadeh [21] and the notion of rough sets introduced by 

Pawlak [41, 42] are two of the most fruitful models so far. 

The notion of rough sets is based on the philosophy that 

human knowledge is dependent upon their classificatory 

capabilities. As a consequence the mathematical notion of 

equivalence relations is used in defining rough sets by 

Pawlak, which induce classifications on the universes 

over which they are defined. However, the relative 

scarcity of equivalence relations led to the relaxation of 

the requirements of this notion to develop rough sets 

based upon proximity relations [1] which is equivalence 

relations minus the transitivity condition and similarity 

relations which are supposed to be only reflexive [28]. 

Fuzzy relations were introduced as extensions of the crisp 

relations to define the relations among elements in a more 

natural way. The notions of fuzzy equivalence relations 

and that of the fuzzy proximity relations are special kinds 

of fuzzy relations. A new type of rough set was defined 

by De et al [29] basing upon fuzzy proximity relations, 

which is called rough sets on fuzzy approximation spaces. 

These rough sets depend upon an indexing variable lying 

in the interval [0, 1]. Some properties of such rough sets 

are derived in [9, 10, 17]. 

The notion of granular computing in the context of 

fuzzy sets was introduced by Zadeh [22, 23] and also he 

was responsible for defining this notion into the realm of 

rough sets [24]. However, the name granular computing 

was coined by T.Y.Lin [30]. Granular computing has 

been strongly encouraged by the need for processing 

practical data in an intelligent manner [25, 31, 32, 33]. 

Such processing need is now commonly available in vast 

quantities into a humanly manageable abstract knowledge. 

In other words, granular computing offers a platform for 

transition from the current machine-centric to human-

centric approach to gather information and knowledge. 

Granular computing as opposed to numeric computing is 

knowledge oriented. Generally speaking, information 

granules are collections of entities that usually arranges 

together due to their similarity, functional or physical 

adjacency, indistinguishability etc. In other words 

information granulation involves partitioning a class of 

objects into granules with a granule being a bunch of 

objects which are drawn together by indistinguishability, 

similarity or functionality. The branch of granular 

computing has been explored extensively by Yao [36-

40].From the granular computing point of view the rough 

set notions introduced above were unigranular; that is 

only one relation, equivalence or otherwise was being 

used at a time to define such rough sets. However, single 

granular structure cannot always be satisfied in many 

practical issues. For instance, it cannot be used to deal 
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with distribution data; it is very time-consuming for 

feature selection in big data set [19, 20]. As a 

consequence in 2006 the first type of multigranulation, 

called the optimistic multigranular rough sets was 

introduced by Qian et al [34]. The second type of 

multigranulation called the pessimistic multigranular 

rough sets was introduced by Qian et al [35]. Several 

properties of these two types of multigranulation and 

their extensions have been established over the past few 

years [6, 7, 8, 12, 13, 16, 26].  

In this paper, we define the notion of multigranular 

rough sets on fuzzy approximation spaces, which are 

extension models of the basic multigranular models, 

study their properties and discuss on their applications. 

The further organization of the chapter is as follows. In 

the second section, we present the definitions and 

notations to be used throughout this work and prove a 

few elementary results on rough sets on fuzzy 

approximation spaces. In the third section, we introduce 

both the notions of optimistic and pessimistic 

multigranular rough sets on fuzzy approximation spaces. 

In the fourth section, we establish several properties of 

the two new notions. In the following section, we present 

some applications of these concepts and in the final 

section, the concluding remarks are provided. This is 

followed by the bibliography of papers referred during 

the compilation of the work. 

 

II.  RELATED WORKS 

The notion of rough sets on fuzzy approximation 

spaces introduced by De et al [29] was extended to define 

the generalised notion of rough sets on intuitionistic 

fuzzy approximation spaces by Tripathy [2]. Many 

properties of these spaces can be found in [3]. As 

mentioned by Pawlak [42] one of the two properties of 

rough sets for any of its fruitful application is topological 

characterization. The other property is being the accuracy 

measure. Many properties of rough sets basing upon their 

topological characteristic can be found in the works of B. 

K. Tripathy [4, 14]. The notion of equality of sets used in 

mathematics is too stringent in the sense that the sets 

comprise of the same collection of elements with 

different levels. In real life situations, we use a kind of 

approximate equality of sets. It involves the knowledge of 

the observer. Basing upon this observation, the notions of 

rough set based equalities were introduced by Pawlak in 

[42]. These concepts have been extended to the context of 

multigranular rough sets as can be found in [11, 15, 27]. 

A study of topological properties of these models can be 

found in [5, 14]. In this article we study some more 

properties of multigranular rough sets on fuzzy 

approximation spaces.  

 

III.  DEFINITIONS AND NOTATIONS 

In this section we shall introduce some definitions and 

notations which are to be used in this paper. As 

mentioned in the introduction, fuzzy set is one of the 

most successful imprecise models introduced by Zadeh 

[21]. It is defined as follows. 

 

Definition 1: Let U be a universal set. Then a fuzzy 

subset X of U is defined through a function 
X , called 

the membership function of X such that : [0,1]X U  , 

which assigns grades of membership values to elements 

of U into X lying in the interval [0, 1]. 

The notion of rough set introduced by Pawlak [41] was 

supposed to be a competitor for fuzzy sets after its 

inception was actually found to complement it. It follows 

the boundary region approach in capturing uncertainty of 

belongingness of elements into a set introduced by Frege. 

We first need the following set up in order to formally 

define it. 

Let R be an equivalence relation over U. By U/R we 

denote the family of all equivalence classes of R, referred 

to as categories or concepts of R and the equivalence 

class of an element x U is denoted by [ ]Rx . By a 

knowledge base, we understand a relational system K 

=(U, P), where U is as above and P is a family of 

equivalence relations over U. For any subset ( )Q P  , 

the intersection of all equivalence relations in Q is 

denoted by IND(Q) and is called the indiscernibility 

relation over Q. Let us define IND(K) = {IND(Q)| 

Q P }. 

 

Definition 2: Given any X U and ( )R IND K  we 

associate two subsets RX and RX , called the R-lower 

and R-upper approximations of X respectively, defined 

by 

 

{ | [ ] }
R

RX x U x X                         (1) 

 

{ | [ ] }
R

RX x U x X                        (2) 

 

X is said to be rough with respect to R if and only 

if RX RX and R-definable otherwise. The R-boundary 

of X is denoted by ( )RBN X  and is defined 

as ( ) \
R

BN X RX RX . Clearly X is R-definable if and only 

if ( )
R

BN X  and rough otherwise. 

The elements of RX are those elements of U, which 

can certainly be classified as elements of X, and the 

elements of RX are those elements of U, which can 

possibly be classified as elements of X, employing 

knowledge of R.  

A relation over U which is only reflexive and 

symmetric is called a proximity relation. A fuzzy relation 

over U is a fuzzy subset ofU U . For any fuzzy relation 

with membership function R we have the following. 

 

Definition 3: For any fuzzy relation R over U 

 

R is fuzzy reflexive if and only if ( , ) 1, .R x x x U     

 (3)
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R is fuzzy symmetric if and only if  

( , ) ( , ), , .R Rx y y x x y U                     (4) 

 

A fuzzy relation R is said to be a fuzzy proximity 

relation if and only if R is both fuzzy reflexive and fuzzy 

symmetric. 

 

Definition 4: For any [0,1]  , the cut  of R is 

denoted by R is a subset of U U is given by 

 

R ={( , ) | ( , ) }Rx y x y  .                   (5) 

 

For any fuzzy proximity relation R on U and [0,1]  , 

if ( , )x y R then we say that x and y are similar  and 

we denote it by xR y . 

 

Definition 5: Two elements x and y are said to be 

identical  denoted by ( )xR y if either xR y  or there 

exists a sequence of elements 
1 2, ,... nu u u in U such 

that
1 2... nxR u R u u R y   . 

It may be noted that the relation ( )R  is an 

equivalence relation for each [0,1]  . Here (U, R) is 

called a fuzzy approximation space. Also, it may be noted 

that for any [0,1]  , ( , ( ))U R  is an approximation 

space in the same sense as that used by Pawlak. 

For any x in U we denote the equivalence class of x 

with respect to ( )R  by
( )[ ]Rx  . 

 

Definition 6: Let U be a universal set and R be a fuzzy 

proximity relation on U. Then for any [0,1]   we 

define the lower and upper approximations of a subset X 

in U as 

 

( )( ) { | [ ] }RR X x U x X                        (6) 

 

and  ( )( ) { | [ ] }.RR X x U x X              (7) 

 

We say that X is ( )R  discernible if and only if 

( ) ( )R X R X  . Else, X is said to be ( )R  -rough. 

Several properties of rough sets on fuzzy 

approximation spaces have been considered in [3, 7, 9, 

10]. We present below some more definitions and results 

on rough sets on fuzzy proximity relations which are 

necessary in the work done in this paper. 

 

Definition 7: For any two fuzzy relations R and S on U 

we define their union and intersection R S and R S as 

follows: 

 

( ) ( , ) max{ ( , ), ( , )}R S R Sx y x y x y              (8) 

 

( ) ( , ) min{ ( , ), ( , )}R S R Sx y x y x y               (9) 

 

Note 1: It may be noted that with the above definitions, 

R S and R S are fuzzy proximity relations on X when 

R and S are so. Hence ( ) ,( )R S R S  and as a 

consequence ( )( ),( )( )R S R S  are meaningful. 

 

Lemma 1: For any two fuzzy proximity relations R and S 

on U and any [0,1]  , we have 

 

( )R S R S                          (10) 

 

and ( )R S R S                     (11) 

 

Proof:  Proof of (10): We have 

 

( )( , ) ( ) ( , )

max{ ( , ), ( , )}

( , ) or ( , )}

( , ) or ( , )

( , )

R S

R S

R S

x y R S x y

x y x y

x y x y

x y R x y S

x y R S



 

 

 

  

   

  

 

  

  

 

 

 

Similarly (11) can be proved. 

Let * * * *, , ( ) and ( )R S R S R S    denote the set of 

equivalence classes generated by ( ), ( ),R S   

( )( )R S  and ( )( )R S  respectively. 

Then it was shown in [17] that the results established 

by De et al in [29] in the following form are incorrect. 

 

Result1: For any [0,1]  , 

 

(i) ( )( ) ( ) ( )R S R S    

(ii) ( )( ) ( ) ( )R S R S    

 

The correct result as shown in [10] is as follows. 

 

Lemma 2: For any [0,1]  , 

 

(i) ( )( ) ( ) ( )R S R S  
 

(ii) ( )( ) ( ) ( )R S R S    

 

Note 2: The results in Lemma 2.1 are sometimes more 

useful in the following forms. 

For any [0,1]  and x U , we have  

 

( ) ( ) ( ) ( )[ ] [ ] [ ]R S R Sx x x                      (12) 

 

And ( ) ( ) ( ) ( )[ ] [ ] [ ]R S R Sx x x                   (13) 

 

Next, we prove a result which establishes the relations 

between the lower, upper approximations of a set X with 

respect to ( )( )R S  , ( )( )R S  and the union and 

intersection of its lower and upper intersections of 

( )R  and ( )S  respectively. 
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Theorem 1: Let R and S be two fuzzy proximity 

relations on U and  be a chosen level value. Then 

 

( )( ) ( ) ( )R S X R X S X               (14) 

 

( )( ) ( ) ( )R S X R X S X                (15) 

 

( )( ) ( ) ( )R S X R X S X                (16) 

 

( )( ) ( ) ( )R S X R X S X                (17) 

 

Proof: Proof of (14): We have  

 

( )( )( )( ) { | [ ] }R SR S X x x X    

( ) ( ){ | [ ] [ ] }R Sx x x X             (By (12)) 

( ) ( ){ | [ ] } { | [ ] }R Sx x X x x X     

( ) ( )R X S X   

 

This proves (14). Proof of (15) is similar. 

Proof of (16): We have  

 

( ) ( )

( ) ( )

( ) ( )

( )( )

{ | }

( ) ( ) { | [ ] } { | [ ] }

[ ] [ ]

{ | [ ] } ( (13))

{ | [ ] }

( )( )

R S

R S

R S

R S

x X

R X S X x x X x x X

x x

x x X by

x x X

R S X

 

 

 



 



 

  

 

 



 

 

This proves (16). Proof of (17) is similar. 

As mentioned above two types of multigranulations 

exist in literature. We introduce these two types below. 

 

Definition 8: Let K= (U, R) be knowledge base, R be a 

family of equivalence relations, X U  and ,R SR . 

We define the optimistic multigranular [33] lower 

approximation and optimistic multigranular upper 

approximation of X with respect to R and S in U as 

 

R S
 X { x |  [x] X or [x] X} R S            (18) 

 

and  X  ~ ( (~ )).R S R S X                 (19) 

 

Definition 9: Let K= (U, R) be a knowledge base, R be a 

family of equivalence relations, X U  and ,R S R . 

We define the pessimistic multigranular [34] lower 

approximation and pessimistic multigranular upper 

approximation of X with respect to R and S in U as 

 

R S X { x | [x] X and [x] X}R S               (20) 

 

and  X  ~ ( (~ )).R S R S X                  (21) 

 

Example 1: Let us provide some examples below to 

show the computation and physical meaning of the above 

concepts in real life situations. 

Example 1.1: Let us consider all the cattle in a locality as 

our universe U. We define an equivalence relation R over 

U by x R y iff x and y are cattle of the same category.  

For definiteness let U = {Cow, Buffalo, Goat, Sheep, 

Bullock}. The equivalence classes of U with respect to R 

are {{Cow, Buffalo, Bullock}, {Goat, Sheep}}. We 

define another equivalence relation S as x S y if and only 

if x and y are of the same size. We get three equivalence 

classes with respect to S as U = {Small, Middle, Large}. 

These are defined as Large = {Buffalo, Bullock}, Middle 

= {Cow} and Small = {Goat, Sheep}. 

Then for any subset X of the cattle in the society, we 

have, 

R SX is the set of cattle whose category is 

completely in X or all the cattle of its size are contained 

in X. 

R SX is the set of cattle whose category is 

completely in X and all the cattle of its size are contained 

in X. 

R SX is the set of cattle some elements of whose 

category are in X and some elements of whose size are in 

X. 

R SX is the set of cattle some of whose category 

elements are in X or some elements of whose are in X. 

For example if we take X = {Cow, Bullock}, then 

 

{ }, { , , }

, { , , }

R SX Cow R SX Cow Bufallo Bullock

R SX R SX Cow Bufallo Bullock

   

   
 

 

Example 1.2: (Toy Example of Pawlak) 

Let us consider the example of toys taken by Pawlak 

[42]in order to explain the concepts of rough sets. Here, 

we have 1 2 3 4 5 6 7 8{ , , , , , , , }U x x x x x x x x is the universe of 

8 toys. These toys are of 3 different colours (red, blue and 

yellow), three different shapes (round, square and 

triangular) and two different sizes (large and small). The 

equivalence classes of the toys with respect to the 

relations; ‘same colour as (R)’, ‘same shape as (S)’ and 

‘same size as (T)’ are given as follows: 

 

Colour = 1 3 7 2 4 5 6 8{{ , , },{ , },{ , ,, }}x x x x x x x x , 

 

Shape = 1 5 2 6 3 4 7 8{{ , },{ , },{ , , , }}x x x x x x x x  and 

 

Size = 2 7 8 1 3 4 5 6{{ , , },{ , , , , }}x x x x x x x x . Let us take a set X 

of toys as 2 3 4 5 6{ , , , , }x x x x x . 

 

Then applying the above definitions of multigranular 

lower and upper approximations we get 

2 4 6{ , , }R SX x x x  = The set of toys from U such that 

all toys of the same colour are in X or all toys of the same 

shape are in X. 

R SX U    The set of toys from U at least one toy 

of the same colour is in X and at least one toy of the same 

shape is in X. 
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R SX     The set of toys from U such that all toys 

of the same colour and all toys of the same shape are in X. 

R SX U  The set of toys from U such that at least 

one toy of same colour or at least one toy of the same 

shape is in X. 

The following properties of Multigranular rough sets 

shall be used by us. We consider the setting as in the 

above definitions. 

 

Property 1: ([34]) We have 

 

( ) ( ) ( )R S X Y R S X R S Y                (22) 

 

( ) ( ) ( )R S X Y R S X R S Y                (23) 

 

( ) ( ) ( )R S X Y R S X R S Y                (24) 

 

( ) ( ) ( )R S X Y R S X R S Y                 (25) 

 

Property 2: [35] We have 

 

( ) ( ) ( )R S X Y R S X R S Y                   (26) 

 

( ) ( ) ( )R S X Y R S X R S Y                    (27) 

 

( ) ( ) ( )R S X Y R S X R S Y                    (28) 

 

( ) ( ) ( )R S X Y R S X R S Y                    (29) 

 

Note 3: It was shown by Tripathy [9] that inclusion 

relations in (22) to (25) and (28) and (29) cannot be 

replaced with equalities. 

 

Note 4: It was shown by Tripathy [9] that equality holds 

in (26) and (27). 

It is interesting to find the case under which the two 

types of multigranulations reduce to single granulations. 

The following result was established by Tripathy et al in 

[9]. 

 

Property 3: Let R and S be two equivalence relations on 

U and X U . Then 

 

R SX RX  and R SX RX  when S U U     (30) 

 

R SX RX  and R SX RX  when S = {(x, x)| x U } 

              (31) 

 

Property 4: Let R and S be two equivalence relations on 

U and X U . Then 

 

R SX R SX R SX R SX R SX R SX          

       (32) 

 

All these inclusions in (32) can be strict. So as a 

consequence we derive that  

 

( ) ( ) ( )BN R S BN R S BN R S                (33) 

 

Note 5: It is worth noting that the two operations ‘+’ 

(optimistic multigranulation) and ‘  ’ (pessimistic 

multigranulation) are commutative and associative. 

Hence, whatever result is true for 2 terms is also true for 

any finite number of components. So, throughout this 

paper we have considered only binary multigranulations, 

n-ary multigranulations follow as a consequence. 

 

Note 6: We also note that Raghavan et al [27] has used 

the notations (‘+’ for two components and  for more 

than two components) for the optimistic 

multigranulations and the notations (‘  ’ for two 

components and   for more than two components) for 

the pessimistic multigranulations instead of the 

conventional notations used in other papers. These 

notations are much simpler to use and look at. 

As mentioned by Pawlak [42] any fruitful application 

of rough set theory should focus on the two concepts of 

accuracy measure and topological characterisation. 

Following this some characterisation of topological 

properties of multigranular rough sets have been 

established by Tripathy et al [4, 5, 6]. 

 

IV.  MULTIGRANULAR ROUGH SETS ON FUZZY 

APPROXIMATION SPACES 

In this section we introduce the concepts of optimistic 

multigranular rough sets and pessimistic multigranular 

rough sets on fuzzy approximation spaces. 

We take U as a universal set and let R and S be two 

fuzzy proximity relations defined over U. Then for 

any [0,1]  , we define 

 

( ) ( )( ) ( ) { :[ ] [ ] }R SR S X x U x X or x X        

              (34) 

 

( ) ( )R S X   

( ) ( ){ :[ ] [ ] }R Sx U x X and x X             (35) 

 

Definition 10: A subset X of U is said to be 

an(R+S)(  ) multigranular  rough set if and only 

if ( ) ( ) ( ) ( )R S X R S X      . Otherwise, we say X 

is (R+S)( ) multigranular definable. 

We do not use the word optimistic in the definition as 

it is clear from the notation. We define, 

 

( ) ( )( ) ( ) { :[ ] [ ] }R SR S X x U x X and x X        

(36) 

 

( ) ( )( ) ( ) { :[ ] [ ] }R SR S X x U x X or x X          

(37) 
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Definition 11: A subset X of U is said to be an 

( )( )R S  - multigranular rough set if and only if  

( ) ( ) ( ) ( )R S X R S X      . Otherwise, we say X 

is ( )( )R S  - multigranular definable.  

 

V.  RESULTS 

As noted above, for any two fuzzy proximity relations 

R and S defined over U and any [0,1]  , ( )R  and 

( )S  are equivalence relations. So, the properties in 

Theorem 2 follow directly from the corresponding 

properties of optimistic multigranular rough sets 

established in [34]. Similarly, the properties in Theorem 3 

follow from the corresponding properties of optimistic 

multigranular rough sets established in [35]. 

 

Theorem 2: We have 

 

( ) ( ) ( ) ( )R S X X R S X                     (38) 

 

( ) ( ) ( ) ( ) and ( ) ( )R S R S R S U              

( ) ( )R S U U                          (39) 

 

( ) ( ) ( ) ( ) and

( ) ( ) ( ) ( )

X Y R S X R S Y

R S X R S Y

   

   

    

  
      (40) 

 

Theorem3: We have 

 

( ) ( ) ( ) ( )R S X X R S X                    (41) 

 

( ) ( ) ( ) ( ) and

( ) ( ) ( ) ( )

R S R S

R S U R S U U

      

   

   

   
             (42) 

 

( ) ( ) ( ) ( ) and

( ) ( ) ( ) ( )

X Y R S X R S Y

R S X R S Y

   

   

    

  
       (43) 

 

The following results can be obtained from (22) to (25) 

where the inclusions can be strict. 

 

Theorem 4: For any two fuzzy proximity relations R and 

S defined over U, ,X Y U  and any [0,1]  , we have 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )R S X Y R S X R S Y          

(44) 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )R S X Y R S X R S Y          

(45) 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )R S X Y R S X R S Y          

   (46) 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )R S X Y R S X R S Y          

(47) 

 

The following results can be obtained from (26) to (29) 

and Note. 3. 

 

Theorem 5: For any two fuzzy proximity relations R and 

S defined over U, ,X Y U  and any [0,1]  , we have 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )R S X Y R S X R S Y          

      (48) 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )R S X Y R S X R S Y          

(49) 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )R S X Y R S X R S Y          

(50) 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )R S X Y R S X R S Y          

 (51) 

 

Theorem 6: If 
1 2  and 

1 2, [0,1]   then for any two 

fuzzy proximity relations R and S defined over U and any 

subset X of U, we have 

 

2 2 1 1
( ) ( ) ( ) ( )R S X R S X                       (52) 

 

1 1 2 2
( ) ( ) ( ) ( )R S X R S X                      (53) 

 

2 2 1 1
( ) ( ) ( ) ( )R S X R S X                       (54) 

 

1 1 2 2
( ) ( ) ( ) ( )R S X R S X                       (55) 

 

Proof: Proof of (52): 

 

Let
2 2

( ) ( ) .x R S X   . Then  

2 2
( ) S( )

[ ] or [ ]
R

x X x X
 

  .Now,  

 

1 2
( ) 1 2 ( )

[ ] ( , ) ( , ) [ ]
R R R R

y x x y x y y x
 

           

 

So, 
1 2

[ ] [ ]R Rx x
 
 .Similarly,

1 2

[ ] [ ]S Sx x
 
  

Hence, 

 

2 2
( ) ( )x R S X   

2 2
( ) S( )

[ ] or [ ]
R

x X x X
 

   

1 1
( ) S( )

[ ] or [ ]
R

x X x X
 

  
1 1

( ) ( ) .x R S X     

 

This completes the proof. 

Proof of (53): 

 

1 1
( ) ( ) .x R S X  

1 1( ) S( )[ ] and [ ]Rx X x X     . 

Now using (52) it follows 

that
2 2( ) S( )[ ] and [ ]Rx X x X    . Hence, 
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2 2
( ) ( ) .x R S X   . This completes the proof. 

Proofs of (54) and (55) are similar. Only we have to 

replace ‘or’ by ‘and’. 

Next for any [0,1]  , we denote the optimistic and 

pessimistic boundaries of a subset X of U with respect to 

two fuzzy proximity relations R and S over the fuzzy 

approximation space by 
( ( ) ( )) ( )R SBN X 

and 

( ( ) ( )) ( )R SBN X 
respectively and define as 

 

( ( ) ( )) ( ) ( ) \ ( ) ( )R SBN X R S X R S X              (56) 

 

and ( ( ) ( )) ( ) ( ) \ ( ) ( )R SBN X R S X R S X           (57) 

 

Corollary 1:If 
1 2  and 

1 2, [0,1]   then for any two 

fuzzy proximity relations R and S defined over U and any 

subset X of U, we have 

 

1 1 2 2( ( ) ( )) ( ( ) ( ))R S R SBN X BN X      

1 1 2 2( ( ) ( )) ( ( ) ( ))R S R SBN X BN X                  (58) 

 

and 
1 1 2 2( ( ) ( )) ( ( ) ( ))R S R SBN X BN X     .        (59) 

 

Proof: Directly follows from Theorem 4.5. 

So, as a consequence we see that as  increases the 

uncertainty with respect to both the optimistic 

multigranulation and pessimistic multigranulation 

decreases. As mentioned in Note 2.1 above, for any two 

fuzzy proximity relations R and S, R S  and R S  are 

fuzzy proximity relations. Hence, it is meaningful to talk 

about ( )( )R S  , ( )( )R S  and their multigranulations. 

We have the following result: 

Theorem 7: For fuzzy proximity relations R, S, T, V on 

U and  be a chosen level value in [0, 1], then we have 

 

( )( ) ( )( )

( ( ) ( )) ( ( ) ( ))

R S T V X

R T X S V X

 

   

 

 
           (60) 

 

( )( ) ( )( )

( ( ) ( )) ( ( ) ( ))

R S T V X

R T X S V

 

   

 

 
              (61) 

 

( )( ) ( )( )

( ( ) ( )) ( ( ) ( ))

R S T V X

R T X S V X

 

   

 

 
           (62) 

 

Proof: Proof of (60): 

 

( )( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )( )

[ ] or [ ]

([ ] or [ ] ) or ( [ ] or [ ] )

([ ] [ ] ) ([ ] [ ] )}

( ) ( )

( ) ( ) ( ) ( )

or or or

R S T V

R S T V

R T S V

x R S T V X

x X x X

x X x X x X x X

x X x X x X x X

x R T X

R T X S V Xx

 

   

   

 

 

   

 

  

    

    

  

  

 

This completes the proof. 

Proof of (61): 

 

( ( ) ( )) ( ( ) ( ))

( ( ) ( )) or ( ( ) ( ))

x R T X S V X

x R T X S V X

   

   

  

   
 

( )

( ) ( )

([ ] and [ ] ) or
( )

([ ] and [ ] )

T

S V

x X x X
R

x X x X



 

 


 

  

 
 

( ) ( )

( ) ( )

([ ] or [ ] ) and

([ ] or [ ] ) and

R S

T V

x X x X

x X x X

 

 

 

 

  

 
 

( ) ( )

( ) ( )

(([ ] or [ ] ) and 

( [ ] or [ ] )

R S

T V

x X x X

x X x X

 

 

 

 

 

 
 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

([ ] or [ ] ) and 

     ( [ ] or [ ] )

(([ ] ) ([ ] )) ) and 

     (( [ ] ) ([ ] )) )

R S

T V

R S

T V

x X x X

x X x X

x X x X

x X x X

 

 

 

 

 

 





  

 

 



 

( ) ( )

( ) ( )

(([ ] [ ] ) ) ) and 

     (( [ ] [ ] ) ) )

R S

T V

x x X

x x X

 

 





 


 

( )( )

( )( )

([ ] ) ) and 

     ([ ] ) )

( )( ) ( )( )

R S

T V

x X

x X

x R S T V X









 

 



  

 

 

This completes the proof. 

Proof of (62): We have 

 

( )( )

( )( )

( )( ) ( )( )

([ ] ) and 

     ([ ] )

R S

T V

x R S T V X

x X

x X





 





 

 



 

( ) ( )

( ) ( )

([ ] and [ ] ) and

    ([ ] and [ ] )

R S

T V

x X x X

x X x X

 

 

 

 

  

 
 

( ) ( )

( ) ( )

([ ] and [ ] ) and

     ([ ] and [ ] )

R T

S V

x X x X

x X x X

 

 

 

 

  

 
 

( ) ( ) and ( ) ( )

( ) ( ) ( ) ( )

x R T X S V X

x R T X S V X

   

   

   

   
 

 

This completes the proof. 

 

Note 7: We would like to note that no comparison can be 

made between the two expressions 

 

( )( ) ( )( )R S T V X   and 

( ( ) ( )) ( ( ) ( ))R T X S V X      

as is evident from the following: 

( ) ( ) ( ) ( )

( ) ( ) and ( ) ( )

x R T X S V X

x R T X x S V X
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )( ) ( )( )

([ ] or [ ] ) and 

     ([ ] or [ ] )

([ ] and [ ] ) or

    ([ ] and [ ] )................( )

[ ] or [ ] ..........( )

( )( ) ( )( )

R T

S V

R S

T V

R S T V

x X x X

x X x X

x X x X

x X x X a

x X x X b

x R S T V X

 

 

 

 

 

 

  

 

  

 

  

  

 

 

From (a) and (b) it is clear that we cannot get a 

conclusion in any particular direction. However, we could 

provide an example where the one way inclusion holds 

and can be strict. All the inclusions from (60) to (62) can 

be strict. To establish this we provide some examples. 

 

Example 2: 

Let us take the following four fuzzy proximity 

relations R, S, T and V given in Tables 1, 2, 3 and 

4.Clearly these are fuzzy reflexive, fuzzy symmetric.  

Also,  
1 2 2 6( , ) 0.8, ( , ) 0.3R Rx x x x    and 

1 6( , ) 0.2R x x  . So, fuzzy transitive property is not 

satisfied for R. Similarly, 

1 2 2 3( , ) 0.8, ( , ) 0.7S Sx x x x   and
1 3( , ) 0.2S x x  .  

Hence, S is also not fuzzy transitive. T and V can be 

shown to be fuzzy proximity relations similarly. 

Table 1. Fuzzy Proximity Relation R 

R x1 x2 x3 x4 x5 x6 

x1 1 0.8 0.6 0.3 0.5 0.2 

x2 0.8 1 0.7 0.6 0.4 0.3 

x3 0.6 0.7 1 0.9 0.6 0.5 

x4 0.3 0.6 0.9 1 0.7 0.6 

x5 0.5 0.4 0.6 0.7 1 0.9 

x6 0.2 0.3 0.5 0.6 0.9 1 

Table 2. Fuzzy Proximity Relation S 

S x1 x2 x3 x4 x5 x6 

x1 1 0.8 0.2 0.5 0.6 0.7 

x2 0.8 1 0.4 0.7 0.5 0.2 

x3 0.2 0.4 1 0.5 0.3 0.6 

x4 0.5 0.7 0.5 1 0.9 0.7 

x5 0.6 0.5 0.3 0.9 1 0.6 

x6 0.7 0.2 0.6 0.7 0.6 1 

Table 3. Fuzzy Proximity Relation T 

T x1 x2 x3 x4 x5 x6 

x1 1 1 0.9 0.9 0.5 0.5 

x2 1 1 0.9 0.9 0.5 0.5 

x3 0.9 0.9 1 1 0.8 0.8 

x4 0.9 0.9 1 1 0.8 0.8 

x5 0.5 0.5 0.8 0.8 1 1 

x6 0.5 0.5 0.8 0.8 1 1 

 

 

 

 

Table 4. Fuzzy Proximity Relation V 

V x1 x2 x3 x4 x5 x6 

x1 1 0.6 07 0.8 0.5 0.5 

x2 0.6 1 0.4 0.7 0.8 0.3 

x3 0.7 0.4 1 0.5 0.2 0.9 

x4 0.8 0.7 0.5 1 0.6 0.7 

x5 0.5 0.8 0.2 0.6 1 0.3 

x6 0.5 0.3 0.9 0.7 0.3 1 

Table 5. Fuzzy Proximity Relation R S  

R S  x1 x2 x3 x4 x5 x6 

x1 1 0.8 0.6 0.5 0.6 0.7 

x2 0.8 1 0.7 0.7 0.5 0.3 

x3 0.6 0.7 1 0.9 0.6 0.6 

x4 0.5 0.7 0.9 1 0.9 0.7 

x5 0.6 0.5 0.6 0.9 1 0.9 

x6 0.7 0.3 0.6 0.7 0.9 1 

Table 6. Fuzzy Proximity Relation R S  

R S  x1 x2 x3 x4 x5 x6 

x1 1 0.8 0.2 0.3 0.5 0.2 

x2 0.8 1 0.4 0.6 0.4 0.2 

x3 0.2 0.4 1 0.5 0.3 0.5 

x4 0.3 0.6 0.5 1 0.7 0.6 

x5 0.5 0.4 0.3 0.7 1 0.6 

x6 0.2 0.2 0.5 0.6 0.6 1 

Table 7. Fuzzy Proximity Relation T V  

T V  x1 x2 x3 x4 x5 x6 

x1 1 1 0.9 0.9 0.5 0.5 

x2 1 1 0.9 0.9 0.8 0.5 

x3 0.9 0.9 1 1 0.8 0.9 

x4 0.9 0.9 1 1 0.8 0.8 

x5 0.5 0.8 0.8 0.8 1 1 

x6 0.5 0.5 0.9 0.8 1 1 

Table 8. Fuzzy Proximity Relation T V  

T V  x1 x2 x3 x4 x5 x6 

x1 1 0.6 0.7 0.8 0.5 0.5 

x2 0.6 1 0.4 0.7 0.5 0.3 

x3 0.7 0.4 1 0.5 0.2 0.8 

x4 0.8 0.7 0.5 1 0.6 0.7 

x5 0.5 0.5 0.2 0.6 1 0.3 

x6 0.5 0.3 0.8 0.7 0.3 1 

 

Here, let us take 0.8  . Then 

 

1 2 3 4 5 6{{ , },{ , },{ , }},R x x x x x x

 

1 2 3 4 5 6{{ , },{ },{ , },{ }},S x x x x x x

 

1 2 3 4 5 6{{ , , , , , }},T x x x x x x
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1 4 2 5 3 6{{ , },{ , },{ , }}V x x x x x x

  and 

1 2 3 4 5 6( ) {{ , },{ , , , }}R S x x x x x x

   

 

Let us take
2 3 4{ , , }.X x x x  

Then ( )( ) ( )( ) ,R S T V X     

 

3 4( ) ( ) { , },R T X x x   3( ) ( ) { }S V X x   . So, 

( ( ) ( )) ( ( ) ( ))R T X S V X     =
3 4{ , }x x . Hence, 

LHS RHS  in (60). 

( )( ) ( )( )R S T V X  = 
1 2 3 4 5 6{ , , , , , }.x x x x x x  

1 2 3 4( ) ( ) { , , , },R T X x x x x    

1 2 3 4 5( ) ( ) { , , , , }S V X x x x x x   . So, 

( ( ) ( )) ( ( ) ( ))R T X S V X     =
1 2 3 4 5{ , , , , }x x x x x . 

Hence, LHS RHS  in (61). 

 

Continuing with this example we see that 

 

2 3 4

3 4 3

( )( ) ( )( ) { , , },

( ) ( ) { , }, ( ) ( ) { }.

R S T V X x x x

R T X x x S V X x

 

   

 

   
 So, 

3( ) ( ) ( ) ( ) { }.R T X S V X x      Hence, 

LHS RHS as claimed at (3). 

 

We modify Example-2 to Example-3 below in order to 

provide an example for (62). 

 

Example-3: Let us take R and S as same in Example-1 

and also we choose 0.8  . Let the fuzzy proximity 

relations T and V be given by tables 9 and 10 respectively. 

Table 9. Fuzzy Proximity Relation T 

T x1 x2 x3 x4 x5 x6 

x1 1 0.8 0.6 0.4 0.6 0.5 

x2 0.8 1 0.6 0.3 0.6 0.5 

x3 0.6 0.6 1 0.7 0.6 0.5 

x4 0.4 0.3 0.7 1 0.5 0.6 

x5 0.6 0.6 0.6 0.5 1 0.7 

x6 0.5 0.5 0.5 0.6 0.7 1 

Table 10. Fuzzy Proximity Relation V 

V x1 x2 x3 x4 x5 x6 

x1 1 0.6 0.7 0.8 0.5 0.5 

x2 0.6 1 0.4 0.7 0.5 0.3 

x3 0.7 0.4 1 0.5 0.2 0.8 

x4 0.8 0.7 0.5 1 0.6 0.7 

x5 0.5 0.5 0.2 0.6 1 0.3 

x6 0.5 0.3 0.8 0.7 0.3 1 

 

Then the fuzzy proximity relations T V and 

T V are given by Tables 11 and 12. 

 

 

 

Table 11. Fuzzy Proximity Relation T 

T V  x1 x2 x3 x4 x5 x6 

x1 1 0.6 0.6 0.4 0.5 0.5 

x2 0.6 1 0.4 0.3 0.6 0.3 

x3 0.6 0.4 1 0.5 0.2 0.5 

x4 0.4 0.3 0.5 1 0.5 0.6 

x5 0.5 0.6 0.2 0.5 1 0.3 

x6 0.5 0.3 0.5 0.6 0.3 1 

Table 12. Fuzzy Proximity Relation V 

T V  x1 x2 x3 x4 x5 x6 

x1 1 0.8 0.8 0.8 0.6 0.5 

x2 0.8 1 0.6 0.9 0.7 0.5 

x3 0.8 0.6 1 0.7 0.6 0.9 

x4 0.8 0.9 0.7 1 0.6 0.7 

x5 0.6 0.7 0.6 0.6 1 0.7 

x6 0.5 0.5 0.9 0.7 0.7 1 

 

With this new set up,  

 

1 2 3 4 5 6{{ , },{ },{ },{ },{ }},T x x x x x x

      

1 2 3 4 6 5{{ , , , , },{ }}V x x x x x x

   and 

1 2 3 4 5 6( ) {{ },{ },{ },{ },{ },{ }}.T V x x x x x x

   

1 2 3 4 6 5( ) {{ , , , , },{ }}T V x x x x x x

  . Let us take 

1 3 6{ , , },X x x x  

Then
1 3 6( )( ) ( )( ) { , , },R S T V X x x x    

1 2 3 6( ) ( ) { , , , }R T X x x x x   and 

1 2 3 6( ) ( ) { , , , }.S V X x x x x    So, 

1 2 3 6( ) ( ) ( ) ( ) { , , , }.R T X S V X x x x x      So, 

. . . .L H S R H S in (60). 

 

Theorem 8: Let R, S, T, V be four fuzzy proximity 

relations on U and  be a chosen level value. Then 

 

( )( ) ( )( ) ( )( ) ( )( )R T X S V X R S T V X        

      (63) 

 

( )( ) ( )( ) ( )( ) ( )( )R S T V X R T X S V X        

(64) 

 

( )( ) ( )( ) ( )( ) ( )( )R S T V X R T X S V X        

(65) 

 

( )( ) ( )( ) ( )( ) ( )( )R S T V X R T X S V X        

(66) 

 

Proof: Proof of (63): We have  

 

( )( ) ( )( )

]( ) ( )

( ) ( )

( )( ) ( )( )

[ ] and [ ]

([ ] and [ ) and

    ([ ] and [ ] )

R S T V

R S

T V

x R S T V X

x X x X

x X x X

x X x X

 

 

 

  

  

  

 

         (By(12))
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( ) ( )

( ) ( )

([ ] and [ ] ) and

    ([ ] and [ ] )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

R T

S V

x X x X

x X x X

x R T X S V X

x R T X S V X

 

 

   

   

  

 

   

   

 

 

This completes the proof. 

Proof of (64): We have 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )( ) ( )( )

( )( ) or x ( )( )

([ ] or [ ] ) or

    ([ ] or [ ] )

([ ] or [ ] ) or

    ([ ] or [ ] )

(([ ] [ ] ) ) or

    (

R T

S V

R S

T V

R S

x R T X S V X

x R T X S V X

x X x X

x X x X

x X x X

x X x X

x x X

 

 

 

 

 

 

 

 

 

 

 



  

    

  

 

  

 

 

( ) ( )

( ) ( ) ( ) ( )

([ ] [ ] ) )

([ ] ) or ([ ] ) )

( )( ) ( )( )

T V

R S T V

x x X

x X x X

x R S T V X

 

   



 

 



  

  

 

 

This completes the proof. 

Proof of (65): We have 

 

( ) ( )

( ) ( )

( ) and ( )

([ ] and [ ] ) and

     ([ ] and [ ] )

([ ] and [ ] ) and

     ([ ] and [ ] )

([ ]  [ ] ) and ([ ] [ ] )

([ ] ) and ([ ]

R T

S V

R S

T V

R S T V

R S T V

x R T X S V X

x R T X S V X

x X x X

x X x X

x X x X

x X x X

x x X x x X

x X x

 

 

 

 

   

 

 

 

  

   

  

 

  

 

  

  (By(13))

( ) ( )

X

x R S T V X 



  

 

 

This completes the proof. 

Proof of (66): We have 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

([ ] ) or ([ ] )

(([ ] ) and ([ ] ) ) ) or

    (([ ] ) and ([ ] ) ))

(([ ] ) or ([ ] ) and

    (([ ] ) ) or ([ ] ) )) 

(

R S T V

R S

T V

R T

S V

x R S T V X

x X x X

x X x X

x X x X

x X x X

x X x X

x R

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

  

 

  ( ) ( ) and ( ) ( )

( ) ( ) ( ) ( )

T X x S V X

x R T X S V X

   

   

  

   

 

 

This completes the proof. 

 

Note 8: All the inclusions from (63) to (66) can be strict.  

(63): Let us follow example-1 above and
1 3 6{ , , }X x x x . 

Then 

 

( )( ) ,R T X   3 6( )( ) { , }S V X x x  . So, 

3 6( )( ) ( )( ) { , }R S X T V X x x   . Also, 

( )( ) ( )( )R S T V X    . So, LHS RHS in (63). 

 

(64): Let us follow example-2 above and take 0.9  . 

Then 

 

1 2 3 4 5 6{{ },{ },{ , },{ , }}R x x x x x x

  , 

1 2 3 4 5 6{{ },{ },{ },{ , },{ }}S x x x x x x

  , 

1 2 3 4 5 6{{ },{ },{ },{ },{ },{ }}T x x x x x x

   

and 
1 2 4 3 6 5{{ },{ , },{ , },{ }}V x x x x x x

  . 

Also, 
1 2 4 3 6 5( ) {{ },{ , },{ , },{ }}T V x x x x x x

  and 

1 2 3 4 5 6( ) {{ },{ },{ , , , }}R S x x x x x x

  . 

 

We take
1 2 3{ , , }X x x x . So, 

 

1 2 3 4 5 6( )( ) ( )( ) { , , , , , }R S U V X x x x x x x   , 

1 2 3 4( )( ) { , , , }R T X x x x x  and 

1 2 3 4 6( )( ) { , , , , }S V X x x x x x  . 

 

Hence, 
1 2 3 4 6( )( ) ( )( ) { , , , , }R T X S V X x x x x x    . 

This shows that LHS RHS in (64). 

 

(65):Let
1 3 6{ , , }X x x x . 

Then 3 6( )( ) ( )( ) { , }R S T V X x x   . 

Also, ( )( ) ( )( )R T X S V X   =  . Hence, 

LHS RHS  in (65). 

 

(66):We use example-2 here. Let
1 2 6{ , , }X x x x . Then 

 

1 2 6( )( ) ( )( ) { , , }R S T V X x x x   , 

1 2 3 4 5 6( )( ) { , , , , , }R T X x x x x x x  and 

1 2 5 6( )( ) { , , , }S V X x x x x  .So, 

1 2 5 6( )( ) ( )( ) { , , , }R T X S V X x x x x    . Hence 

LHS RHS  holds true in (66). 

 

VI.  AN EXAMPLE FOR REAL LIFE APPLICATION 

We know that Rough Set theory has many applications 

in Decision Science. Here, we give one such example of 

Predicting whether it will rain or not. 

Let us take an information system “Rain Prediction” 

with the conditional attributes: Humidity (H), Climate 

Zone (C) and Temperature (T) and Decision Attribute 

Rain (R). 

The attribute domains are as follows: 

A = {High, Low, Medium}, C = {Temperate, Tropical, 
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Frigid}, T = {High, Low, Medium}, Rain = {Yes, No} 

Following is the table giving information for 6 

different places
1 2 3 4 5 6P , P , P , P , P  and P . 

Table 13. Climate Information Table 

Place Humidity Climate Zone Temperature Rain 

P1 High Tropical High Yes 

P2 Medium Temperate High No 

P3 Medium Temperate Medium Yes 

P4 Low Temperate Medium No 

P5 Medium Tropical Low Yes 

P6 Low Frigid Low No 

 

Here,
1 2 3 4 5 6U = {P , P , P , P , P , P }.  Following are the 

fuzzy proximity relations H (for humidity), C (for climate 

zone), T (for Temperature) respectively: 

Table 14. Fuzzy Proximity Relation for Humidity 

H High Medium Low 

High 1 0.8 0.5 

Medium 0.8 1 0.7 

Low 0.5 0.7 1 

Table 15.Fuzzy Proximity Relation for Climate Zone 

Climate Zone Temperate Tropical Frigid 

Temperate 1 0.7 0.2 

Tropical 0.7 1 0.4 

Frigid 0.2 0.4 1 

Table 16. Fuzzy Proximity Relation for Temperature 

Temperature High Medium Low 

High 1 0.9 0.5 

Medium 0.9 1 0.8 

Low 0.5 0.8 1 

 

Thus, fuzzy proximity relation for humidity on U 

derived from Table 13 and Table 14 is: 

Table 17.Table for Fuzzy Proximity Relation Humidity on U 

Humidity P1 P2 P3 P4 P5 P6 

P1 1 0.8 0.8 0.5 0.8 0.5 

P2 0.8 1 1 0.7 1 0.7 

P3 0.8 1 1 0.7 1 0.7 

P4 0.5 0.7 0.7 1 0.7 1 

P5 0.8 1 1 0.7 1 0.7 

P6 0.5 0.7 0.7 1 0.7 1 

 

For the domain attribute Climate Zone, the fuzzy 

proximity relation derived from Table 13 and Table 15 is: 

 

 

 

 

 

 

 

Table 18. Table for Fuzzy Proximity Relation Climate Zone on U 

Climate Zone P1 P2 P3 P4 P5 P6 

P1 1 0.7 0.7 0.7 1 0.4 

P2 0.7 1 1 1 0.7 0.2 

P3 0.7 1 1 1 0.7 0,2 

P4 0.7 1 1 1 0.7 0.2 

P5 1 0.7 0.7 0.7 1 0.4 

P6 0.4 0.2 0.2 0.2 0.4 1 

 

Also, for the domain attribute Temperature, the fuzzy 

proximity relation derived from Table 13 and Table 16 is 

shown in Table 19. 

Table 19. Table for Fuzzy Proximity Relation Temperature on U 

Temperature P1 P2 P3 P4 P5 P6 

P1 1 1 0.9 0.9 0.5 0.5 

P2 1 1 0.9 0.9 0.5 0.5 

P3 0.9 0.9 1 1 0.8 0.8 

P4 0.9 0.9 1 1 0.8 0.8 

P5 0.5 0.5 0.8 0.8 1 1 

P6 0.5 0.5 0.8 0.8 1 1 

 

Now, let us take the target set
1 3 5{ , , }X P P P  

corresponding to the “Yes” category of the decision 

attribute “Rain” and find out which places are similar 

with respect to the two granularities of Humidity and 

Climate Zone. 

Let us take  as 0.8.The partitions of U induced from 

the above fuzzy proximity relations Humidity and 

Climate as provided in Tables 16 and 17are: 

 

1 2 3 5 4 6{{ , , , },{ , }}H P P P P P P

   and 

1 5 2 3 4 6{{ , },{ , , },{ }}C P P P P P P

  . 

 

The optimistic multigranular lower and upper 

approximations of X with respect to Humidity and 

Climate are as follows: 

 

1 5( ) ( ) { , }H C X P P    and 

1 2 3 5( ) ( ) { , , , }H C X P P P P                 (67) 

 

Similarly, the pessimistic multigranular lower and 

upper approximations of X with respect to Humidity and 

Climate are as follows: 

 

( ) ( ) {}H C X    and 

1 2 3 4 5( ) ( ) { , , , , }H C X P P P P P                 (68) 
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Hence, we can say from (67) that the set of places with 

similar humidity or in the same climate zone to a degree 

of 0.8 with rain prediction “yes” are 
1P and

5P . Also, the 

set of places with at least one place with same humidity 

and at least one place in the same climate zone to a 

degree 0.8 with rain prediction “yes” are 
1P , 

2P , 
3P and 

5P . So that, we can positively or unambiguously classify 

P1 and P5 places as belonging to “Yes” category of 

“Rain” with respect to similar humidity or in the same 

climate zone to a degree of 0.8. Also, we cannot 

unambiguously classify P1, P2, P3 and P5 as belonging to 

“No” category of “Rain” with respect to similar humidity 

and in the same climate zone to a degree of 0.8.  

Again, from (68) we conclude that we don’t have any 

place which have similar humidity and are in the same 

climate zone to a degree of 0.8 with rain prediction “yes”.  

And the set of places with at least one place with same 

humidity or at least one place in the same climate zone to 

a degree 0.8 with rain prediction “yes” are 
1 2 3 4, , ,P P P P  

and 
5P . So, we cannot classify any place as belonging to 

the “yes” category of “Rain” with respect to similar 

humidity similar humidity and in the same climate zone 

to a degree of 0.8. Also, we cannot unambiguously 

classify all places 
1 2 3 4, , ,P P P P  and

5P  as belonging to the 

“No” category of “Rain” with respect to similar humidity 

and in the same climate zone to a degree of 0.8.  

Here, if we take the union of the fuzzy proximity 

relations H and C, we get the relation ( )H C as shown 

in Table 20. 

Table 20. Fuzzy Proximity Relation for ( )H C  

Place P1 P2 P3 P4 P5 P6 

P1 1 0.8 0.8 0.7 1 0.5 

P2 0.8 1 1 1 1 0.7 

P3 0.8 1 1 1 1 0.7 

P4 0.7 1 1 1 0.7 1 

P5 1 1 1 0.7 1 0.7 

P6 0.5 0.7 0.7 1 0.7 1 

 

Hence, 1 2 3 4 5 6( ) { , , , , , }H C P P P P P P

  . So, 

 

( )( ) {}H C X  and 

1 2 3 4 5 6( )( ) { , , , , , }H C X P P P P P P             (69) 

 

From (69) we observe that  if we take Humidity or 

Climate zone (may be both) and a similarity to degree 

0.8then we cannot unambiguously classify any of the 

places as belonging to the “Yes” category of “Rain” and 

similarly we cannot unambiguously classify any of the 

places as belonging to the  “No” category of “Rain”. 

But taking Humidity and Climate Zone as two separate 

independent granularities simultaneously under 

multigranulation for predicting whether it will Rain or not, 

is much more useful than taking the Union of the two 

Relations and using it as a single granularity for the 

prediction. 

Now, consider another value of  as 0.7.The partitions 

H

 and C

 of U induced from the above tables with 

respect to Humidity and Climate respectively are given 

by 

 

1 2 3 4 5 6{P , P , P , P , P , P }H

  and 

1 2 3 4 5 6{P , P , P , P , P , P }C

  . So, 

 

( ) ( ) {}H C X   and 

1 2 3 4 5 6( ) ( ) { , , , , , }H C X P P P P P P          (70) 

 

Also, we have 

 

( ) ( ) {}H C X   and 

1 2 3 4 5 6( ) ( ) { , , , , , }H C X P P P P P P           (71) 

 

So, from (70) and (71) we see that there is no 

distinction between the two types of multigranulations. 

Finally, taking  = 0.9, we get the partitions of U 

induced from the above tables with respect to Humidity 

and Climate as 

 

1 2 3 5 4 6{{ },{ , , },{ , }}H P P P P P P

  and 

1 5 2 3 4 6{{P , P },{P , P , P ,P }}C

  . So, 

1 5( ) ( ) { , }H C X P P    and 

1 2 3 4 5 6( ) ( ) { , , , , , }H C X P P P P P P    

1( ) ( ) { }H C X P   and 

1 2 3 4 5 6( ) ( ) { , , , , , }H C X P P P P P P    

 

Let us put all the lower and upper approximations of X 

for different degrees of similarities obtained above for the 

purpose of comparison. 

Table 21. Table for Fuzzy Proximity Relation Climate Zone on U 

  ( ) ( )H C X   ( ) ( )H C X   ( ) ( )H C X   ( ) ( )H C X   

0.7 {} 1 2 3 4 5 6{ , , , , , }P P P P P P  {} 1 2 3 4 5 6{ , , , , , }P P P P P P  

0.8 1 5{ , }P P  
1 2 3 5{ , , , }P P P P  {} 1 2 3 4 5 6{ , , , , , }P P P P P P  

0.9 1 5{ , }P P  1 2 3 5{ , , , }P P P P  1{ }P  1 2 3 4 5 6{ , , , , , }P P P P P P  
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It is observed that as the value of   increases, our 

ability to classify data instances unambiguously increases 

too. This makes sense because  denotes the level of 

fuzziness that is tolerated, which is compatible with our 

theoretical observation in Theorem 6 earlier. Also, the 

optimistic and pessimistic multigranular boundary 

regions of X with respect to Humidity and Climate are as 

follows. 

Table 22. Table for Boundaries of X for Different Values of   

  
( ) ( )H CBN X 

 
( ) ( )H CBN X 

 

0.7 1 2 3 4 5 6{ , , , , , }P P P P P P  
1 2 3 4 5 6{ , , , , , }P P P P P P  

0.8 2 3{ , }P P  
1 2 3 4 5 6{ , , , , , }P P P P P P  

0.9 2 3{ , }P P  
2 3 4 5 6{ , , , , }P P P P P  

 

It can be seen that the boundary region decreases with 

the increasing value of . This means that the roughness 

or uncertainty decreases with the increasing value of  . 

This is compatible with our result in Corollary 1. 

 

VII.  CONCLUSIONS 

In this paper, we introduced the notions of optimistic 

and pessimistic multigranular rough sets on fuzzy 

approximation spaces, which are the multigranular 

versions of the rough sets on fuzzy approximation spaces. 

These notions are more general than the basic optimistic 

and pessimistic multigranular rough sets as the basic 

requirement of equivalence relations have been 

liberalized. Several properties of these notions involving 

lower approximation, upper approximation of union and 

intersection of multigranulation have been established. 

Through a real life application we illustrated the utility of 

these new models. 
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