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Abstract A committee selection rule (or, multiwinner voting rule) is a mapping that
takes a collection of strict preference rankings and a positive integer k as input, and
outputs one ormore subsets of candidates of size k. In this paperwe consider committee
selection rules that can be viewed as generalizations of single-winner scoring rules,
including SNTV, Bloc, k-Borda, STV, as well as several variants of the Chamberlin–
Courant rule and the Monroe rule and their approximations. We identify two natural
broad classes of committee selection rules, and show that many of the existing rules
belong to one or both of these classes. We then formulate a number of desirable
properties of committee selection rules, and evaluate the ruleswe consider with respect
to these properties.

1 Introduction

There are many situations where a society needs to select a subset of a given size
from the set of available options. For example, in indirect democracies people choose
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600 E. Elkind et al.

representatives to govern on their behalf, companies select groups of products to
promote to their customers (Lu and Boutilier 2011, 2015; Skowron et al. 2016),
search engines decide which webpages to display in response to a given query (Dwork
et al. 2001), and among many applicants for a job (e.g., a tenure-track position at a
university) several get short-listed and invited for interviews. For all these tasks we
need formal rules to perform the selection, and the desirable properties of such rules
may depend on the task at hand. We view these selection rules as multiwinner voting
rules which, given individual preferences and the desired number of winners, output
groups of winners, which we call committees.

Multiwinner elections are even more ubiquitous than single-winner ones, but much
less studied. They were implicitly considered under the umbrella of choice functions
(Arrow 1951; Fishburn 1973), but in this model the size of the elected committee
could not be controlled. It was Debord (1993) and Felsenthal and Maoz (1992) who
introduced several k-choice functions that elect committees of size exactly k, and inves-
tigated their properties. However, even within the space of rules that elect exactly
k winners, many distinct models can happily coexist. One way to classify them is
according to the type of the input: there are preference-based rules (whose inputs
are sequences of linear orders; see, e.g., the work of Brams and Fishburn (2002)),
approval-based rules (whose inputs are sequences of dichotomies; see, e.g., the works
of Brams et al. (2007), Caragiannis et al. (2010), Kilgour and Marshall (2012), Aziz
et al. (2017), and the overview byKilgour (2010)), and tournament-based rules (whose
inputs are either tournaments or weighted tournaments; see the book of Laslier (1997)
for a general overview of tournament-based rules). Also, a number of authors con-
sider settings where the compatibility of committee members is an important issue,
and therefore voters’ preferences over committees cannot be deduced from their pref-
erences over individual alternatives alone (Ratliff 2006; Uckelman 2010; Ratliff and
Saari 2014). For a different perspective on this issue, see the line of work on voting in
combinatorial domains ( Lang and Xia (2016) offer a very good overview of this area).

In thiswork,we focus on themodelwhere the goal is to select a committee of a given
size on the basis of voters’ ordinal preferences over the candidates. A number of rules
for this task are based on various forms of the Condorcet principle (Fishburn 1981a, b;
Gehrlein 1985; Kaymak and Sanver 2003; Ratliff 2003; Barberà and Coelho 2008;
Elkind et al. 2015). In contrast, we consider rules that, informally speaking, can be seen
as counterparts of positional scoring rules. Our aim is to present a uniform framework
for the study of such rules, to identify useful classes of score-based committee selection
rules, and to propose a set of natural properties (axioms) against which multiwinner
rules can be judged.

We have selected ten voting rules as examples of different ideas pertaining to
score-based committee selection: STV, SNTV, k-Borda, Bloc, three variants of the
Chamberlin–Courant rule (Chamberlin and Courant 1983; Lu and Boutilier 2011;
Betzler et al. 2013), and three variants of the Monroe rule (Monroe 1995; Betzler
et al. 2013; Skowron et al. 2015). STV and SNTV are well-known rules that are
used for parliamentary elections in several countries;1 Bloc is a rule that asks each

1 For example, the upper house of the Parliament of Australia uses a variant of STV; a variant of SNTV is
used, e.g., in Puerto Rico.
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voter to specify her favourite committee of k candidates and selects k candidates that
were mentioned more frequently than others; k-Borda picks k alternatives with the
highest Borda scores and is representative of rules used for choosing k finalists in a
competition (indeed, Formula 1 racing and the Eurovision song contest use scoring
rules very similar to Borda). The Chamberlin–Courant andMonroe rules are examples
of rules that, like STV, focus on proportional representation, but, unlike STV, explicitly
assign a committeemember (a representative) to each voter.We also consider two rules
that are based on approximation algorithms for, respectively, the Chamberlin–Courant
rule (Lu and Boutilier 2011) and the Monroe rule (Skowron et al. 2015); that is, we
treat these algorithms as voting rules in their own right. All these rules can be seen as
being loosely based on single-winner scoring rules.

We are interested in judging the committee selection rules on our list with respect
to their applicability in the following settings:

Parliamentary elections Voting rules for such elections should respect the “one per-
son, one vote” principle. This is reflected in the requirement that each elected
member should represent approximately the same number of voters. Some such
rules make use of electoral districts, i.e., they are based on holding separate (pos-
sibly multiwinner) elections in different parts of the country, while others treat the
whole country as a single constituency, and focus on proportional representation
of different population groups or political parties.

ShortlistingConsider a situation where a position is filled at a university. Each faculty
member ranks applicants in order to create a short-list of those to be invited for an
interview. One of the important requirements in this case is that if some candidate
is shortlisted when k applicants are selected, then this candidate should also be
shortlisted if the list is extended to k + 1 applicants.

Movie selection Based on rankings provided by different customer groups, an airline
has to decide which (few) movies to offer on their long-distance flights. It is
important that each passenger finds something satisfying to watch. This task is
similar to parliamentary elections, but without the need to ensure that each movie
would bewatchedby the samenumber of people. It is, however, quite different from
shortlisting: If there are two similar job candidates, then it is desirable to interview
either both of them or neither of them, whereas if two movies are similar, it makes
sense to pick at most one of them. Skowron et al. (2016) discuss this view of
multiwinner elections and provide a number of other examples and applications.

We study properties of voting rules that are relevant to the above-listed settings.
Specifically, we discuss properties that are specific to the task of committee selec-
tion, such as committee monotonicity, the solid coalitions property, and the consensus
committee property, and adapt the standard notions of unanimity, monotonicity, homo-
geneity, and consistency to the multiwinner setting. For every such property P and
each rule R considered in this paper, we determine if R satisfies P (sometimes we
need to place mild technical conditions on the input, e.g., a rule may satisfy a certain
property only if the target committee size divides the number of voters or if the number
of voters is sufficiently large). Our results are summarized in Table 1 (see Sect. 10).

In the course of our investigation, we identify an important class of committee
selection rules, which we call committee scoring rules. Within the class of committee
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scoring rules, we distinguish (weakly) separable rules and representation-focused
rules. These notions prove to be useful for our analysis, as some axioms turn out to be
satisfied by all rules that belong to one of these subclasses, or by an easily identifiable
subset of such rules (see, e.g., Theorem 3). Further, we obtain a simple and intuitive
characterization of separable committee scoring rules. Namely, we show that all such
rules are best-k rules; roughly speaking, this means that each such rule first ranks all
candidates and then outputs the top k candidates according to this ranking. We believe
that introducing the class of committee scoring rules is one of the most important
contributions of this paper. In a series of follow-up papers, Faliszewski et al. conduct
a more detailed study of the internal structure of this class of rules (Faliszewski et al.
2016a, b) and Skowron et al. (2016b) provide an axiomatic characterization of such
rules.

Our paper is a preliminary attempt to develop a formal framework for the study
of preference-based committee selection rules. Thus we use the word axiom quite
freely, without implying that our axioms should be viewed as normative requirements.
Further, our work focuses on committee selection rules that are based on scoring pro-
cedures. Such rules are fundamentally different from those that are motivated by the
Condorcet criterion. In particular, in the single-winner case, no scoring rule is Con-
dorcet consistent; consequently, a committee selection rule that reduces to a scoring
rule for the case when the target committee size equals one cannot satisfy any reason-
able extension of the Condorcet criterion.2 It would be very interesting to apply our
framework to Condorcet-based rules. However, this task is beyond the scope of this
paper, and we leave it as future work.

The remainder of the paper is organized as follows. In Sect. 2 we introduce the basic
terminology used throughout the paper; in Sect. 3 we define the rules that we study
and put forward two ways of classifying them. In Sect. 4, we define several properties
of committee selection rules, and in Sects. 5–8 we study particular groups of these
properties in detail. We discuss related literature in Sect. 9 and conclude in Sect. 10.

2 Preliminaries

An election is a pair E = (C, V ), where C = {c1, . . . , cm} is a set of candidates, or
alternatives (we will use these two terms interchangeably), and V = (v1, . . . , vn) is a
list of voters. For succinctness, each voter is identified with her preference order, i.e.,
a ranking of the candidates from the most desirable one to the least desirable one. That
is, vi refers both to the i-th voter in V and the preference order of that voter. We write
a �i b or vi : a � b when a is ranked above b in vi . We write ‖C‖ and ‖V ‖ to denote
the size of the set C and the length of the list V , respectively. Also, for readability, we
use set-theoretic notation when we reason about V : e.g., we write V ′ ⊆ V when V ′
can be obtained from V by deleting some of the voters. We denote the position of a
candidate c ∈ C in vote v ∈ V by posv(c). If V1 and V2 are two lists of voters over

2 For several committee scoring rules (including SNTV, Bloc, and k-Borda), Diss and Doghmi (2016)
consider the probability that a Condorcet committee in the sense of Gehrlein (1985) is elected, provided
that one exists.
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the same candidate set C , then V1 + V2 denotes the concatenation of V1 and V2. If V
is a list of voters and t is an integer, then tV denotes the concatenation of t copies of
V . For E1 = (C, V1) and E2 = (C, V2), we write E1 + E2 to denote (C, V1 + V2),
and for E = (C, V ) and a positive integer t , we write t E to denote (C, tV ). For an
integer n, we denote {1, . . . , n} by [n].

A committee selection rule (or, a multiwinner rule) R is a function that, given an
election E = (C, V ) and a positive integer k, k ≤ ‖C‖, returns a non-empty set
R(E, k) of k-element subsets of C , which we call committees. That is, a rule returns
the set of committees that are tied for winning. In practice, one would need to combine
such a rule with a tie-breaking mechanism, but for simplicity we mostly disregard this
issue here. Brams and Fishburn (2002) introduced choose-k rules, but their definition
stipulates that such a rule selects at least k alternatives. Two early papers that focus
on rules selecting committees of size exactly k are those of Debord (1993) and of
Felsenthal and Maoz (1992).

Requiring committee selection rules to pick fixed-size committees is natural if,
for example, the goal is to elect a parliament whose size is fixed by the constitution.
However, as a consequence, we are sometimes forced to elect committees that are
Pareto dominated under reasonable preference extensions: e.g., if in each vote the
candidates are ranked as a � b � c � d and k = 2, the voters may prefer {a}
to {a, b}, but selecting a alone is not possible in our model. Alternatively, we could
require R(E, k) to return committees of size at most k. The latter approach is also
studied in the literature (either explicitly or implicitly), but we adopt the former one
due to its simplicity and applicability in our settings of interest.

3 Committee selection rules

We now provide definitions of the committee selection rules that we study and discuss
two general ways of defining such rules.

3.1 Common committee selection rules

A number of committee selection rules are inspired by single-winner rules, so let us
review these first. Many single-winner rules calculate the scores of alternatives in
order to decide which one is the best. Here are some popular ways of computing the
candidates’ scores.

Plurality score The Plurality score of a candidate c is the number of votes where c
is ranked first.

t-approval score Let t be a positive integer. The t-approval score of a candidate c is
the number of votes where c is ranked in top t positions.

Borda score Let v be a vote in an election (C, V ). The Borda score that candidate
c ∈ C receives from v is ‖C‖ − posv(c). The Borda score of c in (C, V ) is the
sum of c’s Borda scores from all votes in V .

s-scoreThe three types of scores listed above are special cases of the following general
framework. Consider a setting with a candidate set C , ‖C‖ = m, and a score
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vector s = (s1, . . . , sm), where s1 ≥ s2 ≥ · · · ≥ sm and s1 > sm . We define the
s-score of a candidate a in an election (C, V ) with V = (v1, . . . , vn) as

scs(a) =
n∑

i=1

sposvi (a).

It is then immediate that the Plurality score is the (1, 0, . . . , 0)-score, the
t-approval score is the (1, . . . , 1︸ ︷︷ ︸

t

, 0, . . . , 0)-score, and the Borda score is the

(m − 1,m − 2, . . . , 0)-score.

Given these definitions, we are ready to describe the committee selection rules that we
focus on in this paper. Let E = (C, V ) be an election and let k ∈ [‖C‖] be the target
committee size. We assume the parallel-universes tie-breaking (Conitzer et al. 2009),
i.e., each of our rules returns all the committees that could result from breaking the
ties that arise during the application of the rule.

Single transferable vote (STV) STV is a multistage elimination rule that works as
follows. In each stage, if there is a candidate c whose Plurality score is at least

q =
⌊ ‖V ‖
k+1

⌋
+1 (the so-called Droop quota), we do the following: (a) include c in

the winning committee, (b) delete q votes where c is ranked first, so that each of
these votes is ‘transferred’ to the candidate currently ranked right after c, and (c)
remove c from all the remaining votes. If each candidate’s Plurality score is less
than q, a candidate with the lowest Plurality score is deleted from all votes. We
repeat this process until k candidates are selected. Note that parallel-universes
tie-breaking requires us to consider all possible ways to select a candidate among
those whose score meets or exceeds the quota, to identify q votes to be deleted
among those where this candidate is ranked first (note that this determines the
‘transfers’, i.e., howmany extra voteswill be gained by each surviving candidate),
and to pick a candidate to be eliminated among those with the lowest score; a
committee wins under STV if it can be obtained by the procedure described above
for some sequence of such choices. There are also many other variants of STV;
we point the reader to the work of Tideman and Richardson (2000) for details.
In particular, the reader can verify that all results in our paper continue to hold if
we require that the number of the ‘extra’ votes of a selected candidate c that are
transferred to another candidate a is proportional to the number of votes of the
form c � a � · · · at the respective stage.

Single nontransferable vote (SNTV) SNTV returns k candidates with the highest
Plurality scores (thus one can think of SNTV as simply k-Plurality).

Bloc Bloc returns k candidates with the highest k-approval scores. Observe that by
using k-approval where k is the target committee size, we ensure that when
all voters rank the candidates in the same way, the unique winning committee
consists of the candidates ranked in top k positions by all the voters (whereas for
s-approval with s 	= k this is not the case).

k-Borda k-Borda returns k candidates with the highest Borda scores.
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Properties of multiwinner voting rules 605

The Chamberlin–Courant and Monroe rules These rules explicitly aim at pro-
portional representation. The main idea is to provide an optimal assignment of
committee members to voters, by using a satisfaction function to measure the
quality of the assignment.

A satisfaction function is a nonincreasing mapping α : N → N. Intuitively, α(i)
is a voter’s satisfaction from being represented by a candidate that this voter ranks
in position i . We primarily focus on the Borda satisfaction function, which for m
candidates is defined as αm

β (i) = m − i .

A function Φ : V → C is called an assignment function. We write Φ(V ) =
{Φ(v) | v ∈ V }. We say that Φ is a k-assignment function if ‖Φ(V )‖ ≤ k.
Intuitively, Φ(V ) is the elected committee where voter v is represented by can-
didate Φ(v). There are several ways to compute the societal satisfaction from an
assignment; we focus on the following two:

�1(Φ) =
∑

v∈V
α(posv(Φ(v))), �min(Φ) = min

v∈V
{
α(posv(Φ(v))

}
,

where α is the given satisfaction function. The former one, �1(Φ), is a utilitarian
measure,which sums the satisfactions of all the voters, and the latter one, �min(Φ),
is an egalitarian measure, which considers the satisfaction of the least satisfied
voter.
Let α be a satisfaction function and let � be �1 or �min. The Chamberlin–Courant
rule with parameters � and α (�-α-CC) finds a k-assignment function Φ that
maximizes �(Φ) and declares the candidates inΦ(V ) to be a winning committee.
If ‖Φ(V )‖ < k, the rule fills in the missing committee members in an arbitrary
way and outputs all resulting committees. Note that this class of rules includes
SNTV: indeed, SNTV is exactly �1-α1-CC, for satisfaction function α1 given by
α1(i) = 1 if i = 1 and α1(i) = 0 if i > 1. The �-α-Monroe rule is defined
similarly to �-α-CC, except that we optimize over k-assignment functions that
additionally satisfy the so-called Monroe criterion, which requires that exactly
k candidates are elected and each elected candidate is assigned to either � n

k � or
 n
k � voters. To simplify notation, we omit αm

β when referring to the Monroe/CC
rule with the Borda satisfaction function.
For the Chamberlin–Courant rule, for each set of candidates C ′ ⊆ C we define
the assignment function ΦCC(C ′) : V → C ′ as follows: for each voter v the
candidate ΦCC(C ′)(v) is v’s top candidate in C ′. If W is a winning committee
under the Chamberlin–Courant rule, then ΦCC(W ) is an optimal assignment
function.
The utilitarian variants of these rules, i.e., �1-CC and �1-Monroe, were introduced
by Chamberlin and Courant (1983) and by Monroe (1995), respectively; similar
ideas are discussed by Sugden (1984) in a game-theoretic context. The egalitarian
variants were introduced by Betzler et al. (2013). Unfortunately, these rules are
hard to compute, irrespective of tie-breaking, both for the Borda satisfaction
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function (Lu and Boutilier 2011; Betzler et al. 2013) and for various approval-
based satisfaction functions (Procaccia et al. 2008; Betzler et al. 2013).

Approximate variants of �1-Monroe and �1-CC Complexity results for �1-CC and
�1-Monroe inspired research on designing efficient approximation algorithms
for these rules. Here, in the spirit of Caragiannis et al. (2014), we consider these
algorithms as full-fledged multiwinner rules.

We refer to the rules based on approximation algorithms for �1-CC and
�1-Monroe as Greedy-CC and Greedy-Monroe, respectively. Greedy-CC was
proposed by Lu and Boutilier (2011) and Greedy-Monroe by Skowron et al.
(2015). Both rules use the Borda satisfaction function, aggregated in the utili-
tarian way (i.e., by using �1). They proceed in k iterations; in the i-th iteration,
i ∈ [k], they build a set Wi of cardinality i so that ∅ = W0 ⊂ W1 ⊂ W2 ⊂
· · · ⊂ Wk . The set Wk is declared to be the winning committee. In the i-th
iteration, i ∈ [k], Greedy-CC picks a candidate ci ∈ C\Wi−1 that maximizes
�1(Φ

CC(Wi−1 ∪ {ci })), and sets Wi = Wi−1 ∪ {ci }. In particular, c1 is an alter-
native with the highest Borda score.
Greedy-Monroe, in addition to the setsW0, . . . ,Wk , alsomaintains lists of voters
∅ = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V . The list Vi , i ∈ [k], consists of voters
that already have candidates assigned to them after the i-th iteration. In the i-th
iteration, i ∈ [k], the rule picks a number ni ∈ { n

k �, � n
k �} (see below for the

choice criterion) and then picks a candidate ci ∈ C\Wi−1 and a group V ′ of ni
voters from V \Vi−1 that jointly maximize the Borda score of ci in V ′. The rule
sets Wi = Wi−1 ∪ {ci } and Vi = Vi−1 ∪ V ′ (intuitively, Greedy-Monroe assigns
ci to the voters in V ′). Regarding the choice of ni , if n is of the form kn′ + n′′,
where 0 ≤ n′′ < k, then Greedy-Monroe sets ni to  n

k � for i = 1, . . . , n′′ and to
� n
k � for i = n′′ + 1, . . . , k. For instance, c1 and V1 are chosen so that for every

candidate c ∈ C and every group of voters V ′ ⊆ V of size n1 it holds that the
Borda score of c1 in (C, V1) is at least as high as the Borda score of c in (C, V ′)
(and, in particular, c1 is a Borda winner in (C, V1)).
Greedy-CC and Greedy-Monroe output committees that approximately satisfy
the optimality criteria of �1-CC and �1-Monroe. In particular, Greedy-CC finds
a committee W such that the satisfaction of the voters �1(Φ

CC(W )) is at least
1− 1

e of the satisfaction achieved under �1-CC (Lu and Boutilier 2011). Greedy-

Monroe finds a committee that achieves at least a 1− k
2m−1 − Hk

k fraction of the

satisfaction given by �1-Monroe, where Hk = ∑k
i=1

1
k (Skowron et al. 2015);

for many practical settings, this value is quite close to 1.

Intuitively, �1-CC and �min-CC are better suited for applications such as movie
selection (see Sect. 1) rather than, say, parliamentary elections. Indeed, these rules
sacrifice numerical proportionality of the representation in favor of committee diver-
sity, by aiming to represent as many different views as possible (including views of
very small minorities, to the extent that this is possible for the given committee size).
In consequence, these rules are good for recommendation systems, which simply need
to present users with ‘committees’ of items so as tomaximize the number of customers
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Properties of multiwinner voting rules 607

(voters) who are satisfied with at least one of the items on offer. As an extreme exam-
ple, if k>1 and there is a single candidate ranked first by all voters, then both �1-CC
and Greedy-CC may output any committee that includes this candidate. In contrast,
both �1-Monroe and Greedy-Monroe can only assign this candidate to about n

k voters
and have to pick the rest of the committee so as to maximize the satisfaction of the
remaining voters.

The following examples show that �1-CC and �1-Monroe differ from their greedy
counterparts.

Example 1 Let E = (C, V ) be an election with C = {a, b, c, d} and the following
four votes:

v1 : a � c � b � d, v2 : b � c � a � d,

v3 : a � c � d � b, v4 : b � c � d � a.

Let k = 2. Candidate c is the unique Borda winner in this election, so Greedy-CC will
choose him in the first round (and then a or b in the second round). In contrast, the
unique winning committee under �1-CC is {a, b}.
Example 2 Let E = (C, V ) be an election with C = {a, b, c, d, e, f } and the follow-
ing four votes:

v1 : a � c � d � e � b � f, v2 : b � a � c � d � e � f,

v3 : a � c � d � e � b � f, v4 : f � a � e � d � c � b.

Let k = 2. Greedy-Monroe assigns candidate a to v1 and v3 in the first round. It
then selects b or f in the second round. In contrast, �1-Monroe chooses {a, c} (with
a assigned to v2 and v4 and c assigned to v1 and v3, or c assigned to v1 and v2 and a
assigned to v3 and v4).

Computational complexity of winner determination For �-Monroe and �-CC with
� ∈ {�1, �min}, it is known that finding even a single winning committee is compu-
tationally hard (Procaccia et al. 2008; Lu and Boutilier 2011; Betzler et al. 2013).
However, many variants of these rules are fixed-parameter tractable, can be effi-
ciently approximated, or admit polynomial-time algorithms when voters’ preferences
are drawn from restricted domains (Lu and Boutilier 2011; Betzler et al. 2013; Cornaz
et al. 2012; Yu et al. 2013; Skowron et al. 2015, 2016; Skowron and Faliszewski 2015;
Skowron et al. 2015; Elkind and Ismaili 2015; Peters and Elkind 2016). For other rules
that we study, one can output somewinning committee in polynomial time. Moreover,
for SNTV, Bloc, and k-Borda it is easy to decide whether a given committee W of
size k is among the winning committees for a given election, i.e., whether the ties that
occur during the application of the rule can be broken so that the rule outputs W . In
contrast, for STV the latter problem is NP-hard even for k = 1 (Conitzer et al. 2009).
For Greedy-CC and Greedy-Monroe the complexity of checking if a given committee
may win under some way of breaking ties is currently unknown. However, both of
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these rules can be combined with a simple tie-breaking mechanism so that the result-
ing rule is polynomial-time computable; moreover, these mechanisms do not interfere
with the axiomatic analysis presented in this work.

3.2 Two types of multiwinner rules

Perhaps surprisingly, it turns out that many of the rules introduced so far have very
similar internal structure. Below we present two natural ways of identifying these
similarities.
Best-k Rules SNTV and k-Borda are natural extensions of Plurality and Borda to the
multiwinner setting: we sort the candidates in the order of decreasing scores (breaking
ties in all possible ways) and pick the top k ones.

We remind the reader that a social preference function is a mapping that, given an
election (C, V ), returns a set of tied linear orders over C ; a social welfare function,
given an election (C, V ), returns a single (possiblyweak) order overC . By considering
all linear orders that refine this weak order (which can be seen as a variant of the
parallel-universes tie-breaking), we can convert a social welfare function into a social
preference function; this enables us to treat social welfare functions as special cases
of social preference functions. Hence a social preference function is a more general
object than a social welfare function.

Definition 1 A committee selection rule R is a best-k rule if there exists a social
preference function F such that for each election E = (C, V ) with ‖C‖ = m and
each k ∈ [m] the set R(E, k) consists of all sets W such that there is an order � in
F(E) that ranks the candidates in W in the top k positions (i.e., ‖W‖ = k and c � d
for each c ∈ W and d ∈ C\W ).

SNTV and k-Borda are best-k rules. Indeed, every score vector s = (s1, . . . , sm),
where s1 ≥ s2 ≥ · · · ≥ sm , induces a best-k rule. Specifically, any such score vector
defines a social welfare function Fs that ranks all alternatives according to their s-
scores; we say that Fs is the scoring social welfare function associated with the score
vector s. We can then convert Fs into a social preference function as described above,
and consider the associated committee selection rule. As we will see later, perhaps
unexpectedly, Bloc is not a best-k rule.

We can also define a best-k rule based on the social preference function known
as the Kemeny ranking (Kemeny 1959), and, somewhat surprisingly, we will later
demonstrate that Greedy-CC is also a best-k rule. Thus, best-k rules are a more diverse
group than one might at first expect.
Committee scoring rules Both k-Borda and �1-CC can be viewed as generalizations
of the Borda rule to the multiwinner case. To formalize this intuition, we will now
define committee scoring rules. These rules can be seen as analogues of single-winner
scoring rules, and include k-Borda, �1-CC, and many other rules. We believe that
identifying this class of rules is an important conceptual contribution of this paper.

Consider an election E = (C, V )withm candidates, and a positive integer k ∈ [m].
Given a committee S with ‖S‖ = k and a voter v, we define the position of S in
v (denoted posv(S)) to be the vector (i1, . . . , ik) that results from sorting the set
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{posv(c) | c ∈ S} in increasing order. We write [m]k to denote the set of all increasing
length-k sequences of numbers from [m]; we interpret [m]k as the set of all possible
committee positions for elections with m candidates and committee size k. For two
committee positions from [m]k , I = (i1, . . . , ik) and J = ( j1, . . . , jk), we say that I
dominates J (denoted I � J ) if and only if i� ≤ j� for all � ∈ [k].

An (m, k)-committee scoring function is a mapping fm,k : [m]k → N such that for
every pair of committee positions I, J ∈ [m]k with I � J it holds that f (I ) ≥ f (J ).
The latter condition is a basic monotonicity requirement: it says that if I is obviously
“not worse” than J , then the score associatedwith I is at least as high as that associated
with J .

Definition 2 A committee scoring function f is a collection of (m, k)-committee
scoring functions for all m ∈ N and all k ∈ [m]: f = { fm,k}m∈N,k∈[m]. The score of
a committee S of size k in an election E = (C, V ) with ‖C‖ = m with respect to a
committee scoring function f = { fm,k}m∈N,k∈[m] is defined as

sc f,E (S) =
∑

v∈V
fm,k(posv(S)).

A committee scoring rule R f associated with f is a committee selection rule that,
given an election E and a target committee size k, outputs all size-k committees that
have the maximum score with respect to f .

Many of the rules that we study are, in fact, committee scoring rules.

Example 3 Let m be the number of candidates and let k be the target committee size.
For each � ∈ [m] define α� : [m] → {0, 1} by setting α�(i) = 1 if i ≤ � and α�(i) = 0
otherwise. For each i ∈ [m], define β(i) = m − i . SNTV, Bloc, k-Borda, and �1-CC
are committee scoring rules defined by the following committee scoring functions:

f SNTVm,k (i1, . . . , ik) = α1(i1),

f Blocm,k (i1, . . . , ik) =
k∑

t=1
αk(it ),

f k-Bordam,k (i1, . . . , ik) =
k∑

t=1
β(it ),

f CCm,k(i1, . . . , ik) = β(i1).

Example 3 motivates the following definition.

Definition 3 A committee scoring function f = { fm,k}m∈N,k∈[m] is said to be sepa-
rable if it can be written as

fm,k(i1, . . . , ik) = γm(i1) + · · · + γm(ik), (1)

for some family of functions γ = {γm}m∈N, where each γm is a non-increasing
function from [m] to N that does not depend on k and satisfies γm(1) > γm(m). A
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committee scoring ruleR is said to be separable if there exists a separable committee
scoring function f such that R = R f .

It is immediate that f k-Borda is separable. To see that f SNTV is separable as well, note
that we have α1(i1) = α1(i1) + α1(i2) + · · · + α1(ik), because i2, . . . , ik > 1 and
α1(i) = 0 for i > 1. On the other hand, f CC and f Bloc are not separable (in particular,
f Bloc does not have this property because αk depends on k).
Consider a separable committee scoring rule R f with a scoring function f of

the form (1), and set si = γm(i) for i ∈ [m]. Since γm is non-increasing and sat-
isfies γm(1) > γm(m), we have s1 ≥ s2 ≥ · · · ≥ sm , s1 > sm , and therefore
s = (s1, . . . , sm) is a valid score vector. Now, the total score of a committee S =
{a1, . . . , ak} with respect to f in an election E = (C, V ) with V = (v1, . . . , vn) is

sc f,E (S) =
n∑

i=1

k∑

j=1

γm(posvi (a j )) =
n∑

i=1

k∑

j=1

sposvi (a j ) =
k∑

i=1

scs(ai ). (2)

Hence,R f is the best-k rule induced by the scoring social welfare function associated
with the score vector s. That is, we have the following theorem.

Theorem 1 Every separable committee scoring rule is a best-k rule for some scoring
social welfare function.

It can be shown that Bloc is not a best-k rule (this will follow, in particular, from
Theorem 2 and Proposition 3) and hence it is not a separable committee scoring rule.
Indeed, in some ways Bloc is quite different from separable rules (for instance, it
satisfies the fixed majority property, defined in the end of Sect. 4, which is failed
by many separable rules). On the other hand, at the formal level Bloc does look
very similar to separable committee scoring rules, and, indeed, it shares a number of
common features with them. The reason is that both separable committee scoring rules
and Bloc belong to the class of weakly separable committee scoring rules, which we
define below.

Definition 4 A committee scoring ruleR f associated with a committee scoring func-
tion f = { fm,k}m∈N,k∈[m] is said to be weakly separable if there exists a family
of non-increasing functions γm

k : [m] → N, m ∈ N, k ∈ [m], such that for each
m ∈ N and each k ∈ [m] it holds that γm

k (1) > γm
k (m) and for every sequence

0 < i1 < · · · < ik ≤ m we have

fm,k(i1, . . . , ik) =
k∑

t=1

γm
k (it ).

We emphasize that, unlike a separable committee scoring rule, a weakly separable
committee scoring rule may be based on a scoring social welfare function whose score
vector depends on k (as in the case of Bloc).

Our next proposition shows that weakly separable committee scoring rules are
attractive rules from an algorithmic perspective; moreover, in Sect. 7 we show that
they have an interesting monotonicity property.

123



Properties of multiwinner voting rules 611

Proposition 1 IfR is a weakly separable committee scoring rule that corresponds to
a family of functions {γm

k | m ∈ N, k ∈ [m]}, and each function γm
k is polynomial-time

computable, then R itself is polynomial-time computable.

On the other extreme, we have committee scoring rules whose committee scoring
functions fm,k(i1, . . . , ik) depend solely on i1.We refer to such rules as representation-
focused rules. Indeed, if fm,k only depends on i1, a voter evaluating a committee only
takes in consideration the best member of that committee (her representative).We note
that representation-focused rules are exactly the �1-α-CC rules, i.e., the variants of the
utilitarian Chamberlin–Courant rule that may use satisfaction functions other than the
Borda satisfaction function.

4 Axioms

We now present some properties (axioms) that may be desirable for committee selec-
tion rules. We use the standard axioms for single-winner rules as our starting point,
and modify them on the basis of ideas from the literature that are specific to commit-
tee selection. Due to our choice of focus, we do not include properties based on the
Condorcet principle, such as, e.g., stability, as defined by Gehrlein (1985). We stress
that, since committee selection rules have a very diverse range of applications, our
properties should not necessarily be understood in the normative way: the desirability
of a particular property can only be evaluated in the context of a specific application.
Throughout this section, we write R to denote a multiwinner rule; given an election
E = (C, V ) and a positive integer k with k ≤ ‖C‖,R(E, k) outputs a non-empty set
of size-k subsets of C .

Our first axiom is nonimposition. It requires that each size-k set of candidates can
be the unique winner. This is a basic requirement that is trivially satisfied by all rules
that we consider.

Nonimposition For each set of candidatesC and each k-element subsetW ofC , there
is an election E = (C, V ) such that R(E, k) = {W }.

The next three axioms—consistency, homogeneity, and monotonicity—are adapted
from the single-winner setting. For the first two, the adaptation is straightforward.

Consistency For every pair of elections E1 = (C, V1), E2 = (C, V2) over a candidate
set C and each k ∈ [‖C‖], if R(E1, k) ∩ R(E2, k) 	= ∅ then R(E1 + E2, k) =
R(E1, k) ∩ R(E2, k).

Homogeneity For every election E = (C, V ), each k ∈ [‖C‖], and each t ∈ N it
holds that R(t E, k) = R(E, k).

We now consider monotonicity. If c belongs to a winning committeeW then, generally
speaking, we cannot expect W to remain winning when c is moved forward in some
vote. For example, this shift may hurt other members of W . Indeed, none of our rules
satisfies this strict version of monotonicity. However, there are two natural relaxations
of this condition. One option is to require that after the shift c belongs to somewinning
committee. Alternatively, we may restrict forward movements of c, prohibiting it to
overtake other members ofW . (We point the reader to the work of Sanver and Zwicker
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(2012) for an extensive discussion of monotonicity in the context of irresolute voting
rules.)

Monotonicity For every election E = (C, V ), each c ∈ C , and each k ∈ [‖C‖], if
c ∈ W for some W ∈ R(E, k), then for every E ′ obtained from E by shifting c
one position forward in some vote v it holds that:

(1) for candidate monotonicity: c ∈ W ′ for some W ′ ∈ R(E ′, k), and
(2) for non-crossingmonotonicity: if cwas ranked immediately below some b /∈ W ,

then W ∈ R(E ′, k).

Our next axiom, committee monotonicity, is specific to committee selection, as
it deals with changing the size of the desired committee. Intuitively, it requires that
when we increase the target committee size, none of the already selected candidates
should be dropped. Our phrasing is somewhat involved becauseRmay return a set of
tied committees; a similar notion for resolute multiwinner rules, i.e., rules that always
output a single committee, was introduced earlier by Barberà and Coelho (2008) under
the name of enlargement consistency.

Committee monotonicity For every election E = (C, V ) the following conditions
hold:

(1) for each k ∈ [‖C‖ − 1], if W ∈ R(E, k) then there exists a W ′ ∈ R(E, k + 1)
such that W ⊆ W ′;

(2) for each k ∈ [‖C‖ − 1], if W ∈ R(E, k + 1) then there exists a W ′ ∈ R(E, k)
such that W ′ ⊆ W .

The second condition in the definition above aims to prevent the following situa-
tion. Consider an election E with candidate set C = {a, b, c, . . .} and a rule R
with R(E, 1) = {{a}}, R(E, 2) = {{a, b}, {b, c}}. Intuitively, R is not committee-
monotone because of the unexpected appearance of the committee {b, c} inR(E, 2),
but this is not captured by condition (1) above. Under our definition, R is not
committee-monotone because it violates condition (2).

In Sect. 5we discuss committeemonotonicity in detail and use it to axiomatize best-
k rules. We note that committee monotonicity in the context of multiwinner voting
has been discussed by other authors, but under different names and usually by arguing
that it is paradoxical that a given voting rule fails committee monotonicity (Staring
1986; Ratliff 2003; Barberà and Coelho 2008). In contrast, we argue (Sect. 5) that in
some applications failing this axiommay be seen as a desirable feature of a committee
selection rule.

The next three axioms represent three implementations of Dummett’s condition
known as proportionality for solid coalitions (Dummett 1984). Dummett’s original
proposal is as follows: Consider an election with n voters where the goal is to pick k
candidates. If for some � ∈ [k] there is a group of �n

k voters that all rank the same �

candidates on top, these � candidates should be in the (unique)winning committee. This
requirement, which aims to capture the idea of proportional representation, seems to be
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very strong, and very few rules satisfy it.3 The following three axioms are weaker, but
reflect the same idea (for a discussion of similar ideas in the context of approval-based
rules, we point the readers to the work of Aziz et al. (2017) on justified representation).

Solid coalitions For every election E = (C, V ) and each k ∈ [‖C‖], if at least ‖V ‖
k

voters rank some candidate c first then c belongs to every committee in R(E, k).
Consensus committee For every election E = (C, V ) and each k ∈ [‖C‖], if there

is a k-element set W , W ⊆ C , such that each voter ranks some member of W
first and each member of W is ranked first by either �‖V ‖

k � or ‖V ‖
k � voters then

R(E, k) = {W }.
Unanimity For every election E = (C, V ) and each k ∈ [‖C‖], if each voter ranks

the same k candidatesW on top (possibly in different order), thenR(E, k) = {W }
(strong unanimity) or W ∈ R(E, k) (weak unanimity).

We emphasize that the axioms in our list are suitable for rules that are preference-based
and, moreover, are—in some broad sense—close to scoring rules. There are, however,
axioms for preference-based rules that are geared towards the Condorcet principle.
The following axiom is an example (Debord 1993), though it can also be seen as a
generalization of the unanimity property.

Fixed majority For every election E = (C, V ) and each k ∈ [‖C‖], if there is a
k-element set W , W ⊆ C , such that a strict majority of voters rank all members
of W above all non-members of W , then R(E, k) = {W }.
Almost all rules considered in this paper fail to satisfy this axiom. For most of

them, this is already the case in the single-winner setting, i.e., when k = 1. Indeed,
Plurality is the only single-winner scoring rule guaranteeing that a candidate ranked
on top by a majority of the voters is the unique winner. However, quite interestingly,
Bloc does satisfy the fixed majority property. To see this, consider an election (C, V )

with ‖V ‖ = n and a committee W such that a majority of voters rank all members of
W in top k positions. Under Bloc each candidate in W gets at least �n/2� + 1 points,
whereas each candidate in C\W gets at most �n/2� points, which means that the Bloc
score of every committeeW ′ 	= W is lower than that ofW . This is yet another feature
that distinguishes Bloc from separable committee scoring rules (even though Bloc is
weakly separable). For more detailed discussion of fixed-majority consistency in the
context of committee scoring rules, we point the readers to the follow-up work of
Faliszewski et al. (2016b).

In the remainder of the paper, we consider the axioms listed in this section one by
one, and, for each of them, we determine which of the voting rules described in Sect. 3
satisfy it. A summary of our results is provided in Table 1 in Sect. 10.

5 Committee monotonicity

Some authors believe that committee monotonicity is an important requirement. In
particular, Staring (1986) demonstrated that the Bloc rule is very far from being com-

3 However, there is a variant of Dummett’s condition known as Droop Proportionality Criterion, which
uses the Droop quota in place of n

k (Woodall 1994); STV can be shown to satisfy this criterion, and hence
it satisfies Dummett’s original condition when the Droop quota is smaller than n

k .
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mitteemonotonic, and called this phenomenon the increasing-committee-size paradox.
Specifically, he described a profile where the winning committee of size three was dis-
joint from the winning committee of size two, and the winning committee of size four
was disjoint from both of them. A variant of the increasing-committee-size paradox
has been recently considered by Kamwa and Merlin (2015). For several other rules
(not considered in our paper), similar phenomena were observed by Ratliff (2003),
in a paper titled “Some Startling Inconsistencies when Electing Committees”. Bar-
berà and Coelho (2008) argue that for shortlisting it is desirable to consider weakly
Condorcet-consistent rules. They then show that weak Condorcet-consistency (which,
in this context, they call stability) and committee monotonicity are incompatible, and
argue that this is one reason why (weakly) Condorcet-consistent rules are not used in
practice.

In contrast, we believe that the desirability of committee monotonicity depends
strongly on the application. In particular, we agree with Barberà and Coelho (2008)
that if we are choosing finalists of a competition, then it is imperative to use a rule
that has this property; however, in the context of proportional representation insisting
on a committee-monotone rule may prevent us from selecting a truly representative
committee. Indeed, the latter point was already noted by Black. In his classical work
Black (1958) considers a society with single-peaked preferences regarding the left-
right political spectrum. He observes that if we are choosing a single candidate (i.e., if
k = 1) then it is most natural to select a candidate that holds the most centrist position
(i.e., the top choice of the median voter). However, if we are to select two candidates
to represent the society (i.e., if k = 2), then, intuitively, a committee consisting of
a “moderate left-wing” candidate and a “moderate right-wing” candidate would be
more representative than any committee of the form {c, d}, where c is the top choice
of the median voter: if d is to the left of c, the right-wing voters are neglected, and if
d is to the right of c, the left-wing voters are neglected.

The above intuition is further strengthened by the fact that committee monotonicity
axiomatically characterizes the class of best-k rules.

Theorem 2 A committee selection rule is committee-monotone if and only if it is a
best-k rule.

Proof Let R be a best-k rule and let F be the associated social preference function.
Consider an election E = (C, V ). Pick k ∈ [‖C‖−1] andW ∈ R(E, k). SinceR is a
best-k rule, there is an order� in F(E) that ranksmembers ofW in top k positions. Let
w′ be the candidate ranked in position k+1 in �. ThenW ∪{w′} is inR(E, k+1). A
similar argument shows thatR satisfies the second committee-monotonicity condition.

Conversely, assume that R satisfies committee monotonicity. We will show that it
is a best-k rule by identifying the underlying social preference function F . Consider
an election E = (C, V ) with C = {c1, . . . , cm}. Let F(E) be the set of all linear
orders � over C that satisfy the following condition: If cπ(1) � cπ(2) � · · · � cπ(m)

for some permutation π of [m] then there is a sequence of committees W1, . . . ,Wm

such that Wi = {cπ(1), . . . , cπ(i)} and Wi ∈ R(E, i) for i ∈ [m]. The two conditions
from the definition of committee monotonicity imply that F indeed defines R. ��

By combining Theorems 1 and 2, we conclude that all separable committee scoring
rules, including, in particular, SNTV and k-Borda, satisfy committee monotonicity.
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We will now show that Greedy-CC satisfies committee monotonicity as well, and
hence it is a best-k rule.

Proposition 2 Greedy-CC satisfies committee monotonicity.

Proof Given an election E = (C, V ) and an integer k, Greedy-CC performs k itera-
tions, choosing onemember of the committee at each step. Importantly, the member of
the committee picked in each iteration depends only on which members were chosen
previously and does not depend on k. Thus, each sequence of ‖C‖ choices defines a
linear order onC . Let FCC(E) be the set of all linear orders that can be obtained in this
way (for all ways of breaking the intermediate ties). By construction, the multiwinner
rule associated with FCC is exactly Greedy-CC. ��

Theorem1 shows that separable committee scoring rules are associatedwith scoring
socialwelfare functions. In contrast,Greedy-CCcannot bedefined in such awayand, in
particular, the social preference function FCC constructed in the proof of Proposition 2
does not correspond to a social welfare function.

Example 4 Consider an election E = (C, V ), where C = {a, b, c, d, e} and V con-
tains:

(1) 4 voters with preference order a � b � c � d � e,
(2) 4 voters with preference order b � a � c � d � e,
(3) 1 voter with preference order c � d � e � a � b, and
(4) 1 voter with preference order c � d � e � b � a.

One can verify that

FCC(E) = {a � c � b � d � e, a � c � b � e � d,

b � c � a � d � e, b � c � a � e � d}.

Suppose for the sake of contradiction that FCC is obtained from a social welfare
function F ′. Since both a and b appear in top positions in linear orders in FCC(E),
F ′(E) is a weak order of the form {a, b} � · · · . But then FCC(E) would also have
to contain a linear order of the form a � b � · · · . Since it does not, we reached
a contradiction. In fact, this example shows that Greedy-CC does not correspond to
any social welfare function. Indeed, for election E and k = 1 Greedy-CC outputs
committees {a} and {b}. Thus, if such a function existed, for k = 2 Greedy-CC would
have to output committee {a, b}, but it does not.

The remaining rules considered in our paper fail committee monotonicity (as
mentioned above, the case of Bloc was resolved by Staring (1986); the proof of Propo-
sition 3 includes an explicit construction for Bloc for the sake of completeness).

Proposition 3 STV, Bloc, �1-CC, �min-CC, �1-Monroe, �min-Monroe, and Greedy-
Monroe do not satisfy committee monotonicity.

Proof Let us first consider �1-CC, �min-CC, �1-Monroe, �min-Monroe, and Greedy-
Monroe. Let E = (C, V ) be an election with C = {a, b, c, d} and the following four
votes:
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v1 : a � c � b � d, v2 : b � c � a � d,

v3 : a � c � d � b, v4 : b � c � d � a.

For k = 1 the unique winning committee is {c}, but for k = 2 the unique winning
committee is {a, b}.

For Bloc, consider an election E = (C, V ) with C = {a, b, c} and 4 votes:

v1 : a � b � c, v2 : b � c � a, v3 : a � c � b, v4 : c � b � a.

For k = 1 the unique winning committee under Bloc is {a}, but for k = 2 the unique
winning committee under Bloc is {b, c}.

Our example for STV is somewhat more involved. Consider E = (C, V ) with
C = {a, b, c, d} and 24 voters. There are

(1) 11 voters with preference order a � b � c � d,
(2) 3 voters with preference order b � c � a � d,
(3) 4 voters with preference order c � d � a � b, and
(4) 6 voters with preference order d � c � a � b.

For k = 1, the Droop quota is � 24
2 �+1 = 13. In the first round no candidate meets the

quota, so STV eliminates the candidate with the lowest Plurality score, that is, b. In
the next round still no candidate meets the quota, so STV eliminates d. In the resulting
election c has Plurality score 13 and is the unique winner for k = 1.

For k = 2, the Droop quota is � 24
3 � + 1 = 9. Thus in the first round STV picks a

and removes it from the election together with 9 voters that rank it first. The remaining
two voters that supported a transfer their votes to b, who now has Plurality score 5.
In the next round no candidate meets the quota, so STV eliminates c. After that d has
Plurality score 10 and is selected. The unique winning committee is {a, d}. ��
Corollary 1 Bloc, �1-CC, �min-CC, �1-Monroe, �min-Monroe, Greedy-Monroe, and
STV are not best-k rules.

6 Dummett’s proportionality

Properties in the spirit of Dummett’s proportionality condition (with the exception of
unanimity) are geared toward rules that aim to achieve proportional representation of
the voters. Thus, the results of this section can be used to judge committee selection
rules from this perspective.

We start by considering the solid coalitions property. It is easy to see that it is
satisfied by SNTV, and also by STV when the number of voters is sufficiently large.

Proposition 4 SNTV has the solid coalitions property. STV has the solid coalitions
property whenever the number of voters n and the target committee size k satisfy
n ≥ k(k + 1).

Proof Consider first SNTV. Suppose that in an election E = (C, V ) with ‖V ‖ = n
some candidate c is ranked first by at least n

k voters. By a counting argument, there
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can be at most k − 1 other candidates whose Plurality score is at least n
k . Thus, c is

included in each winning committee.
For STV, the Droop quota q equals � n

k+1� + 1; if n ≥ k(k + 1), then q ≤ n
k . In

this case, if there is a candidate c who is ranked first by at least n
k voters then c will

be included in each winning committee. ��
On the other hand, even though the solid coalitions property seems to be very

much in spirit of the Chamberlin–Courant and Monroe rules, �1-Monroe, �1-CC,
�min-Monroe, and �min-CC fail to satisfy it.

Proposition 5 �1-CC, �min-CC, �1-Monroe, and �min-Monroe do not have the solid
coalitions property.

Proof Consider an election with candidate set C = {a, b, c, d, e, f, g} and 9 voters
whose preference orders are

v1 : a � e � d � f � g � b � c,

v2 : b � f � d � e � g � a � c,

v3 : c � g � d � e � f � a � b,

v4 : a � e � d � f � g � b � c,

v5 : b � f � d � e � g � a � c,

v6 : c � g � d � e � f � a � b,

v7 : d � a � e � f � g � b � c,

v8 : d � b � e � f � g � a � c,

v9 : d � c � e � f � g � a � b.

One can verify that for k = 3 neither utilitarian nor egalitarian versions of the
Chamberlin–Courant andMonroe rules elect a committee that contains d, even though
this would be required by the solid coalitions property. Indeed, for the committee
{a, b, c} the total satisfaction is 6(‖C‖−1)+3(‖C‖−2) = 9‖C‖−12 in the utilitar-
ian version and ‖C‖ − 2 in the egalitarian version. However, if d is in the committee,
then at most two of the remaining candidates are also in the committee and so the total
satisfaction is, respectively, at most 9‖C‖ − 13 and ‖C‖ − 3. ��
Interestingly, Greedy-Monroe performs better in this regard than �1-Monroe.

Proposition 6 Greedy-Monroe has the solid coalitions property.

Proof Consider an n-voter election where some candidate c is ranked first by at least
n
k voters (where k is the target committee size). Greedy-Monroe starts by choosing
candidates ranked first by at least n

k voters. By the time it considers c, each of the
voters that rank c first remains unassigned, so it picks c. ��

We believe that the solid coalitions property is desirable, but not crucial for appli-
cations that aim at proportional representation (e.g., parliamentary elections): indeed,
a voter may be reasonably well represented even if her top choice is not included in
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the committee. In contrast, the consensus committee property, which we discuss next,
seems to be fundamental. Indeed, it is satisfied by almost all rules that aim to achieve
proportional representation.

When k divides n, the consensus committee property is satisfied by every rule
that has the solid coalitions property. In particular, it is satisfied by SNTV, STV (if
there are sufficiently many voters) and Greedy-Monroe. It is also satisfied by �1-
CC, �min-CC, �1-Monroe, and �min-Monroe: this is immediate from the definitions of
these rules. Interestingly, however,Greedy-CC fails the consensus committee property.
This reveals a major deficiency of this rule: when deciding whether to include some
candidate c into the committee, it takes into account the preferences of the voters
to whom c would not be assigned. This is very problematic for a rule that seeks to
approximate �1-CC. Observe, however, that it is exactly this feature of Greedy-CC
that makes this rule committee monotone.

Proposition 7 Bloc, k-Borda and Greedy-CC do not have the consensus committee
property (nor the solid coalitions property).

Proof Consider an election with C = {a, b, c, d} and two voters with preference
orders b � c � d � a and a � c � d � b. We seek a committee of size k = 2. Then
the consensus committee is {a, b}, but each of our rules includes c in each winning
committee and thus fails the consensus committee property. ��

For SNTV, �1-CC, and k-Borda, the above results can also be seen as incarnations
of the following two more general results regarding committee scoring rules.

Theorem 3 LetRbea separable committee scoring rule, and let f = { fm,k}m∈N,k∈[m]
be the associated committee scoring function with fm,k(i1, . . . , ik) = ∑k

t=1 γ (t) for
some non-increasing function γ with γ (1) > 0, γ ( j) ≥ 0 for all j ∈ N. Then

(1) if γ (2) > 0, then R fails the consensus committee property for k ≥ γ (1)
γ (2) ;

(2) if γ (2) > 0,R satisfies the consensus committee property for k <
γ(1)
γ (2) when the

number of voters is sufficiently large;
(3) if γ (2) = 0,R satisfies the consensus committee property for all values of k.

Proof By Theorem 1 for a given number of candidates m > k the rule R is a best-k
rule for the scoring vector s = (s1, . . . , sm), where si = γ (i) for i ∈ [m].

Suppose first that k ≥ γ (1)
γ (2) . For each m > k, we construct an election E = (C, V )

with m candidates and k + 1 voters as follows. Let C = {c1, . . . , cm}. Each ci ,
i ∈ [k − 1], is ranked first by exactly one voter, ck is ranked first by two voters, the
voters that do not rank c1 first rank it last, and each voter ranks ck+1 second. Aside
from that, the voters’ preference orders are arbitrary. IfR had the consensus committee
property, then {c1, . . . , ck}would be the uniquewinning committee. However, observe
that the s-score of c1 is s1, the s-score of ck+1 is (k + 1)s2, so 0 < γ (1) ≤ kγ (2)
implies that ck+1 has a higher s-score than c1. Moreover, the s-score of each of the
candidates c2, . . . , ck is higher than or equal to that of c1. Hence, {c1, . . . , ck} is not
a winning committee. Thus, R does not have the consensus committee property.

The case γ (2) = 0 is captured by our analysis of SNTV. Suppose now that γ (2) > 0
and k <

γ(1)
γ (2) . Fix n >

kγ (1)
γ (1)−kγ (2) ; note that 1

n < 1
k − γ (2)

γ (1) . Consider an election
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E = (C, V ) with ‖V ‖ = n where there is a group of candidates W , ‖W‖ = k, such
that each voter ranks some member of W first and each member of W is ranked first
by either � n

k � or  n
k � voters. Then the s-score of each candidate inW is at least � n

k �s1.
On the other hand, the s-score of a candidate x /∈ W is at most ns2. By our choice of
n we have � n

k �s1 ≥ n( 1k − 1
n )s1 > ns2. Thus, W is the unique winning committee for

such values of n, and the consensus committee property is satisfied. ��
Proposition 8 �1-α-CC has the consensus committee property if and only if α(1) >

α(2).

Proof Consider an election E = (C, V ) with ‖V ‖ = n where there is a group of
candidatesW , ‖W‖ = k, such that each voter ranks some member ofW first and each
member of W is ranked first by either � n

k � or  n
k � voters. If α(1) > α(2) then W is

the unique winning committee. Conversely, suppose that α(1) = α(2), and consider
an election E ′ with 2k candidates and k voters, where each voter ranks a distinct pair
of candidates in the top two positions. We have ‖R(E ′, k)‖ ≥ 2k , yet the consensus
committee property prescribes that R(E ′, k) is a singleton. ��

Our final instantiation of Dummett’s proportionality for solid coalitions is the una-
nimity property. Every committee scoring rule satisfies its weak variant.

Theorem 4 Every committee scoring ruleR satisfies weak unanimity.

Proof Consider an election E = (C, V ) with ‖C‖ = m where every voter ranks
candidates from some set W , ‖W‖ = k, in top k positions. Let f = { fm,k}m∈N,k∈[m]
be the committee scoring function associated with R. By definition, for every voter
v in V and every set of candidates Q with ‖Q‖ = k we have fm,k(posv(W )) ≥
fm,k(posv(Q)). Thus, W ∈ R(E, k). ��
It is immediate that �1-Monroe, �min-Monroe, Greedy-Monroe, Bloc and k-Borda

satisfy strong unanimity. In contrast, SNTV, �1-CC, �min-CC, and Greedy-CC do not
have this property: given an election where all voters have the same preference order,
each of these rules outputs all committees that include the candidate ranked first by
all voters. Finally, we note that STV satisfies strong unanimity. Indeed, if there is a set
of candidates W , ‖W‖ = k, such that each of the n voters ranks the candidates from
W in top k positions, then in every round of STV there is a candidate from W that is
ranked first by at least  n

k � ≥ � n
k+1� + 1 voters.

7 Monotonicity

Being monotonic is a natural and easily satisfiable condition for single-winner rules.
Among the few examples of prominent non-monotonic single-winner rules are STV
and the Dodgson rule (see, e.g., the work of Brandt 2009). In contrast, for multiwinner
rules monotonicity is a rather demanding property. However, all committee scoring
rules satisfy candidatemonotonicity, and all weakly separable committee scoring rules
satisfy non-crossing monotonicity.

Theorem 5 Every committee scoring ruleR satisfies candidate monotonicity.
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Proof Let f = { fm,k}m∈N,k∈[m] be the committee scoring function associated withR.
Consider an election E = (C, V )with‖C‖ = m. LetW be a committee inR(E, k) and
let c be a candidate inW . Consider a vote v ∈ V where c is not ranked first, and replace
itwith a vote v′ obtained from v by shifting c one position forward.Denote the resulting
election by E ′. By construction, we have fm,k(posv′(W )) ≥ fm,k(posv(W )). On the
other hand, for every committee S ⊆ C\{c}we have fm,k(posv′(S)) ≤ fm,k(posv(S)).
Since W was a winning committee for E , if W ′ 	= W is a winning committee for E ′
it has to be the case that c ∈ W ′. ��
Theorem 6 Every weakly separable committee scoring ruleR satisfies non-crossing
monotonicity.

Proof Consider an election E = (C, V ) with ‖C‖ = m. Let W be a committee in
R(E, k) and let c be a candidate in W . Let f = { fm,k}m∈N,k∈[m] be a committee
scoring function associated withR, where fm,k(i1, . . . , ik) = ∑k

t=1 αm
k (it ). Consider

a vote v where c is ranked in position i and some candidate d /∈ W is ranked just
above c. Swap c and d in v. After the swap, every committee that contains c and not
d gains the same number of points, namely, αm

k (i − 1) − αm
k (i) ≥ 0; every committee

that contains both c and d (or neither c nor d) maintains the same score, and every
committee that contains d but not c loses αm

k (i − 1) − αm
k (i) ≥ 0 points. Thus W is a

winning committee in the new election. ��
In contrast, one of the implications of our next result is that a committee scoring

rule that is not weakly separable may fail non-crossing monotonicity. (Indeed, in a
follow-up paper, Faliszewski et al. (2016a) have shown that among committee scoring
rules, only weakly separable rules satisfy non-crossing monotonicity.)

Proposition 9 �1-CC, �1-Monroe, Greedy-CC, andGreedy-Monroe fail non-crossing
monotonicity.

Proof Consider an election with candidate set C = {a, b, c, d, x1, . . . , x6} and six
voters with the following preference orders:

v1 : a � x1 � c � b � d � · · · , v2 : a � x2 � d � b � c � · · · ,

v3 : b � x3 � a � c � d � · · · , v4 : b � x4 � d � c � a � · · · ,

v5 : c � x5 � a � b � d � · · · , v6 : c � x6 � d � b � a � · · · .

The reader can verify that if the target committee size is k = 2, �1-CC outputs three
winning committees, namely, {a, b}, {a, c}, and {b, c}, each with satisfaction 6‖C‖ −
11. Non-crossing monotonicity requires {a, c} to remain winning after c is shifted
forward in v1 by one position. However, if that happens, the satisfaction of {a, c}
does not change, whereas the satisfaction of {b, c} increases to 6‖C‖ − 10. The same
construction works for �1-Monroe, Greedy-CC, and Greedy-Monroe. ��

While �min-CC satisfies one of our monotonicity properties, �min-Monroe fails both
of them.

Proposition 10 �min-CC satisfies candidate monotonicity, but �min-Monroe fails it.
Both �min-CC and �min-Monroe fail non-crossing monotonicity.
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Proof To see that �min-CC satisfies candidate monotonicity, consider a winning com-
mittee W and a candidate c ∈ W . Shifting c forward has the following effect. The
aggregate satisfaction of every committee that includes c either increases by one, or
stays the same. The aggregate satisfaction of every committee not containing c either
stays the same or decreases by one. Thus c belongs to at least one winning committee.

To show that �min-Monroe fails candidate monotonicity, we construct an election
with candidate setC = {a, b, c, d} and six voters with the following preference orders:

v1 : a � c � d � b, v2 : c � a � d � b,

v3 : b � d � c � a, v4 : d � b � a � c,

v5 : d � a � c � b, v6 : b � c � d � a. (3)

For k = 2, thewinning committees are {a, b} and {c, d}, bothwith satisfaction ‖C‖−2.
Ifwe shifta forward byone position in v4, the satisfaction of {a, b}decreases to‖C‖−3
but the satisfaction of {c, d} does not change.

To see that �min-CC fails non-crossing monotonicity, consider an election with
candidate set C = {a, b, c, x1, . . . , x11} and six voters with the following preference
orders:

v1 : a � x1 � x2 � b � · · · , v2 : x3 � x4 � x5 � c � · · · ,

v3 : b � a � c � x6 � · · · , v4 : b � a � c � x7 � · · · ,

v5 : b � c � x8 � x9 � · · · , v6 : a � c � x10 � x11 � · · · .

For k = 2, the winning committees are {a, c}, {b, c}, {x1, c}, and {x2, c}, all with
aggregate satisfaction ‖C‖ − 4. Non-crossing monotonicity requires that if we shift c
forward in v2, the committee {b, c} should still be winning. However, this committee’s
satisfaction stays the same, whereas the satisfaction of {a, c} increases to ‖C‖ − 3.
The same construction works for �min-Monroe. ��

The remaining committee selection rules studied in this paper fail each of our
monotonicity criteria. For STV this is well-known even for k = 1. The other three
rules are captured by the following proposition.

Proposition 11 �1-Monroe, Greedy-Monroe, and Greedy-CC fail candidate mono-
tonicity.

Proof For �1-Monroe, we reuse the first construction in the proof of Proposition 10,
i.e., we start with election (3) and move a forward in vote v4.

For Greedy-Monroe, we construct an election with candidate set C = {a, b, c, d}
and 8 voters with the following preference orders:

v1 : b � c � d � a � e, v2 : d � c � b � a � e,

v3 : a � e � d � b � c, v4 : a � b � d � c � e,

v5 : a � e � d � b � c, v6 : b � d � a � c � e,

v7 : d � c � b � a � e, v8 : c � b � d � a � e.
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For k = 2, Greedy-Monroe outputs {a, c} and {b, d}. Indeed, in the first iteration
Greedy-Monroe picks either a or b. If it picks a, then in the second iteration it picks c.
If it picks b, then in the second iteration it picks d. However, if we shift c forward by
one position in v6, only {b, d} remains winning, as the algorithm can no longer pick
a in the first iteration. Hence, Greedy-Monroe fails candidate monotonicity.

For Greedy-CC, we construct an election with candidate set C = {a, b, c, d} and 6
voters with the following preference orders:

v1 : a � b � c � d, v2 : b � c � d � a,

v3 : a � b � c � d, v4 : c � b � d � a,

v5 : a � b � c � d, v6 : d � a � c � b.

For k = 2, Greedy-CC outputs {a, b} and {a, c}. Indeed, in the first iteration it picks
either a or b. If it picks a then in the second iteration it picks either b or c. If it picks b
in the first iteration, in the second iteration it picks a. However, if we shift c forward
by one position in v6, then {a, b} is the unique winning committee: in this case, in
the first iteration Greedy-CC has to pick b, and then in the second iteration it picks a.
Thus, Greedy-CC fails candidate monotonicity as well. ��

8 Consistency and homogeneity

For single-winner rules, Young’s famous theorem (Young 1975) says that only scoring
rules and their compositions satisfy consistency. The situation for multiwinner voting
rules seems to be similar. Here, we show that every committee scoring rule satisfies
consistency, whereas other rules we consider fail it. In a very recent paper, Skowron
et al. (2016b) provide aYoung-style characterization of committee scoring rules,which
explains our observations.

Theorem 7 Every committee scoring rule satisfies consistency.

Proof Let R be a committee scoring rule, and let f be the associated committee
scoring function. Consider two elections E1 = (C, V1) and E2 = (C, V2) over a
candidate set C such thatR(E1, k) ∩R(E2, k) 	= ∅, and letW be some committee in
R(E1, k) ∩ R(E2, k).

Consider an arbitrary committee Q of size k. Since W ∈ R(E1, k) ∩ R(E2, k),

sc f,E1(W ) ≥ sc f,E1(Q), sc f,E2(W ) ≥ sc f,E2(Q).

As sc f,E1+E2(S) = sc f,E1(S)+sc f,E2(S) for S ∈ {Q,W }, we obtain sc f,E1+E2(W ) ≥
sc f,E1+E2(Q), i.e., W ∈ R(E1 + E2, k).

Conversely, let T be some committee inR(E1+E2, k). SinceW is a winning com-
mittee in both E1 and E2, we have sc f,E1(W ) ≥ sc f,E1(T ), sc f,E2(W ) ≥ sc f,E2(T ).
On the other hand, since T ∈ R(E1+E2, k), we have sc f,E1+E2(T ) = sc f,E1+E2(W ).
Thus, both of the inequalities above hold with equality, and hence T ∈ R(E1, k),
T ∈ R(E2, k). ��
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Now let us turn our attention to the negative results. Note first that some of the rules
we consider cannot be consistent by Young’s theorem, because for k = 1 they are not
scoring rules (or their compositions). Specifically, this is the case for STV, �min-CC
and �min-Monroe.

Corollary 2 None of STV, �min-CC and �min-Monroe is consistent.

This argument does not apply to �1-Monroe, Greedy-CC and Greedy-Monroe: for
k = 1 each of these rules is equivalent to Borda, which is consistent. For these rules,
we provide a direct proof.

Proposition 12 None of �1-Monroe, Greedy-CC and Greedy-Monroe is consistent.

Proof For �1-Monroe we consider two elections E1 = (C, V1) and E2 = (C, V2)
over the candidate set C = {a, b, c, d, e}, where V1 = (v1, v2, v3, v4), V2 =
(v5, v6, v7, v8), and the voters have the following preferences:

v1 : a � c � d � e � b, v2 : a � c � d � e � b,

v3 : a � c � d � e � b, v4 : b � e � c � d � a.

v5 : a � b � c � d � e, v6 : a � b � c � d � e,

v7 : c � d � b � e � a, v8 : b � c � d � e � a.

Under �1-Monroe, for k = 2 committee {a, c}wins in both E1 and E2, but in E1 + E2
it has lower satisfaction than {a, b}.

For Greedy-CC we consider two elections E1 = (C, V1) and E2 = (C, V2) over
the candidate set C = {a, b, c, d}, where V1 = (v1, v2, v3, v4), V2 = (v5, v6, v7, v8),
and the voters have the following preferences:

v1 : a � c � d � b, v2 : a � c � d � b,

v3 : a � c � d � b, v4 : b � c � d � a.

v5 : b � c � d � a, v6 : b � c � d � a,

v7 : b � c � d � a, v8 : a � c � d � b.

For k = 2 Greedy-CC picks {a, b} in both E1 and E2. However, in E1 + E2 it picks
c in the first iteration (as c is the unique Borda winner in E1 + E2), which means that
{a, b} cannot be a winning committee in E1 + E2.

For Greedy-Monroe, we let X = {x1, . . . , x20}, C = {a, b} ∪ X , and consider two
elections E1 = (C, V1) and E2 = (C, V2) over the candidate set C , where V1 =
(v1, v2, v3, v4), V2 = (v5, v6, v7, v8), and the voters have the following preferences:

123



624 E. Elkind et al.

v1 : a � b � · · · ,

v2 : a � b � · · · ,

v3 : a � b � · · · ,

v4 : b � a � · · · ,

v5 : x1 � x5 � a � x9 � x13 � x17 � x2 � · · · � b,

v6 : x2 � x6 � a � x10 � x14 � x18 � x1 � · · · � b,

v7 : x3 � x7 � b � x11 � x15 � x19 � x1 � · · · � a,

v8 : x4 � x8 � b � x12 � x16 � x20 � x1 � · · · � a.

For k = 2, Greedy-Monroe chooses {a, b} as the unique winning committee in both
elections, but for E1 + E2 it chooses a and the voters in V1 in the first iteration and
then x1 and the voters in V2 in the second iteration, and hence {a, x1} is the unique
winning committee. ��

We now consider homogeneity. Naturally, committee scoring rules are homoge-
neous because consistency implies homogeneity. For other rules, the situation is more
complex.

Proposition 13 Both �min-CC and Greedy-CC satisfy homogeneity.

We omit the formal proof of Proposition 13; for both rules, the result follows imme-
diately from the definition of the rule.

Interestingly, none of the variants of Monroe’s rule is homogeneous.

Proposition 14 None of �1-Monroe, �min-Monroe, and Greedy-Monroe is homoge-
neous.

Proof Consider an election E = (C, V ) over the candidate setC = {a, b, c, d}, where
V = (v1, v2, v3) and the voters have the following preferences:

v1 : a � b � d � c, v2 : a � b � d � c, v3 : c � b � d � a.

Let k = 2. For each of �1-Monroe, Greedy-Monroe and �min-Monroe the unique
winning committee of size 2 for E is {a, c}. However, for 2E under each of there rules
the set of winning committees of size 2 includes {a, b}. ��

On the positive side, if the number of voters is divisible by the target committee
size, then �1-Monroe and �min-Monroe are homogeneous. In essence, this means that
these variants of Monroe’s rule fail homogeneity because of rounding imposed by
Monroe’s criterion. One solution would be to clone each voter k times when seeking
a committee of size k. We do not consider this modification of Monroe’s rule here,
as it is fundamentally incompatible with the idea of fully proportional representation:
effectively, under this approach a voter would be fractionally represented by multiple
candidates, and it is not clear how to interpret such assignments. However, it would
be interesting to see how the satisfaction of a committee elected in this way compares
to that of a committee elected without cloning.
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Proposition 15 Both �1-Monroe and �min-Monroe satisfy homogeneity as long as the
number of voters n in the election is divisible by the target committee size k.

Proof LetR ∈ {�1-Monroe, �min-Monroe}. Fix an election E = (C, V ), and let k be
a positive integer that divides n = ‖V ‖. We will show that R(E, k) = R(t E, k) for
every positive integer t .

For each t > 0, let V1, . . . , Vt be t copies of V so that tV = V1 + · · · + Vt ; we
assume that within each V�, � ∈ [t], voters are listed in the same order. For each
� ∈ [t], i ∈ [n], we write vi,� to denote the i-th voter in V�.

Given a positive integer t , consider an assignment Φ : tV → C that satisfies
Monroe’s criterion, i.e., ‖Φ(tV )‖ = k and each candidate in Φ(tV ) is assigned to nt

k
voters. We say that Φ is t-uniform if it satisfies Monroe’s criterion for each � ∈ [t],
i.e., if each candidate in Φ(tV ) is assigned to n

k voters in V� for each � ∈ [t]. We
will now show that every assignment Φ : tV → C satisfying Monroe’s criterion can
be transformed into a t-uniform assignment with the same societal satisfaction. The
proof is by induction on t . Our claim trivially holds for t = 1. Thus, suppose that
t > 1 and our claim has been proved for each t ′ ∈ [t − 1]; we will show that it holds
for t . Let W = Φ(tV ).

Set rep(i) = {Φ(vi,�) | � ∈ [t]}: the set rep(i) consists of the candidates assigned
to one of the t “copies” of the i-th voter in V1. Observe that if we swap the values ofΦ
for vi,� and vi,�′ for some �, �′ ∈ [t] then we get an assignment with the same societal
satisfaction. In particular, we can modify Φ so as to assign an arbitrary member of
rep(i) to vi,1. We now show how to use this idea to transform Φ into an assignment
Φ ′ that assigns each candidate from W to exactly n

k voters from V1. We build the
following bipartite graph B with parts V1 (voter vertices) andW ′ (candidate vertices):

(1) The voter vertices are exactly the voters from V1.
(2) For each w ∈ W the setW ′ contains n

k candidate vertices w1, . . . , w
n
k , which we

will call clones of w.
(3) For each vi,1 ∈ V1 and each w ∈ rep(i) there are edges between the voter vertex

vi,1 and each of the candidate vertices w1, . . . , w
n
k . There are no other edges in

B.

Note that ‖V1‖ = ‖W‖ = n. We will now show that B admits a perfect matching.
For each subset U of voter vertices, let N (U ) denote the set of neighbors of U , i.e.,
the candidate vertices that are connected to some member of U . By Hall’s theorem,
there is a perfect matching in B if and only if ‖N (U )‖ ≥ ‖U‖ for each U ⊆ V1.

Let U be an arbitrary subset of voter vertices. By construction, if N (U ) contains
one clone of w, it contains all of them. Thus ‖N (U )‖ = q n

k for some positive integer
q, and, moreover, there is a set of q candidates such that N (U ) consists of clones of
these candidates. Hence, in tV there is a group of t‖U‖ voters that are assigned to
exactly q candidates. Since each candidate in W is assigned to exactly t nk voters, we
obtain t‖U‖ ≤ qt nk , or, equivalently, ‖U‖ ≤ q n

k = ‖N (U )‖. Thus, the condition of
Hall’s theorem is satisfied and hence B admits a perfect matching.

Given a perfect matching in B, we transform Φ as follows: for each i ∈ [n] we
identify a candidatew such that vi,1 is matched towu for some u ∈ [ nk ] and a voter vi,�
with Φ(vi,�) = w (such a voter exists since w ∈ rep(i)), and swap the representatives
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of vi,1 and vi,� (if Φ(vi,1) = w, we do nothing). In the resulting assignment, which
we denote by Φ ′, each candidate in W represents exactly n

k voters in V1.
Now, consider the restriction ofΦ ′ to V ′ = V2+· · ·+Vt . Observe thatΦ ′(V ′) = W

and each candidate in W is assigned to exactly (t − 1) nk voters in V ′. Thus, by the
induction hypothesis we can transform the restriction ofΦ ′ to V ′ into a (t−1)-uniform
assignment Φ ′′ that has the same societal satisfaction. It remains to observe that the
assignment Φ∗ : tV → W given by

Φ∗(v) =
{

Φ ′(v) if v ∈ V1
Φ ′′(v) if v ∈ V ′

is t-uniform and has the same societal satisfaction as Φ. This completes the inductive
proof.

We are now ready to show that R(E, k) ⊆ R(t E, k) for each t > 0. Consider a
committee W ∈ R(E, k), where E = (C, V ), and let Φ : V → W be an assignment
of candidates in W to voters in V that maximizes the societal satisfaction among all
assignments that satisfy Monroe’s criterion. Pick t > 0 and consider an assignment
Φ ′ : tV → W given by Φ ′(vi,�) = Φ(vi ) for each i ∈ [n], � ∈ [t]. If W /∈ R(t E, k)
then there is another committeeW ′ of size k and an assignment functionΦ ′ : tV → W ′
that satisfiesMonroe’s criterion and provides a higher societal satisfaction thanΦ does.
By the argument above, we can assume that Φ ′ is t-uniform. But then there exists an
� ∈ [t] such that the restriction of Φ ′ to V� provides a higher societal satisfaction to
voters in V� than Φ does, a contradiction with W ∈ R(E, k). Thus, W ∈ R(t E, k).

Finally, we will show that R(t E, k) ⊆ R(E, k) for each t > 0. Fix t > 0 and
suppose that W ∈ R(t E, k). Let Φ : tV → W be an assignment of candidates in
W to voters in tV that maximizes the societal satisfaction among all assignments
that satisfy Monroe’s criterion. Again, we can assume that Φ is t-uniform. Together
with the optimality of Φ, this means that each set of voters V�, � ∈ [t], experiences
the same societal satisfaction under Φ. Indeed, if that was not the case, i.e., V� had
a higher satisfaction under Φ than Vj did for some �, j ∈ [t], the assignment Φ ′ :
tV → W with Φ ′(vi, j ) = Φ(vi,�) for i ∈ [n], Φ ′(v) = Φ(v) for v /∈ Vj would
satisfy Monroe’s criterion and provide a higher societal satisfaction than Φ did, a
contradiction. Now, suppose for the sake of contradiction that W /∈ R(E, k). Then
there is another committeeW ′ of size k and an assignmentΦ ′ : V1 → W ′ that satisfies
Monroe’s criterion and provides a higher societal satisfaction to voters in V1 than Φ

does. But then consider the assignment Φt : tV → W ′ given by Φt (vi,�) = Φ ′(vi,1)
for each � ∈ [t]. By construction, it satisfies Monroe’s criterion and provides a higher
societal satisfaction to voters in tV than Φ does, a contradiction with W ∈ R(t E, k).
Thus, W ∈ R(E, k). ��

Proposition 16 Greedy-Monroe fails homogeneity even if the target committee size
divides the number of voters.
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Proof Consider an election E = (C, V ) over the candidate setC = {a, b, c, d}, where
V = (v1, . . . , v6), and the voters have the following preferences:

v1 : a � b � c � d, v2 : b � a � d � c, v3 : a � b � c � d,

v4 : b � c � d � a, v5 : c � a � d � b, v6 : d � a � c � b.

For k = 2 Greedy-Monroe outputs {a, b} and {a, c}. Indeed, in the first iteration it
picks a or b. If it picks a, it can assign it to (v1, v2, v3), (v1, v3, v5), or (v1, v3, v6).
Depending on this choice, in the second iteration it picks either c or b. If it picks b in
the first iteration, it has to choose a in the second iteration.

Now consider the election 2E . For each i ∈ {1, . . . , 6}, j ∈ {1, 2} let vi, j denote
the i-th voter in the j-th copy of E . In the first iteration, Greedy-Monroe may pick a
and assign it to (v1,1, v1,2, v2,1, v3,1, v3,2, v5,1). The remaining votes are:

v6,1 : d � a � c � b, v2,2 : b � a � d � c, v5,2 : c � a � d � b,

v4,1 : b � c � d � a, v4,2 : b � c � d � a, v6,2 : d � a � c � b.

The unique Borda winner of this election is d, so Greedy-Monroe picks d in the
second iteration. This means that {a, d} is a winning committee in 2E , and hence
Greedy-Monroe is not homogeneous. ��

Proposition 16 relies heavily on parallel-universes tie-breaking. It is possible to
refine the intermediate tie-breaking procedure of Greedy-Monroe so that it becomes
homogeneous when k divides ‖V ‖. We omit the details here.

9 Related work

Having characterized a number of natural committee selection rules with respect to the
axiomsweproposed,we are now in aposition to discuss howour results and approaches
compare to prior work. The literature on the properties of committee selection rules
is still somewhat sparse (at least compared to the body of work on single-winner
rules), and it is scattered among different fields of research, ranging from behavioral
science, through political science and social choice theory, to computer science. Here
we review papers that are most similar in spirit to our work.

In a closely related paper, Felsenthal andMaoz (1992) consider four k-choice func-
tions: the Plurality rule (i.e., in our terminology, the SNTV rule), the Approval rule,4

the Borda rule (i.e., k-Borda), and STV. They adapt a range of single-winner normative
properties to the committee selection setting and study them in the context of these
rules. In contrast with our work, they consider axioms motivated by the Condorcet
principle, whilewe focus on axioms that capture ideas related to proportional represen-
tation. However, both papers consider monotonicity, though our analysis is somewhat
more detailed in that we study two variants of this property (candidate monotonicity
and non-crossing monotonicity), as well as committee monotonicity (Felsenthal and

4 This rule is not preference-based.
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Maoz use the term ‘continuity’) and consistency (also known as reinforcement). Inter-
estingly, consistency also plays an important role in the work of Bock et al. (1998)
on consensus-based multiwinner rules. Debord (1993) also introduced several axioms
for multiwinner rules. These axioms, however, are geared towards the rules that elect
what he calls k-elites, which are multiwinner analogs of Condorcet winners.

Young’s consistency-based characterization of scoring rules, as well as his charac-
terization of the Borda rule, have already inspired researchers working on committee
selection rules. For example, Debord (1992) extended Young’s characterization of
Borda to the case of k-Borda, and very recently Skowron et al. (2016b) extended
Young’s ideas to characterize the class of committee scoring rules. Faliszewski et al.
(2016b) study a subclass of committee scoring rules which they call top-k-counting
rules, and provide an axiomatic characterization of the Bloc rule, which belongs to
this class. Faliszewski et al. (2016a) propose a hierarchy of committee scoring rules.

Skowron (2015) offers a different perspective on committee selection rules. He
assumes that the elected committee will have to make several decisions, i.e., vote on a
number of issues, and that voters evaluate committees based on thefinal outcomeof this
two-stage process (which the voter can predict to a certain extent). The performance
of a committee selection rule then depends on the single-winner voting rule that the
committee will use to make its decisions. In this setting, several voting rules that we
consider, such as �1-CC, emerge as optimal voting rules for appropriate assumptions
about voters’ preferences.

There is also a considerable amount of work on committee selection rules in the
framework of approval voting. Kilgour (2010) describes a number of approval-based
voting rules that elect a committee of fixed size and establishes some of their basic
properties. Kilgour and Marshall (2012) give an excellent survey of approval-based
committee selection rules and propose some new ones. A recent paper by Aziz et al.
(2017) is conceptually similar to our work: there, the authors consider a number of
popular approval-based committee selection rules, introduce a new axiom for such
rules—similar in spirit to Dummett’s solid coalitions property and called justified
representation—and check which of the rules in their list satisfy it.

We conclude our discussion of related work by mentioning a very recent paper
by Elkind et al. (2017), where the authors visually present aggregated outcomes of a
number ofmultiwinner voting rules. Their experimental results confirm our theoretical
predictions, and also reveal some effects that are hard to discover by purely theoretical
means.

10 Conclusions

We formalized a number of natural properties of committee selection rules and con-
ducted a comprehensive comparison of ten prominent committee selection rules with
respect to these properties. Our results are summarized in Table 1. In the course of our
study, we identified two natural families of committee selection rules—best-k rules
and committee scoring rules—and related these families of rules to the properties
we consider. In particular, we characterized best-k rules as the only rules that satisfy
committee monotonicity, identified simple conditions on committee scoring rules that
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Table 1 Summary of results

Rule Committee Solid Consensus Unanimity Monotonicity Homogeneity Consistency
Monotonicity Coalitions Committee

STV × √
(�) √

(�) Strong × √
(♥) ×

SNTV
√ √ √

Weak C+NC
√ √

Bloc × × × Fix maj. C+NC
√ √

k-Borda
√ × × Strong C+NC

√ √
�1-CC × × √

Weak C
√ √

�min-CC × × √
Weak C

√ ×
Greedy-CC

√ × × Weak × √ ×
�1-Monroe × × √

Strong × √
(♣) ×

�min-Monroe × × √
Strong × √

(♣) ×
Greedy-Monroe × √ √

Strong × √
(♠) ×

√
and× indicate that the rule has/does not have the respective property. Cmeans candidatemonotonicity and

NC means non-crossing monotonicity (C+NC means having both properties). “Fix maj.” in the Unanimity
column for Bloc means that Bloc is not just unanimous in the strong sense, but also satisfies the fixed
majority property, which is stronger (none of the other rules satisfy it). The properties marked with (�) hold
for STV when n ≥ k(k + 1); the property marked with (♥) requires STV to use non-rounded Droop quota
and fractional votes. The properties marked with (♣) hold if n is divisible by k and (♠) in addition requires
a specific intermediate tie-breaking rule

ensure the consensus committee property or non-crossing monotonicity, and showed
that all committee scoring rules satisfy weak unanimity, candidate monotonicity, and
consistency.

We believe that the results in this paper improve our understanding of applicability
of various multiwinner rules to particular tasks. For example, we see that best-k rules
are well-suited for selecting a group of finalists in a competition, whereas STV and
rules based on Monroe’s criterion (�1-Monroe, �min-Monroe, and Greedy-Monroe)
seem to be more appropriate for applications that require proportional representation
(e.g., parliamentary elections).

In this context, Greedy-Monroe is particularly interesting. It was introduced as
an approximation algorithm for �1-Monroe, but, according to our criteria, it is more
attractive than the original rule. Therefore, we believe that Greedy-Monroe should
be treated as a full-fledged voting rule. In contrast, Greedy-CC, which was designed
as an approximation algorithm for �1-CC, does not appear to perform well in our
comparison. Indeed, it fails to satisfy the solid coalitions property (like �1-CC, but
unlike Greedy-Monroe) or the consensus committee property (unlike every other rule
that focuses on some formof proportional representation). The latter fact can be seen as
a consequence of Greedy-CC satisfying committee monotonicity (which we argued to
be incompatible with the goal of proportional representation). Given this comparison,
it is tempting to simply use Greedy-Monroe in place of Greedy-CC. However, perhaps
a better idea would be to modify Greedy-Monroe by allowing it to decide how many
voters to consider in each iteration. We believe that studying such variant of Greedy-
Monroe is an important research direction.
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Finally, our results regarding SNTV are quite interesting. This is the only separa-
ble committee scoring rule that is also representation-focused. Moreover, it satisfies
almost all axioms considered in our work, except strong unanimity. One explanation
for this fact is that it can be viewed as a ‘budget-constrained’ variant of the Tullock
rule (Tullock 1967); this is the rule that simply picks all the candidates that are ranked
first by at least one voter. The Tullock rule possesses nice axiomatic properties, but
cannot be used to output a committee of a given size. Of course, since SNTV ignores
each voter’s preferences beyond the top candidate, it may return highly counterintu-
itive results in many cases. For instance, it is extremely indecisive when voters are
unanimous: in this case, it may return any committee containing the candidate ranked
first by all voters (in particular, it may select a committee that does not include the
candidate ranked second by all voters). Also, if the opinions are widely divided, a
small group of voters can easily coordinate their efforts to get their preferred candi-
date elected, even if this candidate is ranked last by all other voters. These flaws of
SNTV severely restrict the range of scenarios where it can be used.

Acknowledgements We would like to thank the AAMAS’14 and Social Choice and Welfare reviewers
for their very useful suggestions. Edith Elkind and Piotr Skowron were supported by ERC Starting Grant
639945 (ACCORD). Piotr Faliszewski was supported in part by NCN Grants 2012/06/M/ST1/00358 and
2011/03/B/ST6/01393, and by the PolishMinistry of Science and Higher Education (under AGHUniversity
Grant 11.11.230.015 (Statutory Project)). Arkadii Slinko was supported by Marsden Fund 3706352 of The
Royal Society of New Zealand.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Arrow K (1951) Social choice and individual values. Wiley, New York
AzizH, BrillM, Conitzer V, Elkind E, FreemanR,Walsh T (2017) Justified representation in approval-based

committee voting. Soc Choice Welf (To appear)
Barberà S, CoelhoD (2008)How to choose a non-controversial list with k names. SocChoiceWelf 31(1):79–

96
Betzler N, Slinko A, Uhlmann J (2013) On the computation of fully proportional representation. J AI Res

47:475–519
Black D (1958) The theory of committees and elections. Cambridge University Press, Cambridge
Bock H, DayW,McMorris F (1998) Consensus rules for committee elections. Math Soc Sci 35(3):219–232
Brams S, Fishburn P (2002) Voting procedures. In: Arrow K, Sen A, Suzumura K (eds) Handbook of social

choice and welfare, vol 1. Elsevier, New York, pp 173–236
Brams S, Kilgour M, Sanver R (2007) Aminimax procedure for electing committees. Public Choice 132(3–

4):401–420
Brandt F (2009) Some remarks on Dodgson’s voting rule. Math Logic Q 55(4):460–463
Caragiannis I, Kaklamanis C, Karanikolas N, Procaccia A (2014) Socially desirable approximations for

Dodgson’s voting rule. ACM Trans Algorithms 10(2), Article ID 6
Caragiannis I, Kalaitzis D, Markakis E (2010) Approximation algorithms and mechanism design for min-

imax approval voting. In: Proceedings of the 24th AAAI conference on artificial intelligence, pp
737–742

Chamberlin B, Courant P (1983) Representative deliberations and representative decisions: proportional
representation and the Borda rule. Am Polit Sci Rev 77(3):718–733

123

http://creativecommons.org/licenses/by/4.0/


Properties of multiwinner voting rules 631

Conitzer V, Rognlie M, Xia L (2009) Preference functions that score rankings and maximum likelihood
estimation. In: Proceedings of the 21st international joint conference on artificial intelligence, pp
109–115

Cornaz D, Galand L, Spanjaard O (2012) Bounded single-peaked width and proportional representation.
In: Proceedings of the 20th European conference on artificial intelligence, pp 270–275

Debord B (1992) An axiomatic characterization of Borda’s k-choice function. Soc Choice Welf 9(4):337–
343

Debord B (1993) Prudent k-choice functions: properties and algorithms. Math Soc Sci 26:63–77
Diss M, Doghmi A (2016) Multi-winner scoring election methods: Condorcet consistency and paradoxes.

Technical Report WP 1613, GATE Lyon Saint-Étienne
Dummett M (1984) Voting procedures. Oxford University Press, Oxford
Dwork C, Kumar R, Naor M, Sivakumar D (2001) Rank aggregation methods for the web. In: Proceedings

of the 10th international world wide web conference, pp 613–622
Elkind E, Faliszewski P, Laslier J, Skowron P, Slinko A, Talmon N (2017)What do multiwinner voting rules

do? An experiment over the two-dimensional Euclidean domain. In: Proceedings of the 31st AAAI
conference on artificial intelligence (To appear)

Elkind E, Ismaili A (2015) OWA-based extensions of the Chamberlin–Courant rule. In: Proceedings of the
4th international conference on algorithmic decision theory, pp 486–502

Elkind E, Lang J, Saffidine A (2015) Condorcet winning sets. Soc Choice Welf 44(3):493–517
Faliszewski P, Skowron P, Slinko A, Talmon N (2016a) Committee scoring rules: axiomatic classification

and hierarchy. In: Proceedings of the 25th international joint conference on artificial intelligence, pp
250–256

Faliszewski P, Skowron P, Slinko A, Talmon N (2016b) Multiwinner analogues of the plurality rule:
axiomatic and algorithmic views. In: Proceedings of the 30th AAAI conference on artificial intel-
ligence, pp 482–488

Felsenthal D, Maoz Z (1992) Normative properties of four single-stage multi-winner electoral procedures.
Behav Sci 37:109–127

Fishburn P (1973) The theory of social choice. Princeton University Press, Princeton
Fishburn P (1981a) An analysis of simple voting systems for electing committees. SIAM J Appl Math

41(3):499–502
Fishburn P (1981b) Majority committees. J Econ Theory 25(2):255–268
Gehrlein W (1985) The Condorcet criterion and committee selection. Math Soc Sci 10(3):199–209
Kamwa E, Merlin V (2015) Scoring rules over subsets of alternatives: consistency and paradoxes. J Math

Econ 61:130–138
Kaymak B, Sanver R (2003) Sets of alternatives as Condorcet winners. Soc Choice Welf 20(3):477–494
Kemeny J (1959) Mathematics without numbers. Daedalus 88:577–591
KilgourM (2010)Approval balloting formulti-winner elections. In: Handbook onApprovalVoting, Chapter

6. Springer, Berlin
Kilgour M, Marshall E (2012) Approval balloting for fixed-size committees. Elect Syst Stud Choice Welf

12:305–326
Lang J, Xia L (2016)Voting in combinatorial domains. In: Brandt F, ConitzerV, EndrissU, Lang J, Procaccia

AD(eds)Handbookof computational social choice, chapter 9.CambridgeUniversity Press,Cambridge
Laslier J (1997) Tournament solutions and majority voting. Springer, Berlin
Lu T, Boutilier C (2011) Budgeted social choice: from consensus to personalized decision making. In:

Proceedings of the 22nd international joint conference on artificial intelligence, pp 280–286
Lu T, Boutilier C (2015) Value-directed compression of large-scale assignment problems. In: Proceedings

of the 29th AAAI conference on artificial intelligence, pp 1182–1190
Monroe B (1995) Fully proportional representation. Am Polit Sci Rev 89(4):925–940
Peters D, Elkind E (2016) Preferences single-peaked on nice trees. In: Proceedings of the 30th AAAI

conference on artificial intelligence, pp 594–600
Procaccia A, Rosenschein J, Zohar A (2008) On the complexity of achieving proportional representation.

Soc Choice Welf 30(3):353–362
Ratliff T (2003) Some startling inconsistencies when electing committees. Soc Choice Welf 21(3):433–454
Ratliff T (2006) Selecting committees. Public Choice 126(3–4):343–355
Ratliff T, Saari DG (2014) Complexities of electing diverse committees. Soc Choice Welf 43(1):55–71
Sanver R, Zwicker W (2012) Monotonicity properties and their adaptation to irresolute social choice rules.

Soc Choice Welf 39:371–398

123



632 E. Elkind et al.

Skowron P (2015) What do we elect committees for? A voting committee model for multi-winner rules. In:
Proceedings of the 24th international joint conference on artificial intelligence, pp 1141–1148

Skowron P, Faliszewski P (2015) Fully proportional representation with approval ballots: approximating
the maxCover problem with bounded frequencies in FPT time. In: Proceedings of the 29th AAAI
conference on artificial intelligence, pp 2124–2130

Skowron P, Faliszewski P, Lang J (2016a) Finding a collective set of items: from proportional multirepre-
sentation to group recommendation. Artif Intell 241:191–216

Skowron P, Faliszewski P, Slinko A (2015a) Achieving fully proportional representation: approximability
results. Artif Intell 222:67–103

Skowron P, Faliszewski P, Slinko A (2016b) Axiomatic characterization of committee scoring rules. Tech-
nical Report. arXiv:1604.01529

Skowron P, Yu L, Faliszewski P, Elkind E (2015b) The complexity of fully proportional representation for
single-crossing electorates. Theor Comput Sci 569:43–57

Staring M (1986) Two paradoxes of committee elections. Math Mag 59:158–159
Sugden R (1984) Free association and the theory of proportional representation. AmPolit Sci Rev 78(1):31–

43
Tideman N, Richardson D (2000) Better voting methods through technology: the refinement-manageability

trade-off in the single transferable vote. Public Choice 103(1–2):13–34
Tullock G (1967) Towards a mathematics of politics. University of Michigan Press, Ann Arbor
Uckelman J (2010) Alice and Bob will fight: the problem of electing a committee in the presence of

candidate interdependence. In: Proceedings of 19th European conference on artificial intelligence, pp
1023–1024

Woodall D (1994) Properties of preferential election rules. Voting Matters, 3, Paper 4
Young H (1975) Social choice scoring functions. SIAM J Appl Math 28(4):824–838
Yu L, Chan H, Elkind E (2013) Multiwinner elections under preferences that are single-peaked on a tree.

In: Proceedings of the 23rd international joint conference on artificial intelligence, pp 425–431

123

http://arxiv.org/abs/1604.01529

	Properties of multiwinner voting rules
	Abstract
	1 Introduction
	2 Preliminaries
	3 Committee selection rules
	3.1 Common committee selection rules
	3.2 Two types of multiwinner rules

	4 Axioms
	5 Committee monotonicity
	6 Dummett's proportionality
	7 Monotonicity
	8 Consistency and homogeneity
	9 Related work
	10 Conclusions
	Acknowledgements
	References


