
This article was downloaded by:[University of Southampton]
On: 13 September 2007
Access Details: [subscription number 769892610]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713393989

Properties of neural networks with applications to
modelling non-linear dynamical systems
S. A. Billings a; H. B. Jamaluddin a; S. Chen b
a Department of Automatic Control and Systems Engineering, University of Sheffield,
Sheffield, SI, U.K
b Department of Electrical Engineering, University of Edinburgh, Edinburgh, EH, U.K

Online Publication Date: 01 January 1992
To cite this Article: Billings, S. A., Jamaluddin, H. B. and Chen, S. (1992) 'Properties
of neural networks with applications to modelling non-linear dynamical systems',
International Journal of Control, 55:1, 193 - 224
To link to this article: DOI: 10.1080/00207179208934232
URL: http://dx.doi.org/10.1080/00207179208934232

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713393989
http://dx.doi.org/10.1080/00207179208934232
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

18
:2

2 
13

 S
ep

te
m

be
r 2

00
7 

INT. J. CONTROL, 1992, VOL. 55, NO. I, 193-224

Properties of neural networks with applications to modelling
non-linear dynamical systems

S. A. BILLINGSt, H. B. JAMALUDDINt and S. CHENt

Properties of neural network performance are investigated by studying the mod
elling of non-linear dynamical systems. Network complexity, node selection, pre
diction and the effects of noise are studied and some new metrics of performance
are introduced. The results are illustrated with both simulated and industrial
examples.

I. Introduction
Neural networks have recently become an enormously fashionable area of

research and have been applied in many diverse areas such as speech processing,
pattern recognition and non-linear model fitting. In most of these cases the neural
network is trained to represent the data set using some learning algorithm. Ideally
the weights which define the strength of connection between the neurons in the
network should converge to yield a neural network architecture which can emulate
the mechanisms which produced the data set. This process clearly involves learning
a mathematical description of the system and can therefore be studied as a system
identification problem. The advantage of this interpretation is that all the funda
mental results of estimation theory which have been developed over many decades
(Nahi 1969, Goodwin and Payne 1977, Ljung and Soderstrom 1983) can be
employed to study rigorously both the properties and the performance of neural
networks.

Previous studies (Lapedes and Farber 1987, Narendra and Parthasarathy 1990,
Uhrig and Guo, 1989, Bhat et al. 1990) have successfully demonstrated the power
of neural networks when employed to model complex non-linear mechanisms, but
most of these have not used the results of estimation theory to interpret the results
obtained. Although system identification has traditionally been based on estimating
the coefficients of linear models using variants of least squares or maximum
likelihood algorithms (Goodwin and Payne 1977, Ljung and Soderstrom 1983) the
fundamental concepts of estimation, bias, prediction and model validation are
applicable to a much wider class of problems including multilayered networks.

The present study is an attempt to introduce to the neural network community
some of the basic concepts from estimation theory and to show how these can be
used to measure interpret and improve network performance. Questions are ad
dressed, such as whether it is important to consider the assignment of input nodes,
whether network performance improves with increasing network complexity,
whether it is better to assign the network nodes as lagged inputs only or as a
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Figure 1. A multilayered neural network.
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combination of lagged inputs and lagged outputs, whether a one-step-ahead predic
tion is a sufficient metric of network performance, whether model validity tests are
useful, whether it is possible to detect when the network is sufficient to represent the
data set how noise on the measurements affects network performance, the question
of bias, etc. Throughout, simulated non-linear models and real data sets are used to
illustrate the ideas. The recursive prediction error learning algorithm (Chen et al.
1990 a, b, Billings et al. 1991) is used to update the network weights simply because
this has much better convergence properties compared with the back-propagation
algorithm. It is important to note, however, that most of the results should be
applicable for alternative learning mechanisms and should apply to the range of
problems to which neural networks have been applied and not just to modelling
non-linear dynamical systems.

2. Feedforward neural networks

2.I. Neural network architectures

A neural network is a massively parallel, interconnected network of elementary
units called neurons. Inputs to each neuron are combined and the neuron produces
an output if the sum of the inputs exceeds an internal threshold value. A feedforward
neural network is made up of layers of neurons between the input and output layers,
called hidden layers, with connections between neurons of intermediate layers. The
general structure of a multilayered neural network is illustrated in Fig. I. The input
layer usually acts as an input data holder which distributes inputs to the first hidden
layer. The signals flow from the input layer to the output layer. A basic element of
the network, the ith neuron in the lth layer is shown in Fig. 2. A neuron performs
two functions. These functions are the combining function and the activation function.
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Neural networks and modelling non-linear dynamical systems 195

X i-t
2

Figure 2. A hidden neuron i of layer I.

The combining function produces an activation for the neuron, vi(t), defined as
", -I

vi(t) = L wiA-I(t) + bi
j=1

(I)

where wij is the weight connection between the jth neuron of the (I - I )th layer and
the ith neuron of the Ith layer, bi is the threshold of the neuron and n'_1 is the
number of neurons in the (I - l)th layer. The activation function performs a
non-linear transformation to give the output, xi (t)

xi(t) = F(vi(t)) (2)

where F( . ) is called the non-linear transformation or activation function.
The inputs propagate forward through the network. By combining (I) and (2)

the output of each neuron can be expressed as

xi(t) = F ("I I wijXl- I(t) + bi) (3)
)=1

where xi(t) is the output of the ith neuron in the Ith layer for i = I, ..., n, and
I = I, ..., m. With these definitions the mth layer becomes the output layer and the
input layer can be labelled as the zero layer as illustrated in Fig. I. Thus no and nm

refer to the numbers of network inputs and outputs respectively. For convenience
x? (t) and x';' (t) will often be denoted as Xi(t) and },(t).

For the neurons in the hidden layers, the activation function is often chosen to
be

I
F( v(t)) = -=------:-----,-,,

1 + exp (-v(t))
(4)
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196 S. A. Billings et al.

In system modelling applications it is common for the dynamic range of output
data to be greater than I, the activation function of the output nodes is therefore
chosen to be linear. Thus, the ith output node performs a weighted sum of its
inputs as follows

tim -1

y,(t) = L w7Jxr '(t)
j=1

( 5)

Based on the results of Cybenko (1989) and Funahashi (1989), only one
hidden-layer networks are considered in the present study, that is m = 2. All the
results will be presented for cause and effect systems and the single-input single-out
put (SISO) case only. This has been done to enhance the clarity and interpretation
of the results. It is important to emphasize however that all the results are
applicable to the multi-input multi-output (MIMO) case with an obvious extension
of notation. The SISO restriction means that only one output neuron, that is n2 = I
is required and the index i in (5) can be removed. With these restrictions the output
of the network is therefore given by

y(t) = I~' wTX] (t) = I~' WTF (J, w!jx/t) + b)) (6)

where x(t) = [x, (t) ... x"o(t)lT is the input vector to the network. The elements of
the input vector are the input variables to be assigned at the input nodes of the
network. The ws and hs are the parameters to be estimated and these form the
elements of 0, the parameter vector defined as 0 = [8, 82 ... O""lT where
nil= n, + n, (no + I) is the number of unknown parameters. The objective of training
the neural network model is to determine 0 such that y(t) is as close to the desired
output y(t) as possible. The discrepancy between y(t) and y(t)

e(t) = y(t) - y(t) (7)

is called the prediction error or the residuals.

2.2. Training algorithms

Resurgence of research into the use and application of multilayered neural
networks is due in part to the development of the back-propagation learning
algorithm. The back-propagation algorithm was first proposed by Werbos in his
Ph.D. thesis and further developed by Rumelhart and McClelland (1986). Back
propagation is a steepest descent type algorithm where the weight connection
between the jth neuron of the (1- I)th layer, and the ith neuron of the lth layer,
and the threshold of the ith neuron of the lth layer are respectively updated
according to

w:/t) = w~/t - I) + 6w~/t)

Wt) = b~(t - I) + 6h~(t)

with the increment 6w~/t) and M~(t) given by

6w~j(t) = 11".P~(t)xj-'(t) + IX". 6w~j(t - I)

M~(t) = 'IhP~(t) + IXh M~(t -I)

(8 a)

(8 b)

(9 a)

(9 b)

where the subscripts II' and b represent the weight and threshold respectively, IX". and
IXh are momentum constants which determine the influence of past parameter
changes on the current direction of movement in the parameter space, 'I". and 'Ih
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Neural networks and modelling non-linear dynamical systems 197

represent the learning rates and p; (t) is the error signal of the ith neuron of the /th
layer which is back-propagated in the network. Since the activation function of the
output neuron is linear, the error signal at the output nodes is

and for the neurons in the hidden layer

p;(t) = F'(v;(t» I p~+ '(t)w~i '(t - I) 1= m - I, ..., 2, I
k

(10 a)

(10 b)

where F'(v) is the first derivative of F(v) with respect to v.
Similar to other steepest descent-type algorithms, the back-propagation al

gorithm suffers from a slow convergence rate. it may become trapped at local
minima and can be sensitive to user selectable parameters (Brady et al. 1989, Sutton
1986, Billings et al. 1991). Some of these properties can be improved by modifying
the algorithm (Leonard and Kramer 1990, Schmidhuber 1989).

A new recursive prediction error (RPE) algorithm which is a Gauss-Newton
type algorithm has been proposed (Chen et al. 1990 a, Billings et al. 1991) as an
alternative to back-propagation. The RPE algorithm is given by

0(1) = y(l) - y(t)

R(t) = R(t - I) + y(I)['I'(t)A -''I'T(t) + fJ! - R(I - I)]

@(I)=@(I - I) + ]'(t)R- 1(t)'I'(t)A
-1 0(1)

( II)

( 12)

(13)

where @(t) is the estimate of the parameter vector, fJ is a non-negative small scalar,
y(l) is the gain at sample 1 and '1'(1) is the first derivative of the one-step-ahead
prediction of the model with respect to the estimated parameters, that is

( 14)

To avoid inversion of R at every iteration, in practice (12) and (13) are
implemented in the equivalent form (with fJ = 0 and A = I)

I
P(t) = A(I) {P(I - I) - P(I - I) '1'(1)[ A(t)! + 'I'T(I)P(I - I) '1'(1)] -, 'I'T(I)P(t - I)}

(15)

@(t) = @(I - I) + P(I)'I'(I)o(t)

where

P(I) =y(t)R-'(I), A(I) = ]'(/-1) (I -]'(1»
y(l)

(16)

and A(I) is called the forgetting factor.
The derivation. implementation and properties of this algorithm have been

reported in Billings et al. (1991). The RPE algorithm has superior convergence
properties compared with back-propagation and will be used to train all the
networks in the present study.
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net)

1+u(t)
yet)+

PLANT

+
£(1)

NEURAL

Training
Mechanism

Figure 3. Non-linear system identification using a neural network model.

3. Properties of neural networks

3.1. Network expansions

If a neural network model is employed to represent a dynamical system it is
important to establish the form of expansion that the network provides because this
will determine if it is necessary to consider the correct assignment of network input
nodes. The number of input nodes specifies the dimension of the network inputs. In
the system identification context, the network input vector consists of lagged system
inputs and outputs as illustrated in Fig. 3. The assignment of network input nodes
then becomes the task of selecting the correct lag orders of the system input and
output to form the network input vector.

The investigation of this property is straightforward and consists of expanding
the activation function of the hidden nodes. Assuming for example that the
activation function of each neuron is a sigmoidal function as defined in (4), this can
be expressed as
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Neural networks and modelling non-linear dynamical systems 199

yet)

u(t-I) y(t-I)

( 19)

(18)

Figure 4. A one-hidden-layer network with two input nodes and two hidden nodes.

The input-output relationship for the one-hidden-layered network with two input
nodes and two hidden nodes illustrated in Fig. 4, for example, is given by

y(t) = wfF(wLu(t - I) + wl,y(t -1) + blJ

+ w~F(w~, u(t - I) + W~2y(t - I) + b~)

Expanding (18) using (17) yields

yet) = wW + ~(w:, u(t - I) + wl,y(t - I) + b lJ

-;ig(wi1u(t - I) + w: 2y(t -I) + blJ3 + ...J
+ wm + ~(w1, u(t - I) + W12y(t - I) + b1)

-;ig(w1Iu(t -I) + W12y(t -I) + b1)3 + ...J

Collecting terms gives the representation

yet) =ao+a,u(t-l) +a2y(t-I) +a3u
2(t-l) + a4y2(t-l) +asu(t-I)y(t-I)

+a6u
3(t - I) + a7y3(t - I) + asu

2(t - I)y(t - I) + aoy2(t - I)u(t - I) + ...
(20)

where the as are parameters which are a function of the ws and bs. It is easy to see
how this result would generalize to higher order network expansions and alternative
activation functions. Since ao, a constant term, exists in the expansion of (20), this
shows that multilayered neural networks include a mean value in the system
representation. Constant terms, which are important in non-linear modelling, may
not, therefore, need to be specified as input nodes. As expected, (20) also shows that
the network does not generate components of higher order lagged system inputs and
outputs which are not specified in the network input nodes, because the output of
the neural network is just a static non-linear expansion of the input nodes. This is
illustrated schematically in Fig. 3. If insufficient lagged lI(t) and y(t) are assigned as
input nodes the network cannot generate the missing dynamic terms and this implies
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200 S. A. Billings et al.

(21 )

that an inadequate representation will result. It is therefore very important both to
consider the selection of network input nodes and to develop methods which detect
when network performance is limited by inappropriate node specification. Otherwise
a poor model fit, which was caused by a failure to include adequate dynamics in the
specification of input nodes, may be incorrectly interpreted as some other effect.

3.2. Model validation

Model validity tests are procedures designed to detect the inadequacy of a fitted
model. In simulation it is easy to show that given the correct input node assignments
and a sufficient number of hidden nodes the network will produce a good model of
the system. But in practice the model of the true system will be unknown and the
detection of an inadequate fit is therefore more challenging. A poor fit may be caused
by incorrect input node assignments, noisy data, a mistake in the programme code,
insufficient hidden nodes or several other effects. Whatever the cause the aim of the
model validation is to indicate to the analyst that the model fit is incorrect.

If a model of a system is adequate then the residuals or prediction errors £(t)
should be unpredictable from all linear and non-linear combinations of past inputs
and outputs. The derivation of simple tests which can detect these conditions is
complex but it can be shown that (Billings and Voon 1986) the following conditions
should hold

4>,,( r) = E[£(t - r)£(I)] = e5( r)

4>",( r) = E[u(t - r)£(I)] = 0, V r

4>"2',( r] = E[(u 2(1 - r) - u2(t ))£(1)] = 0, Vr

4>,,2,2( r) = E[(u 2(1 - r] '- u2(1 ))£2(t)] = 0, V r

4>'lwJ r) = E[£(t)£(t - I - 'r)u(l - I - r)] = 0, r;;'°
These tests are applicable to the most general case where both process and noise
models are estimated (see also § 3.4). In practice normalized correlations are
computed. The sampled correlation function between two sequences l/J, (I) and l/J2(t)
is given by

N-,

I l/J, (t)l/J2(t + r)

4J"" "', ( r) = -;=[~N'-;-I=-1'-------N:-;--~J"":-;:;/2
I l/tT<tl I l/J~(I)
(= 1 1= I

(22)

Normalization ensures that all the correlation functions lie in the range
- I ::;; 4J"" "',(r) ::;; I irrespective of the signal strengths. The correlations will never be
exactly zero for all lags and the 95°1., confidence bands defined as \·96/fi are used
to indicate if the estimated correlations are significant or not, where N is the data
length.

The tests in (21) were derived for the class of analytic non-linear systems
(Billings and Voon 1983). Since neural networks may be used to approximate a
wider class of systems, it is impossible to definitely state that the correlation tests
will always detect all possible non-linear terms that may be part of a neural network
model. Whilst a theoretical analysis of the problem would be very complex, all the
simulation results do tend to indicate that the tests are a very powerful aid in neural
network modelling.
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Neural networks and modelling non-linear dynamical systems 201

The model validity tests of (21) are simple to compute and will be used
throughout this study to detect various defects in network models. Consider the
input assignment problem to illustrate these ideas. The system referred to as S1 and
defined by

ji(t) = 1 +exp {-(0'3u(1 -I) +0.~'U~I-2)+ 05v(I-I) +0 I)}}
. (23)

n(l) = e(l) + 0'6e(1 - I)

y(l) = ji(l) + n(l)

was simulated with a zero mean uniformly distributed white noise input u(l).
Realistically it has been assumed that the measured output is corrupted by
unknown coloured measurement noise n(I). Notice that the system can be exactly
modelled by a one-hidden-layer neural network with one hidden neuron and input
node assignment U(I - I), u(1 - 2) and y(l - I).

Initially the input vector was incorrectly assigned as

X(I) = [u(1 - I) y(l - 1)jT

The network was trained and the model validity tests for this case are illustrated in
Fig. 5 which shows that <P,J r) # b(r) and <PuJ r), <Pu2.,2( r) are well outside the 95%
confidence bands. This indicates that the fitted model

y(l) = . c)
1 + exp {-(C2U(1 - 1) + c3y(l - I) + c4 ) }

is deficient. In this particular example <Pu,( r) and <Pu2.,2( r) suggest that the deficiency

ID

-ID

ID

-ID

ID ID

-ID

1.0

-ID

olD

Figure 5. Example SI, incorrect process structure.
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to

-to_

1.0

-1.0

1.11

1.0

-tIL

-1.0

Figure 6. Example S I, correct process structure.

is due to a missing input, probably at lag 2. Redefining the input vector as

x(t) = [u(t - I) u(t - 2) y(t - IW

and retraining the network gave the model validity results illustrated in Fig. 6. All
the tests except the autocorrelation of the residuals are now satisfied. In fact
<f>,,( r) "# o( r) in both Figs 5 and 6, and this indicates that the network is a biased
predictor. This is caused because there is correlated noise on the data and both
system inputs and outputs have been used as input nodes to the network. This
problem will be discussed in detail in the next section.

3.3. The effect of noise
It is realistic to assume that most system outputs will be corrupted by noise.

Noise may be induced from external and/or internal sources as well as from the
measuring instruments themselves. The effects of noise can result in severely biased
models. Notice that bias is a subtle concept. Bias does not necessarily mean that the
network will predict badly over the data set used to train it. Because the network
has been trained by minimizing a cost function, usually some quadratic function of
the errors, the output of the network will most probably provide a good prediction
over the data set used for estimaton. Whilst this is almost universally used as a
metric of network performance it does not mean that the network is a good model
of the underlying system. The model may be highly biased. Physically this means
that whilst the network will provide good predictions over the data used in training
it is valid for that one specific data set and may not provide good predictions for
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Neural networks and modelling non-linear dynamical systems 203

different data sets. In other words the model obtained is just a curve fit to one data
set and is not a model of the underlying system that produced the data. Because the
idea of fitting a neural network in the first place is often to produce a model that
can be used to simulate the operation of the system, and hence to predict the system
response to many different choices of input excitations, it is very important to both
detect and if possible to eliminate bias.

A thorough theoretical analysis of these aspects is complex for neural networks
because the models are non-linear-in-the-parameters and numerical minimization
procedures are used for training. To illustrate the problems in the simplest possible
way consider therefore the case of estimating the parameters in the linear model
using the least squares method. A general linear regression model is given as

n

y(t) = L p,(t)O, + £(t)
;= 1

(24)

where p, (I) are the regressors, 0, represent unknown parameters to be estimated and
£(t) is called the modelling error or the residual. If N data samples are available (24)
can be expressed in the matrix form as

where

y = P0+ E (25)

y = [y(l) ... y(NW, P = [PI'" Pn], E = [£(1) £(NW

p,=[p,[I] ... p,(NW and 0=[0, ... On]T

It is well known (Goodwin and Payne 1977) that minimizing the sum of the errors
squared yields the least squares estimate

(26)

The bias of the estimate defined as E[0] - 0 can now be determined. Substituting
the true system model (25) into (26) relates the estimated parameter vector to the
true parameter vector

0= (PTP) -IPT(P0 + E)

=0 + (PTP) -I pTE (27)

The inverse of (PTP) must exist because this was used to obtain the estimate 0 in
the first instance. Rearranging (27) gives

PTP(0 - 0) = PTE (28)

It is therefore clear that the estimate will only be unbiased, that is

E[0]-0=0 (29)

if E[ pTE] = O. This is a fundamental result from estimation theory which in simple
terms says that on average the estimate will only approach the true value if the
elements of pT and E are uncorre1ated such that E[ PTE] = O. Although the neural
network problem cannot be cast into the exact formulation of (25) the principle
expressed by this simplified analysis has relevance to the neural network. For the
general non-linear model, the parameter estimates obtained using the prediction
error algorithm will be unbiased if the prediction error is uncorrelated with all
linear and non-linear combinations of past inputs and outputs. This is a well known
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0.500

Final values

J_U(t-j_

1

r-) -I---+--+----+--+---+--+------t--jl,:::

--

lIlI+---+---+--t--I--+---+---+--t--+------t,:::

Figure 7. Example S2, noise free, evolution of estimated parameters during training.

(30)

property of the prediction error algorithm (Chen et al. 1990 a, b). For the linear
regression model (24), the prediction error algorithm reduces to the least squares
algorithm, and it is only required that the prediction error is uncorrelated with all
the regressors to guarantee unbiased estimation. Furthermore, bias can easily be
detected by the model validity tests. Recall that, for a general non-linear model, the
correlation properties of (21) will only hold if the residuals are unpredictable from
all linear and non-linear combinations of past inputs and outputs-the same
requirement as for unbiased estimates.

To illustrate these ideas consider the system S2 defined by the model

y(t) = -I-+-e-xp-{,.----(-O-·5-U(-t---~-;6-+-0--4-Y-(t- _- 1)-+-0-'-1)...,-}}

y(t) = Y(t) + n(t)

where the system input u(t) is a zero mean uniformly distributed white noise sequence
and n(t) is the system noise.

Initially n(t) is set to zero. A network with input vector x(t) = [u(t - I) y(t - 1)jT
was trained and the evolution of the estimated parameters are illustrated in Fig. 7.
After 500 representations of input and output pairs for training, the parameters
almost converge to the values of O· 500, 0·398, 0·600 and 0·102 for the terms
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Final values

0.519

-~0.652

~ 1=
0.578

...m '-;~",--t--t----+----t--+---+----+--+---+-~=-l ....

0.091

Figure 8. Example S2, evolution of estimated parameters during training for biased model.

-1.0

1.0

1.0

<P1I£('t)

~ 1IJ'

-1.0

1.0

<PuZ'e('t)

-1.0 -1.0

1.0
<puZ'e2('t)

~ 1IJ'

-U!

Figure 9. Example S2, correlation tests for network with correct process model.
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u(t - I), y(t - I), numerator constant and threshold constant respectively. It is clear
that the estimated parameters converge to the true parameter values.

The system was simulated again but this time with coloured noise
n(t) = e(t) + 0'6e(t - I) where e(t) is zero mean gaussian white noise with a
variance of 0·0 I. The network was retrained and the evolution of the parameters
during training is illustrated in Fig. 8. Inspection of Fig. 8 shows that the estimated
parameter for the input term y(t - I) deviates significantly from the true value, an
estimated value of 0·652 compared with the value of 0·4. The model as expected is
biased. This is easy to detect in this case because the true system model is known.
In practice, of course, the true system parameters are not available but fortunately
the model validity tests can be employed to detect bias. Fig. 9 shows the model
validity tests for the identified model. It is seen that </1,,( r) ¥- e5( r), indicating that the
residual is correlated with lagged output measurements.

For the linear model identification, an analysis of (28) indicates that the
coloured noise will cause bias in the parameters related to lagged output measure
ments. In general, of course, bias will not be restricted only to the parameters of
lagged y(t). It is interesting to see that, for this simple neural network model, the
coloured noise also causes bias in the parameter connected to y(t - I). The fact that
only one parameter appears to be biased is due to the specific choice of input
excitation and the network structure.

The bias in this example will only be eliminated if the residual becomes
uncorrelated with past measurements. One way to achieve this is to model the noise.
If a linear noise model is used the network architecture takes the form illustrated in
Fig. 10 and the noise model parameters can be estimated as part of the network
training. A first order noise model should be sufficient in this example and the
evolution of the network parameters for this case are illustrated in Fig. II.
Inspection of the model validity tests in Fig. 12 shows that the estimates are now
unbiased. The above discussion is only valid for an additive coloured noise source.
For more complex noise sources, the analysis will be much more difficult.

5'(t)

u(t-l) y(t-l) y(t-ny) e(t-l) e(t-ne)

Figure 10. Neural network with a linear noise model.
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Final values

~r=_-t_-+_-+_-+_0-t'481
-~0.443

~ =

-E:::constant

- ~

0.619

0.012~G~
~~'o;i"\;liJf""'=t=9'"-"4"-"-I~~f="""I.Jllll

~

Figure II. Example 82, evolution of estimated parameters during training for network with
correct process and noise model.

It was noted earlier that a biased model may predict well over the estimation set
but this is no guarantee that prediction over the other data set will be good. This
phenomenon can be illustrated by modelling the data set generated by system S2
using network models with input node specifications which result in both biased
and unbiased estimates. An extra 400 data points were generated using a different
input sequence than that used to produce the estimation set. This set of data is
called the testing set. Using the incorrect input node specification x(t) = [u(t - I)]T,
the network was trained over the estimation set and produced excellent prediction
over this data. Prediction over the testing set however deteriorated. This is
illustrated by the one-step-ahead prediction superimposed on the actual output in
Fig. 13 for the data set between points 400 and 900. When the input nodes were
specified correctly and a linear first order noise model was used, the trained network
produced good predictions over both the estimation and testing sets as illustrated
by the one-step-ahead prediction superimposed on the actual output in Fig. 14. The
excellent prediction over estimation and test sets in this case is obtained because the
trained model is unbiased and has learned the underlying mechanism which
produced the data set. The effects of bias which are relatively mild in this simple
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-1..0 -to

to to

~----

-10

to

-to

-1.0

Figure 12. Example S2, correlation tests for network with correct process and noise model.

O.4Z8E-HK]

0221E-HK]
}----------------;

J99.

PrOOicled output superimposed on actual output

900.

A

El

Figure 13. Example S2, one-step-ahead prediction superimposed on system's output for
biased model.
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Q.428[.j{J(l

0121£-100
J,-----------------t

399.

Predicted Output Superimposed on actual output

900.

A

B

Pr~ted~

Figure 14. Example S2. one-step-ahead prediction superimposed on system's output for
unbiased model.

example can be severe depending on the system and the statistics of the signals
involved.

3.4. Assignment of network nodes

If records of the input u(t) and output y(t) are available the network input nodes
can be assigned as lagged inputs U(I - I), } ;;, 0, lagged outputs yet - }),} > 0 or a
combination of lagged inputs and outputs. The choice between these three options
is not necessarily straightforward because it can influence both bias and network
complexity.

Once again it is easier to introduce the concepts involved using a linear model
and then to generalize the results to the neural network case. Consider the simple
first order difference equation model

Rearranging (31) gives

0·5:-'
Ht) = I _ 0'7z-' u(t)

y(t) = O· 7Y(t - I) + O' 5u(t - I)

(31)

(32)

Obviously this system can be modelled very concisely by using both lagged inputs
and outputs to fit a model of the form

yet) =a,y(t -1) +b,lI(t -I)



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

18
:2

2 
13

 S
ep

te
m

be
r 2

00
7 
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The disadvantage of this approach is that, if the output is corrupted by noise so
that

y(t) = y(t) + e(t) (33)

fitting a model based on the measurements y(t) and u(t) will yield biased estimates.
This follows because substitution shows that

y(t) =O'7y(t -I) +0'5u(t -I) +e(t) -0'7e(t -I) (34)

and even if the noise e(t) is zero mean and white it appears in the model as a
coloured sequence such that from (28), E[ PTE] # 0 and hence the estimates will be
biased. To obtain unbiased estimates, a noise model is required.

Alternatively the system can be modelled using lagged inputs only. Applying
long division to (31) shows that in this case the system can be expressed as

y(t) = O' 5u(t - I) + O' 35u(t - 2) + O' 245u(t - 3) + 0'1715u(t - 4)

+O'12005u(t - 5) +... (35)

The sequence will converge providing the roots of the denominator (poles) are
within the unit circle but there may be many, many terms in the model. The
disadvantage is that many more parameters must now be estimated to describe the
same system. The advantage is that if the output is corrupted by noise, (35), then

y(t) =O'5u(t -I) +0'35u(t -2) +O·245u(t -3) +0'1715u(t -4)

+O·12005u(t - 5) + ... + e(t) (36)

and since the noise will almost always be independent of the input, even if it is
coloured, E[PTE] = 0 and the estimates will be unbiased. Increased complexity in
the model is therefore balanced by the fact that there will be no need to fit a noise
model because the estimates will, under the conditions specified above, always be
unbiased.

Conversely the model could be expanded in terms of outputs only. This offers
no real advantages because many terms will be needed to describe the system and
the effects of noise will be as discussed above for the model in (34) so bias will also
be a problem.

These results will also apply to neural networks assuming the noise is additive
at the system output. Assigning network input nodes as lagged inputs only will yield
unbiased estimates without the need to fit noise models at the expense of possibly
very complex architectures and hence slow training.

Consider, for example, a network similar to that illustrated in Fig. 4 but with
input nodes defined by u(t - I) and u(t - 2). Using the sigmoidal activation
function of (17) will yield the input-output expansion

y(t) =lIo+lI,u(t -I) +1I2u(t -2) +1I 3U
2(t -I) +1I4U

2(t -2) +lIsu(t -I)u(t -2)

+1I6U
3(t - I) + 1I7U3(t - 2) + lIgU

2(t - I)u(t - 2) + 1I9u(t - l)u 2(t - 2) + ...
(37)

This has the form of a Volterra Series. Notice, however, that if the true system
model included a y2(t - I) term say, attempts to approximate this by an expansion
of inputs only using (37) may result in very complex networks.
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The predictive accuracy of the model can be computed by defining the normal
ized root mean square of the residuals as an error index

. [E<Y(I) - Y(I»2JI/2
error mdex = 2

Ey (I)

A comparison of the predictive accuracy of networks with input nodes assigned
as lagged u(')s only and as a combination of lagged u(')s and y( . )s can be
illustrated by the simulation study of system 53 described by

0·3 }ji(l) = I + exp {-(0' 3u(t - I) + 0·6ji2(t - I) + O·I)}

n(l) = e(t) + O· 5e(t - I)

y(t) = ji(l) + n(l)

A uniformly distributed zero mean white noise sequence u(l) of variance 1·0 was
used to generate 500 data points. The output data was corrupted by coloured noise
generated using a zero mean Gaussian white noise sequence of variance 0·01. A
one-hidden-layer neural network with one hidden node was used to model this
system. The values of the error index for input vector specification consisting of
only lagged u(· )s and input vector specification consisting of lagged u(·)s and
lagged y( . )s, are shown in the Table. For the input vector consisting of lagged
u( . )s and lagged y( . )s, an additional first order noise model was also fitted as part
of the network. The results show that a neural network model with input vector
specification consisting of only lagged u(')s with nine input nodes produced a
predictive accuracy equivalent to a neural network model with input vector
specification consisting of both lagged u(· )s and lagged y( . )s with only two input
nodes. Considerable predictive accuracy is obtained when both lagged u( . )s and
lagged y( . )s are used as input nodes but at the expence of fitting a noise model to
obtain an adequate overall model for the system.

If only lagged u( . )s are used as the input vector it is no longer appropriate to
test all five model validity checks defined by (21) because even if the noise is
correlated (i.e. </J,,( r) # t5( r) the model should still be unbiased. Thus, if the
structure of the model or network is such that unbiased estimates will be obtained
even when the noise is correlated it can be shown that (Billings and Voon, 1986) the
estimate will be unbiased providing

2
3
5
7
9

Lagged u( • )s and y( . )st

0.393
0.379
0.375
0.377
0.373

Lagged u( • )s only

0.400
0.400
0.396
0.398
0.393

(40)

tAn additional first-order noise model is used.

Error index comparison for example 53.
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0.270

0.265

0.260

g; 0.255

~

0.250

0.245

S. A. Billings et al.

lagged u (.) only
lagged u ( .) & Y( . )

4 6
no. of input nodes

10

Figure 15. Example S4. A comparison of predictive accuracy for network with different
input node assignment.

To illustrate this idea consider simulated system S4 defined by

y(I) = .,----_----;-----:-::---::----=----=---::-o-=-:·6:-:----:--::--:----=---:---=---=-l
I +exp{ -(0'5u(l -I) +06Y(l -4) +0'4y(t -8) +0'1)

y(t) = Y(I) + n(l)

(41)

The output data was generated using a uniformly distributed white noise sequence
u(t) of variance 1·0 and a coloured noise n(t).

Networks were trained using a range of input nodes defined using only lagged
u( • ) s and using both lagged u( • ) s and lagged y( . )s. The plot of the error indices
versus the number of input nodes is illustrated in Fig. 15. A smaller error index is
obtained when both lagged u(')s and lagged Y(')s are used as input node
specification.

If only lagged u( . )s are used as input nodes, all the three correlation tests, (40)
appear to be satisfied when no~ 9. The correlation tests for no= 7, 8, 9 and 10 are
shown in Fig. 16. Notice that <pcr.(r) and <p'(W)(r) in Fig. 16 are not relevant for this
case.

When both lagged u(')s and lagged y( ')s are used as input nodes with
x = [u(t -I) y(t - t)]T, an underspecified case, the appropriate correlation test are
illustrated in Fig. 17. The cross-correlation between the input and the residuals
<p,,,( r) is well outside the confidence intervals at lags 4 and 8 correctly indicating
that the network is deficient. However, using the correct node assignments
x = [u(t - I) y(t - 4) y(t - 8)]T and a first order linear noise model yields an
unbiased network model as indicated by the correlation tests in Fig. 18.

Assigning network input nodes as lagged inputs and outputs may considerably
reduce network complexity and hence increase the possibility of rapid learning and
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.. -1.0
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Ul ..

10 tl\ 2' (r)
't'u E
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.'
-\OJ.

(d)

Figure 16. Example S4. Correlation tests for network using only lagged u( • )'S as inputs:
(a) nO' = 7; (bl nO' = 8; (c) nO' = 9; (d) nO' = 10.

adaptation but unless noise models are estimated the network will provide a biased
representation of the system.

This analysis may, however, be far too simplistic if the assumption of additive
noise is violated. There is no reason why noise should be purely additive at the
output, it can arise internally at various locations in a system. If the system is linear
this does not create any additional problems because, by superposition, the noise
can be translated to be additive at the output. But when the system is non-linear
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10

-10 -10_

10
$£(£ult)

10

$u2'£(t)
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-10 -10

~"r(1)
10

$u2'£2(t)

Figure 17. Example S4. Correlation tests for network with input specification nu = n,. = I.

10 10

-10 -10_

10 10

$£(£u)(t) $u2'£(t)

til

-10 -10

,.0

$u2'£2(t)

-10

Figure 18. Example S4. Correlation tests for network with input specification
x(t) =[u(t-l) y(t -4) y(t_8)]T and n, = I.
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Neural networks and modelling non-linear dynamical systems 215

internal noise can induce cross-product terms or non-linear expansions between the
input, output and noise. If this occurs the induced noise terms will be highly
correlated with the input such that unless these are modelled explicitly or accommo
dated in some other way the network will be a biased representation of the system
even if only lagged inputs are assigned as network input nodes.

Ideally the model validity tests should detect all these deficiencies in network
performance including bias due to internal noise. The cause of the bias will however
be different for different assignments of network input nodes. Consequently the full
five tests defined by (21) should be satisfied if u( ')s and y( ')s are used as network
input nodes but only the subset of the tests defined by (40) are necessary if the
network is expanded in terms of u( • ) s only.

3.5. Network complexity

Another important question to ask is; does network performance improve with
increasing network complexity? In other words, is it important to consider input
node assignment, number of hidden nodes, etc, or should we just build the biggest
network that our computer can accommodate.

If the estimated model is linear-in-the-unknown parameters then the loss
function or sum of the residuals squared will monotonically decrease as the number
of terms in the model is increased. After a while though the increased model
complexity is not justified by the insignificant decrease in the loss function and the
model essentially becomes just a high dimensional curve fit to the data set used for
estimation. This means that whilst the model will predict well over the estimation
set it is not a good representation of the underlying system.

This phenomenon typically becomes evident if the loss function of the estimated
model is computed over a sequence of data which has not been used to fit the
model. Such a data set is usually called the prediction or testing set. A plot of the
loss function computed over the testing set often displays a minimum when the
estimated model structure coincides with the true system order or structure.
Overfitting, therefore, is undesirable. This distinction between performance over
estimation and testing set is well known in system identification and is referred to
as generalization for neural networks. Broomhead and Lowe (1988) provide a good
discussion of this for the case of radial basis function networks. In linear system
identification, model overfitting can be avoided by several approaches-one of
which is to fit models of increasing order and to select the model of minimal
complexity which just satisfies the model validity tests.

Extending these ideas to neural networks in general is not straightforward
because the models provided are non-linear-in-the-parameters. Overfitting however
is likely to produce misleading results because even if the loss function reduces as
network complexity is increased this does not necessarily mean that the model
provided is a better representation of the system. This is the worst possible result
because, as in the case of bias, the effect is not easy to detect. Consider examples SI
and S2 introduced in § 3.2 and 3.3 respectively to illustrate some of the ideas.
Initially only the noise free case (n(t) = 0) will be considered.

A one-hidden-layer neural network with one hidden node will be used to model
both these systems. The number of input nodes was increased from I to 5 with the
node specifications [u(t - I»), [u(t - I) y(t - I»), [u(t - I) u(t - 2) y(t - I»), [u(t - I)
u(t - 2) y(t - I) y(t - 2»), [U(I - I) u(1 - 2) U(I - 3) y(1 - I) y(t - 2») to produce
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osa: one step ahead prediction

O.B

0.7

0.6

f:i
~ 0.5

'"~
e3 0.4

0.3

0.2

0.1

08a- est set
asa - test set

no. of input nodes

Figure 19. Example S1. Increasing the number of input nodes.

08a- est set
Dsa - test set
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:s -2.0
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Figure 20. Example S1. Increasing the number of input nodes, error index using logarith
mic scale.
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osa: one step ahead prediction
0.10

0.08

0.04

0.02

.. --------------... osa- est set
osa - test set

J
no. of input nodes

Figure 21. Example 52. Increasing the number of input nodes.

error indexes for the estimation and test sets shown in Fig. 19 for system S1. Notice
that a minimum error index value occurs when the number of input nodes is 3, which
corresponds to the correct input vector specification [u(t - I) u(t - 2) yet - I)]. This
is shown more clearly if the error index is plotted using a logarithmic scale as
illustrated in Fig. 20.

The plots of the error index values versus the number of input nodes for Example
S2 are shown in Fig. 21. The minimum value of error index occurs when the number
of input nodes is 2 which corresponds to input vector specfication [u(t - I) yet - I)].

When the output data are corrupted by noise, the plots of error indexes against
the number of input nodes are shown in Figs 22 and 23 for SI and S2 respectively.
The clarity of the results in the noise-free case is now disguised by the effects of the
noise. Fortunately the model validity tests can be used to aid the selection of an
appropriate network structure.

The correlation tests for SI for the number of input nodes (no) equal to 1,2, ..., 5
are shown in Fig. 24. When no~ 3, all the tests are within the confidence intervals
except cP,,( r) suggesting that no = 3 should provide an acceptable process model
structure. Estimation of a noise model will eliminate the bias as shown in § 3.3.

The correlation tests for S2 as the number of input nodes is increased from I
to 5 are illustrated by Fig. 25. All the correlation tests except cP,,( r) are satisfied
when no ~ 2 indicating that the process model can be adequately represented by a
network with input vector specification [u(t - I) y(t - I)]. Estimation of a noise
model should reduce cP,,( r) to an impulse to yield an unbiased representation of the
system.
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S. A. Billings et al.

osa: one step ahead prediction
osa- est set
asa - test set

<.,""\

., __ .

J
no. of input nodes

Figure 22. Example S I. Increasing the number of input nodes for the output of the system
corrupted by noise.

3.6. One-step-ahead versus model predicted output

The common measure of predictive accuracy considered by many authors is
computed using the one-step-ahead prediction of the system outputs. This was
defined in (6) but can be expressed in the more general form as

y(t) = f(lI(1 - 1), ... , u(t - nu ) , y(t - 1), ... , y(t - ny )) (42)

where f( .) is a non-linear function. It is not surprising that often y(l) will be a
relatively good prediction of y(t) over the estimation set even if the model is biased
because the model was estimated by minimizing the prediction errors. An additional
and often much better metric of the predictive capability of the fitted model is to
compute the model predicted output defined by

PAt) =f(lI(1 - I), ..., lI(t - nul, Yd(t - 1), ... , y,,(t - n•. » (43)

Notice that if only lagged inputs are used to assign network input nodes then

(44)

The identification of a liquid level system will be used to illustrate these concepts.
Data was obtained from a large pilot scale liquid level system with a conical tank
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osa: one step ahead prediction
1.···.·-----····----· ~::- e~~s~e~et

0.4

- ....

0.2

0.1

2 3
no. of input nodes

Figure 23. Example S2. Increasing the number of input nodes for the output of the system
corrupted by noise.

which induced non-linear effects. A one-hidden-layer network with 3 hidden nodes
was used to model this system. The number of input nodes was increased by
specifying the input vector from nu = ny = 1 to nu = ny = 9. The plot of the error
index against the number of input nodes is shown in Fig. 26. When nu = ny = 3
both the one-step-ahead prediction and the model predicted output are good. But
for nu = ny > 6, the model predicted outputs deteriorate although the one-step
ahead predictions remain good. When the network involves a large number of
parameters which have to be trained, the parameters may not converge in one
pass through the data. The use of one-step-ahead predictions, as illustrated by this
example, may not reveal the inadequacy of the trained network. The model
predicted outputs appear to be far more sensitive and indicate that the model is
not adequate because the parameters have not converged. Retraining the networks
for n; = n; = 4, 5, 6 and 7, with two passes through the data and for nu = n,_ = 8
and 9 with three passes produced improved model predicted outputs as illustrated
in Fig. 27.

3.7. Linear model fitting
Although one of the main advantages of neural networks it that they can be used

to describe very complex non-linear relationships between signals it is interesting
to consider what would happen if the system which generated the data happened to
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Figure 24. Example S I. Correlation tests for network with input nodes using both lagged
u( • )s and lagged y( • )s as the number of input nodes is increased; (a) no = I; (b)
no = 2; (c) no = 3; (d) no = 4; (e) no = 5.
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Figure 25. Example 52. Correlation tests for a network with input nodes using both lagged
u( • )s and lagged y( ')s as the number of input nodes is increased: (a) no = J; (h)
no = 2; (e) no = 3; (d) no = 4; (e) no = 5.
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Figure 26, The plots of error indices for liquid level system training with number of passes
equal I for all input nodes specification.

be linear. In this case the neural network will force a non-linear model to fit the
data. This can then be considered in the context of the idea of § 3.5 because the
network will be overfitting, This is undesirable because if the input-output signals
are gaussianly distributed-a reasonable assumption from the Central Limit The
orem-then a linear system minimizing the mean squared prediction errors will
provide the best estimate from the class of all linear and non-linear estimators. In
other words, under these conditions, fitting a non-linear relationship can never
improve the performance of the model. It may therefore be useful to augment the
network with some purely linear branches to alleviate this problem.

4. Conclusions
Various aspects of neural network performance have been investigated using

results and ideas from system identification and estimation theory, It has been
shown that while it is easy to train a neural network which predicts well over the
estimation set this does not necessarily mean that the network provides an ade
quate description of the underlying mechanism which generated the data, It
is difficult to get definitive analytical results in this area but the model validity
tests introduced in this study do appear to provide a useful metric of network
performance. Although the results have been presented in the context of non-lin
ear model estimation they should be applicable to neural network modelling in
general.
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Figure 27. The plots of error indices for liquid level system training with different number
of passes for different input nodes specification.
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