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Abstract

In this work on Polynomial Identity (PI) quantized Weyl algebras we begin with a

brief survey of Poisson geometry and quantum cluster algebras, before using these

as tools to classify the possible centers of such algebras in two different ways. In

doing so we explicitly calculate the formulas of the discriminants of these algebras

in terms of a general class of central polynomial subalgebras. From this we can

classify all members of this family of algebras free over their centers while proving

that their discriminants have the properties of effectiveness and local domination.

Applying these results to the family of tensor products of PI quantized Weyl alge-

bras we solve the automorphism and isomorphism problems.
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Chapter 1
Introduction

This dissertation concerns properties of the quantizations of Weyl algebras that

are Polynomial Identity (PI) algebras as modules over their centers and how tools

from Poisson geometry and quantum cluster algebras can be used to classify them

via their discriminants. In this chapter we will primarily concern ourselves with

describing the final results of this dissertation and how they fit into current math-

ematical programs being carried out by the community. Chapter 2 will concern

itself with background on quantized Weyl algebras, Poisson geometry, quantum

cluster algebras, and noncommutative discriminants. Explicit determinations of

the centers of these algebras will be given in Chapter 3 reflecting one of the main

findings of this dissertation, a classification of those PI quantized Weyl algebras

free over their centers. We return to covering some preparatory material in Chap-

ter 4 where we describe the Poisson structure of these centers and their Poisson

prime elements. Chapter 5 contains two proofs covering most of the second main

result of this dissertation, first in terms Poisson geometry and then in terms of

quantum cluster algebras. We conclude in Chapter 6 by addressing the solution of

the automorphism and isomorphism questions for PI quantized Weyl algebras and

their tensor products. A final appendix includes a generalization of the results of

Chapter 5.

1.1 Quantized Weyl Algebras

Definition 1.1.1. Let T be a commutative integral domain with n ∈ Z+. We

denote by T× the group of units of T . Given E := (ε1, . . . , εn) ∈ (T×)n, along

with the multiplicatively skew-symmetric matrix B := (βjk) ∈ Mn(T×), where
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βjkβkj = 1 for all j 6= k and βjj = 1 for all j ∈ [1, n] where [1, n] ..= {1, . . . , n}.

Then the multiparameter quantized Weyl algebra AE,Bn (T ) is the unital associative

T -algebra with generators

x1, y1, x2, y2, . . . , xn, yn

and relations

yjyk = βjkykyj, ∀j, k,

xjxk = εjβjkxkxj, j < k,

xjyk = βkjykxj, j < k, (1.1)

xjyk = εkβkjykxj, j > k,

xjyj − εjyjxj = 1 +

j−1∑
i=1

(εi − 1)yixi, ∀j.

Many different points of view have been used to study quantized Weyl alge-

bras of this and related definitions. In [19, 29] they were approached via quantum

groups and Hecke type quantizations, while [6, 20, 21, 26] studied the structure

of their prime spectra and representations. The automorphism and isomorphism

problems, addressing what the group of automorphisms is and when two algebras

are isomorphic, are also covered in the works of [3, 15, 22, 27, 32, 33], while [14]

studies their homological and ring theoretic dimensions. But most of these results

concern generic cases rather than that of specifically PI algebras.

Let us begin by considering sequences of positive integers χ1 < χ2 < · · · < χn.

Under each sequence, the algebra AE,Bn (T ) has an N-filtration defined by

deg xj = deg yj = χj.

This defines the associated graded algebra grAE,Bn (T ) as the connected N-graded

skew polynomial algebra with generators x1, y1, . . . , xn, yn, where each generator
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has degree χ1, χ1, . . . , χn, χn, and with relations as defined in (1.1) excepting the

final relation which becomes

xjyj = εjyjxj, ∀j.

For grAE,Bn (T ) to be a PI algebra it can be directly verified using these relations

and the standard identity polynomial that it is necessary and sufficient that each

εj, βjk ∈ T× be a root of unity. Under this condition grAE,Bn (T ) is module finite

over its center. Similarly, the algebra AE,Bn (T ) is module finite over its center if

and only if εj 6= 1 for all j in addition to the above conditions in the case when

charT = 0.

For this reason we will assume for the remainder of this dissertation that

εj, βjk ∈ T× are roots of unity and εj 6= 1 for all j. (1.2)

1.2 A Summary of Results

Chan, Young and Zhang [11], based on the works [9, 5], have proposed the closer

study of families, F , of filtered PI algebras A with skew polynomial structures on

their associated graded algebras grA. They suggest the following approach:

1. Classify the algebras A in F where grA is free over its center, denoted

Z(grA). Then, for those algebras:

2. Describe the center Z(A) in terms of Z(grA).

3. Explicitly determine a formula for the discriminant d(A/Z(A)).

4. Classify Aut(A) and determine related properties of A when applicable.

This dissertation approaches the family of quantized Weyl algebras, assuming

(1.2), in this manner. To begin, we let

εj = exp(2πimj/dj), βjk = exp(2πimjk/djk) (1.3)
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for some mj, dj, djk ∈ Z+, and mjk ∈ N for j ≤ k such that gcd(mj, dj) =

gcd(mjk, djk) = 1, while requiring that djk = dkj, and mjk = −mkj to ensure

the multiplicative skew-symmetry of B. Note that this permits βjk = 1 (when

mjk = 0) for any choice of j, k. Let D(E,B) = lcm(dj, djk, 1 ≤ j, k ≤ n).

A priori, T may not contain i, so we interpret the imaginary exponents in (1.3)

as follows. Assume that T contains a D(E,B)-th primitive root of unity, denoted

by exp(2πi/D(E,B)), where charT - D(E,B). All imaginary exponents in (1.3)

then correspond to powers of this element in T×.

Chan, Young and Zhang solved part (1) of this approach for arbitrary skew

polynomial algebras by means of subtle conditions from number theory on the

defining matrix for these algebras [11, Theorem 0.3]. Unfortunately, checking these

conditions is nontrivial even in the instance of a specific square integer matrix.

For PI quantized Weyl algebras this dissertation covers a more explicit deter-

mination covering the first part of this approach. Furthermore, we prove that

Z(AE,Bn (T )) ∼= Z(grAE,Bn (T )):

Theorem 1.2.1. Let T be an integral domain satisfying the conditions in (1.3).

(i) The canonical map gr : AE,Bn (T ) → grAE,Bn (T ) induces a T -algebra isomor-

phism Z(AE,Bn (T )) ∼= Z(grAE,Bn (T )) if εj − 1 ∈ T× for all j.

(ii) For all integral domains T , the following are equivalent for the quantized

Weyl algebra AE,Bn (T ):

(a) The algebra grAE,Bn (T ) is free over its center;

(b) The center Z(grAE,Bn (T )) is a polynomial algebra;

(c) The algebra AE,Bn (T ) is free over its center;

(d) The center Z(AE,Bn (T )) is a polynomial algebra;
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(e) dj|dl and djk|dl for all j ≤ l and k ∈ [1, n].

When these conditions are satisfied, then

Z(AE,Bn (T )) = T [x
dj
j , y

dj
j , 1 ≤ j ≤ n]. (1.4)

Additionally, Theorem 3.1.1 describes Z(AE,B(T )) for all PI quantized Weyl

algebras AE,Bn (T ). An initial family that satisfies the conditions in Theorem 1.2.1

is the uniparameter case with ε1 = . . . = εn and βjk = 1 for all j, k.

Following the outlined program, we investigate further the algebras AE,Bn (T )

which satisfy the conditions of Theorem 1.2.1 (ii), working through parts (2) and

(3). This investigation follows two different paths, one based on deformation theory

and Poisson geometry, while the other uses quantum cluster algebras. Under the

restrictions in Theorem 1.2.1 (ii), D(E,B) is then

D(E,B) = dn. (1.5)

To establish our Poisson algebra we let

Xj := x
dj
j , Yj := y

dj
j ∈ Z(AE,Bn (T )) (1.6)

and then define the sequence of elements Z0, . . . , Zn ∈ Z(AE,Bn (T )) where Z0 := 1

and

Zj := −(1− εj)djYjXj + Z
dj/dj−1

j−1 for j ∈ [1, n]. (1.7)

Conveniently we find in Proposition 4.1.2 that Zj = z
dj
j for normal elements

zj := 1 + (ε1 − 1)y1x1 + · · ·+ (εj − 1)yjxj = [xj, yj] ∈ AE,Bn (T ).

The algebras AE,Bn (T ) may be considered algebras over T [q±1], for an indetermi-

nant q specialized at a certain value of ε. The nature of this specialization induces a

canonical Poisson algebra structure on Z(AE,Bn (T )), turning AE,Bn (T ) into a Poisson
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order over its center [8]. We describe this induced Poisson structure on Z(AE,Bn (T ))

and the Poisson prime elements of this algebra. With this information we compute

the discriminant of AE,Bn (T ) over Z(AE,Bn (T )), establishing that it is both dominat-

ing and effective. Definitions are described in further detail in Chapter 2, but we

note here that throughout this dissertation, two elements t1 and t2 of any integral

domain T , will be denoted t1 =T× t2 when t1 and t2 are associates.

Theorem 1.2.2. Let T be an integral domain. In the setting of (1.3), assume that

the conditions in Theorem 1.2.1(ii) are satisfied and that charT - dn = D(E,B).

(i) The induced Poisson structure on Z(AE,Bn (T )) is given by (4.2). If T = C,

then the only Poisson prime elements of Z(AE,Bn (T )) up to associates are

Z1, . . . , Zn.

(ii) The discriminant of AE,Bn (T ) over its center is given by

d(AE,Bn (T )/Z(AE,Bn (T ))) =T× ηZ
N2(d1−1)/d1

1 . . . ZN2(dn−1)/dn
n

=T× ηz
N2(d1−1)
1 . . . zN

2(dn−1)
n ,

where N := d1 . . . dn and η :=
(
N
∏n

j=1([dj − 1]εj !)
)N2

∈ T , see (5.2) for an

alternate expression for η.

(iii) Let AE1,B1
n1

(T ), . . . , AEl,Blnl
(T ) be a collection of quantized Weyl algebras satis-

fying the conditions in Theorem 1.2.1 (ii) and A be their tensor product over

T . If charT - D(E1, B1) . . . D(El, Bl), then the discriminant d(A,Z(A)) is

locally dominating and effective in the sense of [9] and [5].

This theorem was proved in [11] for the case when n = n1 = . . . = nl = 1.
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Following convention, we set [k]q := (1 − qk)/(1 − q) and [k]q! = [1]q . . . [k]q.

In Theorem 1.2.2 (ii) we compute the discriminant using the trace tr : AE,Bn (T )→

Z(AE,Bn (T )) conventionally associated to the embeddingAE,Bn (T ) ↪→MN2(Z(AE,Bn (T )))

via Z(AE,Bn (T ))-bases of AE,Bn (T ).

In Theorem A.1.2 a general formula for the discriminant

d(AE,Bn (T ), T [x
Lj
j , y

Lj
j , 1 ≤ j ≤ n])

is proven for any collection of central elements x
Lj
j , y

Lj
j ∈ Z(AE,Bn (T )) without

assuming that the conditions in Theorem 1.2.1 (ii) are satisfied. This formula Is

left for the Appendix because of its rather complicated expression.

In writing two proofs of Theorem 1.2.2 (ii) based on distinct approaches, we

note that both proofs not only yield the explicit formulæ for the discriminants,

but they also signify the factors of the discriminants with different meanings. Each

approach uses irreducible factors from two different algebras: the first is calculated

from the factors in the centers of the PI quantized Weyl algebras, while the second

with the factors in the whole PI quantized Weyl algebras:

1. The first proof uses the geometry of the induced Poisson structure from spe-

cialization. The factors of this discriminant are precisely the unique Poisson

primes Z1, . . . Zn from Theorem B (i). This proof can be applied to base rings

T of arbitrary characteristics (under certain change of base and filtration ar-

guments), even though pieces in the Poisson geometric setting would require

T = C.

2. The second proof is derived via quantum cluster algebra structures on the

quantized Weyl algebras. There the irreducible factors of the discriminants

on the whole of the quantized Weyl algebras AE,Bn (T ) are the frozen variables

in the quantum cluster algebras.
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Combining Theorem 1.2.1 and Theorem 1.2.2 with the results from [9, 5], we

solve the automorphism and isomorphism questions for tensor products on this

family of quantized Weyl algebras AE,Bn (T ) restricted by the conditions of Theorem

1.2.1 (ii).

Theorem 1.2.3. Let A = AE1,B1
n1

(T )⊗T · · ·⊗TAEl,Blnl
(T ) for a collection of quantized

Weyl algebras over an integral domain T , satisfying the conditions in Theorem

1.2.1 (ii). Assume that charT - D(E1, B1) . . . D(El, Bl) and recall (1.5).

(i) If φ ∈ AutT (A), then the following hold:

(1) There exists σ ∈ Sl such that ni = nσ(i) and φ(AEi,Bini
(T )) = A

Eσ(i),Bσ(i)
nσ(i) (T )

for all i ∈ [1, l].

(2) For a given i ∈ [1, l], denote the standard generators of AEi,Bini
(T ) and

A
Eσ(i),Bσ(i)
nσ(i) (T ) by x1, y1, . . . , xn, yn and x′1, y

′
1, . . . , x

′
n, y

′
n where n = ni =

nσ(i). There exist scalars µ1, ν1, . . . , µn, νn ∈ T× and a sequence (τ1, . . . , τn) ∈

{±1}n such that

φ(xj) = µjx
′
j, φ(yj) = νjy

′
j, if τj = 1,

φ(xj) = µjy
′
j, φ(yj) = νjx

′
j, if τj = −1.

The scalars satisfy the following equalities for Bi = (βjk), Bσ(i) = (β′jk),

Ei = (ε1, . . . , εn) and Eσ(i) = (ε′1, . . . , ε
′
n):

µjνj = τj
∏

1≤k≤j
τk=−1

ε−1
k , and ε′j = ε

τj
j , ∀j, (1.8)

β′jk =


β
τj
jk, if τk = 1,

(εjβjk)
−τj , if τk = −1,

∀j < k. (1.9)
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(ii) Every map φ on the x- and y-generators of A with the above properties ex-

tends to a T -linear automorphism of A.

(iii) The algebra A is strongly Zariski cancellative and LNDH-rigid, see §2.3.1 for

terminology.

The special case where n1 = . . . = nl = 1 was proven in [11].

Theorem 1.2.3 solves the isomorphism problem for all tensor products of collec-

tions of quantized Weyl algebras AE,Bn (T ) that satisfy the conditions of Theorem

1.2.1 (ii). In particular, for two such tensor products A and B with the algebra

isomorphism ψ : A
∼=→ B, then for φ := ψ ⊗ ψ−1 ∈ AutT (A ⊗T B), we have that

the theorem classifies the automorphisms of A⊗T B. In this way all isomorphisms

ψ : A
∼=→ B can be found. The theorem can also classify automorphisms of a single

quantized Weyl algebra AE,Bn (T ) or the isomorphisms between two quantized Weyl

algebras ψ : AE1,B1
n1

(T )
∼=→ AE2,B2

n2
(T ) which all satisfy the conditions of Theorem

1.2.1 (ii) by specialization. These specializations are outlined and stated in detail

in Sect. 6.3.
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Chapter 2
Background and Definitions

This chapter covers several of the important ideas required to understand the

tools used throughout this dissertation and their origins. We begin in § 2.1 with a

general overview of Weyl algebras motivating the existence of their quantizations.

From there we continue on to a brief review of Poisson algebras and their related

properties in § 2.2.

Before we get down to this we give a formal definition of PI algebras.

Definition 2.1. An algebra, A, may be referred to as a polynomial identity (PI) al-

gebra if it there exists a monic polynomial f ∈ Z 〈x1, . . . , xn〉, where f(r1, . . . , rn) =

0 for any a1, . . . , an ∈ A.

Example 2.0.1. Any polynomial algebra over a field K with n-indeterminates is

a PI algebra with f given by f(x1, x2) = x1x2 − x2x1.

2.1 Weyl Algebras

The first Weyl algebra arises naturally in mathematics and physics as the ring

of differential operators with polynomial coefficients in one variable. In this con-

text we can consider the ring C[x, δx] where the product rule gives the relation

δx (x · f(x)) = x (δxf(x)) + f(x). On the level of operators, this leads to the iden-

tity

δx · x = x · δx + 1.

This quickly generalizes to n-dimensional Weyl algebras where

An ..= K 〈x1, . . . , xn, ∂x1 , . . . , ∂xn〉 / < ∂xixj − xi∂xj − δij >
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where δij is the Kronecker delta. To allow for more general setups and divest some of

the notational conventions, the family of operators {∂x1 , . . . , ∂xn} is replaced by the

indeterminates {y1, . . . , yn}. These suggested that the rewritten relations, yixj =

xiyj +δij, could be generalized by skewing the multiplicative commutation, so that

yixj = qijxiyj+δij, and changing the additive deformation, so that yixj = xiyj+aij

for aij ∈ K. Our approach in Definition 1.1.1 combines these two generalization

approaches in a careful balance to ensure that the resulting algebras exist.

2.2 Poisson Algebras and Related Tools

Here we review background material on Poisson structures for algebras, especially

those obtained via specialization. Followed by an overview of recent work on dis-

criminants of noncommutative algebras, their relations to Poisson geometry, and

their applications to the automorphism and isomorphism problems for algebras.

We quickly build up to this material with the following definitions.

Definition 2.2.1. A k-vector space, g, equipped with a bilinear bracket [·, ·] :

g × g −→ g is called a Lie algebra as long as the bracket operation satisfies the

following two additional properties:

1. that it is reflexive so that [x, x] = 0 for all x ∈ g;

2. that it satisfies the Jacobi identity where

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g.

The bracket [·, ·] above is referred to as the Lie bracket. Lie algebras are not

necessarily associative algebras, but given an associative Lie algebra, the following

can occur.

Definition 2.2.2. An associative Lie algebra (P, {·, ·}) is called a Poisson algebra,

when the Lie bracket [·, ·] is also a derivation, which is to say that for x, y, z ∈ P

{x, y · z} = {x, y} · z + y · {x, z}.

11



The bracket {·, ·} of a Poisson algebra is referred to as the Poisson bracket and

traditionally is denoted with curly braces as above.

2.2.1 Poisson Structures from Specializations

Begin with a commutative integral domain T and let A be a T [q±1]-algebra that

is a torsion free T [q±1]-module. For any ε ∈ T×, the specialization of A at ε is

given by the T -algebra Aε := A/(q − ε)A. The canonical projection σ : A→ Aε is

then a homomorphism of T -algebras and specializing induces a canonical Poisson

structure on Z(Aε) as well as a lifting of the hamiltonian derivations of Z(Aε) to

derivations of Aε:

(i) We define the canonical structure of the Poisson algebra on Z(Aε) as below.

For each z1, z2 ∈ Z(Aε), choose a ci ∈ σ−1(zi) and set

{z1, z2} ..= σ
(
(c1c2 − c2c1)/(q − ε)

)
.

A straightforward series of calculations will show that the RHS remains indepen-

dent of the choice of preimages ci. We then have {z1, z2} ∈ Z(Aε) as

[{z1, z2}, σ(a)] = σ([[c1, c2], a]/(q − ε)) = 0, ∀a ∈ A.

(ii) For each z ∈ Z(Aε), one can then construct [12, 25] lifts of the hamiltonian

derivation x 7→ {z, x} of (Z(Aε), {., .}) to derivations of Aε as follows. We again

choose c ∈ σ−1(z) and set

∂c(σ(a)) ..= σ
(
[c, a]/(q − ε)

)
.

Here, [c, a]/(q − ε) is a proper element of A as [σ(c), σ(a)] = 0, and thus [c, a] ∈

kerσ = (q − ε)A. Again a straightforward series of calculations will show that the

RHS does not depend on the choice of preimage of σ(a) and that ∂c is a derivation

of Aε. Importantly, derivations corresponding to distinct preimages of z differ by
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an inner derivation of Aε:

∂c − ∂c′ = adσ((c− c′)/(q − ε)), ∀c, c′ ∈ σ−1(z).

Brown and Gordon axiomatized the above situation in [8] as the notion of Poisson

order. In this language, the constructions in (i) and (ii) define Aε as a Poisson Cε-

order for each Poisson subalgebra Cε of Z(Aε) where Aε is a finite rank Cε-module.

2.2.2 Poisson Prime Elements

Let (P, {., .}) be a Poisson algebra which is also an integral domain as an algebra.

We will require the following definitions.

Definition 2.2.3. (i) An element a ∈ P is called Poisson normal if there exists

a Poisson derivation ∂ of A such that

{a, x} = a∂(x) ∀x ∈ P.

Equivalently, a ∈ P is Poisson normal if and only if the ideal (a) is Poisson.

(ii) An element p ∈ P is called Poisson prime if it is a prime element of the

commutative algebra P which is Poisson normal. Equivalently, p ∈ P is

Poisson prime if and only if (p) is a nonzero prime and Poisson ideal of P .

Critically for our purposes below, when P is the coordinate ring of a smooth

complex affine Poisson variety W , then a given f ∈ C[W ] is Poisson prime if and

only if f is both prime and its zero locus V(f) is a union of symplectic leaves of

W , see [30, Remark 2.4 (iii)].

2.3 Discriminants and Their Relations to Poisson Algebras

We begin our examination of discriminants in relation to Poisson algebras with

the following setup. Consider A, an associative algebra with C a subalgebra of the

center of A, Z(A). A C-valued trace on A is a C-linear map tr : A→ C such that

tr(xy) = tr(yx) ∀x, y ∈ A.
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When A is a free C-module of finite rank, one can define [31, 9] a discriminant

d(A/C) ∈ C in the following manner. Given any two C-bases B and B′ of A, let

dN(B,B′ : tr) ..= det ([tr(bb′)]b∈B,b′∈B′) ,

where N = |B| = |B′|. When B1 and B′1 are any two other C-bases of A, then

by [10, Eq. (1.10.1)] we have that

dN(B1,B′1 : tr) =C× dN(B,B′ : tr).

One can define the discriminant of A over C as

d(A/C) ..=C× dN(B,B′ : tr)

for any C-bases B and B′ of A. While, more generally, when A is a finite rank C-

module which is not necessarily free, there are descriptions of what discriminant

and modified discriminant ideals of A over C can be,[31, 9, 10]. They are defined as

the ideals of C generated by the elements of the form dN(B,B : tr) and dN(B,B′ :

tr), respectively. We define

dN(B : tr) ..= dN(B,B : tr).

For A free and of finite rank over the subalgebra C ⊂ Z(A), there exists a natural

C-valued trace map on A, frequently called the internal trace of A. Any choice of

C-basis of A defines an embedding A ↪→ MN(C), with N the rank of A over C.

This natural internal trace of A is merely the composition of this embedding and

the standard trace, tr : MN(C)→ C.

In conjunction with the material in § 2.2.1 the following theorem connects our

work with discriminants with Poisson algebras.

Theorem 2.3.1. [30, Theorem 3.2] Let A be a K[q±1]-algebra for a field K of

characteristic 0 which is a torsion free K[q±1]-module and ε ∈ K×. Assume that
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the specialization Aε ..= A/(q − ε)R is a free module of finite rank over a Pois-

son subalgebra Cε of its center and that Cε is a unique factorization domain as a

commutative algebra.

(i) Let tr : Aε → Cε be a trace map which commutes with all derivations ∂ of Aε

such that ∂(Cε) ⊆ Cε. The corresponding discriminantd(Aε/Cε) either equals

0 or

d(Aε/Cε) =C×ε

m∏
i=1

pi

for some (not necessarily distinct) Poisson prime elements p1, . . . , pm ∈ Cε.

(ii) The internal trace coming from the freeness of Aε as a Cε-module commutes

with all derivations ∂ of Aε such that ∂(Cε) ⊆ Cε.

2.3.1 Applications of Discriminants

Beyond providing a useful tool for understanding Poisson algebras in particular,

discriminants play an important role in algebraic number theory, algebraic geome-

try and combinatorics [18, 34]. In noncommutative algebra they are useful for the

study of orders [31]. Of late, they were found to have high utility in the study of

the automorphism and isomorphism problems for PI algebras and in the Zariski

cancellation problem for noncommutative algebras [5, 9, 10].

Here we will review some of terminology and results in Ceken–Palmieri–Wang–

Zhang [9], Makar-Limanov [28], and Bell–Zhang [5]. To do so, we fix a unital T -

algebra A, before choosing a generating set x1, . . . , xn of A, such that {1, x1, . . . , xn}

is T -linearly independent. We define FiA to be the filtration of A where deg xi = 1,

∀i, i.e., Fk(A) ..= (T.1 + Tx1 + · · ·+ Txn)k. Here, we further define:

Definition 2.3.2. (i) [9, Definition 2.1 (1)] An element f ∈ A is called locally

dominating if for every φ ∈ AutT (A):

1. deg φ(f) ≥ deg f and
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2. deg φ(f) > deg f if deg(φ(xi)) > deg xi for at least one i,

where the degrees are computed with respect to the filtration FkA.

(ii) [5, Definition 5.1 (2)] An element f ∈ A is called effective if A has (a possibly

different) filtration FkA whose associated graded algebra is a connected N-graded

domain with the following property. For every testing N-filtered PI T -algebra S,

whose associated graded is a domain, and for every testing subset {y1, . . . , yn} ⊂ S,

satisfying

1. {1, y1, . . . , yn} is T -linearly independent and

2. degS yj ≥ degA xj for all j and degS yi > degA xi for some i (with respect to

the filtration FkA),

f has a lift f(x1, . . . , xn) in the free algebra T 〈x1, . . . xn〉 such that either f(y1, . . . , yn) =

0 or degS f(y1, . . . , yn) > degA f .

We note that a stronger notion of dominating elements of algebras was used

in [9].

Definition 2.3.3. (i) An algebra A is called cancellative, if A[t] ∼= B[t] for an

algebra B implies A ∼= B.

(ii) An algebra A is called strongly cancellative if, for all k ≥ 1, A[t1, . . . , tk] ∼=

B[t1, . . . , tk] for an algebra B implies A ∼= B.

Denote LND(A) to be the T -module of locally nilpotent derivations of A. Then,

the Makar-Limanov invariant [28] of A is defined to be

ML(A) ..=
⋂

∂∈LND(A)

Ker ∂,

with ML(A) ..= A if LND(A) = 0. An algebra A will be called [5, 28] LND-rigid

when ML(A) = A, and strongly LND-rigid when ML(A[t1, . . . , tk]) = A for all

k ∈ Z+.
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A locally nilpotent higher derivation of A will be a sequence ∂ ..= (∂0 = id, ∂1, . . .)

of T -endomorphisms of A where

a 7→
∞∑
j=0

∂j(a)tk

becomes a well-defined T [t]-algebra automorphism of A[t]. This requires that for

all a ∈ A, ∂j(a) = 0 for sufficiently large j. It then follows that ∂1 must be a

derivation of A. LNDH(A) then denotes the set of such elements, ∂. The higher

Makar-Limanov invariant [5] of A is defined by

MLH(A) ..=
⋂

∂∈LNDH(A)

Ker ∂, where Ker ∂ =
⋂
j≥1

Ker ∂j.

We call an algebra A, strongly LNDH-rigid, when MLH(A[t1, . . . , tk]) = A for all

k ∈ Z+ and when T is an extension of Q, then A is LND-rigid if and only if it is

LNDH-rigid, as described in [5, Remark 2.4 (a)].

Theorem 2.3.4. Assume that A is a T -algebra which is a free module over Z(A)

of finite rank.

(i) [9, Theorem 2.7] If the discriminant d(A/Z(A)) is locally dominating with

respect to the filtration FkA associated to a set of generators {x1, . . . , xn},

then every φ ∈ AutT (A) is affine in the sense that φ(F1A) = F1A.

(ii) [5, Theorem 5.2] If A is a domain and the discriminant d(A,Z(A)) is ef-

fective, then A is strongly LNDH-rigid. If, in addition, A has finite Gelfand-

Kirillov dimension, then A is strongly cancellative.

We again note that a stronger cancellation property than the one in Theorem

2.3.4 (ii) was proved in [5, Theorem 5.2]

17



2.4 Quantum Cluster Algebras

The final major tool to be used within this dissertation are Cluster algebras, which

were first introduced by Fomin and Zelevinsky in [13]. The quantum cluster algebra

was then first defined by Berenstein and Zelevinsky in [7] before later being further

generalized in [23]. One motivation for naming quantum cluster algebras as they

are is that they have, in general, infinitely many localizations that are isomorphic

to quantum tori whose generators are related by cluster mutations. The whole

quantum cluster algebra is then generated by the union of all such generators.

The second proof of Theorem 1.2.2 (ii) in § 5.2 relies on evaluating the discrimi-

nant of a quantum cluster algebra in terms of the discriminants of its corresponding

quantum tori which are more straightforward to compute. This yields a formula

for the discriminant as a product of frozen cluster variables.

Motivation for this approach can be found from the following insight. Given εj

that are not roots of unity, the quantized Weyl algebras AE,Bn (T ) define symmetric

CGL extensions, and thus by [24, Theorem 8.2] there exist quantum cluster algebra

structures on AE,Bn (T ) when T is a field. Focusing instead on the PI case, we will

only need two quantum clusters whose intersection is precisely the set of frozen

variables.

Proposition 2.4.1. Let T be an integral domain, n ∈ Z+, and εj, βjk ∈ T×, εj 6= 1

be such that εj − 1 ∈ T× for all j.

(i) The localization of AE,Bn (T )[y−1
j , 1 ≤ j ≤ n] is isomorphic to the mixed skew-

polynomial/quantum torus algebra over T with generators

y±1
j , zj, j ∈ [1, n]

and relations

yjyk = βjkykyj, zjzk = zkzj, zjyk = ε
δk≤j
k ykzj, j, k ∈ [1, n]. (2.1)
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(ii) The localization of AE,Bn (T )[x−1
j , 1 ≤ j ≤ n] is isomorphic to the mixed skew-

polynomial/quantum torus algebra over T with generators x±1
j , zj, j ∈ [1, n]

and relations

xjxk = εjβjkxkxj, j < k; zjzk = zkzj, zjxk = ε
−δk≤j
k xkzj, j, k ∈ [1, n].

Proof. Here part (i) follows from the definition of AE,Bn (T ) and from (3.1) that the

elements yj, zj ∈ AE,Bn (T ) must satisfy the stated relations. As the generators xj

of AE,Bn (T ) can be redefined in terms of the elements y±1
j , zj by

xj = (εj − 1)−1y−1
j (zj − zj−1),

now that yj is invertible, the isomorphism follows. Part (ii) follows in the exact

same manner considering yj in terms of x±1
j , zj and the remaining relations.

We note as before that the quantum clusters from parts (i) and (ii) of Proposition

2.4.1 correspond to those constructed in [23, Theorem 1.2]. Starting from the CGL

extension presentations of AE,Bn (T ) associated to the adjunction of their generators

in the orders

yn, . . . , y1, x1, . . . , xn and xn, . . . , x1, y1, . . . , yn,

respectively. While a useful motivating viewpoint, a technical difference arises as

Proposition 2.4.1 allows the scalars ε1, . . . , εn to be roots of unity other than 1,

while the general result of [23] requires that each of ε1, . . . , εn not be roots of unity.
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Chapter 3
Centers of Quantized Weyl Algebras

Having established the building blocks of quantized Weyl algebras and other tools,

we describe the centers of those that are PI. In particular, we will classify those PI

quantized Weyl algebras free over their centers by relating this property to other

properties of the algebras and their associated graded algebras. In calculating the

centers of AE,Bn (T ) and grAE,Bn (T ) we assume the relations (1.3). To determine

the grading we fix positive integers χ1 < χ2 < · · · < χn, and use the N-filtration

on our algebras AE,Bn (T ) from §1.1 where deg xj = deg yj = χj. We denote the

filtered components by FjA
E,B
n (T ), for j ∈ N. The canonical map gr : AE,Bn (T ) →

grAE,Bn (T ) is determined by

r 7→ r + Fj−1A
E,B
n (T ) for r ∈ FjAE,Bn (T ), r /∈ Fj−1A

E,B
n (T ).

Following the notation from §1.1, we have

xj = gr(xj), yj = gr(yj).

Then, as previously mentioned in §1.2 the elements

zj := 1 + (ε1 − 1)y1x1 + · · ·+ (εj − 1)yjxj = [xj, yj] ∈ AE,Bn (T ), j ∈ [1, n]

are normal. In fact,

zjxk = ε
−δk≤j
k xkzj, zjyk = ε

δk≤j
k ykzj, j, k ∈ [1, n]. (3.1)

Setting z0 := 1, the last relation from (1.1) becomes

xjyj = εjyjxj + zj−1, zj−1xj = xjzj−1, yjzj−1 = zj−1yj, j ∈ [1, n]. (3.2)
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It then follows that

x
dj
j yj = yjx

dj
j , y

dj
j xj = xjy

dj
j (3.3)

and hence that, x
dj
j , y

dj
j ∈ AE,Bn (T ) normalize all generators xk, yk.

3.1 Proof of Theorem 1.2.1 (i)

To begin we define the set of elements

C(E,B) := {(b1, a1, . . . , bn, an) ∈ N2n | dj|(bj − aj),∀j ∈ [1, n],∑
j

(bj − aj)mjk

djk
+ (ak + · · ·+ an)

mk

dk
∈ Z,∀k ∈ [1, n]}.

Which enables the following explicit description of Theorem 1.2.1 (i). We also

define the extension of T , T ′ := T [(εj − 1)−1, 1 ≤ j ≤ n].

Theorem 3.1.1. Let T be an integral domain. Assume the setting of (1.3). The

centers of grAE,Bn (T ) and AE,Bn (T ′) are given by

Z(grAE,Bn (T )) = SpanT

{∏
y
bj−aj
j (yjxj)

aj
}

= SpanT

{∏
y
bj
j x

aj
j

}
, (3.4)

Z(AE,Bn (T ′)) = SpanT ′
{∏

y
max{bj−aj ,0}
j z

min{bj ,aj}
j x

max{aj−bj ,0}
j

}
, (3.5)

whose spans range over (b1, a1, . . . , bn, an) ∈ C(E,B).

The T ′-algebras Z(AE,Bn (T ′)) and Z(grAE,Bn (T ′)) are isomorphic.

Conveniently, the theorem implies that for all integral domains T , the center of

AE,Bn (T ) is given by

Z(AE,Bn (T )) = SpanT ′
{∏

y
max{bj−aj ,0}
j z

min{bj ,aj}
j x

max{aj−bj ,0}
j

}⋂
AE,Bn (T )

avoiding added unpleasantries from T ′. The spanning set here consists of monomi-

als of 2 factors which are powers of the normal elements y
dj
j , zj, x

dj
j of AE,Bn (T ).

Proof. We begin by defining a generic central element r := yb11 x
a1
1 . . . ybnn x

an
n From

(3.1) we have that the elements zj are normal requiring

(gr zj)(gr zj−1)−1r = ε
bj−aj
j r(gr zj)(gr zj−1)−1,
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implying that dj|(bj − aj) by the grading. As r must be normal, the identity ryk =

ykr forces

∑
j

(bj − aj)mjk

djk
+ (ak + · · ·+ an)

mk

dk
∈ Z.

establishing the inclusion ⊆ in (3.4). In the opposite direction, we have that

gr(zj) = (εj − 1)yjxj where the elements of the set {xj, yj | j ∈ [1, n]} gener-

ate grAE,Bn (T ) and thus ⊇ holds as well.

It is straightforward to then see the inclusion ⊆ in (3.5) follows from the fact that

gr(Z(AE,Bn (T ′))) ⊆ Z(grAE,Bn (T ′)). Then ⊇ is proved by a series of calculations

stemming from the fact that zj, x
dj
j and y

dj
j are normal elements of AE,Bn (T ), these

must then normalize the generators xk, yk, enabling the application of the first

four relations in (1.1) along with (3.3).

The isomorphism of T ′-algebras Z(AE,Bn (T ′)) ∼= Z(grAE,Bn (T ′)) is determined in

a canonical manner by r 7→ gr r. Here r ranges over the T ′-basis of Z(AE,Bn (T ′))

expressed by the RHS of (3.5). The fact that the elements x
dj
j , zj and y

dj
j normalize

each other, along with the congruences in (3.4) and (3.5) complete the proof.

3.2 Proof of Theorem 1.2.1 (ii)

The proof of Theorem 1.2.1 (ii) is requires a more elaborate setup. To begin with,

the fact that (a) ⇔ (b) in Theorem 1.2.1 (ii) is a general fact for skew polynomial

algebras as determined in [10, Lemma 2.3].

Next, we demonstrate the sequence of implications (c) ⇒ (a) ⇒ (b) ⇒ (e) ⇒

(c). When (c) is satisfied, AE,Bn (T ′) is a free module over Z(AE,Bn (T ′)), and an

examination of the leading terms of its basis in conjunction with the fact that

Z(AE,Bn (T ′)) ∼= Z(grAE,Bn (T ′)) (Theorem 3.1.1), proves that (a) holds.
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Again using [10, Lemma 2.3], (a)⇒ (b) and when (b) is satisfied, then Z(grAE,Bn (T ))

is a polynomial algebra over T with generators x1, y1, . . . , xn, yn. Thus,

Z(grAE,Bn (T )) = T [xg1

1 , y
h1
1 , . . . , x

gn
n , y

hn
n ]

for a a collection of powers g1, h1, . . . , gn, hn ∈ Z+. By its explicit description of

the centers, Theorem 3.1.1 implies that

(yj−1xj−1)c(yjxj)
dj ∈ Z(grAE,Bn (T ))

for all c ∈ N such that dk|(c + dj) for k < j. Focusing on the second term,

(yjxj)
dj ∈ T [xg1

1 , y
h1
1 , . . . , x

gn
n , y

hn
n ] by assumption it follows that gj|dj and hj|dj.

Additionally, the last commutation relation in (1.1) gives that dj|gj and dj|hj and

thus we have that gj = hj = dj for all j ∈ [1, n]. Furthermore,

Z(grAE,Bn (T )) = T [xd1
1 , y

d1
1 , . . . , x

dn
n , y

dn
n ].

Since x
dj
j , y

dj ∈ Z(grAE,Bn (T )), the first and fourth relations in (1.1) yield

β
dj
jk = 1 for k ∈ [1, n], (εkβkj)

dj = 1 for k < j.

Thus, ε
dj
k = 1 for k < j and djk|dj for all k and dk|dj for all k < j, establishing

that (b) ⇒ (e).

Next by assuming (e) we will establish the following

C(E,B) = {(a1, b1, . . . , an, bn) ∈ N2n | dj|aj and dj|bj, ∀j}. (3.6)

The first part of the definition of C(E,B), requires that dj | (aj − bj) and by (e),

djk | dj, ∀k. The second part of the definition of C(E,B) becomes dk | (ak + · · ·+

an), ∀k. Since dk | dj for k < j by starting with k = n and working towards k = 1

one may deduce that this condition is equivalent to: dk|ak for all k. Then we may
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use that Theorem 3.1.1 and (3.6) imply (1.4), and thus (c) is true. Hence (e) ⇒

(1.4) ⇒ (c).

We conclude this by establishing we show that (e) ⇒ (d) ⇒ (b). It follows that

(1.4) ⇒ (d) and we earlier proved that (e) ⇒ (1.4), so (e) ⇒ (d).

Assuming instead that (d) is satisfied. It then follows from (3.5) that

Z(AE,Bn (T ′)) ∼= Z(AE,Bn (T ))⊗T T ′,

describing Z(AE,Bn (T ′)) as a polynomial algebra over T ′. As Z(AE,Bn (T ′)) ∼= Z(grAE,Bn (T ′))

as T ′-algebras by Theorem 3.1.1, we find that Z(grAE,Bn (T ′)) is a polynomial alge-

bra over T ′. For the center of a skew polynomial ring to be a polynomial algebra de-

pends on its structure constants rather than the base ring. Therefore Z(grAE,Bn (T ))

is a polynomial algebra over T , so (d) ⇒ (b) which completes the proof.

Example 3.2.1. If we examine the case where n = 2, with βjk = 1 for all j, k.

Then,

C(E,B) =
(
Z(d1, 0, 0, 0) + Z(0, d1, 0, 0)+

+ Z(−d2,−d2, d2, 0) + Z(0, 0, 0, d2)
)
∩ N4.

Were d1 - d2, then we have that Z(grAE,B2 (T )) and Z(AE,B2 (T )) are not a polyno-

mial rings.
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Chapter 4

The Poisson Structure of Z(AE,B
n (T ))

In this chapter we describe the Poisson structure induced on the centers of the

PI quantized Weyl algebras by characterizing them as specializations of general

quantizations at roots of unity. This characterization will allow the results of [30]

described in §2.3 to be brought to bear on the questions at hand. Once the Poisson

structure is established we define the exact Poisson primes of Z(AE,Bn (T )). The

material here extends the background introduced in Chapter 2, enabling proofs of

Theorem 1.2.2 (i) & (ii) in Chapter 5 to follow.

4.1 The Induced Poisson Structure

We begin by defining AE,Bn (T )q, the algebra over T [q±1] with generators x̃j, ỹj

and relations following (1.1) substituting qdnmj/dj for each εj and qdnmjk/djk for

each βjk, with q a general indeterminate and AE,Bn (T )q a domain. Now define

ε ..= exp(2πi/dn) ∈ T×, giving εj = εdnmj/dj and βjk = εdnmjk/djk . Then AE,Bn (T )

is the specialization of AE,Bn (T )q at q = ε as proven in the following lemma.

Lemma 4.1.1. For any integral domain T , there is a unique T -algebra homomor-

phism σ : AE,Bn (T )q → AE,Bn (T ) such that σ(x̃j) = xj, σ(ỹj) = yj, σ(q) = ε. Its

kernel is kerσ = (q−ε)AE,Bn (T )q. The map σ realizes AE,Bn (T ) as the specialization

of AE,Bn (T )q at q = ε.

The proof, while straightforward is not particularly enlightening and has been

omitted.

With the map σ well-defined, we may proceed to use this specialization to induce

a Poisson structure on Z(AE,Bn (T )). We begin by recalling (1.6) and (1.7) where

Xj, Yj, Zj ∈ Z(AE,Bn (T )) are defined.
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Proposition 4.1.2. Let T be an integral domain and assume that the conditions

in Theorem 1.2.1 (ii) are satisfied. Then

σ(z̃j)
dj = z

dj
j = Zj ∈ Z(AE,Bn (T )). (4.1)

The induced Poisson bracket on Z(AE,Bn (T )) is given by

{Xj, Yj} = mjdjdnε
−1(XjYj − (1− εj)−djZj−1), ∀j,

{Yj, Yk} =
mjkdjdkdn

djk
ε−1YjYk, ∀j, k,

{Xj, Yk} = −mjkdjdkdn
djk

ε−1XjYk, j < k, (4.2)

{Xj, Xk} = djdkdn

(
mj

dj
+
mjk

djk

)
ε−1XjXk, j < k,

{Xj, Yk} = djdkdn

(
mk

dk
+
mkj

dkj

)
ε−1XjYk, j > k

satisfying

{Zj, Xk} = −δk≤jdjdkdnε−1ZjXk, (4.3)

{Zj, Yk} = δk≤jdjdkdnε
−1ZjYk, {Zj, Zk} = 0, ∀j, k.

Proof. Beginning with the equation (3.2), we find that

z
dj
j = ((εj − 1)yjxj + zj−1)dj = (εj − 1)djε

dj(dj−1)/2
j y

dj
j x

dj
j +

dj−1∑
i=1

tiy
i
jx
i
jz
dj−i
j−1 + z

dj
j−1

for some ti ∈ T . One can verify this directly by using the q-binomial identities, but

a slicker approach notes that Z(AE,Bn (T )) is generated by xdkk , y
dk
k , k ∈ [1, n] and

since z
dj
j ∈ Z(AE,Bn (T )), ti = 0 for all i. Therefore,

σ(z̃j)
dj = z

dj
j = (εj − 1)djε

dj(dj−1)/2
j y

dj
j x

dj
j + z

dj
j−1.

As

ε
1+···+(dj−1)
j = (−1)dj−1 (4.4)
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holds, (4.1) follows from the definition (1.7) of Zj by induction on j.

From the first relation in (3.2) we can get

x̃
dj
j ỹ

dj
j − qmjdjdn ỹ

dj
j x̃

dj
j =

dj−1∑
i=0

tiỹ
i
jx̃
i
j z̃
dj−i
j−1

for t0 =

dj∏
k=1

(1 + qdnmj/dj + · · ·+ q(k−1)dnmj/dj), ti ∈ T [q±1].

Then, since (1.4) implies σ(tiỹ
i
jx̃
i
j z̃
dj−i
j−1 /(q − ε)) = 0 when 0 < i < dj we have

{Xj, Yj} = σ

(
x
dj
j y

dj
j − y

dj
j x

dj
j

q − ε

)
= mjdjdnε

−1(XjYj − (1− εj)−djZj−1)

.

Having taken care of the first relation, the remaining Poisson brackets between

{Xj, Yk | j, k ∈ [1, n], j 6= k} follow from the defining relations of AE,Bn (T )q. Simi-

larly, the Poisson brackets in (4.3) follow the normalizing identities in AE,Bn (T )q

z̃jx̃k = q−δk≤jdn/dk x̃kz̃j, z̃j ỹk = qδk≤jdn/dk ỹkz̃j, z̃j z̃k = z̃kz̃j,

mirroring (3.1) and holding for all j, and k.

4.2 Poisson Prime Elements of Z(AE,Bn (T ))

Having established the Poisson structure of Z(AE,Bn (T )), we can now classify its

Poisson primes. Restricting ourselves to the conditions of interest delineated in

Theorem 1.2.1 (ii) and to the case where T = C, we denote by π the Poisson

structure on SpecZ(AE,Bn (C)) ∼= A2n corresponding to the Poisson bracket above in

Proposition 4.1.2. Following the definitions (1.6)–(1.7) of the elements Xj, Yj, Zj ∈

Z(AE,Bn (C)) laid out in Chapter 2 we find the following.

Proposition 4.2.1. For T = C and under the conditions in Theorem 1.2.1 (ii),

the following hold:
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(i ) The Poisson structure π is symplectic on the complement of

(∪jV(Xj)) ∪ (∪jV(Zj)). (4.5)

(ii) The Poisson prime elements of (Z(AE,Bn (T )), {., .}) are Z1, . . . , Zn.

Proof. We begin by letting the complement of (4.5) in A2n be labeled W . The

recursion (1.7) is linear and thus the elements Zj ∈ Z(AE,Bn (C)) must be irre-

ducible and hence prime. Similarly, the functions {Xj, Zj | j ∈ [1, n]} thus form a

coordinate chart on W .

Then (i) is established by the fact that {Xj, Xk} ∈ C[X1, . . . , Xn], {Zj, Zk} = 0

and {Zj, Xk} = −δk≤jdjdkdnZjXk.

To establish (ii) requires modestly more work. The brackets in Proposition 4.1.2

demonstrate that Z1, . . . , Zn are Poisson prime elements of (Z(AE,Bn (T )), {., .}).

While Proposition 4.1.2 simultaneously shows that the elements Xj are not Poisson

normal, and cannot then be Poisson prime. Given f ∈ Z(AE,Bn (T )) to be any other

Poisson prime element, then, as W is symplectic and the zero locus of a Poisson

prime element consists of a union of symplectic leaves (§2.2.2), V(f) would intersect

W nontrivially forcing V(f) ⊃ W . But this is then a contradiction, so no other

Poisson prime element f ∈ Z(AE,Bn (T )) can exist.

Pleasantly, the combination of Proposition 4.1.2 and Proposition 4.2.1 prove

Theorem 1.2.2 (i).
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Chapter 5
Two Proofs of Theorem 1.2.2 (ii)

This chapter consists of two distinct proofs of Theorem 1.2.2 (ii). While previous

work [17, 23, 24] has shown that there are close connections between Poisson

geometry and cluster algebras, the two proofs here should not necessarily be seen

as a continuation of this idea. In fact, as mentioned previously, the two proofs

describes the irreducible factors of distinct algebras. The first proof focuses on the

Poisson primes of Z(AE,Bn (T )). While the second proof uses the cluster algebra

structure of the entire algebra AE,Bn (T ).

5.1 A Proof via Poisson Geometry

We begin our first proof via Poisson geometry by denoting tr : AE,Bn (T )→ Z(AE,Bn (T )),

the internal trace associated to the natural embeddingsAE,Bn (T ) ↪→MN2(Z(AE,Bn (T )))

by Z(AE,Bn (T ))-bases of AE,Bn (T ), where N = d1 . . . dn. Here

B ..= {xl
′
1

1 y
l1
1 . . . x

l′n
n y

ln
n | lj, l′j ∈ [0, dj − 1]}

defines a Z(AE,Bn (T ))-basis of AE,Bn (T ). The goal is to show that

εmdN2(B : tr) = ηZ
N2(d1−1)/d1

1 . . . ZN2(dn−1)/dn
n (5.1)

= ηz
N2(d1−1)
1 . . . zN

2(dn−1)
n

for some m ∈ Z determined by E and B, with η ∈ T is the scalar defined by

Theorem 1.2.2 (ii), and ε = exp(2π
√
−1/dn) ∈ T× as in §4.1. Here

η =
(
N2(1− ε1)−d1+1 . . . (1− εn)−dn+1

)N2

, (5.2)

because

(1− εj)dj−1

dj−2∏
i=1

(1 + εj + · · ·+ εij) =

dj−1∏
i=1

(1− εij) = dj. (5.3)
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Importantly, dj(1 − εj)
−dj+1 ∈ T×. Now as AE,Bn (T ) is defined over Z[ε] with

B ⊂ AE,Bn (Z[ε]), it will suffice to prove (5.1) for T = Z[ε], and thus we assume that

T = Z[ε].

Using the filtration of AE,Bn (T ) from §1.1, and following [10, Proposition 4.10],

we have that

gr dN2(B : tr) = dN2(grB : tr).

But by Theorem 1.2.1 (i) grB is a Z(grAE,Bn (T ))-basis of grAE,Bn (T ), and so the

right hand side of the equation uses the internal trace of grAE,Bn (T ) relative to this

basis. We can then apply [10, Proposition 2.8] as grAE,Bn (T ) is a skew polynomial

algebra, to find that

εm
′
dN2(grB : tr) = N2N2

(x1y1)N
2(d1−1) . . . (xnyn)N

2(dn−1)

for some m′ ∈ Z. As gr zj = (εj − 1)xjyj, (5.2) implies that

εm
′
gr dN2(B : tr) = ±η gr(z

N2(d1−1)
1 . . . zN

2(dn−1)
n ), (5.4)

where ± = (−1)N
2(d1+···+dn−n), a power of ε by (4.4). The process of working with

T is simplified by first passing from T = Z[ε] to its field of fractions. Thus to prove

Theorem 1.2.2 (ii), it is suffices to cover the case where T = Q(ε) and, by extension,

the case where T = C. We therefore assume that T = C. Then combining Theorem

2.3.1 and Proposition 4.2.1 (ii), yields

d(AE,Bn (C)/Z(AE,Bn (C))) =C× z
s1
1 . . . zsnn (5.5)

for some s1, . . . , sn ∈ N, but (5.4) shows that sj = N2(dj − 1) for each j ∈

[1, n]. This resolves (5.1) for T = C. The first and second equalities are related by

Proposition 4.1.2, where Zj = z
dj
j , and second equality for T = C directly follows

by combining (5.5) and (5.4).
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Remark 5.1.1. We note that a nice conceptual proof of the fact that the discrim-

inant formula in Theorem 1.2.2 (ii) does not depend on the matrix B comes from

the use of 2-cocycle twists [1]. To begin, one may denote by 1n the n × n matrix

filled with 1’s. Then AE,1nn (T ) and AE,Bn (T ) are Zn-graded by

deg yj = − deg xj = ej,

where e1, . . . , en is the standard basis of Zn. The algebra AE,Bn (T ) can be obtained

from AE,1nn (T ) by the 2-cocycle twist [1] via the cocycle

γ : Z× Z→ T×, γ(ej, ek) = γ(ek, ej)
−1 ..=

√
βjk, j < k.

When AE,Bn (T ) is of the type required for Theorem 1.2.1 (ii), then so is AE,1nn (T ).

Both algebras have centers generated by x
dj
j , y

dj
j , with the twist on ZE,1nn (T ) triv-

ial, which is to say that it leaves the product invariant with respect to the twist.

By checking the degrees, one can verify that the trace of a homogeneous ele-

ment of AE,1nn (T ) is also invariant under the twist implying that the two discrim-

inants d(AE,Bn (T ),Z(AE,Bn (T ))) and d(AE,1n(T ),Z(AE,1nn (T ))) are equal. Similar

arguments can establish the independence of the discriminant formula in Theorem

A.1.2 on the entries of the matrix B.

5.2 A Proof via Quantum Cluster Algebras

As above we will show that it is sufficient to prove the theorem in the case when

εj−1 ∈ T× for all j, and then proceed to do so. Starting with an arbitrary integral

domain T , let

T ′ ..= T [(εj − 1)−1, 1 ≤ j ≤ n].

Assuming that the theorem is valid for T ′, by (5.2), we have that

d(AE,Bn (T ′)/Z(AE,Bn (T ′))) =(T ′)× N
2N2

z
N2(d1−1)
1 . . . zN

2(dn−1)
n .
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Therefore,

d(AE,Bn (T )/Z(AE,Bn (T ))) =T× νN
2N2

z
N2(d1−1)
1 . . . zN

2(dn−1)
n ,

for some ν ∈ T ′. Again following [9, Propositions 2.8 and 4.10] and using the same

argument as on (5.4),

gr d(AE,Bn (T )/Z(AE,Bn (T ))) =T× η(gr z1)N
2(d1−1) . . . (gr zn)N

2(dn−1)

with respect to the filtration originally defined in §1.1. This implies that νN2N2
=T×

η and

d(AE,Bn (T )/Z(AE,Bn (T ))) =T× ηz
N2(d1−1)
1 . . . zN

2(dn−1)
n .

Henceforth we assume that εj − 1 ∈ T× for all j. Let A(y, z, T ) be the skew

polynomial algebra over T with generators yj, zj, for j ∈ [1, n] and relations (2.1).

Then Proposition 2.4.1 (i) implies that

AE,Bn (T )[y
−dj
j , 1 ≤ j ≤ n] ∼= A(y, z, T )[y

−dj
j , 1 ≤ j ≤ n]

and we label this algebra A. As Z(AE,Bn (T )) = T [x
dj
j , y

dj
j , 1 ≤ j ≤ n], in conjunction

with (1.7) and (4.1) we find that

Z(A) = T [y
±dj
j , z

dj
j , 1 ≤ j ≤ n] and Z(A(y, z, T )) = T [y

dj
j , z

dj
j , 1 ≤ j ≤ n].

Now both A and A(y, z, T ) are free over their centers, and since A is a central

localization of both AE,Bn (T ) and A(y, z, T ), the internal trace tr : A→ Z(A) is an

extension of the internal traces tr : AE,Bn (T ) → Z(AE,Bn (T )) and tr : A(y, z, T ) →

Z(A(y, z, T )). Furthermore,

d(AE,Bn (T )/Z(AE,Bn (T ))) =Z(A)× d(A/Z(A)) =Z(A)× d(A(y, z, T )/Z(A(y, z, T ))),

(5.6)
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so by [10, Proposition 2.8]

d(A(y, z, T )/Z(A(y, z, T ))) =T× N
2N2

z
N2(d1−1)
1 . . . zN

2(dn−1)
n

noting that N ∈ T×.

From (5.6) we have that

d(AE,Bn (T )/Z(AE,Bn (T ))) =T× N
2N2

yh1d1
1 . . . yhndnn z

N2(d1−1)
1 . . . zN

2(dn−1)
n

for a given hj ∈ Z. While Proposition 2.4.1 (ii) implies that

d(AE,Bn (T )/Z(AE,Bn (T ))) =T× N
2N2

xg1d1

1 . . . xgndnn z
N2(d1−1)
1 . . . zN

2(dn−1)
n

for some gj ∈ Z. As AE,Bn (T ) is a domain and can be characterized as an iterated

skew polynomial extension, we have that

yh1d1
1 . . . yhndnn =T× x

g1d1

1 . . . xgndnn ,

which can only occur when gj = hj = 0 as

{yl11 . . . ylnn x
l′1
1 . . . x

l′n
n | lj, l′j ∈ N}

defines a T -basis of AE,Bn (T ). Therefore

d(AE,Bn (T )/Z(AE,Bn (T ))) =T× N
2N2

z
N2(d1−1)
1 . . . zN

2(dn−1)
n ,

and Theorem 1.2.2 (ii) is now proven in a second manner.

Remark 5.2.1. Chan, Young and Zhang [11] in their proof of the case n = 1 of

Theorem 1.2.2 (ii) also implicitly utilize quantum cluster algebras, despite their

proofs apparent differences. They generate a quantum torus using the elements y1

and y−1
1 z1. Whereas in the above proof one of the clusters is defined by the cluster

variables y1, z1, defining the same quantum tori in both proofs.
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Chapter 6
Automorphisms and Isomorphisms of PI
Quantized Weyl Algebras

This final dissertation chapter focuses on the study of tensors of quantized Weyl

algebras, in doing so it completes the proofs of Theorem 1.2.2 (iii) and Theorem

1.2.3. In doing so we first revisit the conditions of effective and locally dominating

functions covered in §2.3.1, defining two new filtrations on our algebras, distinct

from those outlined in §1.1 in order to facilitate working with these definitions.

6.1 Discriminant Properties of PI Quantized Weyl Algebras

To begin our consideration of tensors of quantized Weyl algebrasAE1,B1
n1

(T ), . . . , AEl,Blnl
(T )

we begin with the following definitions. Let

Z(A) ⊃ Z(A) ..=
l⋃
i

{Zj ∈ Z(AEi,Bini
(T ))}

be the union of the Poisson prime elements over the center of each quantized Weyl

algebra while

A ⊃ z(A) ..=
l⋃
i

{zj ∈ AEi,Bini
(T )}

be the union of all normal elements of each quantized Weyl algebra and x(A) ⊂ A

and y(A) ⊂ A define the collections of all x and y-generators of A. Then Theorem

1.2.2 (iii) can be completed by proving the proposition below.

Proposition 6.1.1. Let AE1,B1
n1

(T ), . . . , AEl,Blnl
(T ) be a set of quantized Weyl al-

gebras over an integral domain T of characteristic 0, satisfying the conditions in

Theorem A (ii). Let A be their tensor product over T . The discriminant d(A,Z(A))

is

(i) locally dominating and

(ii) effective.
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Since

d(A/Z(A)) = d(AE1,B1
n1

(T )/Z(AE1,B1
n1

(T ))) . . . d(AEl,Blnl
(T ),Z(AEl,Blnl

(T ))), (6.1)

Proposition 6.1.1 (i) then follows by Lemma 6.1.2 below and Theorem 1.2.2 (ii).

Lemma 6.1.2. Let φ ∈ AutT (A).

(i) For each z ∈ z(A), deg φ(z) ≥ 2.

(ii) If deg φ(x) > 1 for at least one x ∈ x(A) or deg φ(y) > 1 for at least one

y ∈ y(A), then deg φ(z) > 2 for some z ∈ z(A).

We define by {FjA} the first new N-filtration of A with degrees on the generators

of

deg x = deg y = 1 for all x ∈ x(A), y ∈ y(A). (6.2)

Proof of Lemma 6.1.2. To prove part (i) we first note that a series of calculations

verifies that the normal elements of AEi,Bini
(T ) in the first degree of the filtration,

F1A
Ei,Bi
ni

(T ) are those of the form T.1 and they are simultaneously central elements.

As φ is an automorphism, it follows that φ(z) remains a normal element in A for

every z ∈ z(A). But φ(z) cannot be central, and thus φ(z) /∈ F1A.

To verify part (ii) we begin with φ ∈ AutT (A) such that deg φ(x) > 1 or

deg φ(y) > 1 for at least one x ∈ x(A) or y ∈ y(A). In this event we have i ∈ [1, l]

and j ∈ [1, ni] so that the x- and y-generators, x1, y1, . . . , xni , yni , of AEi,Bini
(T ),

satisfy

deg φ(xk) = deg φ(yk) = 1 for k < j and deg φ(xj) > 1 or deg φ(yj) > 1.

Then as zj ..= 1+(ε1−1)y1x1 + · · ·+(εj−1)yjxj it follows that, deg φ(xj)φ(yj) > 2

and

deg(1 + (ε1 − 1)φ(y1)φ(x1) + · · ·+ (εj−1 − 1)φ(yj−1)φ(xj−1)) ≤ 2,
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and hence deg φ(zj) > 2.

Remark 6.1.3. It is worth noting that the discriminants considered in [9, 10, 11]

have unique leading terms in certain generating sets as a general property, which

is to say they are linear combinations of monomials, where the powers of the

trailing monomials are componentwise less than those of a leading one. This implies

the (global) dominance by those discriminants following [9, Lemma 2.2 (1)]. Our

discriminants described in Theorem 1.2.2 (ii) do not possess this property in general

and the proof of their local dominance is thus more involved.

To demonstrate the effectiveness of discriminants of PI quantized Weyl algebras

we now consider our second new filtration on A. Using the trivial filtration on A,

where F0A ..= A we then let R be any “testing” filtered PI T -algebra. Choosing

elements θ(x), θ(y) ∈ R corresponding to each x ∈ x(A), y ∈ y(A) ensuring that

there exists an x or y, where θ(x) /∈ F0R or θ(y) /∈ F0R. Again, there exist i ∈ [1, l]

and j ∈ [1, ni] such that the x- and y-generators x1, y1, . . . , xni , yni of AEi,Bini
(T )

satisfy

deg θ(xk) = deg θ(yk) = 0 for k < j and deg θ(xj) > 0 or deg θ(yj) > 0.

And thus,

deg(1+(ε1−1)θ(y1)θ(x1)+· · ·+(εj−1−1)θ(yj−1)θ(xj−1)) ∈ F0R, θ(xj)θ(yj) /∈ F0R.

Again ensuring that

1 + (ε1 − 1)θ(y1)θ(x1) + · · ·+ (εj − 1)θ(yj)θ(xj) /∈ F0R.

The discriminant d(A/Z(A)) is then effective by (6.1) and Theorem 1.2.2 (ii).
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6.2 Classifying AutT (
⊗l

i=1(AEi,Bini
))

As above and in Theorem 1.2.3 we let A be a tensor product of quantized Weyl

algebras. For this section we will require the additional notation:

E(A) = {ε ∈ T × | ε±1 ∈ E1 ∪ · · · ∪ El};

Lε(r) = {r′ ∈ F1A | rr′ = εr′r} for r ∈ A, ε ∈ E(A) ∪ {1},

L(r) =
⊕

ε∈E(A)∪{1}

Lε(r), L∗(r) =
⊕
ε∈E(A)

Lε(r).

Having established this, we proceed directly to the proof of Theorem 1.2.3.

Proof of Theorem 1.2.3. To prove part (i) we again let φ ∈ AutT (A), and now

let K be the field of fractions of T . Extending φ to a K-linear automorphism

of AK
..= A ⊗T K, we use φ to refer to both with context for clarification. φ

then induces a K-linear automorphism on the polynomial algebra Z(AK) (estab-

lished in Theorem 1.2.1 and naturally extended to the finite tensor). Likewise,

we have that φ(d(AK/Z(AK)) =K× d(AK/Z(AK)). As before the prime divisors

of d(AK/Z(AK)) ∈ Z(AK) are Z(A) and thus, for every Z ∈ Z(A) there exists

α0 ∈ K× such that α−1
0 φ(Z) ∈ Z(A).

Given z ∈ z(A), there exists φ(z)k ∈ Z(A) for some k ∈ Z+. It then follows from

the previous conclusion that given any z ∈ Z(A), there exist z′ ∈ Z(A), as well as

k, k′ ∈ Z+ and α0 ∈ K×, such that

φ(z)k = α0(z′)k
′
.

Using again the filtration (6.2) of A. We have that d(AK/Z(AK)) is locally domi-

nating, and by Theorem 2.3.4, φ(F1AK) = F1AK so, φ(z) ∈ F2AK, but by Lemma

6.1.2, φ(z) /∈ F1AK. Similarly, we find that z′ ∈ F2AK and z′ /∈ F1AK. Therefore,

k′ = k by equivalence of degree in the filtration. As both z′, φ(z) ∈ F2A are normal
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elements, (3.1) imply that z′ and φ(z) commute. Hence φ(z)k = α0(z′)k requires

that z′ = αφ(z) for some α ∈ K, necessarily in K, as z′ ∈ AK. Thus

for every z ∈ z(A) there exists α ∈ K× such that α−1φ(z) ∈ z(A). (6.3)

Now, for i ∈ [1, l] we have z ∈ z(A) where L∗(z) = AEi,Bini
and for each z0 ∈

z(A)∩AEi,Bini
, we have L∗(z0) ⊆ AEi,Bini

. Then Theorem 1.2.3 part (i) will follow from

φ(F1A) = F1A by applying Theorem 2.3.4 and using the fact that d(AK/Z(AK))

is locally dominating.

To do so we begin by letting z1, . . . , zni and z′1, . . . , z
′
ni

denote the sequences

of normal elements in AEi,Bini
and A

Eσ(i),Bσ(i)
nσ(i) belonging to z(A). Choose z0 = 1.

Then by (3.1), we have L∗(zj−1) ( L∗(zj), ∀j ∈ [1, ni]. In conjunction with the

facts (6.3) and that φ(F1A) = F1A, there must exist a corresponding sequence

α1, . . . , αn ∈ K× such that

φ(zj) = αjz
′
j for j ∈ [1, n]. (6.4)

By (3.1) we have that for all ε 6= 1

Lε(zj) ∩ L1(zj−1) 6= 0 if and only ε = ε±1
j

and

Lε−1
j

(zj) ∩ L1(zj−1) = Txj, Lεj(zj) ∩ L1(zj−1) = Tyj.

Then equation (6.4) and the fact that φ(F1A) = F1A implies that either

φ(xj) =µjxj, φ(yj) =νjyj or (6.5)

φ(xj) =µjyj, φ(yj) =νjxj (6.6)

for some µj, νj ∈ T . Considering the same setup for φ−1 gives µj, νj ∈ T× then

τj = 1 describes the first case and τj = −1 the second case.
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Recalling that [xj, yj] = zj yields αj = τjµjνj, i.e.

φ(zj) = τjµjνjz
′
j. (6.7)

The two equalities in (1.8) then follow by applying φ to our identity xjyj−εjyjxj =

zj−1 and using (6.7) given (6.5) or (6.6). Likewise (1.9) follows from applying φ

to the homogeneous defining relations of AE,Bn (T ) and using (6.5) or (6.6), which

concludes part(i).

By contrast, part (ii) can be shown directly, while part (iii) combines Theorem

1.2.2 (iii) and 2.3.4 (ii) with the fact that the quantized Weyl algebras have finite

GK-dimension.

6.3 Special Cases of Theorem 1.2.3 (i)-(ii)

It is worth covering two important special cases of Theorem 1.2.3 (i)–(ii) in more

detail. The following two corollaries classify the automorphisms and isomorphisms

of PI quantized Weyl algebras.

Corollary 6.3.1. Let AE,Bn (T ) and AE
′,B′

n′ (T ) be two quantized Weyl algebras

over an integral domain T satisfying the conditions in Theorem 1.2.1 (ii), where

E = (ε1, . . . , εn), E ′ = (ε′1, . . . , ε
′
n′), B = (βjk) and B′ = (β′jk). Then the algebras

AE,Bn (T ) and AE
′,B′

n′ (T ) are isomorphic if and only if n′ = n and there exists a

sequence (τ1, . . . , τn) ∈ {±1}n such that

ε′j = ε
τj
j , ∀j and β′jk =


β
τj
jk, if τk = 1,

(εjβjk)
−τj , if τk = −1,

∀j < k.

This theorem for the non-PI case was found in [22], while the theorem for the

case where n = 1 was obtained in [15, 11]. All homogenized PI quantized Weyl

algebras were discussed by [16] building on the results of [4] for the isomorphism

problem on N graded algebras. But this last result does not apply to quantized

Weyl algebras as they lack a nontrivial N-grading.
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Corollary 6.3.2. Let AE,Bn (T ) be a quantized Weyl algebra over an integral domain

T satisfying the conditions in Theorem 1.2.1 (ii).

(i) For all scalars µ1, ν1, . . . , µn, νn ∈ T× such that µjνj = 1, ∀j,

φ(xj) = µjxj, φ(yj) = νjyj

defines a T -linear automorphism of AE,Bn (T ).

(ii) Assume that for some k ∈ [1, n], εk = −1, β2
jk = εj for j < k, β2

jk = 1 for

j > k. For all scalars µ1, ν1, . . . , µn, νn ∈ T× such that µjνj = 1 for j ≤ k

and µjνj = −1 for j > k,

φ(xj) = µjxj, φ(yj) = νjyj, for all j 6= k,

φ(xk) = µkyk, φ(yk) = νkxk

defines a T -linear automorphism of AE,Bn (T ).

All elements of AutT (AE,Bn (T )) have one of the above two forms.

In particular, AutT (AE,Bn (T )) ∼= (T×)n n Z2 if the pair (E,B) satisfies the con-

dition in (2) for some k ∈ [1, n] and AutT (AE,Bn (T )) ∼= (T×)n otherwise.

Importantly, when Corollary 6.3.2 (ii) is satisfied, then in Theorem 1.2.1 (ii)

when it requires that dj|dk for j < k, this implies that εj = −1 for all j < k.

The theorem in the non-PI version was obtained in [33], while the case of the

theorem for n = 1 was found by [11].
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Sci. Paris Sér. I Math. 311 (1990), 831–834.

[30] B. Nguyen, K. Trampel, and M. Yakimov, Noncommutative discriminants via
Poisson primes, preprint arXiv:1603.02585.

[31] I. Reiner, Maximal Orders, London Math. Soc. Monogr. New Ser., vol. 28,
The Clarendon Press, Oxford Univ Press, Oxford, 2003.

[32] L. Richard and A. Solotar, Isomorphisms between quantum generalized Weyl
algebras, J. Algebra Appl. 5 (2006), 271–285.
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Appendix:
The Generalized Discriminant Formula

This appendix contains the proof for a general formula for the discriminants of PI

quantized Weyl algebras over polynomial central subalgebras generated by powers

of pairs of the standard generators of the Weyl algebra. The proof comes from

an extension the approach from Sect. 2.4, which used quantum cluster algebra

techniques then combined with ideas from field theory.

A.1 Setting Up the Generalized Formula

In this section we will work with algebras that are slightly more general than

the quantized Weyl algebras AE,Bn (T ) to enable the use of inductive arguments.

Working over the commutative integral domain T , we define AE,B,cn (T ) over the in-

determinate c to be the T [c]-algebra with generators x1, y1, . . . , xn, yn and relations

(1.1), but with the final relation redefined to be

xjyj − εjyjxj = c+

j−1∑
k=1

(εk − 1)ykxk, ∀k.

The T -algebra AE,Bn (T ) is then the result of specialization:

AE,Bn (T ) ∼= AE,B,cn (T )/(c− 1)AE,B,cn (T ).

Assuming again (1.3), for j < k, let

mj

dj
+
mjk

djk
=
m′jk
d′jk

where m′jk ∈ N, d′jk ∈ Z+ such that gcd(m′jk, d
′
jk) = 1 and define d′kj

..= d′jk.

Fortunately, Theorem 1.2.1 and 3.1.1 remain true in this slightly more general

situation. In fact Theorem 1.2.1 (i) directly implies the following lemma.

Lemma A.1.1. For l ∈ Z+ the following hold:
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(i) xlj ∈ Z(AE,B,cn (T )) if and only if xlj ∈ Z(AE,Bn (T )) if and only if

lcm(dj, d
′
jk, 1 ≤ k ≤ n, k 6= j)|l.

(ii) ylj ∈ Z(AE,B,cn (T )) if and only if ylj ∈ Z(AE,Bn (T )) if and only if

lcm(dj, djk, 1 ≤ k ≤ n, k 6= j)|l.

Now, every polynomial central subalgebra of AE,B,cn (T ) of the form

C ..= T [c, xL1
1 , yL1

1 , . . . , xLnn , yLnn ], (A.8)

has AE,B,cn (T ) as a free C-module. We define tr : AE,B,cn (T ) → C to be the internal

trace function associated to the embedding of AE,B,cn (T ) ↪→MΛ(C) over C-bases of

AE,Bn (T ), where

Λ ..= L2
1 . . . L

2
n.

For AE,B,cn (T ) satisfying the conditions of Theorem 1.2.1 (ii) with Lj = dj, this

becomes the trace map of §5.1 under the specialization c = 1.

Continuing in the general case as in the case for c = 1, we show that

zj ..= c+ (ε1 − 1)y1x1 + · · ·+ (εj − 1)yjxj = [xj, yj]

are normal elements of AE,B,cn (T ) satisfying (3.1). Beginning with z0 = c, we find

that

zj = (εj − 1)yjxj + zj−1 and z
dj
j = −(1− εj)djy

dj
j x

dj
j + z

dj
j−1 (A.9)

for j ∈ [1, n], with the second identity is verified in the same manner as its twin in

Proposition 4.1.2. Again we have that x
dj
j and y

dj
j commute.

Setting up our induction, let Eˇ ..= (ε2, . . . , εn) and Bˇ be the (n− 1)× (n− 1)

submatrix of B obtained by deleting the first row and column.
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Then by Lemma A.1.1, given xL1
1 , yL1

1 , . . . , xLnn , yLnn ∈ Z(AE,B,cn (T )), then

dj|Lk for j ≤ k. (A.10)

Theorem A.1.2. Let AE,B,cn (T ) be an arbitrary PI quantized Weyl algebra over

an integral domain T [c] satisfying (1.2). For a choice of central elements

xL1
1 , yL1

1 , . . . , xLnn , yLnn ∈ Z(AE,Bn (T )),

denote An ..= AE,B,cn (T ), Cn ..= T [c, xL1
1 , yL1

1 , . . . , xLnn , yLnn ] and An−1
..= AEˇ,Bˇ,c′

n−1 (T ),

Cn−1
..= T [c′, xL2

2 , yL2
2 , . . . , xLnn , yLnn ] for n > 1, A0 = C0 = T [c′] for n = 1.

(i) The discriminant d(An/Cn) is a polynomial in cgcd(L1,...,Ln).

(ii) By part (i) and (A.10) the discriminant d(An−1/Cn−1) is a polynomial in

(c′)d1, which will be denoted by d(An−1/Cn−1)((c′)d1). We have,

d(An/Cn) =T× θx
(L1−d1)Λ
1 y

(L1−d1)Λ
1 (cL1 − (1− ε1)L1yL1

1 xL1
1 )(d1−1)Λ/L1

×
L1/d1−1∏
i=0

[
d(An−1/Cn−1)(cd1 − ζ i(1− ε1)d1yd1

1 x
d1
1 )
]d1L1 ,

where Λ = L2
1 . . . L

2
n, θ = LΛ

1 (L1(1− ε1)−d1+1)Λ, and ζ is a primitive L1/d1-st

root of unity.

Here we have that C×n = C×n−1 = T [c]× = T×, usefully connecting back to the fact

from (5.3), that d1(1 − ε1)−d1+1 ∈ T . Before continuing our proof let us consider

two examples for small n.

Example A.1.3. (i) Let n = 1. Here the quantized Weyl algebra Aε1,c1 (T ) is defined

given E = (ε1), with B = (1) as B is multiplicatively skewsymmetric. Then the

discriminant formula is

d(Aε1,c1 (T )/T [c, xL1
1 , yL1

1 ]) =T× θx
(L1−d1)L2

1
1 y

(L1−d1)L2
1

1 (cL1 − (1− ε1)L1yL1
1 xL1

1 )(d1−1)L1
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for θ = L
L2

1
1 (L1(1− ε1)−d1+1)L

2
1 .

(ii) Now letting n = 2, the discriminant formula becomes

d(AE,B,c2 (T )/T [c, xL1
1 , yL1

1 , xL2
2 , yL2

2 ])

=T× θx
(L1−d1)Λ
1 y

(L1−d1)Λ
1 x

(L2−d2)Λ
2 y

(L2−d2)Λ
2

(
cL1 − (1− ε1)L1yL1

1 xL1
1

)(d1−1)Λ/L1

×
L1/d1−1∏
i=0

[(
cd1 − ζ i(1− ε1)d1yd1

1 x
d1
1

)L2/d1 − (1− ε2)L2yL2
2 xL2

2

](d2−1)d1L1L2

,

now with Λ = L2
1L

2
2, θ = ΛΛ/2

∏2
i=1(Li(1− εi)−di+1)Λ, and ζ a primitive (L1/d1)-st

root of 1. Here, the final product in discriminant expression is a polynomial in

cgcd(L1,L2).

A.2 Proof of Theorem A.1.2

We set up this proof with the following notations. Given a field extension K′/K,

let

trK′/K,NK′/K : K′ → K

indicate the standard trace and norm functions respectively. For K(α)/K, a finite

separable extension, let f(t) ∈ K[t] be the minimal polynomial of α over K. Let

µ(α) be the K-linear endomorphism of K(α) defined by multiplication by α. When

α1 = α, α2, . . . , αk are the roots of f(t) over its splitting field, then

the characteristic polynomial of µ(α) is (t− α1) . . . (t− αk) ∈ K[t],

see e.g. [33, p. 67, Ex. 14]. In particular,

trµ(α)j =
k∑
i=1

αji , NK(α)/K(g(α)) =
k∏
i=1

g(αi) ∀g(t) ∈ K[t]. (A.11)

We also set

∆ ..=T× θx
(L1−d1)Λ
1 y

(L1−d1)Λ
1 (cL1 − (1− ε1)L1yL1

1 xL1
1 )(d1−1)Λ/L1 (A.12)

×
L1/d1−1∏
i=0

[
d(An−1/Cn−1)(cd1 − ζ i(1− ε1)d1yd1

1 x
d1
1 )
]d1L1 ,
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Proof of Theorem A.1.2 (ii). Instead of using full quantum clusters as described

in Sect. 2.4, we will use a part of a cluster consisting of the cluster variables x1

and z1. Localizing by x1, we work inductively by relating the discriminant of An

to that of An−1.

To start we reduce the statement of Theorem A.1.2 (ii) to a form that has to do

with the localization in question. Theorem A.1.2 (ii) follows once we show that

d(An[x−L1
1 ]/Cn[x−L1

1 ]) =
T [x

L1
1 ]×

∆. (A.13)

In fact, when this holds we also have that

d(An/Cn) =T× x
kL1
1 ∆ (A.14)

for some k ∈ Z. Recalling again the filtration from §1.1, then by [10, Proposition

4.10],

gr d(An/Cn) =T× d(grAn/ gr Cn),

with this second discriminant computed with respect to the trace on grA derived

from its freeness over gr Cn. As grAE,B,cn (T ) defines a localization of a skew polyno-

mial algebra over a power of one of its generators x1, [10, Proposition 2.8] applies,

yielding

d(grAn/ gr Cn) =T× ΛΛ(x1y1)Λ(L1−1) . . . (xnyn)Λ(Ln−1) =T× gr ∆. (A.15)

Thus, in (A.14), k = 0, and (A.13) will imply Theorem A.1.2 (ii).

By a similar argument used in §5.2, it will suffice to prove the theorem for the

case where εj − 1 ∈ T× for all j ∈ [1, n].

Again, we will assume that

ε1 − 1 ∈ T× (A.16)

for the remainder of this proof and we will then prove (A.13).
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Working with the associated graded in (A.14) and using (A.15) yields

xkL1 gr ∆ =T× gr(An/Cn) =T× gr ∆.

Hence k = 0 again and so (A.13) implies the statement in Theorem A.1.2 (ii).

Now, z1 commutes with all xj, yj for j > 1. Thus, we find thatAn−1 is isomorphic

to the T -subalgebra ofAn generated by z1 and xj, yj for j > 1 when c′ = z1. We will

also let this algebra be An−1 and with central subalgebra T [z1, x
Lj
j , y

Lj
j , 2 ≤ j ≤ n]

being Cn−1 in standard abuses of notation.

We will define the prospective bases

B′′ ..= {xl
′
2

2 y
l2
2 . . . x

l′n
n y

ln
n | lj ∈ [0, Lj − 1]},

B′ ..= {1, z1, . . . , z
L1−1
1 }B′′,

B ..= {1, x1, . . . , x
L1−1
1 }B′, and

Bop ..= B′{1, x1, . . . , x
L1−1
1 }.

Showing first from (A.9) that

yL1
1 =

(cd1 − zd1
1 )L1/d1

(1− ε1)L1xL1
1

·

And thus that,

Cn[x−L1
1 ] = T [c, x±L1

1 , (cd1 − zd1
1 )L1/d1 , x

Lj
j , y

Lj
j , 2 ≤ j ≤ n].

Then, since x1 normalizes z1 and xj, yj for j > 1, and as z1, xj, yj, j > 1 generate

our T [z1]-algebra An−1, we find that B is a Cn[x−L1
1 ]-basis of An[x−L1

1 ] and B′ is a

C̃n−1-basis of An−1[c], where

C̃n−1 = T [c, (cd1 − zd1
1 )L1/d1 , x

Lj
j , y

Lj
j , 2 ≤ j ≤ n].

Now let tr′ : An−1[c]→ C̃n−1 be the T [c]-linear trace function from this latter basis.
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With this preamble complete we now prove (A.13), and thus Theorem A.1.2 (ii),

in two steps.

Step I. We first connect d(An[x−L1
1 ]/Cn[x−L1

1 ]) to d(An−1[c]/C̃n−1). For all b′1, b
′
2 ∈ B′

and i, k ∈ [0, L1 − 1],

tr(b′1x
i
1 · xk1b′2) = tr(b′2b

′
1x

i+k
1 ) = L1x

i+k
1 tr′(b′2b

′
1) = L1x

i+j
1 tr′(b′1b

′
2)

if i + j = 0 or L1 and tr(b1x
i
1 · xk1b2) = 0 otherwise. Then the determinant of a

Kronecker product of matrices calculated by its standard formula gives

d(An[x−L1
1 ]/Cn[x−L1

1 ]) =
T [x
−L1
1 ]×

LΛ
1 x

(L1−1)Λ
1 det([tr(b1b2)]b1∈Bop,b2∈B)L1

=
T [x

L1
1 ]×

LΛ
1 d(An−1[c]/C̃n−1)L1 .

Step II. Now, we may relate d(An−1[c]/C̃n−1) to d(An−1/Cn−1). The set B′′ forms a

Cn−1-basis of An−1, as An−1 and Cn−1 can both be viewed as T [z1]-algebras. This

defines tr′′ : An−1 → Cn−1, the associated T [z1]-linear trace of this basis, which

extends to a map tr′′ : An−1[c]→ Cn−1[c] by c-linearity.

Let K be the fraction field of T [xL1
1 yL1

1 ] and

f(t) ..= (cd1 − td1)L1/d1 − (1− ε1)L1xL1
1 yL1

1 ∈ K[t].

This polynomial is irreducible, separable and z1 is a root of it, with irreducibility

coming from the fact that xL1
1 yL1

1 ∈ K but xd1
1 y

d1
1 /∈ K. Given the field extension

K(z1)/K. We can relate the traces tr′ and tr′′ by

tr′ = trK(z1)/K ◦ tr′′ (A.17)

with trK(z1)/K extended to K[c, z1, x
Lj
j , y

Lj
j , 2 ≤ j ≤ n] by linearity on c, x

Lj
j , and

y
Lj
j , for j > 1. In proving (A.17) we will use that z1 is central in An−1[c].

Let α1 = z1, α2, . . . , αL1 be the roots of f(t) in its splitting field. These are given

by

ξk
(
cd1 − ζ i(1− ε1)d1yd1

1 x
d1
1 )1/d1 for k ∈ [0, d1 − 1], i ∈ [0, L1/d1 − 1], (A.18)
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for ζ a primitive (L1/d1)-st root of unity, as stated in the theorem, with ξ a

primitive d1-st root of unity.

For a ∈ An−1 we denote by tr′′(a)(z1) the polynomial dependance of tr′′(a) on

z1. By (A.11) and (A.17) it follows that

tr′(a) =

L1∑
j=1

tr′′(a)(αj).

Thus, considering the bases B and B′ we see that

d(An−1[c]/C̃n−1) = det
[
tr′(zi−1

1 b′′1 · zk−1
1 b′′2)

]
i,k;b′′1 ,b

′′
2

= det

[∑
j

αi+k−2
j tr′(b′′1b

′′
2)(αj)

]
i,k;b′′1 ,b

′′
2

where in each matrix i, j, k ∈ [1, L1], and b′′1, b
′′
2 ∈ B′′. The final matrix is factored

as the product of block matrices, with square matrix blocks of size Λ/L2
1 = |B′′|

by:

[αi−1
j I]i,j · [αi−1

j I]i,j · diag(Q(α1), . . . , Q(αL1)) (A.19)

with i, j ∈ [1, L1], and where I indicates the identity matrix of size Λ/L2
1 and

Q(z1) ..= [tr′′(b′′1b
′′
2)(z1)]b′′1 ,b′′2∈B′′ .

That detQ(z1) =T× d(An−1/Cn−1)(zd1
1 ) follows directly from it’s definition. It then

follows from the fact that the roots α1, . . . , αL1 are given by (A.18), and from

Theorem A.1.2 (i), that the determinant of the third matrix in (A.19) above gives

the product appearing in the second line of (A.12) where ∆ is defined.

By (A.18) we then find that for all k ∈ [1, L1],

f ′(αj) = L1α
d1−1
j

(1− ε1)L1xL1
1 yL1

1

(cd1 − αd1
j )

= L1ζ
−iαd1−1

j (1− ε1)L1−d1xL1−d1
1 yL1−d1

1
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for some i ∈ [0, L1/d1 − 1]. Revisiting (A.19), the determinant of the product of

the first two matrices is∏
1≤i<j≤n

(αi − αj)2Λ/L2
1 = ±

[
NK(z1)/K(f ′(z1))

]Λ/L2
1 = ±

∏
i

f ′(αi)
Λ/L2

1

= ±LΛ/L1

1 (1− ε1)
(L1−d1) Λ

L1 x
(L1−d1) Λ

L1
1 y

(L1−d1) Λ
L1

1

[
NK(z1)/K(zd1−1

1 )
]Λ/L2

1

= ±L
Λ
L1
1 (1− ε1)

(L1−d1) Λ
L1 x

(L1−d1) Λ
L1

1 y
(L1−d1) Λ

L1
1

(
cL1 − (1− ε1)L1xL1

1 yL1
1

)(d1−1)Λ/L2
1 ,

which follows from the standard expression for discriminants of finite separable field

extensions as a product of norms [31, pp. 66-67, Ex. 14]. Replacing the determinants

of the matrices in (A.19) in our expression for d(An−1[c]/C̃n−1), in conjunction with

Step I and (A.16), proves (A.13), which completes the proof of Theorem A.1.2

(ii).

Proof of Theorem A.1.2 (i). We proceed by induction on n. First assume that

d(An−1/Cn−1) is a polynomial in zL1 for L = gcd(L2, . . . , Ln). We will show that

d(An/Cn) is a polynomial in cgcd(L1,...,Ln). Let

d(An−1/Cn−1)(zL1 ) =
∏
s

(zL1 − as)

for some as in the algebraic closure of the fraction field of T [x
Lj
j , y

Lj
j , 2 ≤ j ≤ n].

Then the product

L1/d1−1∏
i=0

(
(cd1 − ζ i(1− ε1)d1yd1

1 x
d1
1 )L/d1 − as

)
defines a polynomial in cgcd(L1,L), implying that the product given in the formula

for d(An/Cn) on the second line in part (ii) of the theorem is a polynomial in

cgcd(L1,L). As the product from the first line said formula is a polynomial in cL1 ,

d(An/Cn) is thus a polynomial in

cgcd(L1,L) = cgcd(L1,...,Ln).

This proves the first part of the theorem.
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