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Abstract
Accurate identification of drug targets is a crucial part of any drug development program.

We mined the human proteome to discover properties of proteins that may be important in

determining their suitability for pharmaceutical modulation. Data was gathered concerning

each protein’s sequence, post-translational modifications, secondary structure, germline

variants, expression profile and drug target status. The data was then analysed to deter-

mine features for which the target and non-target proteins had significantly different values.

This analysis was repeated for subsets of the proteome consisting of all G-protein coupled

receptors, ion channels, kinases and proteases, as well as proteins that are implicated in

cancer. Machine learning was used to quantify the proteins in each dataset in terms of their

potential to serve as a drug target. This was accomplished by first inducing a random forest

that could distinguish between its targets and non-targets, and then using the random forest

to quantify the drug target likeness of the non-targets. The properties that can best differenti-

ate targets from non-targets were primarily those that are directly related to a protein’s se-

quence (e.g. secondary structure). Germline variants, expression levels and interactions

between proteins had minimal discriminative power. Overall, the best indicators of drug tar-

get likeness were found to be the proteins’ hydrophobicities, in vivo half-lives, propensity for

being membrane bound and the fraction of non-polar amino acids in their sequences. In

terms of predicting potential targets, datasets of proteases, ion channels and cancer pro-

teins were able to induce random forests that were highly capable of distinguishing between

targets and non-targets. The non-target proteins predicted to be targets by these random

forests comprise the set of the most suitable potential future drug targets, and should there-

fore be prioritised when building a drug development programme.

Introduction
The vast majority of the targets of approved drugs are proteins [1,2]. Knowledge of which pro-
teins are the targets of approved drugs enables the division of the human proteome into two
classes: approved drug targets and non-targets. A protein is an approved drug target if it is the
target of an approved drug, and a non-target otherwise.

In order for a protein to have any potential as a drug target it must be druggable. A drug-
gable protein is one that possesses folds that favour interactions with small drug-like molecules,

PLOSONE | DOI:10.1371/journal.pone.0117955 March 30, 2015 1 / 44

OPEN ACCESS

Citation: Bull SC, Doig AJ (2015) Properties of
Protein Drug Target Classes. PLoS ONE 10(3):
e0117955. doi:10.1371/journal.pone.0117955

Academic Editor: Yoshihiro Yamanishi, Kyushu
University, JAPAN

Received: July 4, 2014

Accepted: January 3, 2015

Published: March 30, 2015

Copyright: © 2015 Bull, Doig. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: Biotechnology & Biological Sciences
Research Council (BBSRC) (UK) supported SCB with
a PhD Studenship. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0117955&domain=pdf
http://creativecommons.org/licenses/by/4.0/


be they endogenous or extraneous, and therefore is one that contains a binding site [1,3]. These
binding sites are expected to have certain characteristics that enable high affinity site-specific
binding by the drug-like molecule. As with all drug targets, a potential protein drug target must
be linked to a disease process.

Currently there is a lack of knowledge about both the number of proteins that modern phar-
maceuticals act on and the number of potentially druggable proteins. Drews proposed one of
the first counts of the number of human protein targets, and determined that there were only
417 protein drug targets (excluding anti-infectives acting on bacteria, viruses or parasites) [4].
More recent estimates for the number of protein drug targets have included 218 [5]; a consen-
sus number of 324 [6]; 399, reduced to 120 when only approved drug targets are considered
[1], and 435 [7]. In terms of potential drug targets, an analysis by Russ and Lampel [8] identi-
fied between 2000 and 3000 proteins that are druggable. Using a purely bioinformatics ap-
proach, Bakheet and Doig were able to identify 668 proteins that are not currently approved
drug targets, but that have target-like properties [9]. These latter estimates lend credence to the
belief that, although the estimate of the number of currently targeted proteins is in the hun-
dreds, the number of proteins that are druggable is substantially larger [5].

While knowledge of the number of proteins that may be amenable to pharmaceutical modu-
lation is valuable, it is also useful to consider the families to which these proteins belong. Rask-
Anderson et al. found that G-protein-coupled receptors (GPCRs) make up 44% of human drug
targets, enzymes 29% and transporter proteins 15% [7]; Overington et al. found that over 50%
of drugs target GPCRs, nuclear receptors or ion channels [6]; Hopkins and Groom found that
enzymes comprise 47% of launched targets, while GPCRs account for 30% [1]; and Zheng et al.
found that enzymes make up 50% of approved targets [10]. One very evident trend in these
findings is the prominence of enzymes and GPCRs in the set of approved drug target proteins.
Using the estimate of Fredriksson et al. that there are approximately 800 GPCRs coded for by
the human genome [11], and the knowledge that there are just over 20,000 human proteins
[12], we can estimate that roughly 4% of human proteins are GPCRs. The fraction of GPCRs in
the set of approved drug targets can therefore be seen to be vastly greater than would be ex-
pected if the set’s composition was proportional to that of all the human proteins. Potential rea-
sons for this discrepancy include: the frequency with which proteins from specific families,
such as GPCRs and ion channels, can be found to be involved in human diseases, the nature of
the diseases that affect developed countries and the potential difficulty of identifying and ex-
ploiting other families of proteins.

In this paper, we investigate properties of major types of drug target proteins, in order to
identify rules to predict novel future targets. Target classes were selected based on their sizes
and importance.

Target Types Investigated
Antineoplastic. Targeted cancer therapies seek to modulate the activity of specific molec-

ular targets that are believed to have a critical role in tumour growth and/or cancer progression.
While these targets may be present in non-cancerous cells, they are often overexpressed or al-
tered in cancerous cells, thereby giving targeted therapies increased selectivity and reduced tox-
icity over conventional cytotoxic treatments [13,14]. By targeting specific proteins, rather than
indiscriminately killing proliferating cells, targeted therapies can be used to interfere with spe-
cific aspects of cancer progression. For example, the immortalisation of cancer cells could be at-
tacked via the targeting of telomerase, as it is both specific to cancerous cells and necessary for
their survival [15]; molecular alterations that deregulate growth can be corrected, as with Imati-
nib’s targeting of the BCR-ABL protein in chronic myelogenous leukaemia; or the tumour’s
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blood supply can be cut off by preventing angiogenesis, as done by the drug Bevacizumab’s in-
hibition of vascular endothelial growth factor A [16]. Due to their importance in modulating
growth factors, tyrosine kinases are an especially useful group of targets [17], with drugs such
as Imatinib, Gefitinib, Erlotinib and Sunitinib targeting them. Other important targets include
growth factors and proteasomes, inhibition of which can potentially slow a tumour’s prolifera-
tion by inhibiting growth/angiogenesis or increasing apoptosis, respectively.

GPCRs. The prominent role that GPCRs play in many physiological processes means that
GPCRs make up a large fraction of the targets of approved drugs [18,19]. One approach to
modulating the activity of a GPCR pharmacologically is to develop a drug that competes with
the receptor’s endogenous ligand for access to its orthosteric site. However, in order for a drug
to effectively modulate a GPCR’s activity in this manner it must out-compete its endogenous li-
gand, which necessitates that the drug have a high affinity for the specific GPCR and be main-
tained at a sufficiently high concentration [20]. Alternatively, a drug can modulate the GPCR’s
activity allosterically by binding to a location topographically distinct from the endogenous li-
gand’s binding site. These allosteric modulators can benefit not only from the increased selec-
tivity due to the often less conserved nature of their binding sites, but also from the fact that
the endogenous ligand can still bind to the orthosteric site [21,22].

Ion Channels. Ion channels are popular targets for pharmacological intervention due to
their key roles in human physiology, localisation in the membrane and pattern of distribution
throughout the body [23,24]. The drugs that target them alter their permeability by changing
the probability that the channel will be in a given state, often by preferentially binding to and
stabilising a particular channel conformation [25]. Pharmacological modulation of ion chan-
nels is generally achieved by interacting with the channel’s pore or altering its gating [26]. Pore
modulators are primarily inhibitors that exert their effect by binding to the pore and physically
or electrostatically blocking the flow of ions [26,27], predominantly by occluding the pore or
stabilising a closed or inactive state of the channel. Gating modulators bind to the channel and
change the kinetics of the gating process [26]. They are therefore allosteric in nature, and can
be designed to enhance the normal conductance of a channel, either positively or negatively, or
exert their effect independently of the channel’s gating stimulus [28].

Kinases. Kinase activity plays a key role in many cellular processes, such as cell cycle pro-
gression, apoptosis, differentiation and signal transduction [29]. Eukaryotic protein kinases are
related by a homologous catalytic domain of approximately 250–300 amino acids [30] and can
be grouped into the serine/threonine and tyrosine kinases, which are responsible for phosphor-
ylating the hydroxyl oxygen of their respective amino acids. Due to the pivotal role of kinases
in the regulation of many cellular processes, aberrant kinase activity has been associated with a
variety of diseases and the majority of human cancers [31]. Pharmacological interventions tar-
geting kinases have historically been focussed on the inhibition of malfunctioning kinases, and
therefore on preventing irregular kinase activity rather than promoting or enhancing normal
activity [31]. These inhibitors can be classified based on the state of the kinase they target (ac-
tive or inactive) and whether they bind to the active site, an allosteric site or both. The majority
of kinase inhibitors developed to date compete directly with ATP for its binding pocket
[32,33]. Type I inhibitors rely on the availability of a kinase’s active site, and therefore its active
state, while type II inhibitors target the inactive form of the kinase, which can display more
structural variation as it is not constrained by the need to catalyse the phosphorylation reaction
[34,35].

Proteases. Eukaryotic proteases can be divided into ones that perform non-covalent (as-
partic and metallo proteases) or covalent (cysteine, serine and threonine proteases) catalysis.
Commensurate with their biological importance, deficient or abnormal protease function is
present in many pathological conditions. Pharmacological modulation of their activity is
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therefore a potentially important therapeutic option for treating disease, with an estimated
5–10% of all drugs under development targeting proteases [36]. The therapeutic modulation of
protease activity is generally achieved using small molecule reversible or irreversible inhibitors,
with the most common approach being to develop a drug that mimics the structure of a prote-
ase’s substrate and competes with it for the protease’s active site [37]. Although non-competi-
tive inhibition of protease activity is possible in principle, no non-competitive inhibitors have
been approved for sale nor reached the advanced stages of development [38].

Methods

Cleaning and Collation of Protein Data
Protein Accession and Name. The UniProt accessions and name of each human protein

were extracted from an XML file containing all reviewed human proteins from UniProt release
2012_05, hereafter referred to as the UniProt XML file. For each protein<entry> element in
the file, the accessions were extracted from its<accession> child elements, and the protein’s
name from its<name> child element. The first<accession> element encountered in the re-
cord for a protein was taken to be the protein’s representative accession. A mapping between
non-representative and representative accessions was produced to enable cross referencing
with external databases that may use non-representative accessions. Complete lists of proteins
in each set are in S1 Supplementary Information.

Simple Sequence Properties. Each protein’s sequence was extracted from the<sequence>
child element of its<entry> element in the UniProt XML file. Following the extraction of the
sequence, its length was determined by counting the number of amino acid residues in it. Infor-
mation about the presence or absence of a signal peptide was extracted from the<feature>
child elements of a protein’s<entry> element in the UniProt XML file. Any protein with a
<feature> element where the value of the type attribute was "signal peptide" was deemed to
contain a signal peptide.

The number of PEST motifs in each protein was calculated using epestfind (http://emboss.
bioinformatics.nl/cgi-bin/emboss/epestfind) which returns potential, poor and invalid PEST
motifs. Only potential PEST motifs were counted. The number of PEST motifs returned by
epestfind was summed to get the total number of PEST motifs for the protein. The program
was run with the default parameters.

The number of low complexity regions was calculated using segmasker [39]. The number of
low complexity intervals returned by segmasker was summed to get the total number of low
complexity regions for a protein. The program was run with the default parameters.

The hydrophobicity of a protein was calculated to be the mean of the hydrophobicity values,
as determined by the Kyte and Doolittle index [40], of the amino acids in its sequence. This
was calculated by summing the hydrophobicity values of all the amino acids in the sequence,
and then dividing by the sequence length.

The isoelectric point of each protein was calculated using the pepstats program (http://
emboss.sourceforge.net/apps/cvs/emboss/apps/pepstats.html). The program was run using
the-auto parameter.

Amino Acid Composition. Following the extraction of the sequence, the number of oc-
currences of each of the twenty standard amino acids in the sequence was determined. Ambig-
uous amino acid codes (B, J and Z) were handled by incrementing the occurrence count for
their corresponding amino acids (D/N for B, I/L for Q and E/J for Z) by 0.5. From these occur-
rence counts, the frequency with which each amino acid occurs in the protein’s sequence was
determined by dividing the count for the amino acid by the sequence length. Amino acids were
also grouped into eight categories: tiny (A, C, G, S and T), small (A, C, D, G, N, P, S, T and V),
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aliphatic (I, L and V), aromatic (F, H, W and Y), non-polar (A, C, F, G, I, L, M, P, V, W and Y),
charged (D, E, H, K and R), positively charged (H, K and R) and negatively charged (D and E).
For each protein, the fraction of the amino acids in its sequence that belong to each of the cate-
gories was calculated. This was done by summing up the occurrence counts for each of the
amino acids in the category, and then dividing by the length of the sequence.

Protein Family. Proteins were classified as being a GPCR, ion channel, kinase, protease or
other. Protein family membership was determined using multiple UniProt sources. The first
source was the<keyword> child elements of each protein’s<entry> element in the UniProt
XML file. A protein was determined to be a GPCR if the value of the id attribute of a
<keyword> element was "KW-0297"; an ion channel if the value was one of "KW-1071", "KW-
0851", "KW-0107", "KW-0869", "KW-0407", "KW-0631" or "KW-0894"; a kinase if the value
was one of "KW-0418", "KW-0723" or "KW-0829" and a protease if value was one of "KW-
0031", "KW-0064", "KW-0121", "KW-0224", "KW-0482", "KW-0645", "KW-0720", "KW-0788"
or "KW-0888". A protein was also determined to be a GPCR, kinase or protease if it appeared
in the GPCR (http://www.uniprot.org/docs/7tmrlist accessed May 14th 2012), kinase (http://
www.uniprot.org/docs/pkinfam accessed May 14th 2012) or protease (http://www.uniprot.org/
docs/peptidas accessed May 14th 2012) files respectively.

For the purposes of this work, a cancer protein is one that is implicated in causing cancer or
is the target of an antineoplastic drug. Cancer proteins were determined using two sources: the
Cancer Gene Census (CGC) [41] and the FDA’s database of approved drugs. The CGC dataset
(accessed on June 15th 2012) was parsed in order to determine the NCBI Gene IDs of genes
that are causally implicated in cancer. These were then mapped to representative UniProt
human protein accessions.

The FDA’s Drugs@FDA database was downloaded (http://www.fda.gov/downloads/Drugs/
InformationOnDrugs/UCM054599.zip accessed April 2013), and processed to determine the
set of approved antineoplastic drugs. All drugs approved by the FDA through March 2013
were manually evaluated for evidence of being indicated for antineoplastic use. For each drug,
the approved indications for it were determined based on the label data stored by the FDA, or
using DrugBank [42] and the Therapeutic Target Database (TTD) [43] if no label data was
available. Drugs approved for supportive care (e.g. antiemetics and analgesics), adjunct treat-
ment or non-cancerous cellular proliferation (e.g. actinic keratosis) were excluded from the
list, while those approved for precancerous conditions (e.g. myelodysplastic syndrome) were
included. Once the final set of approved antineoplastic drugs was created, the DrugBank and
TTD Drug IDs of the drugs were determined. The targets of these drugs, as recorded by Drug-
Bank and the TTD, were then determined and converted to representative UniProt accessions.

Posttranslational Modifications. Information about the glycosylation and phosphoryla-
tion sites of a protein was extracted from the<feature> child elements of the protein’s
<entry> element in the UniProt XML file. Information about a glycosylation site was ex-
tracted from a<feature> element when the value of its type attribute was "glycosylation site".
The element’s description attribute was used to determine whether the glycosylation was N-
linked or O-linked. Information about a phosphorylation site on the protein was extracted
from a<feature> element when the value of its type attribute was "modified residue". The ele-
ment’s description attribute was used to determine whether a serine, threonine or tyrosine was
phosphorylated. For each protein, the number of each of the five types of posttranslational
modification site (O-glycosylation, N-glycosylation, phosphoserine, phosphothreonine and
phosphotyrosine) was calculated. The data on phosphorylation sites extracted from UniProt in
this manner was also used to calculate the total number of phosphorylation sites, of any type,
for each protein.
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Secondary Structure. NetSurfP [44] was used to predict the fraction of residues in each
protein that participate in exposed α-helices, buried α-helices or β-strands. Although accurate
secondary structure information could be obtained from crystal structures, this information is
unavailable for the majority of proteins.

Information about the number of α-helical transmembrane regions of each protein was ex-
tracted from the<feature> child elements of the protein’s<entry> element in the UniProt
XML file. A helical transmembrane region is recorded in a<feature> element when its type at-
tribute is "transmembrane region" and the description attribute is present and contains 'Heli-
cal' (without quotes) as its first characters.

Protein Protein Interactions. The protein protein interaction (PPI) information for a
protein was extracted from the<comment> child elements of the protein’s<entry> element
when the value of the type attribute was "interaction". PPIs recorded in UniProt can be binary
or unary, and can record interactions between human and non-human proteins. For each pro-
tein, the number of unique human proteins that participate in a binary interaction with the
protein was calculated.

External Database References. Data concerning the cross-referencing of UniProt acces-
sions and external database identifiers was extracted from Ensembl [45] using an automated
BioMart [46] XML query. The NCBI Gene IDs, Ensembl Gene IDs, Ensembl Transcript IDs,
Ensembl Peptide IDs and UniGene cluster IDs associated with each representative UniProt
human protein accession were extracted using an XML query. Ensembl variant data was from
http://www.ensembl.org/info/genome/variation/sources_documentation.html#homo_sapiens,
followed by quality control to weed out bad records. (http://www.ensembl.org/info/genome/
variation/data_description.html#quality_control).

UniGene Expression Clusters. Unigene [47] was used to extract data relating to the ex-
pression profile of the human proteome. Individual transcripts in UniGene are grouped into
clusters that are believed to come from the same locus. The expression profile of a cluster is
then determined by counting the number of expressed sequence tags (ESTs) in it for each of
the body sites and developmental stages recorded in UniGene. The external cross-references
extracted from UniProt were used to map UniProt accessions to UniGene cluster IDs from
UniGene build #232. A protein’s expression in an individual body site or developmental stage
was taken to be the sum of the ESTs in that body site or developmental stage across all UniGene
clusters cross-referenced with the protein. In addition to the raw expression values, a derived
feature was created that records the number of body sites in which the protein is expressed.
This feature was calculated for each protein as the number of body sites in which the expres-
sion level was not 0.

Ensembl. Ensembl was used to extract information about the alternative transcripts, para-
logues and germline variants of UniProt proteins. Details are given in S2 Supplementary
Information.

Protein Drug Targets. The protein drug targets were determined using the TTD version
4.3.02 [43] and DrugBank version 3 [42]. Details on how UniProt accession numbers were ob-
tained are given in S2 Supplementary Information. The final number of proteins determined to
be the target of an approved small molecule drug was 1324, of which 1249 were found in Drug-
Bank and 313 in the TTD. 238 of the proteins were common to both sources, while 1011 were
unique to DrugBank and 75 unique to the TTD.

Machine Learning
Datasets Generated. The following 105 features were used in the construction of the pro-

tein datasets:

Properties of Protein Drug Target Classes

PLOS ONE | DOI:10.1371/journal.pone.0117955 March 30, 2015 6 / 44

http://www.ensembl.org/info/genome/variation/sources_documentation.html#homo_sapiens
http://www.ensembl.org/info/genome/variation/data_description.html#quality_control
http://www.ensembl.org/info/genome/variation/data_description.html#quality_control


• Amino acid composition

• Twenty amino acid frequencies

• Eight amino acid category frequencies

• Simple sequence properties

• Sequence length

• The number of PEST motifs

• The number of low complexity regions

• The hydrophobicity of the protein

• The isoelectric point

• The presence of a signal peptide

• Posttranslational modifications

• The number of O- and N-glyosylated sites

• The number of phosphorylated serine, threonine and tyrosine sites

• The total number of phosphorylated sites of any type

• Secondary structures

• The number of α-helical transmembrane regions

• The percentage of residues predicted to participate in an exposed α-helix

• The percentage of residues predicted to participate in a buried α-helix

• The percentage of residues predicted to participate in a β-strand

• Germline variants

• The number of 3’ untranslated region, 5’ untranslated region, nonsynonymous coding and
synonymous coding variants

• Inter-protein relationships

• The number of binary PPIs

• The number of alternative transcripts

• The number of paralogues

• Expression levels

• Seven developmental stage expression levels

• Forty-five body site expression levels

• Derived feature recording the number of body sites the protein is expressed in

Six categories were created from the annotated human proteins. Within each category the
proteins can be considered to be either positive or negative, positive proteins being those proteins
that are approved drug targets and negative proteins those that are not. However, not all positive
proteins will have been identified as such yet. Therefore, the set of negative proteins will contain
both proteins that will never be the target of an approved drug and those that are not currently
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but will be in the future. The categories were therefore divided into positive and- unlabelled pro-
teins, rather than positive and negative, where the unlabelled proteins contain both negative and
nominally mislabelled positive proteins. Each protein in the human proteome was evaluated
against a set of criteria to determine which of the categories it belongs in, and then evaluated
against a separate criterion for each category to determine whether it is a positive protein in that
specific category. The six categories, along with their criteria, can be seen in Table 1.

Random Forest Parameter Optimisation. In order to make an unbiased prediction about
an observation, i, the classifier used to make the prediction must not have been trained on a
dataset that included i. This dilemma leads to the concept of internal generalisation, whereby
we want to be able to generalise from our dataset,D, to an observation i 2 D using some subset
of observations, T � D, where i =2 T . For the majority of classification algorithms the best way
to do this would be to train jDj classifiers. Each classifier, ci, is trained using the set of observa-
tions T i ¼ D� i, and is used to predict the class of observation i. This is similar to the leave-
one-out cross validation approach used to test classifier performance, but is instead being used
to form the final prediction of an observation. However, this approach requires training too
many classifiers to be feasible even for small datasets. Rather than using cross validation to
train a set of classifiers, a single RF, R, can be trained usingD as the training set. Once R has
been trained, each observation i 2 D is predicted using only those trees in R for which it is
OOB, thereby giving an unbiased prediction of the class of i. The parameters and feature set
used to train R can therefore be optimised usingD, while still allowing unbiased predictions of
the observations inD to be made. In this manner RFs can enable a population dataset to be
used as both the training set and the set of observations that are to be predicted, without worry-
ing about the final predictions being biased.

Random forests (RFs) rely on two primary parameters to control their growth:mtry, the
size of the random subset of features evaluated at each node and numberTrees, the number of
trees in the forest. In order to mitigate the class imbalances in the datasets used here, the
weighting given to observations of the unlabelled class was held at 1 while that of the observa-
tions in the positive class was varied. A grid search was used to simultaneously optimise the
value of themtry parameter and the positive class weighting. For each combination ofmtry
and positive class weighting, 100 RFs were grown with numberTrees = 1000. The Out-of-Bag
(OOB) predictions from each of the 100 forests were then collated in order to determine the
total number of positive proteins predicted correctly (TPs) positive proteins predicted incor-
rectly (FNs), unlabelled proteins predicted correctly (TNs) and unlabelled proteins predicted
incorrectly (FPs). The sensitivity and specificity of the predictions were then calculated, and

Table 1. Dataset inclusion criteria.

Category
Name

Criterion for Inclusion in
Category

# Proteins in
Class

Criterion for Inclusion in Positive Class # Positive
Proteins

AllTargets All proteins are included. 20243 The protein must be a target protein. 1324

Cancer The protein must be a cancer
protein.

831 The protein must be the target of an antineoplastic
drug.

387

GPCR The protein must be a GPCR. 827 The protein must be a target protein. 115

IonChannel The protein must be an ion
channel.

320 The protein must be a target protein. 155

Kinase The protein must be a kinase. 661 The protein must be a target protein. 94

Protease The protein must be a protease. 531 The protein must be a target protein. 59

The criteria that a protein must meet to be included in each of the dataset categories, along with the criterion that must be met for each dataset in order to

be considered a positive protein in it.

doi:10.1371/journal.pone.0117955.t001
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used to determine the G mean ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity�SpecificityÞp

for the parameter combination. Once
the search was complete, the optimal parameter combination for the dataset was taken to be
the one that produced the forests with the greatest G mean. In order to ensure that the variation
in the performance of the classifiers was solely dependent on changingmtry and the positive
class weighting, the same set of 100 random seeds were used to grow the RFs for each parame-
ter combination. The G mean was the primary measure used to evaluate the performance of
the RFs, since this places equal importance on correctly predicting observations of both classes.
https://github.com/SimonCB765/RandomForest has the code used.

Feature Selection. Feature selection was performed using a modified CHC genetic algo-
rithm (CHC-GA) [48]. Details are given in S2 Supplementary Information.

Sequence Identity Comparison. In order to determine the optimal sequence identity
threshold for generating the non-redundant dataset of each category, nine non-redundant
datasets were created from each of the CancerTarg, GPCR, IonChannel, Kinase and Protease
categories. The AllTargets category was not tested as the number of proteins in the category
makes the process of experimentally determining the optimal threshold prohibitively time con-
suming. Rather, the final threshold used was determined based on a consensus of the optimal
thresholds for the other five categories. Details on the methods used are given in S2 Supple-
mentary Information.

Identification of Targets and Their Properties. For each category, the optimal sequence
identity threshold was used to generate a non-redundant dataset. Following this, the values for
the positive class weighting andmtry parameters were optimised. Once the optimal parameter
values had been found, feature selection was performed using the CHC-GA algorithm. In
order to allow the GA to converge to potentially different feature sets, multiple repetitions of
the CHC-GA were performed. These repetitions were repeated with different values for the
numberTrees parameter, in order to determine the forest size that gave the best performance.
The values of numberTrees tested were 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500 and
5000. The optimal feature set, random seed and numberTrees value were taken to be those that
induced the fittest individual across all CHC-GA repetitions. Once the optimal feature subset/
random seed pair was determined, the final predictions for the proteins in the category were
generated. This was done by training a RF on the non-redundant dataset using the optimal pos-
itive class weighting,mtry, numberTrees, feature subset and random seed, and then generating
the final predictions using the OOB predictions for the non-redundant proteins and the predic-
tions from the entire forest for the redundant ones.

In addition to forming predictions for the class of each protein in a category, the importance
of the features in the category’s dataset was determined using a test of statistical significance
and calculating a measure of the size of the effect of the difference between the positive and
unlabelled observations. The statistical significance of each feature was determined using a
two-tailed Mann-Whitney U test, with significance determined at the 0.05 level and multiple
comparisons corrected for using the Bonferroni method. The effect size was calculated by esti-
mating the probability of superiority (PS), also known as the common language effect size [49],
defined by PS = U/m�n, where U is the U statistic of the positive observations from the Mann-
Whitney U test,m the number of positive observations in the dataset and n the number of
unlabelled observations. Here the PS is the fraction of all possible pairs of a positive and unla-
belled protein in which the positive observation has a greater value for the feature than the
unlabelled observation. The expression levels extracted from UniGene were not tested for sig-
nificance, as many were zero, but the derived feature recording the number of body sites a pro-
tein is expressed in was. Similarly, the proportions of tiny and small amino acids were not
tested for significance, as they had very similar distributions.
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Results

Sequence Identity Comparison
Most algorithms for removing redundancy from a protein dataset will define the distance be-
tween two proteins in the dataset to be a function of their sequences. However, when attempting
to induce a classifier using the dataset, the proteins are embedded in a space defined by the data-
set’s features. The distance between two proteins in this space is therefore determined by the fea-
ture vectors that define them and the classification algorithm used, and may be independent of
the sequence similarity distance. Therefore, the distance between two proteins during the redun-
dancy removal may be substantially different to the distance between them during the induction
of the classifier. If differences in the distance measures cause proteins that are distant in the fea-
ture space to be considered too similar by the redundancy removal algorithm, then the removal
of one of the too similar proteins may cause information about the distribution of the proteins
in the feature space to be lost, to the detriment of the induced classifier’s capabilities.

In order to evaluate the effect that the difference between the two distance measures has on
the induction of a classifier, non-redundant datasets were generated using multiple sequence
identity thresholds, and then used to induce RFs. As a lower sequence identity threshold causes
there to be a greater difference between the original dataset and the non-redundant one gener-
ated from it, using a range of thresholds enables classifier capability to be evaluated when the
redundancy removal has different levels of influence on the dataset used for training (the non-
redundant dataset). In order to compare the capabilities of the induced classifiers, they were
used to classify the proteins in the entire dataset from which their non-redundant training
dataset was generated. This enables a RF induced using a non-redundant dataset to be evaluat-
ed in terms of its capability of generalising to the entire dataset, and therefore allows the loss of
information about the distribution of the proteins in the feature space, caused by the redundan-
cy removal, to be assessed.

When classifying the proteins in a non-redundant Cancer dataset, the threshold used to gen-
erate the dataset made little difference, as evidenced by the fact that the induced RFs all have G
means within 0.02 of each other (Table 2). The G means of the classifications of the proteins in
the entire Cancer dataset show slightly more variation, but as the lowest G mean is no more
than 0.03 lower than that achieved by the RF associated with the 100% threshold, the

Table 2. Comparison of RFs induced using non-redundant subsets of theCancer dataset.

Threshold Non-redundant Observations (Pos/Unl) Non-redundant Dataset G Mean Entire Dataset

TP FP TN FN G Mean

20% 403 (178/225) 0.84 293 50 394 94 0.82

30% 519 (236/283) 0.83 309 53 391 78 0.84

40% 625 (285/340) 0.83 326 66 378 61 0.85

50% 695 (316/379) 0.84 328 67 377 59 0.85

60% 742 (343/399) 0.84 313 52 392 74 0.85

70% 785 (367/418) 0.84 312 53 391 75 0.84

80% 806 (379/427) 0.84 318 59 385 69 0.84

90% 818 (385/433) 0.85 318 55 389 69 0.85

100% 831 (387/444) 0.85 332 71 373 55 0.85

For each threshold, a non-redundant dataset was generated using Leaf [68] and used to induce a RF. The RF was then used to classify the proteins in

both the non-redundant dataset it was trained on and the entire Cancer dataset. The TPs/FNs are the number of positive proteins in the entire dataset

predicted correctly/incorrectly, and the TNs/FPs are the number of unlabelled proteins predicted correctly/incorrectly.

doi:10.1371/journal.pone.0117955.t002
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redundancy removal process is unlikely to have led to a substantial loss of the information in
the entire Cancer dataset. Despite this, the dataset generated using a 20% threshold induced a
RF that classified the non-redundant proteins with a greater G mean than it did the entire set
of proteins. It is therefore likely that the use of this particular threshold caused the distribution
of the proteins in the non-redundant dataset to be different to that of the proteins in the entire
dataset. The decision boundary induced using the non-redundant dataset would then fit the
proteins in the entire dataset worse than it does those in the non-redundant dataset, thereby
leading the RF to overfit the non-redundant dataset to the point where it classifies the entire
dataset with a lower G mean.

The threshold used to generate the non-redundant GPCR dataset had a substantial effect on
the classifications of the proteins in both the non-redundant training set and the entire GPCR
dataset, with smaller thresholds generally leading to the induction of RFs with lower G means
(Table 3). Despite this trend, the largest G mean on the non-redundant datasets is associated
with a threshold of 20%. This is likely due to the large fraction of proteins removed at this
threshold causing the remaining proteins to be sparsely distributed throughout the feature
space, thereby making the decision boundary easier to optimise to fit the distribution of the
non-redundant proteins. In addition to this, the 20% and 30% thresholds lead to the induction
of RFs that classify the non-redundant proteins with a greater G mean than they do the entire
set of proteins. As with the other datasets, this is likely due to the subset of proteins kept by the
redundancy removal having a different distribution when compared to the proteins in the en-
tire dataset, thereby leading the RF to overfit the non-redundant dataset to the point where it
classifies the proteins in the entire dataset with a lower G mean. Unlike 20% and 30%, the
thresholds between 40% and 90% led to the induction of RFs that performed better on the en-
tire GPCR dataset than on the non-redundant dataset they were trained on. This is likely due to
the redundancy removal predominantly thinning out clusters of proteins in the feature space
that belong to a single class, thereby disproportionately removing those proteins that are easier
to classify and so reducing the G mean. If this is the case, the distribution of the proteins in the
non-redundant dataset will be similar to that of the proteins in the entire dataset. The non-
redundant dataset will therefore still contain enough information to correctly classify the vast
majority of the removed proteins, and as a result the G mean will be greater when classifying
the entire dataset. In addition, this shows that at these thresholds the redundancy removal and

Table 3. Comparison of RFs induced using non-redundant subsets of theGPCR dataset.

Threshold Non-redundant Observations (Pos/Unl) Non-redundant Dataset G Mean Entire Dataset

TP FP TN FN G Mean

20% 57 (14/43) 0.87 80 211 501 35 0.70

30% 150 (39/111) 0.76 94 372 340 21 0.62

40% 276 (66/210) 0.76 93 104 608 22 0.83

50% 409 (86/323) 0.79 90 75 637 25 0.84

60% 556 (102/454) 0.82 93 81 631 22 0.85

70% 665 (111/554) 0.83 93 85 627 22 0.84

80% 735 (113/622) 0.85 98 95 617 17 0.86

90% 779 (114/665) 0.85 99 107 605 16 0.86

100% 827 (115/712) 0.86 100 109 603 15 0.86

For each threshold, a non-redundant dataset was generated using Leaf and used to induce a RF. The RF was then used to classify the proteins in both

the non-redundant dataset it was trained on and the entire GPCR dataset. The TPs/FNs are the number of positive proteins in the entire dataset predicted

correctly/incorrectly, and the TNs/FPs are the number of unlabelled proteins predicted correctly/incorrectly.

doi:10.1371/journal.pone.0117955.t003
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classification distance measures are well correlated, causing the redundancy removal to remove
proteins that are both similar in terms of sequence identity and their location within the
feature space.

The results for the IonChannel (Table 4), Kinase (Table 5) and Protease (Table 6) datasets
show the same general trends as the Cancer and GPCR ones, such as there being less variation
in the G means of the non-redundant dataset classifications and larger thresholds leading to
the induction of RFs that better classify the entire dataset. All three datasets also exhibit the
same trend that once the threshold is below a certain value, 50% in the case of the IonChannel
dataset and 40% in the case of the Kinase and Protease datasets, the G mean of the classifica-
tions of the entire dataset becomes sizably less than the G mean of the classifications of the
non-redundant dataset. Similar to the Cancer and GPCR datasets, this is likely due to differ-
ences in the distribution of the proteins in the non-redundant dataset and those in the
entire dataset.

Table 4. Comparison of RFs induced using non-redundant subsets of the IonChannel dataset.

Threshold Non-redundant Observations (Pos/Unl) Non-redundant Dataset G Mean Entire Dataset

TP FP TN FN G Mean

20% 68 (25/43) 0.82 114 79 86 41 0.62

30% 106 (41/65) 0.81 119 56 109 36 0.71

40% 146 (58/88) 0.80 128 59 106 27 0.73

50% 187 (76/111) 0.82 117 37 128 38 0.77

60% 227 (95/132) 0.81 125 30 135 30 0.81

70% 270 (124/146) 0.82 119 14 151 36 0.84

80% 306 (145/161) 0.85 121 13 152 34 0.85

90% 319 (155/164) 0.85 122 15 150 33 0.85

100% 320 (155/165) 0.85 122 15 150 33 0.85

For each threshold, a non-redundant dataset was generated using Leaf and used to induce a RF. The RF was then used to classify the proteins in both

the non-redundant dataset it was trained on and the entire IonChannel dataset. The TPs/FNs are the number of positive proteins in the entire dataset

predicted correctly/incorrectly, and the TNs/FPs are the number of unlabelled proteins predicted correctly/incorrectly.

doi:10.1371/journal.pone.0117955.t004

Table 5. Comparison of RFs induced using non-redundant subsets of the Kinase dataset.

Threshold Non-redundant Observations (Pos/Unl) Non-redundant Dataset G Mean Entire Dataset

TP FP TN FN G Mean

20% 102 (18/84) 0.79 51 196 371 43 0.60

30% 198 (26/172) 0.85 49 165 402 45 0.61

40% 332 (49/283) 0.78 75 184 383 19 0.73

50% 432 (67/365) 0.79 72 120 447 22 0.78

60% 497 (77/420) 0.81 77 132 435 17 0.79

70% 569 (83/486) 0.79 72 118 449 22 0.78

80% 625 (88/537) 0.80 72 112 455 22 0.78

90% 650 (94/556) 0.79 69 90 477 25 0.79

100% 661 (94/567) 0.80 72 98 469 22 0.80

For each threshold, a non-redundant dataset was generated using Leaf and used to induce a RF. The RF was then used to classify the proteins in both

the non-redundant dataset it was trained on and the entire Kinase dataset. The TPs/FNs are the number of positive proteins in the entire dataset predicted

correctly/incorrectly, and the TNs/FPs are the number of unlabelled proteins predicted correctly/incorrectly.

doi:10.1371/journal.pone.0117955.t005
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Despite the discussed commonalities in the results for the five datasets, there is a clear differ-
ence between the affect that the redundancy removal has on the Cancer dataset and the affect
that it has on the datasets based on protein family membership. This can be seen most easily
through a comparison of the proportion of proteins in the entire dataset that remain following
redundancy removal (Table 7). For all thresholds except 90%, the Cancer dataset has the great-
est proportion of proteins remaining, likely due to the more heterogeneous nature of the pro-
teins in the dataset leading to fewer intra-class similarities between proteins. This lower
proportion of proteins removed is also likely responsible for the differences in the threshold at
which the induced RFs classify the proteins in the non-redundant dataset with a greater G
mean than those in the entire dataset, and for the performance of the RFs induced from non-
redundant Cancer datasets degrading at a much slower rate than those induced from non-re-
dundant protein family based datasets.

Target Properties
All Proteins. The results from the analysis of the features in the AllTargets dataset can be

seen in Table 8. Compared to the unlabelled proteins in the dataset, the positive ones are pro-
portionally more non-polar (PS = 0.65). Of the individual amino acid proportions, the only

Table 6. Comparison of RFs induced using non-redundant subsets of the Protease dataset.

Threshold Non-redundant Observations (Pos/Unl) Non-redundant Dataset G Mean Entire Dataset

TP FP TN FN G Mean

20% 117 (15/102) 0.90 37 92 380 22 0.71

30% 197 (25/172) 0.84 46 107 365 13 0.78

40% 312 (38/274) 0.86 46 91 381 13 0.79

50% 402 (49/353) 0.83 46 49 423 13 0.84

60% 464 (55/409) 0.85 47 53 419 12 0.84

70% 486 (57/429) 0.85 47 41 431 12 0.85

80% 496 (59/437) 0.86 49 46 426 10 0.87

90% 504 (59/445) 0.86 49 46 426 10 0.87

100% 531 (59/472) 0.87 50 49 423 9 0.87

For each threshold, a non-redundant dataset was generated using Leaf and used to induce a RF. The RF was then used to classify the proteins in both

the non-redundant dataset it was trained on and the entire Protease dataset. The TPs/FNs are the number of positive proteins in the entire dataset

predicted correctly/incorrectly, and the TNs/FPs are the number of unlabelled proteins predicted correctly/incorrectly.

doi:10.1371/journal.pone.0117955.t006

Table 7. Fraction of the number of proteins in the entire dataset in each non-redundant dataset.

Threshold Fraction of Proteins Remaining

Cancer GPCR IonChannel Kinase Protease

20% 0.48 0.07 0.21 0.15 0.22

30% 0.62 0.18 0.33 0.30 0.37

40% 0.75 0.33 0.46 0.50 0.59

50% 0.84 0.49 0.58 0.65 0.76

60% 0.89 0.67 0.71 0.75 0.87

70% 0.94 0.80 0.84 0.86 0.92

80% 0.97 0.89 0.96 0.95 0.93

90% 0.98 0.94 1.00 0.98 0.95

doi:10.1371/journal.pone.0117955.t007

Properties of Protein Drug Target Classes

PLOS ONE | DOI:10.1371/journal.pone.0117955 March 30, 2015 13 / 44



non-polar amino acids that occur in a greater proportion in unlabelled proteins are cysteine
and proline, and the only polar amino acids that occur in a greater proportion in positive pro-
teins are asparagine, aspartic acid and threonine. However, as the effect sizes for all of these is
either small or very small, the differences in the proportions of the individual amino acids can
be seen to be largely in line with the difference in proportion of non-polar amino acids. Al-
though the effects of the differences in non-polar and individual amino acids are not large, to-
gether they indicate that the positive proteins are consistently more non-polar than the
unlabelled ones. This is further demonstrated by the fact that the positive proteins are moder-
ately more hydrophobic (PS = 0.67), as would be expected due to their greater proportion of
non-polar amino acids and smaller proportion of polar ones. As positive proteins are more
likely to contain a transmembrane helix (43% of positive proteins compared to 24% of unla-
belled ones), tend to have a greater number of transmembrane α-helices (PS = 0.60) and have a
greater percentage of their residues in buried α-helices (PS = 0.66), the amino acid composition
results are likely due to membrane proteins making up a greater fraction of the set of positive

Table 8. Results of the feature analysis for the AllTargets dataset.

Feature P-value PS Positive
Median

Unlabelled
Median

Feature P-value PS Positive
Median

Unlabelled
Median

Alanine * 3.47 × 10−04 0.53 0.07 0.07 Positively Charged * 7.98 × 10−23 0.42 0.13 0.14

Arginine * 1.28 × 10−13 0.44 0.05 0.06 Sequence Length * 2.13 × 10−14 0.56 474 410

Asparagine * 1.33 × 10−15 0.57 0.04 0.03 PEST Motifs * 2.66 × 10−13 0.45 0 0

Aspartic Acid * 5.90 × 10−08 0.54 0.05 0.05 Low Complexity Regions * 1.83 × 10−08 0.45 2 2

Cysteine 1.53 × 10−01 0.49 0.02 0.02 Hydrophobicity * 3.28 × 10−93 0.67 -0.19 -0.38

Glutamic Acid * 3.71 × 10−19 0.43 0.06 0.07 Isoelectric Point 1.31 × 10−01 0.49 7.31 7.47

Glutamine * 2.57 × 10−65 0.36 0.04 0.04 Signal Peptide * 8.10 × 10−11 0.53 0 0

Glycine * 2.19 × 10−10 0.55 0.07 0.06 O-glycosylation Sites * 3.62 × 10−04 0.51 0 0

Histidine * 1.35 × 10−05 0.46 0.02 0.02 N-glycosylation Sites * 1.35 × 10−64 0.60 0 0

Isoleucine * 1.10 × 10−72 0.65 0.05 0.04 Phosphoserine Sites 7.02 × 10−01 0.50 0 0

Leucine * 3.33 × 10−05 0.53 0.10 0.10 Phosphothreonine Sites 3.02 × 10−02 0.51 0 0

Lysine 1.80 × 10−01 0.49 0.05 0.05 Phosphotyrosine Sites * 1.66 × 10−25 0.54 0 0

Methionine * 1.31 × 10−33 0.60 0.02 0.02 Total Phosphorylation Sites * 1.98 × 10−04 0.53 0 0

Phenylalanine * 5.31 × 10−78 0.65 0.04 0.04 Transmembrane α-helices * 3.16 × 10−62 0.60 0 0

Proline * 9.94 × 10−12 0.44 0.05 0.06 Exposed α-helices * 1.92 × 10−05 0.54 0.13 0.12

Serine * 1.37 × 10−60 0.37 0.07 0.08 Buried α-helices * 2.47 × 10−89 0.66 0.22 0.14

Threonine 2.87 × 10−03 0.52 0.05 0.05 β Strands * 2.40 × 10−12 0.56 0.12 0.09

Tryptophan * 4.64 × 10−24 0.58 0.01 0.01 3’ Untranslated 7.32 × 10−01 0.50 1 1

Tyrosine * 1.61 × 10−52 0.63 0.03 0.03 5’ Untranslated 3.41 × 10−01 0.51 0 0

Valine * 7.98 × 10−64 0.64 0.07 0.06 Nonsynonymous Coding * 6.66 × 10−16 0.57 15 11

Aliphatic * 6.09 × 10−70 0.65 0.22 0.20 Synonymous Coding * 2.50 × 10−10 0.54 0 0

Aromatic * 6.68 × 10−56 0.63 0.12 0.10 Binary PPIs * 5.02 × 10−14 0.56 1 0

Charged * 1.61 × 10−131.61 × 10−23 0.42 0.24 0.26 Alternative Transcripts * 2.44 × 10−18 0.57 3 2

Negatively
Charged *

2.05 × 10−06 0.46 0.11 0.11 Paralogues * 5.73 × 10−07 0.53 0 0

Non-polar * 1.24 × 10−72 0.65 0.56 0.53 Body Sites Expressed In * 5.31 × 10−12 0.56 27 26

Shaded features are ones for which the PS�0.5. The amino acid, exposed α-helix, buried α-helix and β strand features are all proportions (e.g. the

Alanine feature for a protein is the number of alanine residues in the sequence divided by the sequence length), while all other features are

absolute numbers.

Features with significant differences are indicated with *.

doi:10.1371/journal.pone.0117955.t008
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proteins. This is perhaps unsurprising due to the large fraction of membrane proteins (e.g.
GPCRs and transport proteins) that are believed to be targeted by approved drugs, and the
vital roles in transport and signal transduction that many membrane proteins play. Besides the
amino acid proportions, the only other feature with a sizeable effect was the number of N-
linked glycosylation sites. As N-linked glycosylation has been associated with increased protein
stability and protection against degradation and denaturation, in addition to ensuring the cor-
rect folding of proteins [50,51], the greater number of N-linked glycosylation sites likely indi-
cates that positive proteins have a greater half-life in vivo. Glycosylation is also very strongly
associated with being either a transmembrane or secreted protein.

Protein interaction and pathway data from KEGG [52], Reactome [53] and STRING [54]
were also analysed for the proteins in the dataset. However, the low coverage of these databases
made accurate analyses of the proteins in the dataset infeasible. Analysis of the enrichment of
Gene Ontology [55] terms between the unlabelled and positive proteins was also investigated
using the DAVID [56] functional annotation tool. However, when setting the background to
the unlabelled proteins and looking for enriched terms in the positive proteins, no terms were
found to be significantly enriched. Identical results were also found when setting the back-
ground to the positive proteins and checking for enrichment in the unlabelled proteins or
when using the entire proteome as the background set.

Cancer Proteins. The results from the analysis of the features in the Cancer dataset can be
seen in Table 9. Compared to the unlabelled proteins in the dataset, the positive ones have a
much greater proportion of non-polar amino acids (PS = 0.74). Additionally, the only polar
amino acids that occur in a greater proportion in positive proteins are asparagine and threo-
nine (both of which have inconsequential differences in their proportions), while proline is the
only non-polar amino acid that occurs in a greater proportion in unlabelled proteins. The posi-
tive proteins are also substantially more hydrophobic (PS = 0.82), as would be expected due to
their greater proportion of non-polar amino acids and smaller proportion of polar ones. As
positive proteins are more likely to contain a transmembrane helix than unlabelled ones (55%
compared to 11%), tend to have a much greater number of transmembrane helices (PS = 0.73)
and have a much greater percentage of their residues in buried α-helices (PS = 0.75), the amino
acid composition results are likely due to membrane proteins making up a greater fraction of
the set of positive proteins.

As entry to the secretory pathway in humans is controlled by the presence of a signal pep-
tide at the N-terminus of a protein, positive proteins are slightly more likely to be secreted than
unlabelled ones due to their increased likelihood of containing a signal peptide (PS = 0.61). Ad-
ditionally, the positive proteins in the Cancer dataset are likely to have a longer in vivo half-life,
due to their greater number of N-linked glycosylation sites (PS = 0.71), which have been associ-
ated with a longer half-life in vivo, and smaller number of PEST motifs (PS = 0.40), which are
associated with proteins with a shorter intracellular half-life [57].

The results also indicate that specific and reliable activity of a cancer protein is likely impor-
tant in its being targeted by antineoplastic drugs. One example of this is the smaller number of
5’ untranslated (PS = 0.34), 3’ untranslated (PS = 0.32) and nonsynonymous coding (PS = 0.38)
variants that are found in the positive proteins. As the untranslated regions of a gene are im-
portant for the regulation of mRNA translation and protein expression [58] and nonsynon-
ymous coding variants can lead to alterations in the expression and structure/function of a
protein, the activity of a protein with fewer of these variants is likely to be more consistent
between individuals.

Further examples of the preference for proteins with reliable activity come from the smaller
number of phosphorylation sites (PS = 0.40), binary PPIs (PS = 0.42) and low complexity re-
gions (PS = 0.38) that are found in positive proteins. As protein phosphorylation is frequently
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altered in cancerous cells, by having fewer phosphorylation sites it is possible that the positive
proteins will be less affected by aberrant phosphorylation, thereby ensuring that their activity
and its regulation is minimally affected by the cancerous microenvironment. Participating in
fewer binary PPIs can also be seen in this light, as a limited set of interactions may make a pro-
tein’s activity less susceptible to alterations in the activity or regulation of other proteins. Simi-
larly, it has been shown that low complexity region containing proteins have more binding
partners [59], that hub proteins in PPI networks contain significantly more low complexity re-
gions [60,61] and that many known disordered regions in proteins are implicated in signalling
and regulation [62]. It therefore seems likely that low complexity regions enable a protein to in-
teract with other proteins more readily, whether in a signalling or regulatory capacity. Having

Table 9. Results of the feature analysis for theCancer dataset.

Feature P-value PS Positive
Median

Unlabelled
Median

Feature P-value PS Positive
Median

Unlabelled
Median

Alanine 1.46 × 10−01 0.53 0.07 0.07 Positively Charged * 2.63 × 10−15 0.34 0.13 0.14

Arginine * 8.88 × 10−05 0.42 0.05 0.05 Sequence Length 4.15 × 10−01 0.48 505 557

Asparagine 5.26 × 10−02 0.54 0.04 0.04 PEST Motifs * 1.06 × 10−08 0.40 0 1

Aspartic Acid 1.22 × 10−02 0.45 0.05 0.05 Low Complexity
Regions *

1.17 × 10−09 0.38 2 4

Cysteine * 4.34 × 10−09 0.62 0.02 0.02 Hydrophobicity * 1.41 × 10−57 0.82 -0.19 -0.57

Glutamic Acid * 3.73 × 10−12 0.36 0.06 0.07 Isoelectric Point 1.56 × 10−01 0.53 7.04 6.81

Glutamine * 2.43 × 10−25 0.29 0.04 0.05 Signal Peptide * 1.11 × 10−15 0.61 0 0

Glycine 8.61 × 10−01 0.50 0.06 0.06 O-glycosylation Sites 7.76 × 10−01 0.50 0 0

Histidine 1.80 × 10−03 0.44 0.02 0.02 N-glycosylation Sites * 2.81 × 10−38 0.71 1 0

Isoleucine * 4.15 × 10−27 0.72 0.05 0.04 Phosphoserine Sites * 8.17 × 10−12 0.37 0 1

Leucine * 4.44 × 10−16 0.66 0.10 0.09 Phosphothreonine
Sites *

2.13 × 10−06 0.42 0 0

Lysine 1.29 × 10−03 0.44 0.05 0.06 Phosphotyrosine Sites 3.30 × 10−03 0.54 0 0

Methionine * 1.25 × 10−05 0.59 0.02 0.02 Total Phosphorylation
Sites *

3.31 × 10−07 0.40 1 2

Phenylalanine * 1.80 × 10−42 0.77 0.04 0.03 Transmembrane α-
helices *

5.21 × 10−45 0.73 1 0

Proline * 2.04 × 10−13 0.35 0.05 0.07 Exposed α-helices 2.28 × 10−01 0.52 0.12 0.11

Serine * 7.94 × 10−10 0.38 0.07 0.08 Buried α-helices * 1.65 × 10−35 0.75 0.22 0.10

Threonine 8.66 × 10−03 0.55 0.05 0.05 β Strands * 2.67 × 10−06 0.59 0.10 0.06

Tryptophan * 6.38 × 10−27 0.72 0.02 0.01 3’ Untranslated * 2.55 × 10−19 0.32 0 3

Tyrosine * 1.11 × 10−15 0.66 0.03 0.02 5’ Untranslated * 1.36 × 10−16 0.34 0 2

Valine * 2.70 × 10−30 0.73 0.07 0.05 Nonsynonymous
Coding *

3.62 × 10−09 0.38 14 29

Aliphatic * 5.83 × 10−43 0.78 0.22 0.19 Synonymous Coding * 2.04 × 10−04 0.44 0 0

Aromatic * 1.85 × 10−35 0.75 0.12 0.09 Binary PPIs * 6.83 × 10−05 0.42 1 2

Charged * 5.95 × 10−16 0.34 0.24 0.26 Alternative Transcripts 1.08 × 10−02 0.45 3 4

Negatively
Charged *

3.09 × 10−10 0.37 0.11 0.12 Paralogues 5.50 × 10−03 0.45 0 0

Non-polar * 1.26 × 10−33 0.74 0.55 0.51 Body Sites Expressed
In *

3.93 × 10−16 0.34 24 32

Shaded features are ones for which the PS�0.5. The amino acid, exposed α-helix, buried α-helix and β strand features are all proportions (e.g. the

Alanine feature for a protein is the number of alanine residues in the sequence divided by the sequence length), while all other features are

absolute numbers.

Features with significant differences are indicated with an *.

doi:10.1371/journal.pone.0117955.t009
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fewer of them may then indicate that a protein is involved in fewer interactions with other pro-
teins, which would in turn imply that the protein’s activity and expression is less amenable to
modification by the cancerous microenvironment.

The smaller number of germline variants of all types in positive proteins is possibly a reflec-
tion of the predisposition to cancer caused by some germline variants, or may indicate that
having fewer viable germline variants means that a protein is less amenable to somatic muta-
tions that leave the protein functional. This would be advantageous for an antineoplastic target,
as the cancer microenvironment makes it more likely that genetic mutations will arise in the
gene coding for a given protein. If these mutations leave the protein functional, then drugs tar-
geting the protein could have unexpected effects. By targeting proteins that are less susceptible
to mutations that leave them viable, the activity of an antineoplastic drug would be more reli-
able, as the expression and function of the protein itself is more reliable.

The expression of the positive proteins in fewer body sites (PS = 0.34) means that the effects
of a drug’s modulatory activity can be limited to a more specific range of tissues. Not only can
this help to limit undesirable side effects, but also to restrict the activity of the drug to a narrow
range of tissues where the cancerous cells originate from. This may be particularly important
for antineoplastic drugs, as they can often be more harmful to normal cells than non-
antineoplastic medications.

GPCRs. The results from the analysis of the features in the GPCR dataset can be seen in
Table 10. Considering the size and composition of the GPCR dataset, when compared to the
other datasets investigated, the number of features with meaningful effect sizes is surprisingly
large. This was indicative of either substantial differences between the positive and unlabelled
proteins or of a large subpopulation of GPCRs (most likely unlabelled ones) that are consider-
ably different to the other proteins in the dataset. A likely contender for this subpopulation is
odorant/olfactory GPCRs. While odorant GPCRs are restricted to cells specialised for the de-
tection of external stimuli, e.g. odours and tastes, non-odorant GPCRs are differentially ex-
pressed throughout the body, respond to a variety of endogenous ligands and regulate various
vital physiological processes [63]. Therefore, non-odorant GPCRs should be more likely to be
targeted by drugs. Analysis of the GPCR dataset supports this belief, as of the 421 odorant
GPCRs in the dataset, none were classified as likely to be a potential drug target or were the tar-
get of an approved drug.

In order to evaluate the impact of the odorant GPCRs on the feature analysis, a second data-
set, GPCR_NO, was constructed from the GPCR dataset by removing all odorant GPCRs from
it. The results of the analysis of this second dataset can be seen in Table 11. For all features, ex-
cept the fraction of residues in exposed α-helices, the effect size was smaller in the GPCR_NO
dataset than in the GPCR dataset. Additionally, only five features were deemed to have signifi-
cant differences, compared to thirty-seven features in the GPCR dataset.

When compared to the unlabelled proteins, the positive proteins in the GPCR_NO dataset
have a slightly smaller proportion of non-polar amino acids (PS = 0.43) and lower hydropho-
bicity (PS = 0.38). The positive proteins in the GPCR_NO dataset were also slightly more likely
to have a longer sequence length than the unlabelled ones (PS = 0.59). As GPCRs contain seven
transmembrane regions and the positive proteins have a slightly smaller fraction of residues in
buried α-helices (PS = 0.44), the difference in the sequence length likely comes from positive
proteins having more extra and intracellular residues. Unlike the amino acids in the transmem-
brane regions, non-transmembrane residues are likely to be more hydrophilic as they are ex-
posed to the extra and intracellular environments rather than being embedded in a membrane.
This likely accounts for the smaller proportion of non-polar and aromatic amino acids in posi-
tive proteins and for their lower hydrophobicity. Similarly, the greater proportion of charged
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and negatively charged amino acids in the positive proteins is likely due to the increased
sequence length.

Ion Channels. The results from the analysis of the features in the IonChannel dataset can
be seen in Table 12. The differences between the positive and unlabelled proteins in terms of
their amino acid proportions is minimal, with only a small difference in the proportion of non-
polar amino acids (PS = 0.43). The tendency of the positive proteins to have a slightly smaller
proportion of non-polar amino acids can likely be explained by the greater sequence length of
the positive proteins (PS = 0.61). As the difference in the number of transmembrane helices in
positive and unlabelled proteins is minimal (PS = 0.48) and the positive proteins have a smaller
fraction of residues in buried α-helices (PS = 0.41), the longer sequence length of the positive
proteins can likely be explained by them having more residues in the intra and/or extracellular
space. Unlike the amino acids in the transmembrane regions, these residues are likely to be
more hydrophilic as they are exposed to the extra and intracellular environments rather than

Table 10. Results of the feature analysis for theGPCR dataset.

Feature P-value PS Positive
Median

Unlabelled
Median

Feature P-value PS Positive
Median

Unlabelled
Median

Alanine * 4.07 × 10−08 0.66 0.08 0.06 Positively Charged * 1.75 × 10−13 0.71 0.11 0.10

Arginine * 9.88 × 10−22 0.77 0.05 0.04 Sequence Length * 1.97 × 10−30 0.81 408 320

Asparagine 1.27 × 10−03 0.59 0.04 0.03 PEST Motifs * 2.31 × 10−07 0.59 0 0

Aspartic Acid * 5.45 × 10−08 0.66 0.03 0.03 Low Complexity Regions * 2.78 × 10−07 0.64 2 1

Cysteine 3.63 × 10−03 0.42 0.03 0.03 Hydrophobicity * 1.06 × 10−33 0.17 0.31 0.68

Glutamic Acid * 6.09 × 10−14 0.71 0.03 0.03 Isoelectric Point * 5.97 × 10−06 0.63 9.02 8.52

Glutamine 6.78 × 10−03 0.58 0.03 0.03 Signal Peptide 1.38 × 10−03 0.55 0 0

Glycine * 2.50 × 10−04 0.61 0.05 0.05 O-glycosylation Sites 1.92 × 10−02 0.51 0 0

Histidine * 1.52 × 10−16 0.27 0.02 0.03 N-glycosylation Sites * 6.47 × 10−12 0.68 2 1

Isoleucine * 7.68 × 10−06 0.37 0.07 0.08 Phosphoserine Sites * 1.43 × 10−06 0.57 0 0

Leucine * 1.86 × 10−15 0.28 0.12 0.14 Phosphothreonine Sites * 6.08 × 10−06 0.54 0 0

Lysine * 8.30 × 10−04 0.60 0.04 0.03 Phosphotyrosine Sites 5.49 × 10−03 0.52 0 0

Methionine * 1.17 × 10−13 0.29 0.02 0.03 Total Phosphorylation
Sites *

7.87 × 10−08 0.59 0 0

Phenylalanine * 1.93 × 10−17 0.26 0.05 0.07 Transmembrane α-helices 9.85 × 10−01 0.50 7 7

Proline * 4.39 × 10−11 0.69 0.05 0.04 Exposed α-helices 3.35 × 10−01 0.53 0.09 0.09

Serine 5.60 × 10−02 0.44 0.08 0.08 Buried α-helices * 6.29 × 10−19 0.25 0.47 0.58

Threonine * 7.45 × 10−04 0.40 0.06 0.06 β Strands * 1.86 × 10−12 0.30 0.03 0.04

Tryptophan * 3.41 × 10−21 0.76 0.02 0.01 3’ Untranslated 1.81 × 10−02 0.53 0 0

Tyrosine * 1.64 × 10−08 0.34 0.03 0.04 5’ Untranslated 5.56 × 10−02 0.53 0 0

Valine 2.47 × 10−01 0.47 0.08 0.08 Nonsynonymous Coding * 3.92 × 10−16 0.70 2 0

Aliphatic * 8.59 × 10−24 0.22 0.26 0.30 Synonymous Coding 7.95 × 10−02 0.52 0 0

Aromatic * 3.23 × 10−17 0.26 0.12 0.15 Binary PPIs 6.93 × 10−03 0.54 0 0

Charged * 7.68 × 10−22 0.77 0.18 0.15 Alternative Transcripts * 6.68 × 10−18 0.72 1 0

Negatively
Charged *

9.12 × 10−18 0.74 0.07 0.05 Paralogues 3.72 × 10−02 0.52 0 0

Non-polar * 2.45 × 10−12 0.30 0.61 0.65 Body Sites Expressed In * 5.85 × 10−27 0.79 12 5

Shaded features are ones for which the PS�0.5. The amino acid, exposed α-helix, buried α-helix and β strand features are all proportions (e.g. the

Alanine feature for a protein is the number of alanine residues in the sequence divided by the sequence length), while all other features are

absolute numbers.

Features with significant differences are indicated with an *.

doi:10.1371/journal.pone.0117955.t010
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being embedded in a membrane. The positive proteins would therefore have a slightly smaller
proportion of non-polar amino acids.

The increased number of extra and intracellular amino acids could also account for the ten-
dency of the positive proteins to have an increased number of N-linked glycosylation
(PS = 0.68), phosphoserine (PS = 0.58) and total phosphorylation sites (PS = 0.57). In order to
test this, the PS of the three features was tested after accounting for the length of the protein
(by dividing the feature value for a protein by the number of residues in its sequence). Follow-
ing this the positive proteins still had greater values for N-linked glycosylation (PS = 0.68),
phosphoserine (PS = 0.56) and total phosphorylation (PS = 0.55) sites. However, the effect for
the phosphoserine and total phosphorylation sites is now too small to be meaningful,

Table 11. Results of the feature analysis for theGPCR_NO dataset.

Feature P-value PS Positive
Median

Unlabelled
Median

Feature P-value PS Positive
Median

Unlabelled
Median

Alanine 4.75 × 10−02 0.56 0.08 0.07 Positively Charged 1.92 × 10−01 0.54 0.11 0.11

Arginine 5.63 × 10−03 0.59 0.05 0.05 Sequence Length 2.87 × 10−03 0.59 408 373

Asparagine 1.77 × 10−01 0.54 0.04 0.04 PEST Motifs 2.40 × 10−01 0.53 0 0

Aspartic Acid * 7.06 × 10−04 0.61 0.03 0.03 Low Complexity
Regions

4.71 × 10−01 0.48 2 2

Cysteine 4.56 × 10−01 0.48 0.03 0.03 Hydrophobicity * 1.84 × 10−04 0.38 0.31 0.43

Glutamic Acid 5.66 × 10−02 0.56 0.03 0.03 Isoelectric Point 1.81 × 10−01 0.54 9.02 8.68

Glutamine 4.25 × 10−01 0.47 0.03 0.03 Signal Peptide 5.96 × 10−01 0.48 0 0

Glycine 4.89 × 10−01 0.52 0.05 0.05 O-glycosylation Sites 7.97 × 10−02 0.51 0 0

Histidine * 9.56 × 10−09 0.32 0.02 0.02 N-glycosylation Sites 2.04 × 10−01 0.54 2 2

Isoleucine 4.73 × 10−01 0.52 0.07 0.06 Phosphoserine Sites 7.94 × 10−02 0.53 0 0

Leucine * 1.44 × 10−04 0.38 0.12 0.13 Phosphothreonine
Sites

5.07 × 10−03 0.53 0 0

Lysine 7.18 × 10−02 0.56 0.04 0.04 Phosphotyrosine Sites 2.78 × 10−01 0.51 0 0

Methionine 4.69 × 10−01 0.52 0.02 0.02 Total Phosphorylation
Sites

3.51 × 10−02 0.55 0 0

Phenylalanine 2.43 × 10−03 0.40 0.05 0.06 Transmembrane α-
helices

9.58 × 10−01 0.50 7 7

Proline 1.77 × 10−03 0.60 0.05 0.04 Exposed α-helices 5.36 × 10−02 0.44 0.09 0.10

Serine 1.82 × 10−01 0.46 0.08 0.08 Buried α-helices 6.55 × 10−02 0.44 0.47 0.51

Threonine 6.27 × 10−01 0.48 0.06 0.06 β Strands 4.84 × 10−02 0.44 0.03 0.03

Tryptophan 7.86 × 10−01 0.49 0.02 0.02 3’ Untranslated 2.41 × 10−01 0.48 0 0

Tyrosine 4.28 × 10−01 0.47 0.03 0.03 5’ Untranslated 1.85 × 10−01 0.47 0 0

Valine 5.84 × 10−01 0.48 0.08 0.08 Nonsynonymous
Coding

2.98 × 10−01 0.53 2 1

Aliphatic 3.39 × 10−03 0.41 0.26 0.27 Synonymous Coding 4.03 × 10−01 0.49 0 0

Aromatic * 6.54 × 10−06 0.36 0.12 0.14 Binary PPIs 3.70 × 10−01 0.48 0 0

Charged 2.63 × 10−03 0.60 0.18 0.17 Alternative Transcripts 6.69 × 10−03 0.58 1 1

Negatively
Charged

1.64 × 10−03 0.60 0.07 0.06 Paralogues 7.19 × 10−01 0.50 0 0

Non-polar 3.51 × 10−02 0.43 0.61 0.63 Body Sites Expressed
In

1.73 × 10−01 0.54 12 11

Shaded features are ones for which the PS�0.5. The amino acid, exposed α-helix, buried α-helix and β strand features are all proportions (e.g. the

Alanine feature for a protein is the number of alanine residues in the sequence divided by the sequence length), while all other features are

absolute numbers.

Features with significant differences are indicated with an *.

doi:10.1371/journal.pone.0117955.t011
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indicating that without the difference in sequence length there would likely be no consequential
effect for the phosphoserine or total phosphorylation sites. In contrast to the phosphorylation
sites, the PS of the N-linked glycosylation sites is the same after controlling for the differences
in sequence length, meaning that positive ion channels are likely to have greater in vivo half-
lives and be more stable. Due to their being more likely to contain a signal peptide, positive ion
channels are also more likely to be secreted.

Kinases. The results from the analysis of the features in the Kinase dataset can be seen in
Table 13. Although the results indicate that there are significant differences between the posi-
tive and unlabelled proteins, the substantial differences in their compositions, specifically the

Table 12. Results of the feature analysis for the IonChannel dataset.

Feature P-value PS Positive
Median

Unlabelled
Median

Feature P-value PS Positive
Median

Unlabelled
Median

Alanine 5.21 × 10−02 0.44 0.06 0.07 Positively Charged 8.46 × 10−01 0.51 0.13 0.13

Arginine 5.91 × 10−01 0.52 0.06 0.05 Sequence Length * 4.85 × 10−04 0.61 613 509

Asparagine * 9.78 × 10−04 0.61 0.04 0.03 PEST Motifs 6.64 × 10−01 0.51 0 0

Aspartic Acid 1.57 × 10−03 0.60 0.05 0.04 Low Complexity
Regions

9.72 × 10−02 0.55 3 3

Cysteine 1.36 × 10−01 0.45 0.02 0.02 Hydrophobicity 1.90 × 10−01 0.46 -0.11 -0.08

Glutamic Acid 2.63 × 10−01 0.46 0.06 0.06 Isoelectric Point 8.49 × 10−01 0.51 7.38 7.56

Glutamine 1.91 × 10−03 0.40 0.03 0.04 Signal Peptide * 1.68 × 10−10 0.66 0 0

Glycine 2.50 × 10−01 0.46 0.06 0.06 O-glycosylation Sites NA NA 0 0

Histidine 7.60 × 10−01 0.49 0.02 0.02 N-glycosylation Sites * 1.02 × 10−08 0.68 2 1

Isoleucine 1.54 × 10−02 0.58 0.06 0.06 Phosphoserine Sites 2.58 × 10−03 0.58 0 0

Leucine * 2.13 × 10−06 0.35 0.10 0.11 Phosphothreonine
Sites

2.22 × 10−01 0.52 0 0

Lysine 2.39 × 10−01 0.54 0.05 0.05 Phosphotyrosine Sites 1.59 × 10−01 0.53 0 0

Methionine 2.36 × 10−02 0.57 0.03 0.02 Total Phosphorylation
Sites

9.02 × 10−03 0.57 0 0

Phenylalanine 2.79 × 10−01 0.46 0.05 0.05 Transmembrane α-
helices

5.26 × 10−01 0.48 4 5

Proline 3.47 × 10−01 0.53 0.05 0.05 Exposed α-helices 2.85 × 10−02 0.43 0.14 0.16

Serine 2.59 × 10−01 0.54 0.08 0.07 Buried α-helices 3.53 × 10−03 0.41 0.27 0.32

Threonine * 2.16 × 10−04 0.62 0.05 0.05 β Strands 1.26 × 10−03 0.60 0.11 0.06

Tryptophan 9.73 × 10−01 0.50 0.02 0.02 3’ Untranslated 6.21 × 10−01 0.49 0 0

Tyrosine 7.06 × 10−01 0.49 0.03 0.03 5’ Untranslated 2.74 × 10−01 0.47 0 0

Valine 6.60 × 10−03 0.59 0.07 0.06 Nonsynonymous
Coding

8.18 × 10−02 0.56 4 3

Aliphatic 2.54 × 10−01 0.46 0.23 0.23 Synonymous Coding 1.45 × 10−03 0.45 0 0

Aromatic 2.67 × 10−01 0.46 0.12 0.13 Binary PPIs 2.89 × 10−01 0.47 0 0

Charged 8.33 × 10−01 0.51 0.23 0.23 Alternative Transcripts 4.44 × 10−02 0.56 3 2

Negatively
Charged

5.43 × 10−01 0.52 0.11 0.10 Paralogues 7.27 × 10−02 0.54 0 0

Non-polar 1.59 × 10−02 0.42 0.55 0.57 Body Sites Expressed
In

4.14 × 10−01 0.53 15 15

Shaded features are ones for which the PS�0.5. The amino acid, exposed α-helix, buried α-helix and β strand features are all proportions (e.g. the

Alanine feature for a protein is the number of alanine residues in the sequence divided by the sequence length), while all other features are

absolute numbers.

Features with significant differences are indicated with an *.

The NAs for the O-glycosylation sites are due to no ion channels containing an O-glycosylation site.

doi:10.1371/journal.pone.0117955.t012
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much larger proportion of tyrosine kinases in the positive proteins (Table 14), are potentially
influencing the results. The significant differences seen for the Kinase dataset could then simply
be a reflection of the differences between serine/threonine and tyrosine kinases. Although the
presence of kinases of an unknown type complicates this generalisation somewhat, in general
their feature values closely follow those of the serine/threonine kinases, not the tyrosine ones.
They are therefore likely to be at best neutral with regards to the differences between the ser-
ine/threonine and tyrosine kinases.

The influence of the differences between kinase types was evaluated by creating two new
datasets. The Kinase_TK dataset was constructed from the Kinase dataset by removing all posi-
tive proteins that were not tyrosine kinases, while the Kinase_NTK dataset was constructed
from the Kinase dataset by removing all positive proteins that were tyrosine kinases. Both of
these datasets had their features analysed in terms of significance and effect size using. A

Table 13. Results of the feature analysis for the Kinase dataset.

Feature P-value PS Positive
Median

Unlabelled
Median

Feature P-value PS Positive
Median

Unlabelled
Median

Alanine 1.19 × 10−02 0.42 0.06 0.07 Positively Charged 3.66 × 10−03 0.41 0.14 0.15

Arginine 6.76 × 10−02 0.44 0.06 0.06 Sequence Length 1.21 × 10−01 0.55 682 587

Asparagine 3.38 × 10−03 0.59 0.04 0.03 PEST Motifs 4.16 × 10−02 0.44 0 0

Aspartic Acid 2.39 × 10−02 0.57 0.05 0.05 Low Complexity Regions 3.05 × 10−01 0.47 2 2

Cysteine 3.63 × 10−03 0.59 0.02 0.02 Hydrophobicity 4.61 × 10−02 0.56 -0.35 -0.38

Glutamic Acid 4.14 × 10−01 0.47 0.07 0.07 Isoelectric Point 4.59 × 10−03 0.41 6.87 7.12

Glutamine 1.32 × 10−02 0.42 0.04 0.04 Signal Peptide * 2.74 × 10−10 0.63 0 0

Glycine 1.67 × 10−01 0.54 0.07 0.06 O-glycosylation Sites 2.64 × 10−01 0.50 0 0

Histidine 4.38 × 10−01 0.48 0.03 0.03 N-glycosylation Sites * 3.84 × 10−12 0.64 0 0

Isoleucine 8.21 × 10−02 0.56 0.05 0.05 Phosphoserine Sites 1.78 × 10−01 0.54 2 1

Leucine 8.32 × 10−01 0.49 0.10 0.10 Phosphothreonine Sites 2.94 × 10−02 0.56 1 0

Lysine 2.25 × 10−01 0.46 0.06 0.06 Phosphotyrosine Sites * 3.49 × 10−18 0.74 2 0

Methionine 1.25 × 10−01 0.55 0.02 0.02 Total Phosphorylation
Sites *

4.05 × 10−08 0.67 8 3

Phenylalanine 2.42 × 10−01 0.54 0.04 0.04 Transmembrane α-
helices *

4.34 × 10−08 0.62 0 0

Proline 2.82 × 10−01 0.47 0.06 0.06 Exposed α-helices * 9.94 × 10−06 0.36 0.10 0.13

Serine 3.86 × 10−02 0.43 0.07 0.07 Buried α-helices 9.53 × 10−02 0.45 0.13 0.15

Threonine 6.87 × 10−02 0.56 0.05 0.05 β Strands * 5.12 × 10−10 0.70 0.17 0.13

Tryptophan * 7.12 × 10−05 0.63 0.01 0.01 3’ Untranslated 2.16 × 10−01 0.54 2 1

Tyrosine * 3.69 × 10−04 0.61 0.03 0.03 5’ Untranslated 2.41 × 10−01 0.54 2 1

Valine 8.16 × 10−02 0.56 0.06 0.06 Nonsynonymous Coding 5.29 × 10−03 0.59 24 17

Aliphatic 1.44 × 10−01 0.55 0.21 0.21 Synonymous Coding 4.58 × 10−01 0.52 0 0

Aromatic 1.83 × 10−03 0.60 0.11 0.10 Binary PPIs 1.20 × 10−02 0.58 2 1

Charged 6.80 × 10−02 0.44 0.26 0.27 Alternative Transcripts 2.12 × 10−01 0.54 4 3

Negatively
Charged

6.31 × 10−01 0.52 0.12 0.12 Paralogues 9.48 × 10−01 0.50 0 0

Non-polar 7.77 × 10−02 0.56 0.53 0.53 Body Sites Expressed In 8.89 × 10−03 0.58 33 31

Shaded features are ones for which the PS�0.5. The amino acid, exposed α-helix, buried α-helix and β strand features are all proportions (e.g. the

Alanine feature for a protein is the number of alanine residues in the sequence divided by the sequence length), while all other features are

absolute numbers.

Features with significant differences are indicated with an *.

doi:10.1371/journal.pone.0117955.t013
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comparison between the features that are significant in each of the three datasets can be seen in
Table 15. For each feature, the deviation of the effect size from 0.5 in the Kinase dataset can be
seen to be between the deviations for the Kinase_TK and Kinase_NTK datasets. However, if the
positive serine/threonine and tyrosine kinases shared similar properties, then the features with
the greatest deviations in effect size in the Kinase dataset would be expected to have the greatest
deviations in the Kinase_TK and Kinase_NTK datasets. The pattern of deviations therefore in-
dicates that there are distinct differences between the positive serine/threonine kinases and the
positive tyrosine ones. Additionally, the positive tyrosine kinases can be seen to be dominating
the effects seen in the Kinase dataset, as the Kinase_TK dataset shows very large deviations for
those features that are significant in the Kinase dataset while the Kinase_NTK dataset has very

Table 14. Division of positive and unlabelled kinases by type.

Serine/Threonine Tyrosine Atypical Unknown

Entire Dataset 390 (59%) 90 (14%) 27 (4%) 154 (23%)

Unlabelled Proteins 355 (63%) 50 (9%) 26 (5%) 136 (24%)

Unlabelled Proteins With Positive Similarity >0.5 56 (52%) 33 (31%) 1 (1%) 17 (16%)

Unlabelled Proteins With Positive Similarity �0.75 16 (33%) 26 (53%) 0 (0%) 7 (14%)

Positive Proteins 35 (37%) 40 (43%) 1 (1%) 18 (19%)

The distribution of proteins in the entire Kinase dataset, all unlabelled proteins, misclassified unlabelled proteins and all positive proteins by kinase type.

Unknown kinases are ones where it is not known whether they are Serine/Threonine, Tyrosine or atypical kinases.

doi:10.1371/journal.pone.0117955.t014

Table 15. Comparison of the feature effect sizes across the three datasets of kinases.

Feature Kinase Kinase_NTK Kinase_TK

Phosphotyrosine Sites * 0.24 0.07 * 0.48

β Strands * 0.20 0.08 * 0.35

Total Phosphorylation Sites * 0.17 0.08 * 0.30

Exposed α-helices *-0.14 0.03 * -0.37

N-Glycosylation Sites * 0.14 0.03 * 0.29

Signal Peptide * 0.13 0.02 * 0.27

Tryptophan * 0.13 0.03 * 0.25

Transmembrane α-helices * 0.12 0.01 * 0.26

Tyrosine * 0.11 0.03 * 0.22

Aromatic 0.10 0.08 0.12

Arginine 0.09 0.04 * 0.16

Cysteine 0.09 0.05 0.15

Positively Charged -0.09 0.00 * -0.22

Isoelectric Point -0.09 -0.04 * -0.16

Nonsynonymous Coding 0.09 0.11 0.06

Body Sites Expressed In 0.08 0.11 0.05

Alanine -0.08 -0.09 -0.07

Glutamine -0.08 -0.03 -0.15

Binary PPIs 0.08 0.12 0.02

Aspartic Acid 0.07 * 0.14 -0.01

Effect size deviation from PS = 0.5 (no effect) for the twenty features with the largest effect size in the Kinase dataset. A negative value indicates that the

positive proteins have smaller values than the unlabelled ones, while a positive value indicates that they have greater ones.

Features with significant differences in a dataset are indicated with an *.

doi:10.1371/journal.pone.0117955.t015
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small deviations for them. Additionally, of the nine significant features in the Kinase dataset,
all nine were found to be significant in the Kinase_TK dataset, while none were significant in
the Kinase_NTK dataset. These results indicate that the differences between the positive and
unlabelled proteins in the Kinase dataset are highly likely to be a consequence of the makeup of
the dataset, rather than a true reflection of the properties that make a kinase a suitable
drug target.

Despite the entire set of kinases being unsuitable for analysis, it is possible that informative
differences can be found by comparing positive tyrosine kinases with unlabelled ones. Howev-
er, in addition to the differences between the serine/threonine and tyrosine kinases, the Kinase
dataset also has a biased set of positive tyrosine kinases. Although it may be hypothesised that
this bias would be due to a preference for receptor tyrosine kinases, due to drug targets being
predominantly membrane bound, the fraction of receptor tyrosine kinases in the positive pro-
teins and in the set of all tyrosine kinases is very similar. Rather, the source of the bias comes
from the specific disease that the drugs targeting the tyrosine kinases are intended to treat: can-
cer. Of the forty positive tyrosine kinases, thirty-four are the target of an antineoplastic drug,
while a further three are causally implicated in cancer (and therefore in the Cancer dataset).
However, only four of the fifty unlabelled tyrosine kinases are causally implicated in cancer.
Any comparison of positive and unlabelled tyrosine kinases is therefore more of a comparison
between those tyrosine kinases that have been implicated in cancer and those that have not.

While the positive serine/threonine kinases have no biases as evident as those of the tyrosine
kinases, there are very few of them. Additionally, these kinases may be unrepresentative in that
they may have been selected as early targets for specific reasons, e.g. properties that they pos-
sess, that will not extrapolate to future targets. Therefore, until the set of positive kinases is
more representative, or the set of positive serine/threonine kinases increases in size, it will be
difficult to get an accurate picture of the properties that make a general kinase a suitable drug
target, other than the inhibition of phosphoryl group transfer from nucleotides.

Proteases. The results from the analysis of the features in the Protease dataset can be seen
in Table 16. Although these results indicate that significant differences between the positive
and unlabelled proteins can be found, care must be taken due to the composition of the set of
positive proteins. As 61% of positive proteins are metallo proteases it is possible that differences
in the datasets are reflecting differences between a specific subset of the metallo proteases (the
positive proteins) and proteases in general (the unlabelled ones). This is of particular concern
due to the high level of similarity within the positive metallo proteases and low level of similari-
ty between the positive metallo and non-metallo proteases. In order to evaluate the effect of
this subpopulation of positive metallo proteases, two further datasets were constructed. The
Protease_MP dataset was constructed from the Protease dataset by removing all positive pro-
teins that were not metallo proteases, while the Protease_NMP dataset was constructed from
the Protease dataset by removing all positive proteins that were metallo proteases. Both of these
datasets had their features analysed in terms of significance and effect size. A comparison be-
tween the features that are significant in each of the three datasets can be seen in Table 17. For
each feature, the deviation of the effect size from 0.5 in the Protease dataset can also be seen to
be between the deviations for the Protease_MP and Protease_NMP datasets, except for the glu-
tamine proportion and synonymous coding variants. However, if the positive metallo proteases
and non-metallo proteases shared similar properties, then the features with the greatest effect
size deviations in the Protease dataset would be expected to have the greatest deviations in the
Protease_MP and Protease_NMP datasets. The differing pattern of deviations therefore indi-
cates that there are distinct differences between the positive metallo proteases and the positive
non-metallo ones. This can be seen most clearly in the proportion of cysteine in the proteins,
with both the Protease_MP and Protease_NMP datasets having sizable effects for it, but with
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the positive proteins having a greater proportion of cysteine in the Protease_NMP dataset and
a smaller proportion in the Protease_MP one. Additionally, of the ten significant features in the
Protease dataset, eight were found to be significant in the Protease_MP dataset, while only one
was significant in the Protease_NMP dataset. These results indicate that the differences in the
Protease dataset are likely reflecting the differences between the positive metallo proteases and
the unlabelled proteases, rather than capturing properties of protease drug targets in general.

As the metallo proteases (both positive and unlabelled) appear to cluster together, one
method for overcoming the problems with the Protease dataset would be to compare positive
metallo proteases to unlabelled ones. The same could then be done for non-metallo proteases,
or alternatively for further subsets of the Protease dataset (e.g. serine proteases). However, this

Table 16. Results of the feature analysis for the Protease dataset.

Feature P-value PS Positive
Median

Unlabelled
Median

Feature P-value PS Positive
Median

Unlabelled
Median

Alanine 8.99 × 10−02 0.57 0.07 0.06 Positively Charged 6.29 × 10−01 0.52 0.14 0.13

Arginine 2.25 × 10−02 0.59 0.06 0.05 Sequence Length 6.61 × 10−01 0.48 478 497

Asparagine 7.89 × 10−01 0.49 0.04 0.04 PEST Motifs 8.80 × 10−02 0.44 0 0

Aspartic Acid * 5.34 × 10−05 0.66 0.06 0.05 Low Complexity
Regions

4.34 × 10−01 0.47 1 2

Cysteine * 3.71 × 10−05 0.34 0.01 0.03 Hydrophobicity 2.23 × 10−02 0.41 -0.39 -0.30

Glutamic Acid 1.70 × 10−01 0.45 0.05 0.06 Isoelectric Point 6.88 × 10−01 0.48 6.97 7.06

Glutamine * 3.56 × 10−04 0.36 0.04 0.04 Signal Peptide * 8.10 × 10−04 0.62 1 0

Glycine 1.23 × 10−01 0.56 0.08 0.08 O-glycosylation Sites * 6.08 × 10−08 0.57 0 0

Histidine 3.58 × 10−01 0.46 0.03 0.03 N-glycosylation Sites 1.81 × 10−02 0.59 1 0

Isoleucine 2.03 × 10−01 0.45 0.04 0.05 Phosphoserine Sites 2.21 × 10−01 0.47 0 0

Leucine 8.30 × 10−03 0.40 0.09 0.09 Phosphothreonine
Sites

3.58 × 10−01 0.48 0 0

Lysine 2.98 × 10−01 0.46 0.05 0.05 Phosphotyrosine Sites 7.18 × 10−01 0.49 0 0

Methionine 9.92 × 10−01 0.50 0.02 0.02 Total Phosphorylation
Sites

5.74 × 10−01 0.48 0 0

Phenylalanine * 1.47 × 10−04 0.65 0.04 0.04 Transmembrane α-
helices

7.23 × 10−01 0.51 0 0

Proline 3.20 × 10−01 0.54 0.06 0.06 Exposed α-helices 4.04 × 10−01 0.47 0.07 0.09

Serine * 1.43 × 10−05 0.33 0.06 0.07 Buried α-helices 9.19 × 10−01 0.50 0.11 0.11

Threonine 1.17 × 10−01 0.56 0.05 0.05 β Strands 9.23 × 10−02 0.57 0.21 0.17

Tryptophan 1.32 × 10−01 0.56 0.02 0.02 3’ Untranslated 5.15 × 10−01 0.48 0 0

Tyrosine * 2.83 × 10−06 0.68 0.04 0.03 5’ Untranslated 1.78 × 10−01 0.45 0 0

Valine 2.80 × 10−03 0.38 0.06 0.06 Nonsynonymous
Coding

3.23 × 10−01 0.54 13 12

Aliphatic * 2.41 × 10−05 0.33 0.19 0.21 Synonymous Coding 2.53 × 10−02 0.57 0 0

Aromatic * 3.36 × 10−06 0.68 0.13 0.12 Binary PPIs 8.77 × 10−01 0.51 0 0

Charged 5.48 × 10−01 0.52 0.25 0.25 Alternative Transcripts 3.39 × 10−01 0.46 2 2

Negatively
Charged

1.69 × 10−01 0.55 0.11 0.11 Paralogues 1.22 × 10−01 0.46 0 0

Non-polar 1.33 × 10−01 0.56 0.56 0.55 Body Sites Expressed
In

5.70 × 10−01 0.52 25 25

Shaded features are ones for which the PS�0.5. The amino acid, exposed α-helix, buried α-helix and β strand features are all proportions (e.g. the

Alanine feature for a protein is the number of alanine residues in the sequence divided by the sequence length), while all other features are

absolute numbers.

Features with significant differences are indicated with an *.

doi:10.1371/journal.pone.0117955.t016
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approach would be problematic due to the small size of the set of positive proteins, as there are
only thirty-six positive metallo proteases, and the possible bias towards certain metallo prote-
ases having been selected as early targets due to their specific properties or the simplicity of tar-
geting them. Therefore, more positive proteases are needed in order to accurately determine
the properties of protease drug targets.

Target Predictions. After optimising the parameters for a dataset, a RF was trained on the
dataset and used to classify the proteins in it. The classification for an individual protein con-
sisted of two parts: the RF’s weighted vote for the unlabelled class and its weighted vote for the
positive class. From these two values the positive similarity of a protein can be calculated as the
fraction of the RF’s total vote for the positive class. This similarity can be thought of as the con-
fidence of the RF in its prediction, and can therefore be used as a measure of a protein’s drug
target likeness. The final classification of a protein can then be determined from its similarity
by defining a cutoff, such that proteins are classified as positive only if they have a positive sim-
ilarity above the cutoff. A cutoff of 0.5 was used here, as a similarity greater than this indicates
that the majority of the RF’s vote was for the positive class.

All Proteins. The best combination of parameters and feature set for classifying the pro-
teins in the AllTargets dataset was numberTrees = 1000,mtry = 5, a weight of 110 given to each
observation in the in positive class, a random seed of 3079726279227244970 and forty features
out of the original 105 (S3 Supplementary Information). The positive similarity of the proteins
in the AllTargets dataset can be seen in Fig. 1. Using a cutoff of 0.5, the RF’s predicted classifica-
tions are shown in Table 18.

Table 17. Comparison of the feature effect sizes across the three datasets of proteases.

Feature Protease Protease_NMP Protease_MP

Tyrosine * 0.18 0.12 * 0.22

Aromatic * 0.18 -0.02 * 0.31

Serine * -0.17 -0.02 * -0.27

Aliphatic * -0.17 -0.10 * -0.21

Cysteine * -0.16 0.11 * -0.34

Aspartic Acid * 0.16 0.04 * 0.23

Phenylalanine * 0.15 -0.06 * 0.29

Glutamine * -0.14 -0.14 -0.14

Valine -0.12 -0.04 * -0.17

Signal Peptide * 0.12 0.07 * 0.15

Leucine -0.10 -0.13 -0.09

Hydrophobicity -0.09 0.00 -0.15

Arginine 0.09 0.14 0.06

N-Glycosylation Sites 0.09 0.06 0.10

O-Glycosylation Sites * 0.07 * 0.17 0.01

Synonymous Coding 0.07 0.09 0.07

Alanine 0.07 0.02 0.10

β Strands 0.07 0.16 0.01

Threonine 0.06 0.14 0.01

Glycine 0.06 0.14 0.01

Effect size deviation from PS = 0.5 (no effect) for the twenty features with the largest effect size in the Protease dataset. A negative value indicates that

the positive proteins have smaller values than the unlabelled ones, while a positive value indicates that they have greater ones.

Features with significant differences in a dataset are indicated with an *.

doi:10.1371/journal.pone.0117955.t017
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A Gmean of 0.78 indicates that the RF had some difficulty classifying proteins in the All-
Targets dataset. While this may be due to the inadequacy of RFs for the task, the performance
of the RFs on other datasets indicates that it is more likely due to the AllTargets dataset itself.
As the AllTargets dataset contains a heterogeneous set of proteins, due to there being no addi-
tional membership criteria, the distinction between positive and unlabelled proteins may be
more difficult to make, as unlabelled proteins in one family may overlap with positive proteins
in others. Additionally, proteins from smaller families will likely form poorly defined clusters.
These proteins will therefore be more difficult to classify correctly, and will also increase the
difficulty involved in the classification of the proteins in the larger families. In order to test this

Fig 1. Weighted predictions of the proteins in the AllTargets dataset. The positive similarity of a given protein is equal to the fraction of the forest’s votes
that are for the positive class. The values over the bars indicate the number of proteins in the bin (in raw numbers for the positive (black) bars and in
thousands for the unlabelled (grey) bars). The AllTargets dataset contained 18919 unlabelled proteins and 1324 positive ones.

doi:10.1371/journal.pone.0117955.g001

Table 18. Random Forest predicted classifications for all proteins.

Positive Observations Unlabelled Observations G Mean

Total TPs FNs Sensitivity Total TNs FPs Specificity

1324 1018 306 0.77 18919 15021 3898 0.79 0.78

doi:10.1371/journal.pone.0117955.t018
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theory, two new datasets were created from the AllTargets dataset. The first dataset, LargeFami-
lies, consisted of all proteins in the GPCR, IonChannel, Kinase and Protease datasets, and the
second dataset, SmallFamilies, consisted of all proteins in AllTargets-LargeFamilies. RFs were
optimised for these two datasets and used to classify the proteins in the dataset that they were
trained on. The G mean of the RF optimised for the LargeFamilies dataset was 0.81, and the G
mean of the RF optimised for the SmallFamilies dataset was 0.76. As expected, the proteins in
the smaller families were more difficult to classify, and the proteins in the larger families were
classified with a G mean greater than that of the AllTargets dataset. These results indicate that
it is likely to be the combination of the protein families that makes accurate classifications
more difficult, and that including smaller families is detrimental to the classification of proteins
in general.

Cancer Proteins. The best combination of parameters and feature set for classifying the
proteins in the Cancer dataset was numberTrees = 1000,mtry = 5, a weight of 1.3 given to each
observation in the in positive class, a random seed of—4923865346116695007 and thirty-six
features out of the original 105 (S3 Supplementary Information). The positive similarity of the
proteins in the Cancer dataset can be seen in Fig. 2. Using a cutoff of 0.5, the RF’s predicted
classifications are shown in Table 19.

Fig 2. Weighted predictions of the proteins in theCancer dataset.

doi:10.1371/journal.pone.0117955.g002
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As 55% of positive proteins are membrane bound, compared to 11% of unlabelled ones, it
would be expected that a substantial fraction of the misclassified unlabelled proteins are also
membrane bound. This was found to be the case, with 55% of unlabelled proteins with a posi-
tive similarity>0.5 being membrane bound, and 65% of the unlabelled proteins most likely to
be suitable targets, those with positive similarity�0.75, being membrane bound. This tendency
to be membrane bound is also reflected in the function of the forty-six unlabelled proteins with
positive similarity�0.75, as a large fraction of them are membrane bound receptors involved
in signal transduction. Many of the proteins are also putative proto-oncogenes or tumour sup-
pressors, and are often involved in a process or processes that can contribute to the distinguish-
ing characteristics of cancer. For example, the unlabelled protein with the greatest positive
similarity was protein patched homolog 1 (PTCH1) (UniProt accession Q13635). In addition
to being a known tumour suppressor, PTCH1 is a receptor for hedgehog ligands, which are in-
volved in proliferation and differentiation during embryogenesis [64]. Even when a direct con-
nection between the protein and cancer is speculative or unknown, a connection between them
can often be hypothesised. For example, although sodium-dependent phosphate transport pro-
tein 2B (UniProt accession O95436) has no clear oncogenic or tumour suppression function, it
is regulated by epidermal growth factor [65], the expression of which is often altered in cancer-
ous cells as part of their achieving unregulated growth. In addition to the proteins that can be
causatively linked to cancer, there are others, such as solute carrier family 45 member 3 (Uni-
Prot accession Q96JT2) which are differentially expressed in cancer but not presently believed
to be drivers of cancer [66,67]. While connections between the proteins and cancer provide
some validation for the usefulness of the misclassified unlabelled proteins as antineoplastic tar-
gets, at least one, programmed cell death 1 ligand 1 (UniProt accession Q9NZQ7), is known to
be the target of a compound currently undergoing phase II clinical trials as an antineoplastic
drug (MPDL3280A). All unlabelled proteins in the Cancer dataset predicted to be positive can
be found in S4 Supplementary Information. These proteins are those that have been causatively
linked to cancer, without currently (2014) being used as an antineoplastic target, and appear
most suitable for consideration as future antineoplastic drug targets.

GPCRs. The best combination of parameters and feature set for classifying the proteins in
the GPCR dataset was numberTrees = 4000,mtry = 5, a weight of 12 given to each observation
in the in positive class, a random seed of -4568194888819162440 and forty-two features out of
the original 105 (S3 Supplementary Information). The positive similarity of the proteins in the
GPCR dataset can be seen in Fig. 3. Using a cutoff of 0.5, the RF’s predicted classifications are
shown in Table 20.

As with the results of the analysis of the features in the GPCR dataset, the distribution of the
positive similarities of the proteins in the dataset is likely to be heavily skewed by the presence
of the odorant/olfactory GPCRs. Of the 421 odorant/olfactory GPCRs in the dataset, 419 were
given a positive similarity below 0.1, with all 421 having a positive similarity below 0.5. In
order to assess the impact on the classifications of including the odorant/olfactory GPCRs in
the dataset, a new dataset, GPCR_NO, was constructed from all proteins in the GPCR dataset
that are not odorant/olfactory receptors. The best combination of parameters and feature set
for classifying the proteins in the GPCR_NO dataset was numberTrees = 4000,mtry = 5, a

Table 19. Random Forest predicted classifications for Cancer proteins.

Positive Observations Unlabelled Observations G Mean

Total TPs FNs Sensitivity Total TNs FPs Specificity

387 334 53 0.86 444 380 64 0.86 0.86

doi:10.1371/journal.pone.0117955.t019
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weight of 3.6 given to each observation in the in positive class, a random seed of
-251746180866936552 and forty-seven features out of the original 105 (S3 Supplementary
Information).

The lower G mean of the RF trained on the GPCR_NO dataset indicates that the dissimilari-
ties between the positive and unlabelled proteins are not as great as the results generated using
the GPCR dataset would purport to show (Table 21). The positive and unlabelled GPCRs are in
fact quite similar, once the odorants are removed, as can be seen from the large overlap and rel-
atively low frequencies in their positive similarities (Fig. 4) and the small effect size of their dif-
ferences (Table 11).

Using a cutoff of 0.5, substantial differences can be seen in the classifications of the non-
odorant GPCRs by the RFs trained on the GPCR and GPCR_NO datasets (Tables 10 and 11).

Fig 3. Weighted predictions of the proteins in theGPCR dataset.

doi:10.1371/journal.pone.0117955.g003

Table 20. Random Forest predicted classifications for GPCR proteins.

Positive Observations Unlabelled Observations G Mean

Total TPs FNs Sensitivity Total TNs FPs Specificity

115 104 11 0.90 712 613 99 0.86 0.88

doi:10.1371/journal.pone.0117955.t020
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Although no odorant receptors were misclassified by the RF trained on the GPCR dataset, re-
moving the odorants from the dataset led to 49 fewer unlabelled proteins being misclassified as
positive. Although this may appear counterintuitive, it is in fact unsurprising. This is because
the presence of the large subpopulation of unlabelled odorants allows the weight given to the
positive observations to be increased, thereby improving the sensitivity of the RF at the cost of
increasing the number of misclassified unlabelled proteins. As only non-odorant unlabelled
proteins will be misclassified, due to the dissimilarity between the odorants and positive pro-
teins, the resultant decrease in specificity will be small and can be more than compensated for

Table 21. A comparison of the predictions of the non-odorant GPCRs.

Dataset Trained On Positive Observations Unlabelled Observations G Mean

Total TPs FNs Sensitivity Total TNs FPs Specificity

GPCR 115 104 11 0.90 291 241 99 0.71 0.74

GPCR_NO 115 88 27 0.77 291 241 50 0.83 0.80

Predictions were made by the optimised RF trained on the GPCR dataset and the one trained on the GPCR_NO dataset.

doi:10.1371/journal.pone.0117955.t021

Fig 4. Weighted predictions of the proteins in theGPCR_NO dataset.

doi:10.1371/journal.pone.0117955.g004
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by the increase in sensitivity. Therefore, removing the odorants will not only negate the artifi-
cial boost to the specificity that they provide, but also necessitate a decrease in the weight given
to the positive proteins. The need for this decrease can be seen in the fact that using a weight of
12, as was done for the GPCR dataset, causes a large number of unlabelled non-odorants to be
misclassified (Table 10). As the G mean of the RF trained on the GPCR_NO dataset is substan-
tially more sensitive to misclassified unlabelled proteins, due to the smaller number of unla-
belled proteins in the dataset, the number of misclassified unlabelled proteins must be brought
down in order to achieve a respectable G mean. However, the increase in specificity that this
provides will be accompanied by a sizeable decrease in sensitivity, and therefore a lower
G mean.

Of the twenty-three unlabelled proteins with the greatest likelihood of being suitable drug
targets, those with positive similarity�0.75, 15 are class A GPCRs, 7 are class B and 1 is class
C. Irrespective of class, the GPCRs are predominantly expressed in the brain and the central
nervous system. In terms of the ligands of the misclassified unlabelled proteins, seven of the
twenty-three are orphan receptors with no known ligand, while the remainder are predomi-
nantly receptors for neurotransmitters and neuropeptides (in line with their tendency to be ex-
pressed in the brain). All unlabelled proteins in the GPCR_NO dataset predicted to be positive
can be found in SI3.

Ion Channels. The best combination of parameters and feature set for classifying the pro-
teins in the IonChannel dataset was numberTrees = 1000,mtry = 10, a weight of 1.2 given to
each observation in the in positive class, a random seed of 2641231349290994133 and forty fea-
tures out of the original 105 (S3 Supplementary Information). The positive similarity of the
proteins in the IonChannel dataset can be seen in Fig. 5. The distribution of the proteins in the
IonChannel dataset likely indicates that there is a strong similarity between the positive and
unlabelled proteins, as there are no particularly large peaks in any of the bins more extreme
bins (0.0–0.1 and 0.9–1.0). Using a cutoff of 0.5, the RF’s predicted classifications are shown in
Table 22.

Of the ten unlabelled proteins with the greatest likelihood of being suitable drug targets,
those with positive similarity�0.75, six are known to be voltage-gated, three ligand-gated and
one of unknown gating. Of the voltage-gated channels, two are selective for calcium, three for
potassium and one for sodium, with the potassium channels both being inward rectifying ones.
All three ligand gated channels were selective for cations, with the ligands being zinc for one
channel and serotonin for the other two. All unlabelled proteins in the IonChannel dataset pre-
dicted to be positive can be found in SI3.

Kinases. The best combination of parameters and feature set for classifying the proteins in
the Kinase dataset was numberTrees = 1000,mtry = 5, a weight of 23 given to each observation
in the in positive class, a random seed of -6712145332927501964 and thirty-two features out of
the original 105 (S3 Supplementary Information). The positive similarity of the proteins in the
Kinase dataset can be seen in Fig. 6. The distribution of the proteins in the Kinase dataset likely
indicates that there is a strong similarity between the positive and unlabelled proteins, as there
are no particularly large peaks in any of the bins more extreme bins (0.0–0.1 and 0.9–1.0).
Using a cutoff of 0.5, the RF’s predicted classifications are shown in Table 23.

Two clear trends can be discerned by looking at the types of the kinases in the Kinase dataset
(Table 14). Firstly, atypical (i.e. not Ser, Thr or Tyr) kinases make poor targets. Of the twenty-
seven kinases known to be atypical, only one is the target of an approved drug. Similarly, only
one unlabelled atypical kinase is misclassified as positive, although with a positive similarity
<0.75. There are therefore no atypical kinases amongst the forty-nine unlabelled kinases that
are most likely to be suitable targets, those with positive similarity�0.75. The second clear
trend is the preferential targeting of tyrosine kinases. Despite only 14% of all kinases of known
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type being tyrosine kinases, they comprise 43% of the positive kinases of known type. Addi-
tionally, if the misclassified unlabelled proteins are included, then 73 of the 90 kinases that are
known to be tyrosine kinases are targets or are believed to be suitable future targets. Further ev-
idence of the disproportionate importance of tyrosine kinases as drug targets can be seen in the
fact that 31% of the misclassified unlabelled proteins, and 53% of the unlabelled proteins with
positive similarity�0.75, are tyrosine kinases.

In addition to the type of the kinase, the misclassified unlabelled proteins share with the
positive proteins a tendency to be membrane bound. Although 17% of unlabelled and 34% of
positive proteins are membrane proteins, 24% of the unlabelled proteins with positive similari-
ty>0.5 are. However, of the unlabelled proteins with positive similarity�0.75, twenty (41%)
are membrane bound. This further highlights the influence of tyrosine kinases on the

Table 22. Random Forest predicted classifications for Ion Channel proteins.

Positive Observations Unlabelled Observations G Mean

Total TPs FNs Sensitivity Total TNs FPs Specificity

155 133 22 0.86 165 144 21 0.87 0.87

doi:10.1371/journal.pone.0117955.t022

Fig 5. Weighted predictions of the proteins in the IonChannel dataset.

doi:10.1371/journal.pone.0117955.g005
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prediction of kinase drug targets, as nineteen of the twenty misclassified membrane bound
unlabelled proteins with positive similarity�0.75 are receptor tyrosine kinases. When consid-
ering receptor and non-receptor tyrosine kinases separately, the receptor tyrosine kinases make
up the largest fraction of the misclassified unlabelled proteins with positive similarity�0.75.
The importance of being membrane bound to the likelihood of a kinase being a suitable drug
target is therefore likely to be more of a reflection of the importance of being a receptor tyrosine
kinase. All unlabelled proteins in the Kinase dataset predicted to be positive can be found in
S3 Supplementary Information.

Proteases. The best combination of parameters and feature set for classifying the proteins
in the Protease dataset was numberTrees = 1000,mtry = 10, a weight of 20 given to each obser-
vation in the in positive class, a random seed of 8716758538734970127 and the following

Fig 6. Weighted predictions of the proteins in the Kinase dataset.

doi:10.1371/journal.pone.0117955.g006

Table 23. Random Forest predicted classifications for Kinases.

Positive Observations Unlabelled Observations G Mean

Total TPs FNs Sensitivity Total TNs FPs Specificity

94 76 18 0.81 567 460 107 0.81 0.81

doi:10.1371/journal.pone.0117955.t023
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thirty-five features out of the original 105 (S3 Supplementary Information) The positive simi-
larity of the proteins in the Protease dataset can be seen in Fig. 7. The distribution of the pro-
teins in the Protease dataset likely indicates that there is a strong similarity between the positive
and unlabelled proteins, as there are no particularly large peaks in any of the bins more extreme
bins (0.0–0.1 and 0.9–1.0). Using a cutoff of 0.5, the RF’s predicted classifications are shown in
Table 24.

As can be seen from Table 25, the distribution of the types of all misclassified proteases
closely follows that of the entire Protease dataset, rather than the set of positive proteins. How-
ever, when only those unlabelled proteases that are most likely to make suitable drug targets
are considered, those with a positive similarity�0.75, the distribution of the types of the mis-
classified unlabelled proteins is much closer to that of the positive proteins. For example, al-
though four unlabelled aspartic proteases are misclassified, none of them have a positive
similarity�0.75. Similarly, although 34% of all misclassified unlabelled proteases are metallo
proteases, 50% of misclassified unlabelled proteases with positive similarity�0.75 are. The po-
tential drug targets with positive similarity�0.75 are also more similar to the positive proteins
in terms of their propensity to be membrane bound. While 23% of all misclassified unlabelled
proteins are membrane bound, 36% of the unlabelled proteins with positive similarity�0.75
are, in close agreement with the 35% of positive proteins that are membrane bound. The small
number of misclassified unlabelled proteins with the more confident predictions is likely due

Fig 7. Weighted predictions of the proteins in the Protease dataset.

doi:10.1371/journal.pone.0117955.g007
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to the small number of positive proteins. As the set of positive proteins increases, it is likely
that what constitutes similarity to a positive protein will begin to broaden, and more unlabelled
proteins will be deemed to be potential drug targets. Similarly, as non-metallo proteases begin
to compose more of the set of positive proteins the fraction of the most confident potential
drug target predictions that are metallo proteases will likely decrease. All unlabelled proteins in
the Protease dataset predicted to be positive can be found in S4 Supplementary Information.

Dataset Homogeneity. In order to further clarify the reasons for the differences in the G
means of the RFs, the homogeneity of each dataset was estimated. For each dataset, the pair-
wise sequence identity between all pairs of proteins in the dataset was calculated using BLAST.
The proteins in a pair were considered to be similar if their pairwise sequence identity was at
least 20%. This threshold was chosen as it is generally the lowest threshold at which sequence
alignments can still be considered reasonable estimates of homology. As the maximum number

of similar pairs, excluding identity pairs, for a set of N proteins is N
2

� � ¼ N!
2! N�2ð Þ!, the percentage

of all possible pairs of two positive proteins, two unlabelled proteins and one positive and one
unlabelled protein that are similar could be calculated for each dataset. This percentage indi-
cates the level of similarity between proteins in a given set, with a higher percentage indicating
that the proteins in the set are more similar and interconnected. The results of the similarity
comparisons can be seen in Table 26.

From the results it can be seen that datasets with a large percentage of similar pairs, the
GPCR_NO and Kinase datasets, induce RFs with low G means. The high percentage of similar
inter-class pairs is likely to be particularly problematic for a RF’s classifications, as this indi-
cates that the positive and unlabelled proteins are highly similar and likely more difficult to
separate and classify well. This problem can best be seen in the differences between the results
for the GPCR and GPCR_NO datasets. While the inter-class similarity is high in the GPCR
dataset, it is six percentage points less than in the GPCR_NO dataset. Additionally, although
the 291 non-odorants make up 41% of the unlabelled proteins, they are involved in 57% of the
similar inter-class pairs, while the 421 odorants are involved in 43%. The odorants can there-
fore be seen to be much less similar to the positive proteins than the unlabelled non-odorants,
and likely form a highly interconnected cluster separate from a second cluster of non-odorants.
The removal of the odorants from the dataset will therefore remove a large source of proteins

Table 24. Random Forest predicted classifications for Proteases.

Positive Observations Unlabelled Observations G Mean

Total TPs FNs Sensitivity Total TNs FPs Specificity

59 52 7 0.88 472 419 53 0.89 0.88

doi:10.1371/journal.pone.0117955.t024

Table 25. Division of positive and unlabelled proteases by type.

Aspartic Cysteine Metallo Serine Threonine

Entire Dataset 31 (6%) 135 (25%) 167 (31%) 161 (30%) 19 (4%)

Unlabelled Proteins 29 (6%) 133 (28%) 131 (28%) 148 (31%) 13 (3%)

Unlabelled Proteins With Positive Similarity >0.5 4 (8%) 9 (17%) 18 (34%) 14 (26%) 5 (9%)

Unlabelled Proteins With Positive Similarity �0.75 0 (0%) 2 (14%) 7 (50%) 3 (21%) 2 (14%)

Positive Proteins 2 (3%) 2 (3%) 36 (61%) 13 (22%) 6 (10%)

The distribution of all unlabelled proteins, misclassified unlabelled proteins and all positive proteins by protease type. The 18 unlabelled proteases of an

unknown type are not shown.

doi:10.1371/journal.pone.0117955.t025
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that were relatively simple to classify correctly, along with highlighting the true similarity be-
tween the proteins that have potential to serve as targets (non-odorants). This will result in a
substantially lower G mean for the RF trained on the GPCR_NO dataset when compared to the
one trained on the GPCR dataset.

In contrast to the GPCR_NO and Kinase datasets, the AllTargets dataset has very low percent-
ages for all pair types, but still induced a RF with a low Gmean. This poor performance indicates
that protein datasets can induce poorly performing RFs as a result of being too heterogeneous as
well as by being too homogeneous. However, in the case of heterogeneous datasets, it is likely the
low level of intra-class similarity that is problematic, as with a low level of intra-class similarity
the clustering that the RF relies on to provide accurate classifications is absent. Additionally,
highly heterogeneous datasets will cause the individual trees in the forest to show greater variance
in their classifications of a given feature subspace, resulting in less confident
aggregate predictions.

Although there were no difficulties in obtaining a large G mean for RFs induced from the
Protease dataset, the large proportion of metallo proteases in the positive proteins, and the high
level of similarity between them, could prove problematic. By looking at the similarity between
specific subpopulations of the Protease dataset (Table 27) it can be seen that the similarities be-
tween the proteins in the dataset are largely intra-type, i.e. between two metallo or two non-
metallo proteases. Out of the 9231 pairs of proteins in the dataset that are similar, only 185
(2.0%) of the pairs include one metallo and one non-metallo protease. The lack of similarity is
particularly striking for the pairs of positive proteins, where only 2 (0.6%) pairs of similar pro-
teins consist of a metallo and non-metallo protease. These results demonstrate that the Protease
dataset is divided into a minimum of two clusters, one of metallo and one of non-metallo

Table 26. Comparison of pairs of proteins with pairwise sequence identity of at least 20%.

Dataset All Pairs Pairs of Two Positive Proteins Pairs of Two Unlabelled Proteins Pairs of One Unlabelled and One Positive Protein

AllTargets 0.47% 0.92% 0.49% 0.28%

Cancer 1.23% 2.59% 1.29% 0.60%

GPCR 33.41% 35.47% 39.17% 15.38%

GPCR_NO 20.20% 35.47% 16.81% 21.46%

IonChannel 5.27% 9.69% 4.40% 3.66%

Kinase 31.45% 42.44% 30.67% 32.89%

Protease 6.54% 18.81% 6.41% 6.26%

For each dataset, the values indicate the percentage of all possible pairs, pairs consisting of two positive proteins, pairs consisting of two unlabelled

proteins and pairs consisting of one positive and one unlabelled protein for which the pairwise sequence identity was at least 20%.

doi:10.1371/journal.pone.0117955.t026

Table 27. Similarities between pairs of proteins in the Protease dataset.

Positive Unlabelled

Metallo Non-metallo Metallo Non-metallo

Positive Metallo 257 2 457 12

Non-metallo 74 42 1233

Unlabelled Metallo 583 129

Non-metallo 6442

Each cell corresponds to one of the possible protein pair combinations. For example, there are 257 pairs consisting of two positive metallo proteases and

129 consisting of an unlabelled metallo protease and an unlabelled non-metallo protease.

doi:10.1371/journal.pone.0117955.t027
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proteases, with the cluster of non-metallo proteases potentially containing further subclusters
(such as of serine proteases). While this clustering will prove problematic for the analysis of the
important features in the Protease dataset, as there is no one cluster of ‘drug target-like pro-
teins’, there is no reason to expect that it would prove to be problematic for the RF classifica-
tions, as RFs can easily work with datasets that contain distinct clusters in separate subspaces.

Discussion

Sequence Identity Comparison
By basing the definition of redundancy on sequence similarity, the proteins in the dataset are
being placed in a similarity space, where the distance between any two proteins is related to
their pairwise sequence identity. In this space, groups of similar proteins will form clusters,
while dissimilar ones will be scattered farther apart. The protein similarity graph captures this
information, and simplifies it by only connecting proteins that reach a certain level of similari-
ty. As redundancy removal is achieved by ensuring that no two proteins in the non-redundant
dataset share an edge, it conceptually functions by thinning out user-defined clusters of pro-
teins in the similarity space through the replacement of a cluster by a representative subset of
its proteins.

There are two situations where this thinning out of clusters is necessary: when you want to
generate a representative dataset or when you believe that your dataset is biased. The goal
when generating a representative dataset is to cover the same subset of the similarity space cov-
ered by the original dataset, maximise coverage, while using as few proteins as possible, mini-
mise ‘redundancy’. Bias in a dataset, in the context of redundancy removal, is taken to mean
that the distribution of the proteins in the dataset throughout the similarity space is not the
same as the true distribution of the entire population of proteins. Certain similarity subspaces
will therefore contain more proteins than they would under the true distribution, and conse-
quently have a disproportionate influence on conclusions drawn from the dataset. Thinning
out clusters of proteins in subsections of the similarity space overpopulated due to biases can
therefore be used to rebalance the dataset back towards the true distribution.

For our particular application, the generation of a representative set is much less important,
due to computational resources not being stretched, than bias removal. However, bias is only a
concern when the dataset is a sample that has been drawn from a population of proteins and is
being used to draw conclusions about the population. In the case of the AllTargets dataset, the
population of proteins under consideration is the entire human proteome, while in the case of
the GPCR, IonChannel, Kinase and Protease datasets, the populations are the set of all human
GPCRs, ion channels, kinases and proteases respectively. As the dataset being used in all five
cases is the same as the population of interest, there is no potential source of selection bias or
problems due to generalising to proteins outside the dataset. Unlike the datasets based on pro-
tein families, the proteins in the Cancer dataset are influenced by past discoveries and historical
research preferences, none of which are without bias, and can therefore be seen to be a biased
sample of the entire human proteome. However, as no generalisations are being made to pro-
teins outside this biased sample, the conclusions drawn about the proteins in the Cancer dataset
will not themselves be biased. Therefore, as bias is not a concern for any of the datasets used
here, there is no theoretical reason for them to undergo redundancy removal.

Although the similarity based removal of proteins from the datasets is not necessary, the re-
moval of observations from a dataset can potentially improve the quality of an algorithm
trained on it. However, in the case of the protein datasets examined here, the best RFs were al-
ways induced using the entire dataset, indicating that the removal of proteins with similar se-
quences does not improve a classifier’s performance. Despite this, there is no indication that
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measuring similarity between proteins based on their sequences and defining the decision
boundary based on the dataset’s features was particularly detrimental. Rather, it was likely the
act of removing proteins in general that led to the decrease in performance. Therefore, due to
the lack of theoretical need or practical benefit, redundancy removal was avoided when deter-
mining the properties of and classifying drug target proteins.

Target Prediction and Properties
One noticeable trend across the datasets is the lack of effect for features that could be consid-
ered to represent interactions between proteins. The primary measures of this were the number
of binary PPIs and the number of phosphorylation sites, as phosphorylation sites are indicative
of a protein’s involvement in regulatory networks. Despite the biological importance of interac-
tions between proteins, the size of the effect of both the difference in binary PPIs and phos-
phorylation sites was small for all datasets, with the difference in total phosphorylation sites in
the Cancer dataset having the largest effect (PS = 0.40). Although it is unclear whether interac-
tions between proteins would be expected to be more or less likely to occur in targets, the lack
of importance is perhaps surprising given the importance of the regulation of proteins and the
interactions between them.

Another set of features that were minimally important across the datasets is the germline
variants. Of the four variant types investigated, consequential effects were seen for synonymous
coding variants in the Cancer dataset (with a very small effect), 3’ and 5’ untranslated region
variants in the Cancer dataset (both with moderately large effects) and nonsynonymous coding
variants in the AllTargets and Cancer datasets (with very small and moderate effects respective-
ly). The unique pattern of effects for the Cancer dataset is predominantly a result of the greater
number of variants in the unlabelled proteins, and is most likely due to the characteristics of
cancer, rather than the fact that the Cancer dataset is composed of proteins implicated in a dis-
ease instead of based on protein family membership. Although the number of germline vari-
ants is relatively unimportant for current drug targets, were personalised medicine to become
commonplace, it is possible that proteins with a larger number of known variants that alter
their expression or activity would become more likely to be drug targets, as a greater number of
variants would mean that there is more potential for targeting them.

Although the number of PEST motifs and the number of N-linked glycosylation sites are
both believed to be important in degradation control, their effects do not correlate strongly. As
the number of N-linked glycosylation sites is greater in the positive proteins for all tested data-
sets, it would be expected that the positive proteins have fewer PEST motifs, due to them hav-
ing a longer in vivo half-life. However, this is only true for two of the four datasets where the
features could be analysed accurately. Even in the datasets where there are fewer PEST motifs
in the positive proteins, the effect is always small in both absolute terms and relative to that of
the N-linked glycosylation sites. These results indicate that there must be some substantial dif-
ference in the degradation protection provided by having fewer PEST motifs and more N-
linked glycosylation sites, or that additional functions of the two are important in helping to
determine the differences in their effect sizes.

The clearest difference between positive and unlabelled proteins is in the proportion of non-
polar/polar amino acids and in the likelihood of being membrane bound. If the GPCR_NO and
IonChannel datasets are discounted, as they consist solely of transmembrane proteins, the
number of transmembrane helices can be seen to have a moderate to large effect for both the
AllTargets and Cancer datasets. When coupled with the size of the effect for the sequence
length in the GPCR_NO and IonChannel datasets, the tendency of proteins to be membrane
bound explains the differences in the fraction of non-polar/polar amino acid residues. Being
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membrane bound is therefore important for, and highly indicative of, a protein being a drug
target, and raises the question of whether the results are capturing properties that are truly in-
dicative of being a drug target, or simply of being a membrane bound protein. However, it is
believed to be unlikely that the results are simply highlighting properties of membrane bound
proteins, since differences in targets and unlabelled proteins arise even when all the proteins
are membrane bound [9]. The performances of the RFs would also seem to indicate that there
are real differences between the datasets that cannot be explained by the predisposition of tar-
gets to being membrane bound, as the difference in transmembrane helices does not correlate
strongly with the G mean of the optimised classifier.

Dataset Homogeneity
The homogeneity of the datasets is of particular importance when attempting to predict poten-
tial targets or determine the properties important for the successful targeting of a protein. Of
the three datasets that induced poorly performing RFs (AllTargets, GPCR_NO and Kinase), the
GPCR_NO and Kinase datasets were very homogenous, as seen by the high percentage of pairs
of proteins that were similar. Conversely, the AllTargets dataset was shown to induce poorly
performing RFs due to the heterogeneity of the dataset. The performance of the RFs induced
using the LargeFamilies and SmallFamilies datasets indicate that this is likely due to a combina-
tion of the presence of overlapping subpopulations and the difficulty of classifying proteins
from smaller families. The differences in the subpopulations likely cause there to be more over-
lap between clusters of unlabelled and positive proteins, while the proteins from smaller fami-
lies likely negatively impact the clustering of proteins from larger families. The G mean of the
RF trained on the AllTargets dataset is also likely to be optimistic for the same reasons that the
RF trained on the GPCR dataset was. However, in the case of the AllTargets dataset there are
possibly more subpopulations than just the odorant GPCRs that are overly simple to classify,
potentially increasing the favourable bias in the results.

Despite the low G mean of the RFs induced using the AllTargets, GPCR_NO and Kinase
datasets, any features that are determined to have an effect on the likelihood of a protein being
a suitable drug target are not invalidated by the homogeneity of the datasets. Rather, features
are simply less likely to be found to be important when the positive and unlabelled proteins are
excessively similar or dissimilar. Conversely, with the Protease dataset the homogeneity of the
positive proteins proves to be problematic for the determination of the important features, but
not for the capabilities of the RF induced from it. This is because RFs can easily handle datasets
with distinct subpopulations, due to their partitioning of the feature space. The cluster of
metallo proteases will therefore not influence the RFs performance on the cluster of non-
metallo proteases, as the clusters occupy different feature subspaces. The classifications are
therefore not unfavourably affected by the large proportion of positive metal proteases. Rather
it simply makes the RF better at determining potential metallo protease drug targets than it is
at determining potential non-metallo protease targets.

Random Forests Mitigate the Potential for Overfitting
For most problems, using the same dataset to optimise the parameters, select the optimal fea-
ture set and train and evaluate the final classifier would lead to severe overfitting. However, the
atypical nature of the problem addressed here lends itself to this approach without risking over-
fitting. This is because overfitting occurs when a classifier fits limited training observations too
closely, and therefore describes the properties of the training set rather than the underlying re-
lationships between features. However, in our case the data available for training is the entire
population rather than a sample of it, and there are therefore no observations that can be
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generalised to. The ideal classifier would therefore be optimised for performance on the train-
ing set, as this will optimise the classifier for performance on the entire population.

Despite the lack of need for any generalisation capabilities, we would like to extract potential
future drug targets from the unlabelled proteins. This requires the ability to make informed
predictions, rather than simply describing the differences between the positive and unlabelled
proteins. However, training and evaluating the classifier on the same dataset would in general
lead to severely biased predictions. This bias would make unlabelled proteins overly likely to be
classified as unlabelled, and vice versa for positive proteins, thereby causing potential drug tar-
gets to be missed. We would therefore like to use our entire dataset for both optimising the pa-
rameters and training the final classifier, while still being able to use the final classifier to make
unbiased predictions about the observations in our dataset.

Conclusions
Subdividing the entire human proteome in order to create a relatively homogenous subset of
proteins is necessary for forming an accurate picture of the features that are important for de-
termining a protein’s drug target likeness. While the heterogeneous AllTargets dataset does
provide some information about drug targets in general, the effect sizes of the individual fea-
tures are small and the classifications inaccurate. In contrast, datasets formed from more ho-
mogenous subsets generally had features with larger effect sizes, and all induced RFs with
greater G means. However, protein datasets can quickly become too homogeneous, negatively
impacting the classification capability of a RF trained on them. Care is therefore needed when
deciding on a subset of the human proteome to use, as certain subdivisions will produce data-
sets with vastly different levels of homogeneity. The ideal dataset would have distinct subpop-
ulations (like the Protease dataset) or a small but sufficient level of homogeneity (like the
Cancer and IonChannel datasets). This homogeneity does not have to be based on family
membership or even disease class, but could come from structural, functional or other proper-
ties of proteins instead. Despite the restrictions placed on the datasets by the homogeneity re-
quirements, potential targets can be predicted and properties important for the targeting of
proteins determined.

The properties that were most important in differentiating targets from non-targets were
found to be the proteins’ hydrophobicities, in vivo half-lives, propensity for being membrane
bound and the fraction of non-polar amino acids in their sequences. Taken together, the im-
portance of these properties indicates that drug targets are predominantly membrane bound
proteins, and therefore non-polar, with long in vivo half-lives. However, in the case of the data-
sets that consist solely of membrane bound proteins, the GPCR_NO and IonChannel datasets,
the targets are predominantly more polar, rather than non-polar, due to the greater proportion
of their sequence that resides in the extra and intracellular spaces. Whilst the primary impor-
tance of these general properties holds for all datasets, the Cancer dataset contained additional
properties of secondary importance. These secondary features were predominantly associated
with the specific and reliable activity/expression of the proteins (e.g. phosphorylation sites and
germline variants), and likely indicate that from amongst all proteins involved in cancer, those
with the most specific and reliable activity are preferentially chosen to be antineoplastic targets.
As the Cancer dataset also showed the most pronounced effect for the importance of the gener-
al properties, the range and strength of the importance of the properties in the Cancer dataset
when compared to the other datasets, along with the high quality of the RF induced using it,
likely indicates that subdivisions based on a disease possess the most promise for informative
future analysis.
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